2021 7th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-7) | 978-1-7281-8672-6/21/$31.00 ©2021 IEEE | DOI: 10.1109/DRBSD754563.2021.00005

2021 7th International Workshop on Data Analysis and Reduction for Big Scientific Data (DRBSD-7)

Productive and Performant Generic Lossy Data
Compression with LibPressio

Robert Underwood *, Victoriana Malvoso T, Jon C. Calhoun T, Sheng Dii, and Franck CappellofF
* School of Computing, Clemson University Clemson, USA
t Holcombe Department of Electrical and Computing Engineering, Clemson University Clemson, USA
¥ Mathematics and Computer Science Division Argonne National Laboratory Lemont, USA

Abstract—In recent years, lossless and lossy compressors have
been developed to cope with the ever increasing volume of
scientific floating point data. However not all compression tech-
niques are appropriate for all data-sets, and determining which
one to use can be time consuming requiring code modifications
and trial and error. We present LibPressio — a generic library
for the compression of dense tensors that minimizes the code
changes scientists need to make to take advantage of new and
improved compression techniques. We compare LibPressio to 9
different competing libraries and measure the overhead of their
design decisions as well as overall run time overhead showing
insignificant overhead. We further show an improvement in
usability as measured by a reduction in lines of code compared
to native code by 50-90%. The value of this tool can be seen by
integration into Z-Checker and ADIOS2.

Index Terms—Error Bounded Lossy Compression, LibPressio

[. INTRODUCTION

In recent years, modern compression methods such as
ZSTD, SZ, ZFP, and MGARD have begun to revolutionize
the way that application scientists transport data across the
network, store data to persistent storage, and process data in
memory. This is because error bounded lossy compression
methods achieve much higher compression ratios than what
can be typically achieved with lossless compression methods,
but also provide a bound on the errors introduced making
lossy compression viable for scientific applications where
data integrity is key. These thrusts have enabled advances
in check-pointing, cosmology codes, climate codes, physics
simulations, and more [1].

In practice, scientists who use compression methods need
a consistent, flexible, and high performance interface to use
and understand the effects of compression regardless of what
programming language they use. Existing compressors suffer
from a proliferation of interfaces and semantics, making it
difficult to perform comparisons between methods [2], [3],
[4]. As such, users need one interface so that they can focus
on their science and allow compression researchers to develop
their methods independently. This is essentially the same line
of argument that decades ago led to the MPI specification from
proliferating and inconsistent message passing interfaces.

In this paper, we present LibPressio — a uniform, low
overhead, productive interface which applications can use to

This research was funded grants from the National Science Foundation and
the US Department of Energy

automatically configure, perform in parallel, and analyze the
results of compression. This work is challenging because (1)
the sheer number and variety of interfaces have been provided
by various compressors, (2) the uniform interface to be devel-
oped requires careful attention such that all compressors can
be executed efficiently, and (3) the interface implementation
should induce minimal (almost non-measurable) overhead.

LibPressio enables a wide array of compressor-agnostic uses
of compression including: 1) generic Command Line Interface
(CLI), 2) IO library plugins for HDF5 and ADIOS2 3) con-
figuration optimizer, 4) distributed and parallel compression
experiments 5) compression quality analysis tools like Z-
checker 6) Correctness testing tools like fuzzers 7) bindings
for other languages including Julia, R, Python, and Rust, and
8) and exascale scientific applications. These are tools that
previously would need to be rewritten for each compressor.

This paper presents the design, implementation, and some
of the applications of LibPressio. Our contributions are: 1) an
extensive analysis of the API designs of 9 competing libraries
highlighting their strengths and weaknesses for use in high
performance parallel and distributed computing. 2) measure-
ment of 6 areas where existing compressor interfaces introduce
overhead when using modern compressors and demonstrate no
statistically significant overhead relative to calling the native
APIs directly 3) a 50% - 90% reduction in the volume of client
code as measured across 11 different applications implemented
with at least feature parity and often additional features.
Finally existing tools such as Z-Checker[5] and ADIOS-2[6]
have already integrated our library.

II. BACKGROUND

Designing a uniform effective interface for both lossless
compression and lossy compression requires a deep under-
standing of different kinds of operations in compression and
decompression.

For lossless compression, designing a uniform interface
seems somewhat straightforward but is actually complex. For
lossless compressors, there are some minor differences in
the semantics relating to initialization of global structures,
what data in memory is held constant during compression,
whether to accept inputs from the file system or from memory
also, memory management for the underlying buffers, and
the passing of additional configuration parameters. Further-
more, some specialized lossless compressors like fpzip[7] only

978-1-7281-8672-6/21/$31.00 ©2021 IEEE 1
DOI 10.1109/DRBSD754563.2021.00005

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

accept floating point inputs. This means that a compressor
interface that abstracts between different lossless compressors
needs to pass metadata for the data being compressed.

With lossy compression, this problem is compounded. The
decompression process for most lossy compressors preserves
the “structure” of the output while the values are often not
preserved but instead are approximations of the originals. The
loss of information requires users to conduct tests and exper-
iments with different lossy compressors to ensure that their
data is preserved sufficiently for their applications. However,
the lack of consistent implementations for this often leads to
a proliferation of metrics interfaces and implementations as
well. Additionally, many of the leading lossy compressors for
dense tensors take advantage of spatial information requiring
a more sophisticated metadata to describe dimension ordering,
type information for their inputs and the leading compressors
again all differ on how to best do this.

III. RELATED WORK

There have been multiple prior attempts at compression
interface libraries.

One example of such a uniform compression interface is
libarchive — the library that underlies many modern imple-
mentations of the Linux/UNIX tar command. It supports a
number of what it calls filters which are lossless compressors
such as gzip, 1z4, 1zma, sx, zstd, and others. It also supports a
number of formats such as cip, zip, tar, rar and other container
formats which encapsulate separate files stored within the
buffer. One of its key portability features is that it uses callback
functions so that archives can be read or written from sockets,
files, memory, or other custom resources. Lastly libarchive
expects a “record” organized layout — that an archive file
consists of one or more “named” records. However in scientific
codes, this is not always true, but share some similarities with
HDF5 which is commonly used in HPC. The weakness of
libarchive is that it only supports lossless formats, has no
concept of the underlying type or structure of the data being
stored, and does not allow third party filters.

There are two examples of libraries dedicated to compress-
ing/decompressing lossy artifacts: imagemagick [8] and
ffmpeqg [9]. These compress/decompress images and video
respectively. However not all scientific data can be neatly char-
acterized either as a 2D image or even a video. So while these
interfaces could be used, they do not necessarily represent
a universal interface for lossy compression, but rather spe-
cialized interfaces for specific domains. ImageMagick further
supports a variety of features that generally feel out of place in
scientific computing such as image transforms or color map-
ping. The same is true for the various libraries such as the one
in VLC media player application called 1ibcompression.
In addition to these libraries there are also specialized libraries
for specific algorithms such as libjpeg-turbo. These
libraries use still different interfaces which optimize for there
use-case by providing a “by-scanline” interface which allows
reading images by row for ease of rendering. This falls short

of the various random and parallel strides access patterns used
by HPC codes.

In Python, there are tools that are closer to LibPressio. For
example, NumCodecs [10] is a Python library that provides
a set of “codecs” which implement various lossless and lossy
compressors. An important limitation of NumCodecs is that it
is a Python library, and a vast majority of HPC codes are not
written in Python. The translation between Python and C++,
even with the Python buffer protocol introduced in Python
3.2 and improved in 3.3 is still moderately expensive. The
further restrictions of the global interpreter lock for multi-
threading in C Python make it unlikely that applications will
embed Python to perform compression in a multi-threaded C
or Fortran application. Moreover, the interface requirements of
NumCodecs are overly strict. For example, at time of writing,
SZ — one of the leading error bounded lossy compressors
cannot fully implement NumCodecs’ interface correctly due
to SZ’s use of global memory to store some configuration
parameters. Additionally, NumCodecs does not support all
of the kinds of options modern lossy compressors in HPC
require. For example, it doesn’t support passing structures
or opaque pointers that cannot be serialized as JSON such
as MPI_Comm or sycl::queue structures used by some
compressors to control parallelism. Finally, NumCodecs does
not have a uniform way to query certain kinds of important
information about compressors such as their thread safety
level.

Analysis tools such as Z-checker[5] and Foresight[2] also
provide there own lossy compression interface. Older version
of Z-Checker as well as current versions of CBench — the
compression library behind Foresight — provide their own
compressor interface layers. Both of these interface are limited
in that they aim to adapt only a subset of compressor options.
Z-checker is notable in that it provides adapters to convert the
native bounds kept by error bounded lossy compressors those
supported by SZ using mathematical relationships between the
bounds. Both of these tools use “string-ly typed” configura-
tion parameters. Neither of these libraries provide run-time
information such as thread safety that can be used to safely
parallelize workloads. Furthermore, only parts of Zchecker [5]
which are designed to collect and store metrics are designed
to be embedded into other applications. While for CBench the
actual compressor interface can be embedded, Foresight was
designed as a standalone application cannot.

IV. DESIGN OVERVIEW

The architecture of LibPressio was developed considering
all the strengths and weaknesses of the existing compressor
libraries. Our goal is to develop a library which would fit the
specific needs of users in the HPC community who have some
of the most complex needs of any compression user.

LibPressio has six major components, as illustrated in Fig-
ure 1. The pressio component is used to create references
to, enumerate, and handle errors while creating compressors,
metrics and IO modules. The pressio_data is an abstrac-
tion for handling memory management, and different shapes

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

[@==aE
[-[-]-]

Bindings

\Cllem:

R
=7

Compressors
NumPy Time
a a
csv el
MetaCompressors

[:]Component D Client Code

Fig. 1. Major Components of LibPressio

and types of data buffers. The pressio_compressor
component is used to compress and decompress data. The
pressio_options structure holds introspect-able con-
figuration for compressors, metrics, and IO objects. The
pressio_io component provide convenience functions
for reading data from various sources into our out of
pressio_data buffers. The pressio_metrics compo-
nent provides functions for measuring the performance of
compression and the quality of compression.

To illustrate the usage of the library, we provide a com-
plete example of the LibPressio API in Appendix A. In the
remainder of this section, we mainly discuss some of the key
architectural decisions in LibPressio.

Abstraction Plugins

A. Data Abstraction

A compressor interface library ought to have an abstraction
to describe the type and layout of data. This is because
every compressor library that we studied has a different
understanding of what it should be passed. This also allows
the underlying implementation to use the dimension and type
information if it can be used, and ignore it if it cannot be.

Memory management is another key aspect of the data
abstraction because of diverse use-cases in practice. The com-
pression library may need to put compressed/decompressed
data into a user-provided memory space, may need to allocate
the compressed or decompressed buffer for compression and
decompression respectively, or it may need to run on a GPU
or on persistent memory [11]. If the library does not take
responsibility for memory management, users would not know
how to pass memory to or from each application and it would
leak through the abstraction.

In our design, we adopt the most flexible solution, which
is essentially a pointer, with an array to store the dimension

information, and an enum to store the datatype, a function
pointer to a deleter method, and an optional void pointer to
state for the deleter method. As an alternative to an enum the
address of a fully specialized template function could be used;
this design is used by many implementations of std: :any
to allow it to be used without Run-time Type Information
(RTTI). The advantage of this design is that it trivially supports
new types. The disadvantage of this design is that this address
could differ from compiler to compiler, and could foil network
serialization in a heterogeneous environment. The design al-
lows users to use persistent or GPU unified memory memory
function with APIs like mmap or sycl::malloc_device
easily. The deleter can be a static function to memunmap or
sycl: :free respectively. Likewise, this design allows for
shallow copies where the deleter function is a noop.

B. Compression and Decompression

Compressor interfaces themselves differ in a many ways. A
good interface needs to handle all compressors.

Ensuring users use the correct ordering of dimension in
the lossy compression is a critical prerequisite of getting
expected compression quality. In fact, passing the wrong
dimension ordering can result in a seriously poor compression
quality because of incorrect strides to be used to represent
the data. Whereas, the existing lossy compressors adopt di-
verse dimension orderings in their interfaces. For instance,
ZFP, image and video libraries tend to use a Fortran based
dimension ordering whereas SZ and MGARD expect a C
based dimension ordering in their interfaces. For the sake
of simplicity and credibility, LibPressio provides a uniform
interface with consistent dimension ordering across different
compressors, and the underlying ordering corresponding to
different compressors is handled transparently to users.

Compressors have different construction methods, which
could be another heavy burden for users to call different
compressors correctly. SZ, for example, has a single shared
configuration store which is created by SZ_Init and de-
allocated by SZ_Finalize. ZFP can have multiple in-
dependent configuration stores. This has impacts on thread
safety since a thread can only call SZ_Finalize if they are
confident no other thread (possibly in a different library) is
still using SZ. The safest approach is reference count instances
of compressors and to provide an interface to indicate if the
instance returned is a shared instance or not — allowing use of
multi-threading if it is not shared.

Compressors may not encode the compressor configuration
into the compressed byte stream. LibPressio allows users to
provide the configuration outside of the use of the compressor,
and provide interfaces to use the stream encoded metadata if
it exists, which is similar to NumCodecs.

Compressors may or may not clobber the buffers passed
to them by the user. Some versions of SZ and MGARD, for
example, treat the input data as mutable to save on memory
during compression. However, clobbering the input data is
unusual amongst compressors, and could surprise the user.
Enforcing const-ness of the input data is preferable from a

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

consistency perspective, so compressors that clobber the input
data should generally make a copy and compress on the copy.

Another diversity amongst various error bounded compres-
sors is they generally have different notions of error bounds
or options. SZ for example has 27+ different configuration
parameters, where as some lossless compressors have either
zero or one parameter. The compressor interface — LibPressio
allows compressors to have arbitrarily many options, while
at the same time providing a list of “common” options
understood by one or more compressors. Since LibPressio also
provides introspection, users can select the compressors that
meet their specific needs programmatically.

C. Option Abstractions

Now that we have discussed the ways in which compressors
can differ, we consider the abstractions for representing these
configuration options. Introspection of types is key to an
interpret-able interface between compressors. Users need to
know what type the compressor expects in order to supply
arguments of the correct type. In LibPressio, each option
reports its type as one of 9 options: signed and unsigned
integers of size 8, 16, 32, and 64, IEEE 32-bit single precision
floating point, IEEE 64-bit double precision floating point,
string, array of string, data, user data, and unset. The first 5
store a scalar of the specified type. The array of string option
stores a dynamically sized list of string. It can be used for
compressors which support multiple error bounds at a time.
The data option stores a full pressio_data buffer. It can be
used for compressors which need a mask such as SZ’s ExaFEL
mode [12]. The user data mode stores a void pointer. It is used
to pass opaque types that represents parallel resources such as
MPI_Comm. The unset type is used to indicate an invalid error
state and does not actually contain data.

D. Plugins

At time of writing, we have developed over 54 public first-
party plugins in LibPressio, based on the connection with
researchers and scientists from across 6 different institutions.
These plugins include all of the leading error bounded lossy
compressors as well as common lossless and image compres-
sors. LibPressio also supports common IO formats used in
scientific computing such as flat binary files, HDFS5 files, and
character-delimited files such as CSV. These plugins enabled
researchers to quickly adopt LibPressio into their existing
work flows. Figure 2 gives an overview of the available
plugins. Descriptions of these are found in the glossary.

LibPressio also supports a number of meta compressors.
Some of these plugins allow performing common, useful
pre/post processing steps such as transposition, resizing, and
linear quantization. Others provide more robust capabilities
such as fault or statistical error injection, auto tuning, and
automatic task-based parallelization. This allows users or even
compressor developers to experiment with different compres-
sor designs out of their consistent functional parts such as
quantization, transform, prediction, and encoding stages. This
even allows new approaches to compressor architecture by

Integrations Meta Compressors

ADIOS 2 Chunking Many Independent (OpenMP)
AutoSFX Delta Encoding LibPressio-Opt
HDF5-Filter Log Transform Random Error Injector

Linear Quantizer Sample
Fault Injector Switch
Many Dependent (MPI) Resize
Many Independent (MPI) Transpose

Libpressio-Tools
Libpressio-Fuzz

Bindings Metrics
C/('_:H' Auto-correlation Kth Order Error ~ Size
Julia Composite Masked Spatial Error
Python Differences PDF Memory Usage Time
R Error Statistics Pearson
Rust External FTK
KL Divergence R
KS Test Region of Interest
10 Compressors
Copy Template PETSc Bit Grooming SZAuto

Ccsv Posix BLOSC SZ-OMP
Empty Select Digit Rounding SZThreadsafe
HDF5 FPZIP tthresh

lota ImageMagick vecSZ

Mmap MGARD ZFP

Numpy SZ

Fig. 2. List of Plugins, Applications and Language Bindings using LibPressio.
Descriptions can be found in the Glossary. A up to date list and description
can be found at https://github.com/robertu94/libpressio
TABLE I
FEATURE COMPARISON TABLE

= g g
‘g £ En § 5 ‘g
] 2 ‘7 2 51 5]
5 F 5 5 2 8 £ ¢
P 5 g g <! z = g
8 - 5§ & B £ &g =&
2 2 = £ £ £ 7 £
library & & T 8 § ® & E
ADIOS-2 [6] v / v v v X X X
ffmpeg [9] v /] v v 4 v v
Foresight/CBench [2] v v v X a v X X
HDF5 [13] VR A A S
imagemagick [8] v 7/ a v v v X v
libarchive [14] v X X X 4 X v X
NumCodes [10] v 7/ v v X X v v
SCIL [3] R A A A SV
Z-checker (0.7) [5] v v/ a v 4 X X v
LibPressio v 7/ v v v v v v

allowing compressor developers to focus on providing specific
pieces of the compression pipeline.

Beyond meta compressors, unlike prior approaches of de-
veloping tools for compression which were tied to specific
compressors, meta compressors and external tools built upon
LibPressio benefit the entire compression community. Ab-
stractions such as ZFP’s inline arrays, python bindings for
a compressor, HDF5 plugins no longer have to be developed
for a single compressor, but all of them simultaneously.

V. DESIGN IMPACTS ON PERFORMANCE

In this section, we compare compression interface libraries
in terms of the following criteria that impact runtime and
compression performance and explained in subsequent para-
graphs: (1) Does it support lossless compressors? (2) Does it
support lossy compressors? (3) Is it dimension aware? (4) Is
it datatype aware? (5) Is it embedable in-process? (6) Does it
allow arbitrary pointers for configuration? Table I provides an

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

overview of the features of the compressor interface libraries.
The remaining columns are discussed in Section VIIL

The first two categories are relatively self explanatory. If a
compressor interface provides any lossless compressors, it has
a v for lossless compressors. If a compressor interface pro-
vides any lossy compressor, it has a v/ for lossy compressors.

Most lossy compressors and some lossless compressors
support multi-dimensional data in their compression [15],
[16], [17], which strongly depend on the layout (or spatial
features) of the data during the compression. We give a v/
to libraries which support arbitrary dimensions, a [d to have
dimensions, but do not support arbitrary ones, and a X to
libraries consume only 1d data. Passing the information about
dimensions correctly is critical to getting high compression
quality for three reasons. First, Incorrect ordering of dimension
may significantly degrade the compression quality. According
to our measurements, on the CLOUD field of the hurricane
dataset, mistakenly reversing the order of the dimensions in
SZ would lower the compression ratio between 1.4x to 1.8x
for the value range relative error bounds of le-5 to le-2.
Second, using mismatched number of dimensions may also
significantly degrade the compression quality. Although most
compressors supporting high-dimensional compression can of-
ten treat the contiguious higher dimensional datasets as lower
dimensions with a larger stride, the corresponding compression
would suffer from significantly lower compression quality. Our
measurements show that treating the same multi-dimensional
data buffers/files as 1D reduces compression ratios between
1.2x and 1.3x. Third, data cannot always be treated as 1D,
e.g., MGARD requires at least 3 rows in each dimension
or it returns an error rather than compressing the data [17].
Likewise while compression may not fail, passing incorrect
information about dimensions can produce inefficient com-
pression. For example, with ZFP, passing any one dimension
smaller than the blocksize (i.e 3 x N) results in inefficient
compression due to required zero padding for the algorithm.

If a compressor interface is data-type aware, it requires
information about data type and supports at least two data
types. This information is critical to correctly preserving data
especially for lossy compression. One cannot preserve a data
type to a non-zero error tolerance if he/she does not know how
the data is stored. Lossless compressors can allow multiple
data types without being aware of data-type because they
treat all input types as a stream of bytes regardless of the
underlying structure of the data. However, they also typically
do not accept information about type information '.

If a compressor interface is embeddable, it can be embedded
into an application written in native languages such as C or
C++ without the use of the exec or loading an interpreter.
Zchecker and Foresight/CBench get a [because only portions
of their API are embeddable. This is important because many
HPC environments and frameworks (such as MPI) limit the
use of exec to start other processes, and running interpreters
can be expensive overhead for running an application [18]. In

IFor two exceptions consider fpzip [7] and ZFP’s reversible mode [16]

our measurements, spawning an external process and copy-
ing the data back and forth across process boundaries (i.e.
NumCodecs/ZChecker) takes on the order of 174ms where
compressing the CLOUD field of Hurricane takes on the order
of 993ms; meaning that ignoring embedding can have a per-
formance penalty of = 17.5% on each compression operation
preformed. Some compressors can take much longer if they
have complex initialization (i.e. if the specific compressor uses
MPI [4]) on the order of 1997ms overhead or 201.1%.

If a compressor interface supports arbitrary configuration, it
can accept arguments of arbitrary type. This is essential to sup-
port compressors that can be configured with non-serializable
native types such as MPI_Comm or cudaStream_t to con-
trol the degree and placement of parallel resources [11], [19].
These compressors can be dramatically faster that variants
that do not use these types. This can also be important for
compressors such as SZ which require structs be passed for
configuration of certain modes that may not have native seri-
alizable representations. For this reason, compressor interface
which are string-ly typed (use strings to store configuration
[20], [2], and parse the string to the appropriate type at
runtime) or JSON typed are not appropriate for existing
lossy compressors since they cannot accurately configure these
compressors.

VI. OVERHEAD EVALUATION

In this section, we run an experiment to measure the over-
head of LibPressio relative to the native compressor interfaces.
For this evaluation we use one 40 core Intel Xeon 6148G
processor with 372 GB of RAM. We used SZ 2.1.10, ZFP
0.5.5, MGARD 0.1.0, and LibPressio 0.70.4 compiled with the
default flags from Spack and the system GCC 8.3.1 compiler.

To measure the timings, we placed calls to
std::chrono::steady_clock::now() around
the invocation to the compressor’s compress and
decompress function which on our platform reads from
a monotonic timing register on the processor. For
LibPressio based usages, we place the timings around
the call to pressio_compressor_compress and
pressio_compressor_decompress. This means that
we capture any translation overhead from LibPressio’s
interface relative to the native API. We execute the
experiments in matched pairs — one native, one using
LibPressio — to measure the overhead.

We considered 3 datasets from SDRBench [21]:
ScaleLetKF, NYX, HACC choosen as some of the largest
single buffers. We also consider several error bounds for each
of the compressors. We apply the value range based relative
error bound, which calculates the absolute error bound based
on a percentage (le-4 ~ 2e-2 in our setting) of the dataset’s
value range. We run each configuration 30 times and compute
the median and largest overhead to account for variation
between runs induced by the system.

The largest overhead we measured across all configurations
was 2.08% slower in a single observation, the largest median
overhead across configurations was 0.47%. The distribution

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

=
S

w

configurations

o4 -02 00 02 04
median % overhead
Fig. 3. Distribution of Median Percent Overheads Across all 35 configurations

tested. Each configuration was run 30 times

of the median overheads is show in Figure 3. The largest
variation range from 1.6% slower to 1.7% faster. We assess
the statistical significance of this using a Wilcoxon sign rank
test. We find there is insufficient evidence to conclude that
these overheads meaningfully differ from 0 (p=.600) 2.

VII. PRODUCTIVITY EVALUATION

There are two other columns in table I relating to developer
productivity: (7) Can options of compressors be introspected?
(8) Does it allow 3rd party extensions? If a compressor
interface is introspect-able, it allows users to query options
with types a compressor supports. This is more important
the more compressor plugins that an interface provides. Users
need to have some common ways of enumerating the options
supported by a compressor in order to programmatically
configure them. The compressor interface which allow this
for all non-arbitrary types are introspect-able. If a compressor
interface supports third party extensions, it allows additional
implementations to be added to the interface interface with-
out modifying the code for the interface. This is important
because it allows developers to create and distribute their
plugins without modifying the library so that they can be used
experimentally before being released publicly.

In this section, we evaluate productivity improvements
from executing lossy compression/decompression operations
by LibPressio in three ways. First, we consider the number
of lines of normalized client code which has long been used
as an estimate of effort for developing new applications and
maintenance effort required for an implementation and show
a 50% to 90% reduction in lines of client code.

We assess the effort of developing or maintaining a code
base supporting multiple compressors by the number of lines
of code. We started with a number of use cases each supporting
at least one of the leading lossy compressors: ADIOS2,
Julia bindings, Python bindings, Rust bindings, command
line interfaces (CLI), HDFS filters, a configuration optimizer,
and Z-Checker. We added to our list a few use cases that
were requested by our collaborators: R bindings, an experi-
mental test harness written in C++ distributed with MPI, a
fuzzer which provides random inputs to the compressor to
identify implementation flaws in the compressors. We then
implemented each of these facilities in LibPressio to at least
feature parity with the native tool. In some cases such as

2We choose the non-parametric Wilcoxon sign rank test to be robust to
possible machine run-to-run variance which is known to possibly be large
relative to the observations at this timescale. While this does not prove that
there is no overhead (obviously there is some), it suggests that it is de minimis
relative to machine noise for most uses.

TABLE II
LINES OF CLIENT CODE FOR VARIOUS USAGES, T INDICATES NO NATIVE
MULTI-COMPRESSOR IMPLEMENTATION EXISTS

E
E
2 2
Z 2
g 2 s £ &
T T R
g Z = H 2
g 5 » g g
£ 2 £ g 3
] — = = ~
Task
ADIOS2 [20] 3 744 367 377 50.67%
BindingJulia [22] 1 299 25 274 91.64%
BindingPython [23], [12] T 2 768 363 405 52.73%
BindingR - - 793 - -
BindingRust [24] 1 112 34 78 69.64%
CLI [17], [16], [12] T 3 1649 756 893 54.15%
Configuration Optimizer [25] 1 4683 1869 2814 60.09%
DistributedExperiment - - 613 - -
Fuzzer - - 24 - -
HDFS5 filter [16], [12] T 2 1469 438 1031 70.18%
Z-Checker [5] 7 3052 405 2647 86.73%

the LibPressio CLI, the LibPressio version implements many
more features — for example, the libpressio CLI can compress
and decompress HDF5 datasets where as the SZ, ZFP, and
MGARD cannot. Additionally, in some cases the LibPressio
bindings use the compressors in a more correct way such as
passing dimensionality information correctly. Finally, in there
of these cases — the CLI, Python bidings and HDFS5 filter —
the implementation do not have competing a multi-compressor
implementation: in these cases, we simply sum the lines of
code in each implementation. While this will over-count some
code, like command line argument parsing code, it is often
less than the code required to implement a correct interface.
For clarity, we mark these entries in Table II. To account for
differences in formatting/style, clang-format was applied to
all files, and we then measured the number of lines of code
example applications utilities using the cloc utility. In the
case of larger libraries like ADIOS2 [20] or Z-checker ([5],
we include only the files that directly include compressor
library headers. Table II provides a summary of our results.
We consistently find that LibPressio decreases the number of
lines of code required between 50-90%.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present our developed LibPressio, and de-
scribe how they can be used to enable a wide array to tools to
advance the state of compression by simplifying existing work
flows. We demonstrate a at least a 50% reduction in client code
while maintaining insignificant overhead. These improvements
brought many new features to existing compressors and new
compressors to new languages and tools while simplifying
the existing compressor work flows and reducing redundant
work. To this end tools such as Z-Checker and ADIOS2 have
integrated LibPressio for interfacing with compressors.

For future work on the interface of compressors, we plan
to extend LibPressio to account for the following use cases.
1. Better support for accelerators both in plugins and core,

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

2. Better support for asynchrony and streaming Compression,
and 3. Better support for sparse data Compression.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under grant numbers: NRT-DESE
1633608, OAC-2003709, and SHF-1910197, SHF-1617488,
and CSSI-2104023/2104024.

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations - the Office of Science and
the National Nuclear Security Administration,responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering and early testbed platforms, to support the nation’s
exascale computing imperative.

The material was supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific
Computing Research, under contract DE-AC02-06CH11357.

REFERENCES
[11 F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao,
C. H. Yoon, X.-C. Wu, Y. Alexeev, and F. T. Chong, “Use

cases of lossy compression for floating-point data in scientific
data sets,” vol. 33, no. 6, pp. 1201-1220. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/1094342019853336

[2] P. Grosset, C. M. Biwer, J. Pulido, A. T. Mohan, A. Biswas, J. Patchett,
T. L. Turton, D. H. Rogers, D. Livescu, and J. Ahrens, “Foresight:
Analysis That Matters for Data Reduction,” in SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis, Nov. 2020, pp. 1-15.

[3] J. Kunkel, A. Novikova, E. Betke, and A. Schaare, “Toward Decoupling
the Selection of Compression Algorithms from Quality Constraints,” in
High Performance Computing, J. M. Kunkel, R. Yokota, M. Taufer, and
J. Shalf, Eds. = Cham: Springer International Publishing, 2017, vol.
10524, pp. 3-14.

[4] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “FRaZ: A Generic
High-Fidelity Fixed-Ratio Lossy Compression Framework for Scientific
Floating-point Data.” IEEE.

[5] D. Tao, S. Di, H. Guo, Z. Chen, and F. Cappello, “Z-Checker: A
framework for assessing lossy compression of scientific data,” vol. 33,
no. 2, pp. 285-303. [Online]. Available: http://journals.sagepub.com/
doi/10.1177/1094342017737147

[6] W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta, G. Ostrouchov,
M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta, K. Takahashi,
N. Thompson, S. Tsutsumi, L. Wan, M. Wolf, K. Wu, and S. Klasky,
“ADIOS 2: The Adaptable Input Output System. A framework for high-
performance data management,” SoftwareX, vol. 12, p. 100561, Jul.
2020.

[7]1 P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245-1250, 2006.

[8] L S. LLC, “ImageMagick,” https://imagemagick.org/.

[9] “FFmpeg,” https://www.ffmpeg.org/.

[10] “Numcodecs — numcodecs 0.9.2.devO+dirty
https://mumcodecs.readthedocs.io/en/stable/.

[11] J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin,
X. Liang, J. Calhoun, D. Tao, and F. Cappello, “cuSZ: An Efficient GPU-
Based Error-Bounded Lossy Compression Framework for Scientific
Data,” in Proceedings of the ACM International Conference on Parallel
Architectures and Compilation Techniques. Virtual Event GA USA:
ACM, Sep. 2020, pp. 3-15.

[12] S. Di, “Error-bounded Lossy Data Compressor (for floating-point/integer
datasets): Disheng222/SZ.”” [Online]. Available: https://github.com/
disheng222/SZ

documentation,”

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]

M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the HDF5 technology suite and its applications,” in Pro-
ceedings of the EDBT/ICDT 2011 Workshop on Array Databases, ser.
AD ’11. New York, NY, USA: Association for Computing Machinery,
Mar. 2011, pp. 36-47.

“Libarchive - C library and command-line tools for reading and
writing tar, cpio, zip, ISO, and other archive formats @ GitHub,”
https://www.libarchive.org/.

S. Di and F. Cappello, “Fast Error-Bounded Lossy HPC Data Com-
pression with SZ,” in 2016 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 730-739.

P. Lindstrom, “Fixed-Rate Compressed Floating-Point Arrays,” vol. 20,
no. 12, pp. 2674-2683.

M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” vol. 19, no. 5-6, pp. 65-76.

“MPI: A Message-Passing Interface Standard,” Jun. 2015.

J. Tian, S. Di, C. Zhang, X. Liang, S. Jin, D. Cheng, D. Tao,
and F. Cappello, “waveSZ: A hardware-algorithm co-design of
efficient lossy compression for scientific data,” in Proceedings of
the 25th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. ACM, pp. 74-88. [Online]. Available:
https://dl.acm.org/doi/10.1145/3332466.3374525

W. FE. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer,
J. Gu, P. Davis, J. Choi, K. Germaschewski, K. Huck, A. Huebl,
M. Kim, J. Kress, T. Kurc, Q. Liu, J. Logan, K. Mehta,
G. Ostrouchov, M. Parashar, F. Poeschel, D. Pugmire, E. Suchyta,
K. Takahashi, N. Thompson, S. Tsutsumi, L. Wan, M. Wolf,
K. Wu, and S. Klasky, “Adios 2: The adaptable input output
system. a framework for high-performance data management,”
SoftwareX, vol. 12, p. 100561, 2020. [Online]. Available: https:
/lwww.sciencedirect.com/science/article/pii/S2352711019302560
Scientific Data Reduction Benchmark, https://sdrbench.github.io/, on-
line.

A. Sengupta, “Zfp_jll .
https://juliahub.com/ui/Packages/zfp_jll/DIPUA/0.5.5+0.
N. Kukreja, T. Greaves, G. Gorman, and D. Wade, “Pyzfp,” 2018.

C. Zapart, ‘“Zfp-sys - crates.io: Rust Package Registry,”
https://crates.io/crates/zfp-sys.

K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and F. Cappello,
“Significantly Improving Lossy Compression for HPC Datasets with
Second-Order Prediction and Parameter Optimization,” in Proceedings
of the 29th International Symposium on High-Performance Parallel and
Distributed Computing. Stockholm Sweden: ACM, Jun. 2020, pp. 89—
100.

“Libpressio,” Codesign Center for Online Data Analysis and Reduction.
[Online]. Available: https://github.com/CODARcode/libpressio

JuliaHub,”

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

APPENDIX A 2 // setup compressed and decompressed

LIBPRESSIO USAGE EXAMPLE — data buffers
30 struct pressio_data* compressed_data =
— pressio_data_new_empty (
A basic example of using LibPressio with error handling - pressio_byte_dtype, 0, NULL);
omitted for conciseness. Adapted from the example on [26]. 3 struct pressio_datax decompressed_data =
It takes a buffer in memory, and compresses it with the SZ — pressio_data_new_empty (
compressor using an absolute error bound of 0.5. To adapt this — pressio_double dtype, 3, dims);
example for ZFP or another supported compressor, only lines 2
10, 20, and 21 would need to be changed. 3 // compress and decompress the data
pressio_compressor_compress (compressor,
W — input_data, compressed_data);
1 #include <11l sio.h> pressio_compressor_decompress (

3 —~ compressor, compressed_data,

3 float* make_input_data(); < decompressed_data);

s int 3 // get the compression ratio
. - 37 3 3 *] —
¢ main(int argc, charx argv[]) struct pr§551o_optlons metrlc_%esults
. 38 — pressio_compressor_get_metrics_results(
s / / PR PR - compressor);
— d € c o a
N struct pressiox library N double compression_ratio = 0;

pressio_options_get_double (

— metric_results,

— "size:compression_ratio",

— &compression_ratio);

printf ("compression ratio: %$1f\n",
— compression_ratio);

— pressio_instance(); 0
10 struct pressio_compressorx compressor =
— pressio_get_compressor(library,

N "SZH);

12 // config

13 const char+ metrics[] = { "size" };

42
. . . . free the input, decompressed, and
14 struct pressio_metrics* metrics_plugin ® /7 dpd ; P /
.) . compresse ata
ressio_new_metrics(librar -
- ietrics_ l)T (Yo 4 pressio_data_free(decompressed_data);
- - ! ! . s pressio_data_free(compressed_data);
15 pressio_compressor_set_metrics (© . , 5
]] pressio_data_free(input_data);
— compressor, metrics_plugin); p
10 » i] * // free options and the library

17 // configure the

18 struct pressio_options* sz_options = 50

pressio_options_free(sz_options);

. i pressio_options_free(metric_results);
- pressio_compressor_get_options(o pressio_compressor_release(compressor);
-~ compressor); 52 , ;
pressio_release(library);
Y ” return 0;
20 pressio_options_set_string(sz_options, 4 }
N "sz:error_bound_mode_str", "abs");
21 pressio_options_set_double(sz_options,
« "sz:abs_err_bound", 0.5);
» pressio_compressor_check_options (APPENDIX B
s compressor, sz_options); GLOSSARY
2 pressio_compressor_set_options (k" order error
-, compressor, sz_options); Nhumsnwdubthmeonmuwsihesmeofkmlmgeﬁ
2 absolute value of the differences observed between
25 '/ 1] 300x300 (et into data the uncompressed and decompressed data.
— C i c C
2% double* rawinput_data = ADIOS2
<+ make_input_data () ; A parallel 10, data movement, and data processing
- size_t dims[] = { 300, 300, 300 }; framework.
2 struct pressio_data* input_data = auto-correlation
< pressio_data_new_move (Metrics module that computes the Pearson’s corre-
-, pressio_double_dtype, rawinput_data, lation coefficient between the data and itself shifted
- 3, dims, pressio_data_libc_free_fn,
< NULL);

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

by one or more “lags”. For example for the points
¥ = {1,2,3,4,5} with a lag of 2 would compute
the correlation between v7 = {1,2,3} and v; =
{3,4,5}.
AutoSFX

An automated crystallography analysis and process-
ing framework being developed at the Stanford Lin-
ear Accelerator Center.

Bit Grooming
Compressor that applies various manipulation tech-
niques to increase comparability of IEEE floating
point numbers.

BLOSC
A family of lossless compressors that have been
optimized for performance.

chunking
a meta-compressor which divides a dataset into con-
tiguous chunks dispatching each of them to a another
meta-compressor. This is useful for automatic paral-
lelization.

CSv
10 plugin that consumes character delimited values.

delta encoding
Meta-compressor that applies a delta encoding a
preprocessing step. Delta encoding encodes values
encodes the values using adjacent differences. For
example 7 = {1,2,3,4,5} would be encoded as
v={1,1,1,1,1}.

dense tensor
a multi-dimensional generalization of an array with
a large number of non-zero values often stored
contiguously in memory. In C/C++, these are stored
in row-major order which has indicies that advance
from slowest to fastest. In Fortran, column major
order is used where indicies advance from fastest to
slowest.

differences-probabilities densities function (pdf)
Metrics module that generates an empirical probabil-
ity density function of the differences between the
uncompressed and decompressed values.

Digit Rounding
Compressor that applies various rounding techniques
to increase comparability of IEEE floating point
numbers.

error statistics
Metrics module that computes basic descriptive
statistics using algorithms that can be computed in a
single pass.

Fault Injector
Meta-compressor that applies a sequence of single
bit errors into the compressed data. Useful for im-
plementing fuzz testing.

fpzip
A specialized lossless and lossy compressor for IEEE
floating point values.

HDF5
10 plugin that uses the HDF5 parallel 10 library and
file format.

HDF5 Filter
A feature of the HDF5 IO library that allows com-
pression to be preformed inline to dataset access.
Supports plugins to support different compressors.

Image Magick
A extensive library for image manipulation and com-
pression.

Iota
A 10 plugin that generates synthetic data using C++’s
std: :iota which fills a buffer with sequentially
increasing values.

Kolmogorov-Smirnov (KS) Test for Goodness of Fit
Metrics module that compute a non-parametric sta-
tistical hypothesis test which test the hypothesis that
two distributions are two samples are drawn from the
same distribution that operates by determining the
largest difference between the empirical cumulative
density function.

Kullback-Liebler (KL) Divergence
A metrics module that computes A measure of rel-
ative entropy from one distribution to another. It is

defined as D(P||Q)xl = > o x P(x)log (gEiD It

is used in information theory and machine learning.

LibPressio-Fuzz
A Fuzzer developed for this paper that use LibPressio
and Clang/LLVM’s libfuzzer.

LibPressio-Opt
A meta-compressor that implements an optimizer
that can be used to determine an optimal configu-
ration. Previous version of this were named FRaZ
and OptZConfig..

LibPressio-Tools
A set of tools developed for this paper that use
LibPressio to implement a command line interface
for LibPressio compressors and meta-compressors.

linear quantization
Meta-compressor that preforms linear quantization.
Quantization is a transformation that maps a con-
tiguous domain (i.e. floats) to a countable domain
(i.e. integers). Linear Quanitization, does so with a
mapping like Q(z) = | *Zz™] where x is the value,
Q(z) is the quantized value, A is a scaling factor,
and m is some centering term. Quantizization is often
used in lossy compression because coutable domains
often have lower entropy than contiguous domains
and are thereby more compress-able.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

Many Dependent
A Meta-compressor that implements a parallel
pipeline that does the following. The first buffer
is operated upon and metrics are gathered from
it. Metrics from the first buffer are passed to one
or more compression that are done in parallel as
configuration options. As each buffer finishes, the
value of the latest indexed buffer to complete is
stored to be passed to future invocations. This is
used for forwarding a guess for a configuration to
subsequent time steps.
Many Independent
A meta-compressor that implements a embarrass-
ingly parallel compression of multiple data-sets.
masked
Metrics module that removes specified points from a
data set prior to computing another metric.
Meta-Compressor
A concept within LibPressio. Meta-Compressors im-
plement the compressor interface, but are not com-
pressors. Examples may include pre/post processing
steps, parallel run-times, optimizer, etc....
MGARD
A multi-grid based error bounded lossy compressor.
mmap
IO plugin that uses the UNIX system call mmap that
maps the contents of a file or memory of a device
into memory via the virtual memory of a process.

NumPY
I0 plugin for the custom file format used by
the python numeric library NumPY for storing n-
dimensional arrays.

Pearson’s Correlation
Metrics module that computes Pearson’s Correlation
Coefficient (often denoted r) measures the strength
of a linear relationship between two values .
PETSc
A 10 plugin that reads file created by PETSC, the
“Portable, Extensible Toolkit for Scientific Compu-

tation”.
posix
IO plugin that uses the POSIX functions read and
write to read in an array in a native data format.
R

Metrics module that uses the scripting language R
that is specialized in statistical analysis.

Random Error Injector
A meta compressor that applies randomly generated
noise to each element of the input dataset according
to some specified distribution.

Region of Interest
Metrics module that Computes the arithmetic mean
of a region of interest within a dataset.

resize
A meta-compressor which modifies the dimensions
of the data without modifying the values. This is
useful for compressors which sometimes benefit from
being told the data shape is different than it actually
is —i.e. ZFP if you have a 3d dataset that is Ax Bx 1
SO you can treat it as 2D.

sample
A meta-compressor which applies data-sampling
techniques such as uniform sampling with and with-
out replacement prior to compression.

select
IO plugin that selects a sub-region of an input
dataset read in by another IO plugin for compres-
sion/analysis.

Spatial Error
The percentage of elements of a dataset that exceed
some specified threshold.

switch
A meta-compressor which allows runtime switching
between different compressors based on a configura-
tion setting. This is useful because it allow tools like
LibPressio-Opt to select between multiple different
compressors types dynamically.

SZ
a prediction based error bounded lossy compressor.

SZ-OMP
the parallel CPU version of the SZ prediction based
error bounded lossy compressor.

SZ-Threadsafe
the threadsafe serial version of the SZ prediction
based error bounded lossy compressor.

the Feature Detection Toolkit (FTK)
Metrics module that uses the library FTK that tracks
features such as maxima, minima, an saddle points
in data between time-steps of a simulation.
transpose
A meta-compressor which applies a multi-
dimensional abstraction of a transpose to the
data prior to compression.
tthresh
A compressor that uses the principles of singular
value decomposition to compress data.

vecSZ
A version of SZ optimized to leverage SIMD vector
instructions.

ZFP
A transform based error bounded lossy compressor.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:18 UTC from IEEE Xplore. Restrictions apply.

		2021-12-24T09:40:41-0500
	Certified PDF 2 Signature

