This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 1

OptZConfig: Efficient Parallel Optimization of
Lossy Compression Configuration

Robert Underwood, Jon C. Calhoun, Member, IEEE, Sheng Di, Senior Member, IEEE, Amy Apon, Senior
Member, IEEE, and Franck Cappello, Fellow, IEEE

Abstract—Lossless compressors have very low compression ratios that do not meet the needs of today’s large-scale scientific
applications that produce vast volumes of data. Error-bounded lossy compression (EBLC) is considered a critical technique for the
success of scientific research. Although EBLC allows users to set an error bound for the compression, users have been unable to
specify the requirements on the compression quality, limiting practical use. Our contributions are: (1) We formulate the problem of
configuring EBLC to preserve a user-defined metric as an optimization problem. This allows many classes of new metrics to be
preserved, which improves over current practices. (2) We present a framework, OptZConfig, that can adapt to improvements in the
search algorithm, compressor, and metrics with minimal changes, enabling future advancements in this area. (3) We demonstrate the
advantages of our approach against the leading methods to configure compressors to preserve specific metrics. Our approach
improves compression ratios against a specialized compressor by up to 3x, has a 56 x speedup over FRaZ, 1000x speedup over
MGARD-QOI post tuning, and 110x speedup over systematic approaches which had not been bounded by compressors before.

Index Terms—Error Bounded Lossy Compression, LibPressio, Parallel Computing, Non-linear Optimization

1 INTRODUCTION

ITH the ever-increasing execution scale and problem
Wsize of today’s scientific applications, volumes of
simulation data are produced that cannot be stored and
transferred efficiently because of the limited storage space
and I/O or network bandwidth. Consequently, scientific
data reduction techniques are studied. Since most scientific
datasets are composed of floating-point numbers, tradi-
tional byte-stream-based lossless compressors (such as Gzip
[1] and Zstd [2]) suffer from low compression ratios (gener-
ally ~2x or lower) ﬂ Although some lossless compressors
such as FPC [3] are designed for floating-point data, the
compression ratio is still far lower than the user-required
level (often 10x or higher) because of the high entropy of
the mantissa of floating-point numbers.

Error-bounded lossy compressors (EBLCs) address this
issue by allowing users to control the data distortion by
specifying point-wise error bounds. By leveraging the cor-
relation of adjacent data points in either space or time,
an EBLC can obtain a compression ratio of 100x or even
higher while respecting user prescribed point-wise accuracy
requirements on the decompressed data, significantly reduc-
ing the data storage and data movement burden. Neverthe-
less, a significant gap still exists between the EBLCs and
the user’s compression needs. Users must invest significant
effort to understand the effectiveness of each lossy compres-
sor on their specific scientific datasets and the impact of
data distortion to their post-hoc analysis. To this end, users

e R. Underwood is with Argonne National Laboratory.
E-mail: runderwood@anl.gov

o A. Apon and]. Calhoun are with Clemson University.

e S. Diand F. Cappello are with Argonne National Laboratory.

Manuscript received February 21, 2022; revised Feburary 14, 2022.

1. early usage of compression ratio defined it as the inverse from
what we define as it here; however most modern work on compressors
defines it as we do here. Some communities retain the earlier definition

have to manually perform many tedious trial-and-error tests
for the different compressors with their large datasets, and
each compressor may involve setting many parameters.
For example, SZ [4], [5] offers more than 25 parameters,
including different types of error bounds (absolute error
bound, relative error bound), number of quantization bins,
block size, and lossless compression technique (e.g., Zlib [1]
and Zstd [2]).

In addition to specialized compressors, there have
been two major developments in this area: FRaZ [6]
and MGARD-QOI mode [7]. The former uses numerical
optimization techniques to find a fixed compression ratio.
The latter uses general mathematical proprieties to bound
compression errors for arbitrary bounded linear functional
Quantities of Interest (Qols) on regular grids — a subset
of methods we consider in our paper. However, both
share significant shortcomings, namely performance and
applicability to a wide array of user defined metrics.
In this paper, we propose OptZConfig and Fixed Metric
Fidelity Search (FMFS), which help users select the lossy
compressor that help them meet their quality needs with
optimized parameter settings in a fully automatic way for
more general user defined metrics by building upon the
methodology in FRaZ. That is, provided a scientific dataset
and the user’s specific required compression quality (e.g.,
some analysis metric and/or target compression ratio),
OptZContfig quickly selects the compressor and determines
its sufficient parameter setting.

Our major contributions are as follows:

1) We formulate the configuring of EBLCs to preserve
a user-defined metrics as an optimization problem
improving over current trial-and-error or scientist
in-the-loop evaluations.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 2

2) We present a framework, OptZConfig, that adapts to
improvements in the search algorithm [6], compres-
sor [7], [8], and metrics with minimal changes [9],
enabling future innovations. The prior approaches
cited are strongly tied to at least one of these three.

3) We present and evaluate on real world data sets and
metrics a novel parallel algorithm, Fixed Metrics
Fidelity Search (FMFS), that improves over the com-
pression ratio of specialized compressors [8] by up
to 3x , is 56 faster than prior black box searching
methods [6], over 1000x faster post-tuning than
MGARD-QOI post-tuning [7], and 110x faster than
systematic approaches to bound metrics that are
bounded by prior compressors or frameworks.

2 RESEARCH BACKGROUND AND RELATED WORK

This section presents the background and highlights the
motivation for this research. First, we provide a discussion
of several scientific applications with big data issues and
the user’s requirements. We discuss several use cases that
require automatic lossy compression optimization strategies
in practice. Then, we describe the state-of-the-art error-
bounded lossy compression (EBLC) techniques fundamen-
tal to developing the OptZConfig framework.

2.1 Big Data Applications and Use Cases

Today’s scientific applications are producing too much data
to efficiently process or store at runtime. Cosmology sim-
ulations of the Hardware/Hybrid Accelerated Cosmology
Code (HACC) [10], for instance, may produce 21.2 petabytes
of data when simulating 2 trillion particles for 500 time-
steps. Summit, one of the most powerful supercomputers,
at the Oak Ridge National Laboratory [11] provides only
hundreds of terabytes of storage for each user. Hundreds of
users share the limited total storage space (250 PB in total).

Materials science can produce raw data with a very
high rate (e.g. 250 GB/s with Light Coherent Light Source
(LCLS-II) [12]). In order to sustain the data acquisition rate,
storing the raw data without compression is impractical.
The data needs to be reduced by 10 X to fit in the available
bandwidth.

Each scientific application brings a unique use case for
EBLC in the analysis of high-performance computing sim-
ulation data or instrument data. For example, cosmology
researchers explore galaxy structures formed by particles
coalescing into halos, and the bias of halo masses [13],
[14] should be limited to within 3% based on the lossy
reconstructed particle data.

A number of metrics can be used to understand the
impact of compression errors. These metrics measure the
quality of specific statistical outcomes, signal distortion
(such as peak signal-to-noise ratio (PSNR)), and spatial error.
However, not all metrics are supported by all lossy com-
pressors. FPZIP and ZFP do not natively support PSNR or
spatial-error-preserving modes requiring workarounds. SZ
supports fixed PSNR but suffers from large errors especially
for high-compression cases, which is attributed to the as-
sumption of uniform error distribution. This may degrade
compression ratios. We refer readers to the survey paper [12]

for more use cases of EBLCs. We summarize some key user-
analysis metrics and corresponding user-acceptable thresh-
olds in Table

TABLE 1

Summary of Important Lossy Compression User Analysis Metrics
Metric Domain Threshold Range
Pearson Correlation (R Climate > .99999 [15] [-1, 1]
value)
p value for KS Test Climate > .05 [15] [0,1]
Spatial Relative Error ~ Climate < .05,6 = le™* [15] [0, 1]
Peak Signal-to-Noise = Various Various [0, o0)

Ratio (PSNR)

Users want to guide the compression that they perform
by metrics used within their communities [15], [16]. Some
robust examples come from the climate community where
research has gone into determining thresholds acceptable
to the climate community at large. The Pearson correlation
coefficient is used to show the strength of a linear relationship
between two datasets. When used between uncompressed
and decompressed data, it measures how well the value
in the uncompressed dataset represents the decompressed
dataset. The Kolmogorov Smirnov (KS) test is a nonparametric
hypothesis test that tests whether two samples are from
the same distribution. The metric of interest is the p-value,
which says how likely the observation is given that the
hypothesis is true. It is calculated by computing an empir-
ical cumulative distribution function for each sample and
finding the largest difference between these functions. The
probability of this distance occurring is computed by using
methods from [17]. The spatial relative error is the percentage
of points that exceed a specified relative error threshold
indicating how widely spread a distortion is.

Another important set of metrics comes from the Sci-
entific Data Reduction Benchmarks (SDRBench) [18]. These
represent a collection of real-world problems from various
domains paired with the metric(s) of interest. All datasets in
this paper come from SDRBench.

2.2 Error-Bounded Lossy Compression

Here we describe the EBLC techniques used in the leading
error-bounded lossy compressors SZ, ZFP, and MGARD.

SZ [5], [19], [20], [9] is an error-bounded lossy compres-
sor offering multiple error-controlling approaches, includ-
ing absolute error bound (denoted €qs) [Bll, value-range
relative error bound (denoted e,¢;) [4], and target PSNR
(denoted by €,4pr) [9].

SZ adopts a blockwise prediction-based compression
model, which involves three key steps: (1) data prediction
— each data point is predicted based on its nearby values
in space and two major predictors are applied, Lorenzo
[5] and linear regression [19]; (2) linear-scale quantization
— each data point is converted to an integer by applying
an equal-bin-size quantization on the difference between its
predicted value and real value; and (3) compression of the
generated integer code arrays by a series of custom lossless
compression methods including entropy encoding, such as
Huffman encoding, and dictionary encoding, such as Zstd
[2].

ZFP [21] is another outstanding error-bounded lossy
compressor, which is broadly evaluated in many scientific

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 3

research studies [22], [6], [23]. Similar to SZ, ZFP supports
different types of error controls, such as absolute error
bound and precision. The precision mode allows users to
set an integer number to control the data distortion with an
approximately relative error effect. The higher the precision
number is, the lower the data distortion.

Unlike SZ, ZFP adopts a blockwise transform-based
compression model, which includes three critical steps: (1)
exponent alignment and fixed-point representation, which
align the values in each block to a common exponent and
performs fixed-point representation conversion; (2) trans-
formation, which applies a near orthogonal transform to
each block; and (3) embedded-coding, which orders the
transform coefficients and encodes the coefficients one “bit
plane” at a time. SZ and ZFP have different design princi-
ples, and neither always has the best compression quality
on all datasets [22]], [6].

MGARD [24], [7], [25] is a state-of-the-art lossy com-
pressor supporting multigrid adaptive reduction of data.
The most important principle of MGARD is a hierarchical
scheme that offers the flexibility to produce multiple levels
of partial decompression such that users reduce the dataset
by either minimizing storage with a required data fidelity
or minimizing the data distortion with a target compression
ratio. MGARD’s Quantity of Interest mode bounds some
limited kinds of metrics. We discuss it in detail in Section[Z.3]

2.3 Numerical Optimization to Configure EBLC

The relationship between a metric and compressor config-
uration can be multidimensional, non-monotonic, and non-
convex. Therefore, naive approaches such as binary search
are not sufficient [[6]. Rather, we use numerical optimization.

Analytic derivatives provide a closed form description
of the relationship between the compressor settings. Also,
metrics are difficult to construct and can change frequently
depending on the implementation of the compressor, mak-
ing them ill-suited to this task. Numerical methods that
estimate the derivative by computing the slope of nearby
points are too slow because of the time required to evaluate
each point. That is, regularly computing a slope at each
point is time prohibitive because it requires running the
compressor and any associated metrics.

Derivative-free methods do not rely on having deriva-
tives available during the search. Thus, they are a good
candidate for use in this context since one does not have
to wait to compute the derivative. A typical example is
the FRaZ algorithm [6], which itself is based on [26], [27],
[28]. FRaZ is hard-coded to adjust only one compressor
setting using a specific kind of derivative-free optimization.
It bounds compression ratios and does not require any
call-backs to a user-defined metric. Its parallelism scheme
is not thread-safe, however. The use of multi-threading
in the search function or compressor can cause incorrect
results or failure. Most importantly, it has no protocol for
communicating early termination between iterations, but
only between grid cells. Since some sophisticated metrics
that users care about could take hours to compute, one grid
of the search might complete successfully, but the algorithm
may continue to run for hours until each grid finishes its
remaining iterations. This makes FRaZ feasible only for

metrics that are quick to compute like compression ratios in
offline use cases. Our two novel strategies (OptZConfig and
FMEFS), significantly outperform FraZ by addressing these
and other issues, enabling an online use case. We discuss
this in greater detail in Section 6]

2.4 White-Box/Trial-Based Approaches

At least two related works use white-box approaches to
autotune compression [29], [8]. In contrast to a specialized
compressor, white box methods allow a limited variety of
metrics to be bounded on a limited number of compressors
that share certain properties which are exploited for perfor-
mance. They might use internal properties such as the exact
methodology of the prediction and quantization scheme or
the sampling based on the block size [29] in newer versions
of SZ to speed up the search process to maximize band-
width at a given error bound for a compressor [§]. Notably,
these approaches have no means to invoke a user-defined
metric. Furthermore, these approaches exploit properties
of the compressor and how they are tied to the specific
metric(s) they preserve and generally are not transferable to
new problems without degrading performance relative to
the problem they were designed for or require substantial
rewrites if it is possible to adapt the method.

Another attempt was taken by SCIL[30]. SCIL shares
properties of both OptZConfig and LibPressio. Like Lib-
Pressio, it attempts to abstract across compressors and also
has the concept of a meta-compressor. However, it differs
in that it has a fixed-function compression pipeline, which
limits the chaining of arbitrary meta compressors and some
of the more robust configurations supported by LibPressio.
It also does not expose the metadata needed for safe multi-
threading of compression nor does correctly pass dimen-
sionality information onto the underlying compressor. SCIL
also has features like OptZConfig. However, most impor-
tantly it only attempts to bound a specific list of compressor-
centric measurements such as the relative tolerance or the
number of significant digits preserved rather than arbitrary
metrics provided by the users. It does so via previous runs
which are then converted into an internal decision tree.

These approaches are complemented and extended by
the approaches in OptZConfig. For example, if the users
know that they are employing SZ, they can use the search in-
terface provided by OptZConfig to define a custom searcher
based on the methods in these papers — allowing a white-
box style usage when an algorithm is available. For example,
one could adopt the approach by [8] to cache the 20 — 30 best
configurations and try the best ones at runtime, or use the
approach by [29] and sample blocks at the compressor block
size to choose between compressors.

3 PROBLEM FORMULATION

In this section, we formalize our research problem. The
overarching goal is to automatically select the lossy com-
pressor with sufficient quality using a tuned configuration
based on user analysis metrics. This is a generalization and
extension of past methods [6] that only considered a single
objective with a single input parameter and a single output
parameter. Constructing this problem in the general case
enables entirely new classes of problems (see Section [7.4).

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 4

Let D be a set of data buffers that involve a set of fields,
denoted by F'p, and a set of simulation time-steps, denoted
by Tp. We refer to a specific data buffer as d; that holds a
dataset to compress, where t € Tp and f € Fp.

3.1 Lossy Compression-Based Parameter Space

State-of-the-art error-bounded lossy compressors use multi-
ple configuration parameters (or error settings) to tune the
compression quality and performance. We divide a lossy
compressor’s configuration parameters into two sets: a set
of fixed parameters (6.) and a set of nonfixed parameters
(€). Fixed parameters’ values are specified by users and
are not modified during tuning. Nonfixed parameters are
modified to optimize performance or compression quality.
For instance, SZ controls has an error-bounding type (see
Section[2.2), error bound value (a specific positive threshold
value), and the number of quantization bins. Each of the
three parameters is either set to be a fixed parameter as a
constraint by the user, or set to be a nonfixed parameter
to be optimized whose values are determined based on the
feasible settings of corresponding compressors.

Let U denote the whole set of the nonfixed parameters
(©), and let © denote the whole feasible parameter set
(including both nonfixed parameters and fixed parameters).
Each ¢ in U has a value constraint that is bounded by a
lower bound vector I and upper bound vector @ such that
l:i < & < ;, where fi, i;, and ¢; are the 7th element of
l, @, and ¢, respectively. We denote the reconstructed data
buffer based on lossy compression by d;gt(é’, 0?) and the
corresponding set by D’.

3.2 User-Analysis-Based Parameter Space

Performing high-fidelity analysis on the decompressed
buffers (D’) for a particular time-step ¢ and field f compared
with the one with original uncompressed data may involve
some fixed parameters, denoted by 0. We refer to the
user-required fidelity comparison metric on the original
uncompressed buffer dy; and its decompressed buffer as
O(dy.,df.4(Z0.);60m). The user expresses a requirement
by identifying some threshold for this fidelity comparison
metric; we denote this threshold by Q, (dy ; 9:") We use an
example to further explain the definition of Q and Q; in
the following text. Unlike the prior work [7] which requires
Q be a bounded linear functional, we do not place any
constraints on the fidelity requirement of Q (or Q). We
summarize all the key notations in Table [2}

3.3 Finding The Sufficient Configuration

Based on the compression parameter space under some
compressor and the analysis parameter space defined
for some application, we formulate the task of find-
ing the sufficient configuration as the following opti-
mization problem: Given D,U,0,0,,,e, ¥V df; € D,
optimize: maxgzey Q (df,t,d}yt (E, 02) ;9;) If a thresh-
old Q- (d f,t59;1) is provided, the search may terminate
early if this constraint is met: Q (dﬁt, dy s (5, 9_;) ;9;1) >

9, (df,t;G:n). Better quality results may be obtained by

TABLE 2
Key Notations

Notation Description

D Set of all uncompressed buffers for all
fields and time-steps

D' Set of all decompressed buffers for all
fields and time-steps

Tp Set of all time-steps for dataset D

Fp Set of all fields for dataset D

df¢ Buffer for field, f, and time-step, ¢, in
uncompressed form

€ Some threshold; Typically an error
bound provided by a compressor

c Vector of nonfixed compressor param-
eters

6. Vector of fixed compressor parameters

d;J(E; 9_;) Decompressed buffer for field, f, and
time-step, ¢

O:n Vector of fixed parameters of the user-
specified metrics function

U Set of feasible nonfixed compressor
parameters

Set of feasible fixed and nonfixed com-
pressor parameters

User-specified data fidelity metric
function

Early termination threshold for user-
specified metrics function

Q (dgudy (562):0m)

O (dyg 4 0m)

increasing the termination threshold, but at the cost of
greater run-time. The exact trade-off desired may differ from
application to application.

We further illustrate the research problem using the fol-
lowing example based on the target metric of the Pearson’s
correlation coefficent (R). This is a common measure for
compression quality which no previous compressor bounds.
Our FMFS identifies a sufficient parameter setting of the
lossy compressor based on the user-defined target metric.

Here is an example using a real problem set to help
illustrate the analysis process. Suppose, in our example, the
user wants to use SZ’s value-range-based error bound mode
to compress as much as possible the Hurricane simulation
dataset [18], such that R > 0.99999. We tune SZ’s relative
error bound parameter (denoted by e€,;) and the number
of quantization bins (denoted by M) to get different quality
and performance. The Hurricane simulation dataset has 13
fields with 48 time-steps, for a total of 13 x 48 = 624
buffers, each being a dy+. In this case, we set the nonfixed
parameter vector ¢ as {€, M }), with the first element repre-
senting the error bound parameter and the second element
representing the number of quantization bins. We construct
U by determining a vector of lower bounds and upper
bounds. According to the SZ documentation [5], € and M
should be in the range of [0,1] and [1,65536], respectively.
Thus, we have | = {0,1} and @ = {1, 65536}EIThis makes
V¢ such that l_; <¢ <u,celU.

We set all of the remaining 25+ parameters to their de-
faults, forming the fixed-parameter vector (d,). With d ¢t and
9_;, we compute d}yt (¢ 9_;) for any choice of ¢ that the search
specifies by setting the appropriate compressor settings and
running the compressor on the buffer d;:. Now, we must

2. If more restrictive bounds are known or desired, specifying those
makes OptZConfig’s search task more efficient.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 5

define 0;, Q, and Q.. We let 0; = {.99999} corresponding
to the R threshold of .99999 described above. In this case, Q
is defined as follows:

Q (dfvt’d;‘,t (CT e 0;) -

CR(dy,&0c) if R(dss,dy (& 6e)) > Omo
0 otherwise,

M

where CR is the compressor’s compression ratio on a given
buffer and compressor configuration, R is the Pearson’s
correlation coefficient between original datasets and de-
compressed datasets, and 9;10 = .99999 in this example.
Based on this formula, if we reach the target R value in
a compression case {dyds+(¢)}, then our solution max-
imizes the compression ratio (CR) for the corresponding
data buffer. @ = 0 indicates that our solution skips all the
configuration settings that do not meet the user-required R
value threshold.

If the user specifies an acceptable value Q. for all buffers
in D, say a compression ratio 20, we terminate the search
early if we find a value of Q that exceeds this value. We
further distinguish between successful compression and
unsuccessful compression tunings by checking if Q is 0.
This formulation applies to the user’s postanalysis metric
that needs to be minimized (such as mean squared error or
autocorrelation of errors).

It is possible that we are unable to find a configuration
that satisfies the user’s requirements either because insuffi-
cient resources were committed to the search or because the
user requested an infeasible configuration. In these cases, we
return to the user that the search has failed along with the
best point found so far allowing them to determine if they
wish to commit additional resources, widen their search
area, or stop searching[ﬂ

Often a configuration from the same application can be
reused for other fields and time-steps while maintaining
a sufficient configuration. How often does this happen in
practice? Prior work has shown that on the full hurricane
dataset (624 buffers), re-tuning was only required 8 times to
compress all buffers to a feasible target [6]. This allows the
costs of this method to be amortized over a large dataset.

4 OVERALL SYSTEM DESIGN

At a high level, we implement OptZConfig as a meta-
compressor in the larger LibPressio ecosysterrﬂ A meta-
compressor implements all the features of a compressor,
allowing it to be used with little change to the user’s code,
and OptZConfig takes advantages of new compressors as
they are developed which may have advantages for specific
problems or data-sets [12]. OptZConfig, unlike prior work
in [6], is completely embedded within an application to be
used online. Figure [I| demonstrates where OptZContfig fits
within this larger ecosystem and its major subcomponents.

3. Finding a true optimal configuration while using black-box op-
timization is not possible because by definition we do not know a
relationship between ¢ and Q (c.f. [3I]). We can identify the best
configuration we observed during our search. When we refer to “best”
or “optimal” configurations, this is the sense we intend it

4. LibPressio[32] is a library that provides an abstraction over com-
mon lossy and lossless compressors. It supports all of the compressors
in this paper and more.

invoke
| Applications
User CESM-LE | Hurricane NYX sos
Q[\o tfy v
¢ Iar geﬁ ﬁ
— -
Clllrl;?eprrfé:cs‘;m Metrics Interface ||| Launch Interface pressio_search_plugin
§ v v v
&
5 SH | HTTP
<) Ct++ R Fraz/ .
sz OPT Binary
| L Externel MP| ese Search
" T
Search }
~|Users and 3rd Party LibPressic
GplZ Contig |—|Applica‘fions Code Ecosystem

Fig. 1. LibPressio [32] ecosystem with OptZConfig’s metacompressor
plugin (OPT), search interface (pressio_search_plugin), and several
default search modules including FMFS, FRaZ algorithm [6], and binary
search.

The OptZConfig library consists of three sets of com-
ponents: the opt metacompressor, the pressio_search
interface, and many implementations of the search interface
including FMFS and FRaZ'’s algorithm. The opt metacom-
pressor provides the interface of a LibPressio compressor
including a compress and decompress method. When com-
press is invoked, the opt will conduct a search to find a
sufficient configuration to meet the users needs. The opt
metacompressor acts as a runtime environment provide
services to the search implementations such as: query if
both the MPI implementation and the compressor supports
threading, a callback to notify and check the early termina-
tion status, and a callback to invoke the compressor with
a particular configuration and return a set of computed
metrics for that configuration. The opt metacompressor is
responsible for invoking the search implementation (such as
FRaZ) which implements the pressio_search interface.

The pressio_search interface is the API that the
runtime uses to determine how many and which points to
evaluate while searching. It provides a single API search
which receives as arguments the function object to invoke
the callback from opt to evaluate the compressor with a
given configuration and the callback to check and notify
early termination returning the best configuration that it ob-
served. Users can either provide their own implementation
of this interface or use one of the builtin implementations.

OptZContfig consists of several builtin implementations
of the search interface such as Binary Search, Fraz, and
FMFS. These implementations each provide a search func-
tion used to identify candidate configurations. There are
also “meta” implementations that can provide services for
another search method. For example the distributed gird
search method partitions a search domain into subdomains
so each subdomain can be searched in parallel.

A key improvement we introduce in this paper is the
Fixed Metric Fidelity Search (FMFS) search algorithm (see
Algorithm [I). FMFS builds on the design of FRaZ'’s algo-
rithm which builds on classical techniques in numerical
optimization and parallelization [33], [34]. However, OptZ-
Config leverages additional information and cancellation
callbacks to allow finer grained parallelism and cancellation,
significantly improving performance and quality. The code

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 6

Analysis metric Adapter/Plugin Launch handler

MPI launcher
Posix Fork/Exec
Remote HTTP

Fig. 2. Components in metric adapter and launch handler.

Metrics Management

In-memory interface | | External I/O inteface

R interpreter (Posix) (_Petsc

(E=v)(HDFS) Gumpy)
Copy template

-
)
o
=
o
=0
7]
<<

on lines 6, 14, and 16 represents new parallelism avail-
able (see Section [6.2). The code on lines 18-20 represents
significant changes to communication (see Section The
code on lines 6 and 16 evaluates a user defined metric. No
metric in Table [T) or Section [7] are possible in FRaZ without
OptZConfig and FMFS.

1 begin search

2 mpi-parallel for f € Fip do

3 last < null;

4 fort € Tp do

5 if last # null then

6 q <= Q(df,t,dfk,t(last.é,gc;gm);
//thread-parallel

7 if good_enough(q) then

| store(dys, last.¢, q); continue;

9 end
10 end
11 partitions < make_partitions(U);
12 mpi-parallel for
€ partitions; reduce(best : mazx) do
13 s+

derivative_free_search_partition(p, last.c);

14 thread-parallel while —done(s) do

15 ¢ <+ next_point(s);

16 qu(df,tvdf,t(aodem);
//thread-parallel

17 best < mazx(best, (g, C));

18 if good_enough(q) then

19 | global_notify_cancel(); break(2);

20 end

21 end

22 end

23 store(dy,;, best.c, best.q); last < best;

24 end

25 end

2 end

Algorithm 1: FMFS

5 COMPUTING METRICS

Another significant contribution of this work is a compre-
hensive framework to adapt user developed metrics for use
with minimal effort to be used with any compressor. To
this end, OptZConfig provides 47 commonly-used builtin
metrics, 5 methods for using user provided metrics, and an
interface for providing additional methods without recom-
piling OptZConfig; allowing users flex-ability.

We divide the Metrics types into in-core (dataset in
RAM) and out-of-core (dataset communicated through the
file-system or network). Figure [2| shows in-core metrics
are direct implementations of the metrics interface. The
out-of-core metrics are invoked from the “External I/O
interface” module which handles process management and
serialization to/from the formats used by external metrics
applications via a launch method and a set of 1O plugins.

In-core techniques are generally faster as they do not
require reading/writing from external storage. However,
some environments prohibit the spawning of additional
processes beyond the initial mpiexec. In these cases, only
in-core metrics modules may be permitted by the system
administrator. The primary disadvantage is that metrics
often require substantial rewrites to support embedding.
OptZConfig provides two in-core methods: C++ shared
library modules and embedded R scripts.

C++ shared libraries are the fundamental implementa-
tion of the metrics types. They allow the greatest degree of
control over exactly how memory is used, allowing for a
zero-copy usage for some metrics. They also provide more
possible callbacks into LibPressio than other methods pro-
vide, enabling some classes of metrics which are currently
not possible using other methods, for example, timing the
compression. They can be used in a multi-threaded context,
but users can opt out of this behavior by setting a flag.

The R metrics module embeds R in OptZConfig E] to
efficiently access all of the modules in R. The R Metrics
module takes an R script and a list of output variables as
input to compute metrics. However, due to limitations in R’s
implementation, access to the interpreter must be protected
by a shared lock which limits scalability.

The primary advantage of out-of-core methods are that
they require minimal changes to the user’s application and
avoid some of the threading limitations required for thread
safety. OptZConfig currently provides three out-of-core-
methods to maximize performance and meet specific en-
vironmental requirements: Fork+Exec, MPI_Comm_spawn,
and HTTP endpoint. To use an out-of-core method, the
user’s application and OptZConfig need to agree on a pro-
tocol for communicating the decompressed data. To make
this easy for users porting their applications, OptZConfig
provides routines to write the data in many common for-
mats including a binary blob, an HDF?5 file, a numpy array,
a PetSc Matrix, and CSV files. Additionally, we support
dynamically loaded user defined serialization methods.

The MPI_Comm_spawn method uses MPI-2 features to
spawn child MPI programs. Some MPI implementations
do not allow calling Fork+Exec explicitly and others do
not support nested invocations of MPI programs, and be-
cause OptZConfig uses MPI, using Fork+Exec can cause
undefined behavior. However, because the MPI-2 standard
envisions this routine may talk to a batch scheduler or other
runtime system, some system administrators have disabled
it, and some MPI implementations never implemented it.

An alternative solution on systems where
MPI_Comm_Spawn is not allowed is to use the HTTP
endpoint module ﬂ It avoids the problem of nested MPI by
calling out to a distinct process tree that does not use MPIL.
Thus, the the lifetime of the metrics program is extended
beyond the life of the metrics invocation. This enables
programs that are written in languages such as Julia or

5. Ris a specialized programming language for statistical computing.
It has sophisticated visualization and error analysis tools

6. Some HPC systems also prohibit the creation or use of HTTP
endpoints on compute nodes. However at least the Palmetto cluster
at Clemson University and Bebop Cluster at Argonne National Labora-
tory allow this — both top500 machines when they were introduced.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 7

other systems, that have large startup times to be used for
metrics.

We choose HTTP and not a more efficient protocol
because of its ubiquity and wide support among many
programming languages ﬂ Additionally, if users want to use
a more efficient protocol such as Mochi’s Mango, Protocol
Buffers, or Apache arrow, a launch plugin could be written
and used.

6 OPTIMIZATION OF FMFS AND OPTZCONFIG

OptZConfig and FMFS make several important improve-
ments over FRaZ, which is both an algorithm and an
implementation [6]. First, the FRaZ implementation does
not support being used online or embedded within an
application as a metacompressor whereas OptZConfig does.
Second, OptZConfig supports custom search methods. This
allows OptZConfig to compete with advances in white-box-
based methods (see Section and adopt new searching
techniques as they become available. Third, OptZConfig
supports quality constraints on the objective — such as
enforcing a specific PSNR or p-value on the KS test —
and multidimensional searches allowing users to adjust
multiple parameters of the compressor simultaneously to
achieve higher compression ratios and higher quality than
what is possible in FRaZ, which allows adjusting only
the error bound. Finally, OptZConfig enables composable
distributed-memory and multithreaded parallel search al-
gorithms and compressors with fine-grained resource allo-
cation by allowing searches to delegate a subdomain of the
search to other implementations of the pressio_search
interface.

FMFS utilizes the additional context and features of
OptZConfig to account for up to a 60x speedup over the
FRaZ algorithm (see Section [7.2). We take a novel approach
to parallelism for a black-box-based compressor auto tuner
by allowing multithreading in the inner search algorithms,
parallelism in the compressor implementation, and faster
cancellation by moving the cancellation check between iter-
ations of the underlying search algorithm rather than after
all iterations. Sections and [6.3| describe the details.

6.1 Composable Parallelism

OptZContfig provides two types of search algorithms: con-
crete and metasearch algorithms. Concrete search algo-
rithms implement a specific search algorithm. For example,
fmfs, fraz and binary_search implement our new al-
gorithm FMFS, the FRaZ algorithm from [6] and a simple
binary search, respectively.

Metasearch algorithms (e.g., guess_first,
dist_gridsearch modules) allow common search
functionality to be implemented in a reusable way.
The guess_first module implements the common
functionality that attempts to test a prediction first
before spawning an expensive search process. The
dist_gridsearch takes a search request and spreads
it out into a user-defined number of subgrids across
the cluster, spawning a search on the search grid cell

7. While this method was intended for HTTP(S), the implementation
uses libcurl and supports any protocol supported by libcurl.

and enabling search methods that do not normally take
advantage of distributed-memory parallelism to take
advantage of it.

What makes this truly reusable, however, is the interface
requirements for sharing resources. Numerous researchers
find that when multiple frameworks attempt to control
parallelism, parallelism suffers [35], [36], [37], [38]. OptZ-
Config addresses this problem by requiring well-known
options for expressing the allocation of parallel resources
such as CPU processes, MPI communicators, and (in the
future) GPUs and other accelerators. Thus, users can specify
where they would like to allocate different scarce parallel
resources, giving them fine-grained control over the degree
of parallelism.

6.2 Safe Multithreading

Not all search algorithms or compressors are thread safe
in all use cases. For example, SZ 1.X and 2.X safely uses
multiple threads if the compression parameters are identical
between the threads. But because SZ has global state param-
eters that are shared between threads, data races are possible
if these are modified while another thread is invoking the
compressor. However, checking if the compressor is thread
safe alone is insufficient. The library must also check the
MPI implementation, and ensure each invocation gets its
own compressor handle. To support this, OptZConfig’s call-
back to invoke the compressor clones the output buffer and
compressor object explicitly for each thread, thereby implic-
itly cloning the metrics object held by the compressor. These
clones ensure that threads do not clobber a compressed
buffer produced by other threads. The remaining objects are
either stack allocated by each thread or are referenced in a
read-only manner, preventing a data race.

Given the clones involved, it is important to consider
the memory usage of this design. The outer-most loop of
FMFS uses MPI parallelization giving each rank a seperate
address space. In order to reduce memory usage at this level,
a careful use of public, shared, virtual memory mappings
ensures that each input is loaded exactly once and only on
the rank that uses it. Additionally, the input buffers for each
field and time-step that are not currently being processed
can be paged out efficiently when they are not in use. In an
HPC usage scenario, processes are typically allocated one
thread per hardware core, and OptZConfig uses at most
one input buffer per thread at any given time. The memory
usage grows linearly with respect to the thread count and
O(1/x?) with respect to the per-thread memory overhead.
The largest single buffer used in our experiments is 539 MB.
Assuming the worst case of a compression ratio of 1 for the
compressed and output buffers, and the memory overhead
from SZ (3.004 x), ZFP (.6623 x), or MGARD (4.412 x ff} the
maximum memory usage per thread is at worst 4.0 GB per
thread which fits well within the per-node memory limit.

6.3

The last major performance improvement is inter-iteration
early termination support. Cancellation in OptZConfig is

Inter-lteration Early Termination Support

8. measured via the peak resident set size for both compression and
decompression, m, from getrusage for a data of input size ¢ and
compressed size c. Then computed as (m — 2i — ¢) + ()

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 8
TABLE 3 TABLE 4
Which metrics are supported by which prior approaches? Hardware and Software Details
Component Description Component Version
Metric Specialized =~ MGARD- FRaZ OptZConfig CPU Intel Xeon 6148G Compiler GCC 831
Compressors QOI (40 Cores)
compression v/ (ZFP) X v v RAM 372 GB 0s CentOS 8
ratio Interconnect 100 GB/s HDR MPI OpenMPI 3.1.6
- Infiniband
compression X x X v GPU 2 Nvidia v100 LibPressio 0.72.2
bandwidth with NvLink
PSNR v (8Z, Xk % v MGARD v1.0.0 SZ v2.1.12
MGARD) ZFP v0.5.5
Lo norm v(MGARD) Vv X N
Weighted X v X v
Mean 3 X improvements in compression ratio on some data sets
Pearson’s X X X v over a state-of-the-art specialized compressor while yielding
Coefficient a tighter bounding on the user’s metric. Next, in subsec-
P value for x X X v tion[7.2} we evaluate the performance improvement over the
KS-test FRaZ algorithm. In subsection [7.2] we show how the three
Spatial Rel- X X X v performance optimizations we make over FRaZ contribute

ative Error

cooperative rather than preemptive. We now use 1-sided
MPI atomic remove direct memory access (RDMA) oper-
ations in MPI 2 for cancellation. At the beginning of the
search process, the master exposes a RDMA window to each
process. If the master wants to terminate, it writes to the
memory window atomically. Peroidically the children pre-
form an atomic load to see whether termination is requested.
A worker requests a termination by preforming an atomic
RDMA write on the window exposed by the master process.

We also implemented a version based on MPI I_Bcast.
In this version, the workers begin a non-blocking broadcast
on a dedicated communicator. If the master wants to ter-
minate, it issues the final call to broadcast completing the
operation. The workers use MPI_Test to see if the opera-
tion has completed. The workers can request termination by
sending their next response with a specific tag to the master.
The master then issues the termination request.

Micro-benchmarking finds the RDMA based version al-
lows for workers to observe the termination request up to
30% faster. In practice, a larger speedup is seen up to 2x. We
attribute this to two factors: 1) MPI implementations differ
for how they communicate completion of a non-blocking
broadcast which may require more nodes to cooperate. 2)
in the RDMA based version, the worker requesting can-
cellation does not need to wait for the master process to
explicitly process the request for cancellation eliminating
possible queue-ing for a cancellation request.

7 EXPERIMENTAL EVALUATION

We perform the evaluation as comprehensively as possible
in four areas. As can be seen in Table 3 a key challenge
for our evaluation is that there is not one metric that is
supported by all three approaches taken in prior work
[6], [7], [19]. Each comparison will need to use different
evaluation metrics and compressors. First, in subsection 7.1}
we evaluate OptZConfig against specialized compressors
which are custom-built to preserve a specific metric. In
subsection we show that OptZConfig achieves up to

to a 56 x speedup. After that, in subsection we conduct
a comparison against MGARD’s Quantity of Interest Mode
(MGARD-QQI) which is the only other compressor which
bounds a subset of of user-defined quantities — bounded
linear functional on regular grids. In subsection we
show over a 1000x speedup when both MGARD-QOI and
OptZConfig are tuned. We show our technique reduces
tuning time from 23.36 minutes for MGARD-QOI to at most
6 seconds for OptZConfig. We further demonstrate that
OptZConfig without tuning is faster than the tuned version
of MGARD-QOI 75% of the time and only up to 5x slower
in the worst case. Finally, in subsection we evaluate the
runtime of OptZConfig on problems that are not solvable
with any other current compressor. In subsection we
show a speed up over the prior systematic approach from
24 node hours to 13 node minutes — a 110x speedup.

We conduct all of these evaluations on nodes of Palmetto
cluster (see Table [4). We select these nodes to have a large
number of CPUs since at the time of writing most compres-
sors GPU support is still maturing for all modes.

For our analysis we use a number of datasets from
SDRBench[18]]. These are summarized in Table [5| We choose
these datasets because they represent regular-grids and have
metrics of interests defined by their communities. Regular
grids are the type of data structure that MGARD is designed
to protect. SZ and ZFP work on other datasets as well, but
we focus on regular grids for the purpose of comparison
with MGARD [} In particular we present only Cloudf48
from Hurricane, Prec from CESM-LE, pressure from mi-
randa, baryon_density from NYX and volume from SCALE-
LETKEF because other fields we observe are similar.

Additionally, our implementation and evaluation code is

9.1t is possible to treat unstructured girds as if they are structured
for purposes of compression by treating them a 1d structured grid of
dimension N where N is the number of points. This has been done with
SZ to compress data from HACC [19]. However some compressors (e.g.
some versions of MGARD) do not allow any dimension to be less than
3 and be at least 2d so this is not universally true. Additionally doing
so violates assumptions used by the compressors and can result in poor
compression both in terms of quality and compression ratio.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 9

TABLE 5 only a few specialized natively supported user-defined met-

Datasets rics: PSNR (supported only by SZ; used in image analysis,

Dataset Description total size buffersize climate science, and other domains), metrics supported in

CESM-LE Climate Earth Science 17GB 643MB MGARD’s QOI-mode (which are discussed in Section 7..3

Model Ensemble and the L., norm (supported only by MGARD; used in

Hurricane IV_‘I/eathef ?at]j Hfrom 48GB 96MB mathematics and finite element methods); the other modes

urricane Isabelle

Miranda Hydrodynamics tur- 1.87GB agsMp Preserve some pomt—wse bound which are not w@ely

bulence simulation adopted in the analysis used by users. They offer high

NYX Cosmology 2.7GB 512MB runtime performance but at the cost of development effort.
simulation - . . 1.

SCALELETKF Local Ensemble 19GB 530MB . To ev'a11'1ate OpFZConﬁg against specialized compressors

Transform Kalman with built-in metric support, we use the PSNR mode. We

Filter choose PSNR because it is commonly used in the literature,

open source and can be found online || Additional details
such as threading configurations can be found in this code.

OptZConfig requires an underlying compressor be used.
We present results here from SZ, ZFP, and MGARD the
three leading lossy compressors listed on SDRBench[18] that
currently have integration with LibPressio which OptZCon-
fig uses to invoke the compressors at the time of develop-
men LibPressio provides an extensible interface to adopt
other compressors as they are developed.

We focus here on CPU-based compressors rather than
GPU based compressors largely because the GPU based
compressors are still maturing. ZFP’s GPU implementation
supports only fixed-rate mode, cuSZ lacks a stable API,
MGARD’s GPU implementation only compiled after sub-
mitting patches and does not accelerate the norm finding
operation for MGARD-QOIL. Finally, at time of writing only
ZFP’s and MGARD’s GPU implementation is supported in
LibPressio which we rely upon for interfacing the com-
pressors. We expect even greater speedups using GPU ver-
sions of the compressors when they mature. However, with
the current implementations, there is only minimal impact
from moving to the GPU. Including required data move-
ment, MGARD-GPU compress/decompress cycle takes 11%
longer than SZ-CPU and ZFP is slightly faster at 24%
faster. In our experiments computing the user’s metrics
takes 90% of the time per iteration for a metric like the
p-value of the KS-test, and more complex metrics such as
those from HACC can take substantially longer limiting the
scale-ability gained by using GPU based compressors and
methods.

71
7.1.1 Background on Specialized Compressors

Comparison to Specialized Compressors

The needs of some applications have led to the development
of specialized compressors which are designed specifically
to enforce a particular error bound. Developing these can
be expensive. Among leading lossy compressors there are

10. Our implementation is spread between https://github.com/
robertu94/libpressio_opt| (opt, pressio_search, OptZConfig), https://
github.com/robertu94/libpressio| (changes made to libpressio), and
https:/ /github.com/robertu94/libdistributed (distributed early termi-
nation communication implementation) the experimental codes are
https:/ /github.com/robertu94/libpressio_opt_experiments,

11. Since development of this paper other SDRBench compressors
such as tthresh, bitgrooming, and digit rounding have gained LibPres-
sio support. Our design can use these compressors. We see similar
overall behavior, but the compressors are less effective and less widely
used than SZ, ZFP, and MGARD so we only present results from them.

PDF

and SZ and MGARD natively support it. Additionally, both
SZ and PSNR are significantly faster to compute presenting
a worst case for our approach. We exclude ZFP in this test
because it lacks a native PSNR mode.

SZ fixes PSNR by relating the absolute error bound
to the PSNR, which was proposed by Tao et al. [9]:
20 - logio(value_range(dy,i)/€aps) + 10 - log1012 However
in order to make it hold, there is a fairly strong assump-
tion that the distribution of compression errors induced
by the compressor must be uniform. However, much prior
work has verified that other compressors often have a non-
uniform distribution [22] meaning this approach does not
necessarily generalize to other compressors. Moreover, the
error distribution can vary significantly with error bound
[19], so that inevitably PSNR cannot be controlled accurately
based on the above formula [9]]. Based on our observation
with various application datasets, distribution of errors are
non-uniform in most cases, as exemplified in Figure[3} which
also explains well why SZ’s PSNR mode suffers inferior
compression ratios, to be shown later.

According to [7] standard MGARD can bound the
PSNR wusing the configuration s 0, tolerance
(value_range (dg+) x /3 x 10(77729) where p is the PSNR
by bounding the L, norm. Note, this does not use the
QOI functionality considered in detail in section[7.3|because
PSNR can be infinite, it is not a bounded functional.

0.18

—— PSNR=30

016 1 . PSNR=50 02
0.14 PSNR=70

0.12 0.15
0.1 w

0.08 g o1
0.06

0.04 0.05

0.02

o RO % 0 % 2 &
®, Sy Q ®, Q, Q,
% X & % & &

Compression Error

W R % b R %
B, 8, %, e, &, B
% % % % % %

Compression Error
(a)

Fig. 3. Distribution of Compressor Errors of SZ and ZFP for Mi-
randa:pressure with different data distortion levels

7.1.2 Metric for Evaluation

We compare six different configurations: OptZConfig+sz
(uses OptZConlfig to set an absolute error bound for SZ);
OptZConfig+zfp (uses OptZConfig with ZFP to set the ZFP
accuracy parameter); and sz+psnr (specialized version of SZ
which bounds PSNR), OptZConfig+sz+tuned (uses OptZ-
Conlfig to set the absolute error bound for SZ with a good
guess for a sufficient configuration), OptZConfig+sz+tuned
(uses OptZConfig to set the accuracy parameter for zfp with

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

https://github.com/robertu94/libpressio_opt
https://github.com/robertu94/libpressio_opt
https://github.com/robertu94/libpressio
https://github.com/robertu94/libpressio
https://github.com/robertu94/libdistributed
https://github.com/robertu94/libpressio_opt_experiments

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 10

a good guess for a sufficient configuration), and MGARD
(using the native support described above). The goal of
these configurations is to show how OptZConfig compares
with the states of the art for bounding PSNR - SZ’s PSNR
mode and MGARD’s PSNR mode.

We run the six configurations with several possible
PSNR tolerances of 30 — 90 db as a set of plausible thresholds
that a user might desire. However, for space and legibility,
we only present the results from 60 — 90 db. The higher
the PSNR threshold, the more challenging the problem is
for OptZConfig to find a feasible solution because of the
smaller number of nonfixed compressor settings that satisfy
the bounds. Additionally, we allow OptZConlfig to terminate
early if it finds a solution with a compression ratio such
that most PSNR tolerances require searching — greater than
60x — and the quality thresholds are met. During this
evaluation, we find a solution for every configuration, slice,
and tolerance desired.

On each run, we record the achieved compression ratio,
compression time (including search time for OptZConfig-
based methods), and the achieved PSNR. Compression time
and compression ratio are two common measures to eval-
uate compressors. We consider the achieved PSNR to un-
derstand how much over-preservation occurs. For example,
if asked to target a PSNR of 40dB, did the compressor get
a higher PSNR like 80dB? Over-preservation is undesired
because it will cause a much lower compression ratio and
higher compression time than expected.

7.1.3 Results

We present our results in Figure El First, we consider
compression ratios in Figure [(a). In general, OptZConfig
achieves a higher compression ratio than what is possible
using the state-of-the-art with the same underlying com-
pressor, because the state-of-the-art compressors often over-
preserve the PSNR by imposing a strict global bound rather
than allowing individual points to vary when the overall
constraint is met. Even with the high PSNRs in Figure [4]
we can see improvements in compression ratios as high
as 1.5x. With at a lower PSNR target of 30 (not shown),
we achieve a compression ratio improvement of 3.2x. This
over-preservation is highlighted in Figures 4(b) with the red
horizontal lines demonstrating the PSNR target. MGARD is
especially aggressive in preserving error and this is reflected
in its comparatively lower compression ratios.

After that, we look at compression time in Figure[d](c). In
the case of SZ, the leading state-of-the-art method is faster
than using OptZConfig without tuning because the OptZ-
Config tuning process invokes the compressor multiple
times. Even given multiple invocations of the compressor,
the runtimes of OptZConfig without tuning are often within
an order of magnitude between SZ and OptZConfig because
we minimize the number of search iterations; OptZConfig
allows trade-offs of higher quality or/and compression ra-
tios that may mitigate the differences in runtime in some use
cases. Additionally, using the guess_first module, the
user can specify the parameters as the results of the tuning
as a prediction. With these tuned configurations, OptZCon-
fig using SZ is very similar to run-time of SZ+PSNR since
no tuning is performed. Again, prior work shows that one

filename = Hurricane filename = Miranda

275
250
o 25
200
ﬁ 175
3 150
125
100
75
T I
ol WLL Mot e EARE EEE THERD IR
60 70 80 4] 60 70 80 D
tolerance tolerance
(a) Compression Ratio
filename = Hurricane filename = Miranda
]
80
= 70
8 &
x 50
=2
]
a

60 70 80 20 60 70 80 20
tolerance tolerance

(b) PSNR

filename = Hurricane filename = Miranda

ession time (sec)
obEB8EE3388

= l‘- I|I \ll l,ll, I,Il, Ill
70 80 0 70 80

~] - _IA
60 0
tolerance tolerance
Il OptZConfig+sz N OptZConfig+zfp BN mgard

mmm OptZConfig+sz+tuned pumm OptZConfig+zfp+tuned W sz+psnr
(c) Time

Fig. 4. Various methods attempting to maximize the compression ratio
while maintaining a specified PSNR tolerance.

often can reuse predictions from prior time-steps or similar
fields, resulting in even lower overhead [6].

What accounts for the differences between SZ+PSNR
and LibPressio+SZ+tuned? When a good guess is provided,
OptZConfig needs to run compression just like SZ+PSNR,
but it also needs to run decompression and the PSNR cal-
culation since the PSNR cannot be computed from just the
original and compressed buffer. If OptZConfig is preserving
a metric such as compression ratio, the decompression step
can be disabled. After verifying the configuration is within
tolerance, no search is conducted. As for how to determine a
good guess, we find that a run of OptZConfig from a similar
experiment is often sufficient to get a good guess, but other
methods may exist for specific metricngl

How much time does this metric evaluation and decom-
pression time compare to the compression time? Compres-

12. A good guess of the PSNR, p, can be obtained for a compressor
with an absolute error bound « and value range v is a = 1()17%’ this
guess used by MGARD [7] is often too conservative (see Figure[d) and
benefits from the refinement that OptZConfig can provide.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorélpublicationsﬁstandards/Eublications/rights/index.html for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 11

=
=)
o

¢
¢
i ¢

-
)

=
B
(=]

=
o
(=}

(3
v ¢ &
%é;iégé

1 2 3 45 6 7 8 9101112
Number of Threads

Compression Time (ms)
=
=] N
=] °

Fig. 5. Improved search time by 2.07 x on average (a speedup over the
FRaZ algorithm) when using 12 threads within ZFP

sion using SZ with a PSNR of 60 for a field from Hurricane
can take about 460ms. Decompression takes an additional
220ms, and computing the PSNR takes an additional 100ms.
Collectively this amounts to an additional 41% overhead
over just performing compression. For this reason the num-
ber of iterations drives the execution time of our approach.

Why does the performance of our approach decrease as
the PSNR decrease as the PSNR increases from 60 to 90dB?
A target of 90dB is harder to achieve than a target of 60DB
— that is fewer of the ¢ € U result in QT(df)t;H;) being
satisfied. Because in section we define Q in a similar
way to equation [1] (except with R being the PSNR) and
the underlying derivative free search algorithm searches
randomly while exploring U, we expect search times to be
geometrically distributed where p is the proportion of ¢ that
results in Q,(dy +; G:n) being satisfied. We leave exploration
of different penalty function schemes that may result in
faster convergence to future work.

7.2 Comparison versus FRaZ Algorithm

Allowing parallel compressors, parallel search techniques,
and inter-iteration early termination improves the perfor-
mance of the search over the techniques used in FRaZ
algorithm. We first consider the impacts of each of these
optimizations separately.

7.2.1

First, we evaluate using multi-threading in the compressor.
At time of writing: ZFP is the compressor which has the
greatest support for multi-threaded compression, MGARD
has no support for multi-threading compression, and SZ
does not have multi-threaded implementations of all of its
modes. Therefore, we run ZFP with the same default config-
uration and error bound except to allow increasing numbers
of threads. Since threading performance for ZFP is variable,
we run each configuration of threads 30 times using defaults
for all other parameters. Figure[5|shows the decrease in com-
pression time for increasing numbers of threads in the ZFP
compressor on the CLOUDf48 buffer from the Hurricane
dataset. Similar results were seen for other datasets using
ZFP. Enabling threading in the compressor decreases the
time spent evaluating each point during the search progress
and improves search performance on average by 2.07x for
ZFP by going from 1 to 12 threads.

Improvements from Threading

Next we consider only threading the search, we again
use ZFP since it is the only EBLC compressor that supports
being called from a multi-threaded context with different
configurations. As we increase the threading in the search
only from 1 to 4 threads performance improves on average
by 2.03x for different PSNR targets (40 — 1.88x,50 —
1.97x,60 — 2.24x). We again show results using buffers
from the Hurricane dataset, but other results from other
datasets are similar. Allowing multithreading of the search
itself also has impacts on the execution time—as much
as an additional 2.03x improvement in our tests. These
improvements are similar to what we observe by using
a distributed grid search. However, in the multithreaded
implementation, the implementation of the search algorithm
shares knowledge of the points as they are searched by other
threads each iteration. This allows a better guiding of the
search process. Currently, only ZFP supports being called
from a multithreaded context, but this situation is expected
to change with improvements to SZ and MGARD.

7.2.2 Benefits of Inter-iteration Early Termination

The benefits of allowing inter-iteration early termination are
the most dramatic. Figure [f|shows the speed up when using
FRaZ over OptZConfig with two different compressors on
different slices from the Hurricane CLOUDf48 dataset to a
user-defined PSNR tolerance. FRaZ does not support user-
defined metrics, only compression ratio. For sake of compar-
ison, we took the FRaZ algorithm and re-implemented it in
OptZContfig to enable us to compare only the improvements
from early termination making only the changes required to
provide a user-defined metric. In this example, we allow
FMFS and FRaZ to terminate early as soon as a feasible
solution is found by setting the acceptable PSNR threshold
to 0 to represent an upper bound for the effectiveness of this
technique when used with PSNR and these compressors.
PSNR was chosen because it can be evaluated in linear time,
and is easy to implement. We then compute the speedup of
the inter-iteration early termination over the intra-iteration
early termination from earlier approaches [6]. When used
with MGARD, inter-iteration early termination offers im-
provements as great as 15x. In contrast, when used with
SZ, the improvements are closer to 2x. The key explanation
of the difference here is the relative fraction of the search
time spent invoking the compressor and computing the
metrics. In its current implementation, MGARD is nearly
1000x slower than SZ. However, this time would effectively
be increased with additional metrics. These metrics from the
perspective of the search code are “part of” the compression
time, meaning the more metrics or the more complex the
metrics being computed, the more SZ would also benefit
from inter-iteration early termination.

7.2.3 Overall Improvements

The three FMFS improvements affect different aspects of
the search process, and could be used in conjunction if
supported by the compressor and sufficient hardware is
available. We ran an experiment that used the ZFP com-
pressor with each of the various speedups enabled in order
to find a configuration with a PSNR greater than 105 for
the SCALE-LETKF V data buffer on a single node. SCALE-
LETKEF has the largest buffers of the datasets we consider.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/ ublications/rights/index.html for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 12

CLOUD-slice-1 CLOUD-slice-31

15

12

Speedup

3
UL T

0 " cLouD-slice-51 CLOUD-slice-81
15 Configuration
12 mmm OptZConfig+SZ+FMFS
a OptZConfig+MGARD+FMFS
39
2
Q 6
)
A L Bl
AR Nkl
405060708090100 405060708090100
Tolerance Tolerance

Fig. 6. Inter-iteration early termination speedup over FRaZ algorithm on
a search for a desired PSNR. We include two underlying compressors
for OptZConfig: SZ and MGARD. Because MGARD’s implementation is
slower than SZ’s implementation for each invocation of the compressor,
it benefits more from being able to terminate early.

We found that a configuration of 3 MPI processes (2 workers
and 1 leader), where the workers spawned 5 search threads
which in turn spawned 14 compressor threadﬂ maximized
performance on a single nod In this configuration, we
measured a 56.03x speedup over FRaZ. 83% of the time is
spent in tuning the search, the remaining 17% corresponds
to a single compress, decompress, compute metrics cycle
to compute the final results. A single cycle of compression,
decompression, and computing metrics took 780ms (17%),
900ms (19.7%), and 2900ms (63.3%) on average respectively.
In total, only 6 invocations were used vs the 101 for FRaZ.

7.3 Comparison Versus MGARD-QOI
7.3.1 Background on MGARD-QOI

MGARD’s quantity of interest mode (MGARD-QOI) in-
troduces an analytic approach that relies on mathematical
properties of supported metrics being computed to solve
for an error bound that is mathematically guaranteed to
preserve the metricsE} It works by computing a scaling
factor called the “norm of the quantity of interest” and
properties of metrics it supports to bound the error in the
metric in terms of the H; norm chosen by the user.
Specifically, MGARD-QOI requires that the metric be
a bounded linear functional computed on a regular grid.
The term bounded linear functional implies that the dis-
tributive property hold for the metric. An example of a
bounded linear functional is the arithmetic mean. If one
scales the dataset or add two datasets together, the mean
is the same regardless of the order of these operations. The
term regular grid applies to many HPC applications where
a domain is discretized into equal-sized and equally-spaced
distinct chunks to compute the effects inside the domain.

13. Our implementation requires that the thread count be a multiple
of the data dimension in order to reduce copies

14. Over-subscription in this case overlaps serial and highly parallel
portions of ZFP’s compression and decompression code from different
thread teams maximizing performance

15. What we call metrics in this paper are referred to as quantities
of interest in [7]. The reason is that in the mathematics community the
term metrics has a strict mathematical definition. We choose to use it in
the broader computer science usage here.

While MGARD-QOQI places restrictions on the metrics and
problems supported, these restrictions allow the quantities
of interest for many scientific codes. The complete proof
of how this works is in their paper [7]. In contrast, the
approach offered by OptZConlfig supports a strict superset
of metrics supported by MGARD-QOI by supporting non-
regular grids inputs, and metrics that are not bounded linear
functional. The spatial error metric is an example of a metric
that is not a bounded linear functional because it allows
unbounded error on a point by counting the percentage
of points that exceed a threshold. In fact, all of the other
metrics mentioned outside this section are not bounded
linear functionals and cannot be used with MGARD-QOIL.

7.3.2 Metric for Evaluation

The weighted mean is appealing for evaluation because it is
a bounded linear functional but less trivial to bound. This
is because some entries may have a weighting near zero m
Therefore, an implementation that uses the absolute error
bound times its weight for a cell over-preserves information
if the cell has small compression error.

We attempted a comparison between MGARD-QOI
mode and OptZConfig using the weighted mean metric
using a full-sized buffer; however this was performance
prohibitive. As written, however, the MGARD-QOI calcu-
lation takes O(||dy||) evaluations of the metric function.
The weighted mean itself takes O(||ds||) time, making the
time to find the norm of the quantity of interest O(||ds.+||?).
Even if parallelized (current implementation is serial), this
requires O(||dy:||?/p) time where p is the number of pro-
cessors. If run on a full-size problem, finding the norm of
the quantity of interest is expected to take between 17 and
19 days. We confirm this analysis by timing the first 250,000
basis values (1% of the basis values of the full dataset) on a
full sized problem, which takes nearly 4.5 hours.

Instead we focus on the four 3% slices of the input
data. We present results from only four 3 x 500 x 500
slices from the 48th time-step of the CLOUDf4S8 field in the
Hurricane dataset from SDRBench[18]. Results from other
datasets and their full sized counterparts are similar. This
approach is consistent with the slice-by-slice analysis used
in the Climate community for CESM [16]. We choose the
four slices to represent different problem difficulties: slice-
1 is sparse and therefore easy to compress to a specified
tolerance; slice-81 is a little bit harder; slice-31 is harder still;
and slice-51 is less sparse, making it the hardest to compress.

Empirically, the time required to compute the norm
of the quantity of interest on a 3% sample MGARD-QOI
mode takes on average 23.36 minutes £0.04. This is scaled
down from the full computation in two ways. First, in this
problem, we are computing only the first 3% of the basis
values. Second, in this problem, each basis value takes 3%
of the time that it takes on the full problem.

7.3.3 Experimental Results

For fair comparison, this expensive norm-finding operation
does not have be performed with every evaluation of the

16. a weighting near zero is useful when you want to ignore “ghost
cells” or the edges of detectors for analysis

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 13
g TABLE 6
4 Runtime for systematic sampling vs OptZConfig
3
~2 . method samples runtime CR found
] mmm CLOUD-slice-1 (1 node)
u CLOUD-slice-31
o mmm CLOUD-slice-51 systematic 10 17s no solution
.E = CLOUD-slice-81 systematic 100 33s no solution
1 == = OptZConfig+SZ Post-Tuning systematic 1000 3m4bs no solution
= MGARD-QOI Post-Tuning systematic 10000 35m40s no solution
I I I] systematic 100000 6h (4 nodes) 7.264
0 10-5 104 10-3 OptZConfig n/a 13m 7.3046
Tolerance

Fig. 7. OptZConfig vs MGARD-QOI for weighted mean: OptZConfig
is 83% faster 75% of the time without tuning OptZConfig; with tuning
OptZConfig+SZ is over 1000 faster in all cases.

compressor. The norm can be reused as long as the dimen-
sions of the input data remain constant and the metric does
not change. Thus, for some quantities of interest that are not
dependent on the original data, one does not have to recom-
pute the norm of the quantity of interest even if the values
of the input data are changed. Additionally, quantities of
interest with this property converge to a constant times the
number of bases computed as the number of bases increases.
Thus, users can often bootstrap their problem with a smaller
version for faster computing of the norm. However, because
the weighting changes with the size of the matrix, this kind
of bootstrapping is not viable in this case.

There are two possible cases for fair comparisons be-
tween MGARD-QOI and OptZConfig for the metrics that
MGARD-QOI supports: (1) MGARD-QOI with-tuning vs
OptZConfig with-tuning, and (2) MGARD-QOI with-tuning
vs OptZConfig without-tuning. Case (1) is most appropriate
when there is the potential for substantial variation between
the compressor configurations required to preserve a user
error metric — such as a turbulent simulations or shock
codes. Case (2) is most appropriate when the configuration
is likely to be similar between time-steps for fields as prior
work has shown is true for many HPC codes [32].

To evaluate the differences between these two cases,
we used MGARD-QOI and OptZConfig with SZ in ab-
solute error bound mode to bound the weighted average
for each of the different slices listed above. We attempted
to bound the absolute error in the weighted average to
+1073,1074, and 10~ with both compressors and mea-
sured the tuning time for OptZConfig, compression times,
and compression ratio. We attempted to include OptZCon-
fig+MGARD to have a OptZConfig+MGARD vs MGARD-
QOI evaluation as well, but were unable to do so due to
implementation flaws in MGARD. OptZConfig+ZFP results
were similar to the OptZConfig+SZ results.

Figure [/]summarizes the results for Case 1 and Case 2 of
this experiment. In the figure, the black line represents the
time that MGARD-QOI took post tuning and was identical
for all tolerances and files. The dashed line represents the
post-tuning for OptZConfig and was the same for all toler-
ances and files. The bars represent the time for compression
and tuning using OptZConfig. First, let’s consider Case 1:
We are able to tune SZ compression faster than MGARD
compresses the same buffer using QOI mode when the QOI
norm is already found in 75% of the cases we test. In those

cases where OptZConlfig is faster, the average time taken
by OptZConfig using SZ is 0.6 seconds compared to the
1.1 taken by MGARD-QOI mode. In the other 25% of cases,
OptZConfig was 2 — 5x slower than MGARD with its tuning
already complete. In Case 2 after OptZConfigs’ tuning was
performed, OptZConfig with SZ was over 1,000 times faster
than MGARD-QOI with tuning in all cases.

7.4 Performance on Non-trivial Metrics

To provide more evidence of OptZConfig’s effectiveness
on previously un-automated problems, we consider a real-
world set of constraints from the climate community that
cannot be bounded by any other currently available com-
pressor including MGARD-QOI and FRaZ. Section [2| states
metrics and bounds for PSNR, the p-value of the KS test, the
spatial error percentage, and the R value for the raw data
using the thresholds from Table |1} We add PSNR to this
evaluation as it is discussed in [16]]. However, the threshold
we use is arbitrarily determined since a bound for PSNR
was not identified. Figure [8| shows that PSNR never binds
over the search space.

For this evaluation, we use a buffer from the CESM
application. Table [I| shows the thresholds we use. For this
evaluation, we use SZ in its absolute error bound mode
and consider one parameter, the error bound, for the sake
of tuning time. OptZConfig finds a solution that meets all
of the constraints with a compression ratio of 7.3046x in
13.1642 minutes using 40 cores of one node. Of this time,
95% is spent computing metrics on the decompressed data.
Figure [8|shows a graphical summary of that evaluation.

Figure |8| shows that over the search range, the KS-test
p-value was the only binding metriﬂ Most of the other
values were not close to their allowed tolerance. The R value
is not able to even detect loss in this error bound range. The
spatial error percentage is able to detect at most 0.0017%
spatial error at its most extreme value. Over the search
range, the spatial error percentage, KS Test p-value, and
the PSNR are not monotonic. This nonmonotonic behavior
defeats more naive approaches such as binary search [6].

Because binary search-like approaches are not applicable
to this problem, users would have to resort to an approach
similar to OptZConfig or some kind of systematic eval-
uation. For a performance comparison, we conducted a
systematic evaluation of various numbers of points between
the error bounds we provide to OptZConfig 10~!® and
1012, For the systematic evaluation, we divide the state
space into evenly sized bins and evaluate the compressor
on the midpoint of each bin, and record all points that meet

17. binding means that a metric crossed it’s allowable threshold

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 14

6 —— Compression Ratio

1.0

0.5 KS Test P Value

0.0

100 e

—— Spatial Error % (6 = 1e — 4)

i ﬁ/
10-7 Ity

200

0.99999

10—16 10715 10714 10—13
Absolute Error Bound

Fig. 8. Evaluation metrics at 100,000 error bounds between 10~18 and
1012, The PSNR, KS-test p-value, and R value must be above their
threshold in order to satisfy the constraints. The spatial error % must
be below its threshold. All points to the left of the black line satisfy the
constraints.

the constraints outlined in this section. The results of this
process are in Table [f| With even a moderate number of
points, the systematic approach was not able to identify
a valid solution. This is because a wide range of allowed
error bounds result in infeasible requests given the user’s
constraints. If the user had placed a time limit on the search
shorter than the time required, our approach would have
failed and returned the result which satisfied the most
constraints. The only systematic process which found a
solution evaluated 100,000 points and took a little over 6
hours running in parallel on 4 nodes compared to the 13
minutes for OptZConfig on one node. The best result from
the systematic search has a compression ratio of 7.264x,
which is about .5% worse than using OptZConfig’s solution
taking 27x more time on 4x as much hardware.

8 CONCLUSIONS

Techniques such as OptZConfig and FMFS have great
promise in helping applications cope with moving and
storing ever-increasing volumes of data. It offers a higher-
performance method of setting error bounds to preserve
user metrics than do prior methods such as FRaZ or
MGARD-QOI. OptZConfig also offers new capabilities to
bound arbitrary user metrics and provide fine-grained con-
trol over the search. We demonstrate that OptZConfig can
get up to a 3x improvement in compression ratio for
equivalent PSNR requirements as SZ’s specialized mode.
We further show up to a 56x speed up over FRaZ when
using compressors that support being used from a threaded
context. OptZConfig further offers a 233x improvement

Authorized licensed use limited to: CLEMSON UNIVERSI

over MGARD-QOI tuning time, and are 1000x faster
than MGARD-QOI post-tuning. Lastly, we demonstrate our
method on 3 metrics from the climate community achiev-
ing a 110x performance improvement over the systematic
approach used previously for these metrics.

For future work, we would like to consider approaches
that bound more complex metrics that are multi-valued such
as spectral metrics and/or require multiple buffers to be
tuned simultaneously to preserve the desired in-variants.
Further study is needed on the trade-offs between speed and
quality of the results obtained by a method like OptZConfig
is warranted. Additionally techniques that would further
improve the performance of the search such as proxy met-
rics (using a cheaper metric in place of a more expensive one
if you can show that the cheaper one bounds the others) and
better penalty functions than the one proposed in equation
1 to give the search algorithm additional guidance.

REFERENCES

[1] L. P Deutsch, “RFC 1952 GZIP File Format Specification Version
4.3,” 1996. [Online]. Available: http:/ /www.zlib.org/rfc-gzip.html

[2] L Facebook. Zstandard - Real-time data compression algorithm.
[Online]. Available: https://facebook.github.io/zstd /

[3] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed com-
pressor for double-precision floating-point data,” vol. 58, no. 1,
pp. 18-31, 2009.

[4] S. Di, “Error-bounded lossy data compressor (for floating-
point/integer datasets): szcompressor/SZ,” 2019. [Online].
Available: https:/ / github.com/szcompressor/SZ

[5] S. Di and F. Cappello, “Fast Error-Bounded lossy hpc data com-
pression with SZ,” in 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2016, pp. 730-739.

[6] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “FRaZ: A
Generic High-Fidelity Fixed-Ratio Lossy Compression Framework
for Scientific Floating-Point Data,” in 34th IEEE International Paral-
lel and Distributed Processing Symposium. IEEE, 2020.

[7] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel
techniques for compression and reduction of scientific data—
quantitative control of accuracy inderived quantities,” vol. 41,
no. 4, pp. A2146-A2171, 2019.

[8] K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and F. Cappello,
“Significantly improving lossy compression for HPC datasets with
second-order prediction and parameter optimization,” in Proceed-
ings of the 29th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC "20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 89—-100.

[9] D. Tao, S. Di, X. Liang, Z. Chen, and E. Cappello, “Fixed-PSNR
lossy compression for scientific data,” in 2018 IEEE International
Conference on Cluster Computing (CLUSTER), 2018, pp. 314-318.

[10] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heit-
mann, K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al.,
“HACC: extreme scaling and performance across diverse archi-
tectures,” Communications of the ACM, vol. 60, no. 1, pp. 97-104,
2016.

[11] S.supercomputer at ORNL, https://www.olcf.ornl.gov/summit/,
online.

[12] E Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H.
Yoon, X.-C. Wy, Y. Alexeev, and F. T. Chong, “Use cases of lossy
compression for floating-point data in scientific data sets,” vol. 33,
no. 6, pp. 1201-1220, 2019.

[13] S. F. Shandarin and N. S. Ramachandra, “Topology and geometry
of the dark matter web: a multistream view,” Monthly Notices of the
Royal Astronomical Society, vol. 467, no. 2, pp. 1748-1762, 01 2017.

[14] ——, “Dark matter haloes: a multistream view,” Monthly Notices
of the Royal Astronomical Society, vol. 470, no. 3, pp. 3359-3373, 06
2017.

[15] A. H. Baker, H. Xu, D. M. Hammerling, S. Li, and J. P. Clyne,
“Toward a multi-method approach: Lossy data compression for
climate simulation data,” in High Performance Computing, ser.
Lecture Notes in Computer Science, J]. M. Kunkel, R. Yokota,
M. Taufer, and J. Shalf, Eds. Springer International Publishing,
2017, vol. 10524, pp. 30—42.

%uires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Y. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

http://www.zlib.org/rfc-gzip.html
https://facebook.github.io/zstd/
https://github.com/szcompressor/SZ
https://www.olcf.ornl.gov/summit/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2022.3154096, IEEE

Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, FEBRUARY 2022 15

[16]

(17]

(18]

(19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

(34]

[35]
(36]

[37]

(38]

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

A. H. Baker, D. M. Hammerling, and T. L. Turton, “Evaluating
image quality measures to assess the impact of lossy data com-
pression applied to climate simulation data,” vol. 38, no. 3, pp.
517-528, 2019.

J. L. H. Jr.,, The Signifigance Probablity of the Smirnov Two Sample Test.
Arkiv fiur Matematik, 1958, vol. 3, no. 43.

F. Cappello, M. Ainsworth,]J. Bessac, M. Burtscher, J. Y. Choi,
E. Constantinescu, S. Di, H. Guo, P. Lindstrom, and O. Tugluk.
(2018) Scientific data reduction benchmarks. [Online]. Available:
https:/ /sdrbench.github.io/

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving
lossy compression for scientific data sets based on multidimen-
sional prediction and error-controlled quantization,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2017, pp. 1129-1139.

X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient
transformation scheme for lossy data compression with point-
wise relative error bound,” in 2018 IEEE International Conference
on Cluster Computing (CLUSTER), 2018, pp. 179-189.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,”
vol. 20, no. 12, pp. 2674-2683, 2014.

——, “Error distributions of lossy floating-point compressors,”
2017.

A. Fox,]. Diffenderfer, J. Hittinger, G. Sanders, and P. Lindstrom,
“Stability Analysis of Inline ZFP Compression for Floating-Point
Data in Iterative Methods,” vol. 42, no. 5, pp. A2701-A2730,
2020. [Online]. Available: https://epubs.siam.org/doi/10.1137/
19M126904X

M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel
techniques for compression and reduction of scientific data—the
univariate case,” vol. 19, no. 5-6, pp. 65-76, 2018.

, “Multilevel techniques for compression and reduction of
scientific data—the multivariate case,” vol. 41, pp. A1278-A1303,
2019.

D. King. (2018) Dlib C++ Library - Optimization. [Online]. Avail-
able: http:/ /dlib.net/optimization.html#global_function_search
M.]J. D. Powell, “The NEWUOA software for unconstrained
optimization without derivatives,” in Large-Scale Nonlinear Opti-
mization, G. Di Pillo and M. Roma, Eds. Springer US, 2006, vol. 83,
pp- 2565-297.

C. Malherbe and N. Vayatis, “Global optimization of Lipschitz
functions,” 2017. [Online]. Available: http://arxiv.org/abs/1703.
02628

D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing
Lossy Compression Rate-Distortion from Automatic Online Selec-
tion between SZ and ZFP,” vol. 30, no. 8, pp. 1857-1871, 2019.

J. Kunkel, A. Novikova, E. Betke, and A. Schaare, “Toward Decou-
pling the Selection of Compression Algorithms from Quality Con-
straints,” in High Performance Computing, J. M. Kunkel, R. Yokota,
M. Taufer, and J. Shalf, Eds. = Cham: Springer International
Publishing, 2017, vol. 10524, pp. 3-14.

S. Hudson, J. Larson, J.-L. Navarro, and S. Wild, “libensemble: A
library to coordinate the concurrent evaluation of dynamic ensem-
bles of calculations,” IEEE Transactions on Parallel and Distributed
Systems, 2021.

R. Underwood, “CODARcode/libpressio,” Codesign Center for
Online Data Analysis and Reduction, 2019. [Online]. Available:
https://github.com/CODARcode/libpressio

A. Zhigljavsky, A. Zilinskas, and]. Birge, Stochastic Global Opti-
mization. New York, NY, UNITED STATES: Springer, 2007.
“Covering methods,” in Global Optimization, ser. Lecture Notes
in Computer Science, A. Térn and A. Zilinskas, Eds. Berlin,
Heidelberg: Springer, 1989, pp. 25-52.

A. Malakhov, “Composable multi-threading for Python libraries,”
in Python in Science Conference, 2016, pp. 15-19.

M. P. Matijkiw and M. M. K. Martin, “Exploring coordination of
threads in multi-core libraries,” p. 8, 2010.

H. Ribic and Y. D. Liu, “AEQUITAS: Coordinated energy man-
agement across parallel applications,” in Proceedings of the 2016
International Conference on Supercomputing - ICS '16. ACM Press,
2016, pp. 1-12.

Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa, “Performance eval-
uation of OpenMP applications with nested parallelism,” p. 14,
2000.

Authorized licensed use limited to: CLEMSON UNIVERSI

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under grant numbers: NRT-DESE
1633608, 1619253, and 1910197. This research was also sup-
ported by the Exascale Computing Project (17-5C-20-SC),
a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Ad-
ministration. The material was also supported by the U.S.
Department of Energy, Office of Science, under contract DE-
AC02-06CH11357.

Robert Underwood is a PhD from Clemson
University now at Argonne National Laboratory.
His research interests involve using approximate
computing methods such as lossy data com-
pression to accelerate HPC while ensuring that
scientific data integrity is preserved. He is cur-
rently working on using optimization based ap-
proaches to configure lossy compression. Email:
runderwood@anl.gov

Jon C. Calhoun is an Assistant Professor in the
Holcombe Department of Electrical and Com-
puter Engineering at Clemson University. He re-
ceived a B.S. in Computer Science and a B.S.
in Mathematics from Arkansas State University
in 2012, and a Ph.D. in Computer Science from
the University of lllinois at Urbana-Champaign in
2017. His research interests lie in fault tolerance
and resilience for HPC systems and applica-
tions. Email: jonccal@clemson.edu

Sheng Di (Senior Member, IEEE) received his
master’s from Huazhong University of Science
and Technology in 2007 and Ph.D. from the Uni-
versity of Hong Kong in 2011. He is currently a
computer scientist at Argonne National Labora-
tory. Dr. Di’'s research interest involves resilience
on HPC and cloud computing. He works on mul-
tiple projects, such as detection of silent data
corruption, characterization of failures and faults
for HPC systems, and optimization of multilevel
checkpoint models. Email: sdi1@anl.gov.

Amy Apon (Senior Member, IEEE) is the C. Ty-
cho Howle Director of the School of Computing
and Professor of Computer Science, Clemson
University. Her research interests include data
intensive computing systems and analytics, scal-
able machine learning methods, and commercial
cloud technologies. She received an MA in math-
ematics and an MS degree in computer science
from the University of Missouri, Columbia, MO,
USA and a Ph.D. degree in computer science
from Vanderbilt University, Nashville, TN, USA.
Email: aapon@clemson.edu

Franck Cappello (Fellow, IEEE) is the director
of the Joint-Laboratory on Extreme Scale Com-
puting gathering seven of the leading HPC in-
stitutions in the world. He is a senior computer
scientist at Argonne National Laboratory and an
adjunct associate professor in the Department
of Computer Science at the University of lllinois
at Urbana-Champaign. He is an expert in lossy
compression, resilience, and fault tolerance for
scientific computing and data analytics. Email:
cappello@mcs.anl.gov.

%uires IEEE permission. See http://www.ieeeorglpublicationsﬁstandards/Eublications/rights/indexhtml for more information.
Y. Downloaded on March 29,2022 at 16:

49:59 UTC from IEEE Xplore. Restrictions apply.

https://sdrbench.github.io/
https://epubs.siam.org/doi/10.1137/19M126904X
https://epubs.siam.org/doi/10.1137/19M126904X
http://dlib.net/optimization.html#global_function_search
http://arxiv.org/abs/1703.02628
http://arxiv.org/abs/1703.02628
https://github.com/CODARcode/libpressio

