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Abstract—In recent years, lossless and lossy compressors have
been developed to cope with the ever increasing volume of
scientific floating point data. However not all compression tech-
niques are appropriate for all data-sets, and determining which
one to use can be time consuming requiring code modifications
and trial and error. We present LibPressio – a generic library
for the compression of dense tensors that minimizes the code
changes scientists need to make to take advantage of new and
improved compression techniques. We compare LibPressio to 9
different competing libraries and measure the overhead of their
design decisions as well as overall run time overhead showing
insignificant overhead. We further show an improvement in
usability as measured by a reduction in lines of code compared
to native code by 50-90%. The value of this tool can be seen by
integration into Z-Checker and ADIOS2.

Index Terms—Error Bounded Lossy Compression, LibPressio

I. INTRODUCTION

In recent years, modern compression methods such as

ZSTD, SZ, ZFP, and MGARD have begun to revolutionize

the way that application scientists transport data across the

network, store data to persistent storage, and process data in

memory. This is because error bounded lossy compression

methods achieve much higher compression ratios than what

can be typically achieved with lossless compression methods,

but also provide a bound on the errors introduced making

lossy compression viable for scientific applications where

data integrity is key. These thrusts have enabled advances

in check-pointing, cosmology codes, climate codes, physics

simulations, and more [1].

In practice, scientists who use compression methods need

a consistent, flexible, and high performance interface to use

and understand the effects of compression regardless of what

programming language they use. Existing compressors suffer

from a proliferation of interfaces and semantics, making it

difficult to perform comparisons between methods [2], [3],

[4]. As such, users need one interface so that they can focus

on their science and allow compression researchers to develop

their methods independently. This is essentially the same line

of argument that decades ago led to the MPI specification from

proliferating and inconsistent message passing interfaces.

In this paper, we present LibPressio – a uniform, low

overhead, productive interface which applications can use to

This research was funded grants from the National Science Foundation and
the US Department of Energy

automatically configure, perform in parallel, and analyze the

results of compression. This work is challenging because (1)

the sheer number and variety of interfaces have been provided

by various compressors, (2) the uniform interface to be devel-

oped requires careful attention such that all compressors can

be executed efficiently, and (3) the interface implementation

should induce minimal (almost non-measurable) overhead.

LibPressio enables a wide array of compressor-agnostic uses

of compression including: 1) generic Command Line Interface

(CLI), 2) IO library plugins for HDF5 and ADIOS2 3) con-

figuration optimizer, 4) distributed and parallel compression

experiments 5) compression quality analysis tools like Z-

checker 6) Correctness testing tools like fuzzers 7) bindings

for other languages including Julia, R, Python, and Rust, and

8) and exascale scientific applications. These are tools that

previously would need to be rewritten for each compressor.

This paper presents the design, implementation, and some

of the applications of LibPressio. Our contributions are: 1) an

extensive analysis of the API designs of 9 competing libraries

highlighting their strengths and weaknesses for use in high

performance parallel and distributed computing. 2) measure-

ment of 6 areas where existing compressor interfaces introduce

overhead when using modern compressors and demonstrate no

statistically significant overhead relative to calling the native

APIs directly 3) a 50% - 90% reduction in the volume of client

code as measured across 11 different applications implemented

with at least feature parity and often additional features.

Finally existing tools such as Z-Checker[5] and ADIOS-2[6]

have already integrated our library.

II. BACKGROUND

Designing a uniform effective interface for both lossless

compression and lossy compression requires a deep under-

standing of different kinds of operations in compression and

decompression.

For lossless compression, designing a uniform interface

seems somewhat straightforward but is actually complex. For

lossless compressors, there are some minor differences in

the semantics relating to initialization of global structures,

what data in memory is held constant during compression,

whether to accept inputs from the file system or from memory

also, memory management for the underlying buffers, and

the passing of additional configuration parameters. Further-

more, some specialized lossless compressors like fpzip[7] only
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accept floating point inputs. This means that a compressor

interface that abstracts between different lossless compressors

needs to pass metadata for the data being compressed.

With lossy compression, this problem is compounded. The

decompression process for most lossy compressors preserves

the “structure” of the output while the values are often not

preserved but instead are approximations of the originals. The

loss of information requires users to conduct tests and exper-

iments with different lossy compressors to ensure that their

data is preserved sufficiently for their applications. However,

the lack of consistent implementations for this often leads to

a proliferation of metrics interfaces and implementations as

well. Additionally, many of the leading lossy compressors for

dense tensors take advantage of spatial information requiring

a more sophisticated metadata to describe dimension ordering,

type information for their inputs and the leading compressors

again all differ on how to best do this.

III. RELATED WORK

There have been multiple prior attempts at compression

interface libraries.

One example of such a uniform compression interface is

libarchive – the library that underlies many modern imple-

mentations of the Linux/UNIX tar command. It supports a

number of what it calls filters which are lossless compressors

such as gzip, lz4, lzma, sx, zstd, and others. It also supports a

number of formats such as cip, zip, tar, rar and other container

formats which encapsulate separate files stored within the

buffer. One of its key portability features is that it uses callback

functions so that archives can be read or written from sockets,

files, memory, or other custom resources. Lastly libarchive

expects a “record” organized layout – that an archive file

consists of one or more “named” records. However in scientific

codes, this is not always true, but share some similarities with

HDF5 which is commonly used in HPC. The weakness of

libarchive is that it only supports lossless formats, has no

concept of the underlying type or structure of the data being

stored, and does not allow third party filters.

There are two examples of libraries dedicated to compress-

ing/decompressing lossy artifacts: imagemagick [8] and

ffmpeg [9]. These compress/decompress images and video

respectively. However not all scientific data can be neatly char-

acterized either as a 2D image or even a video. So while these

interfaces could be used, they do not necessarily represent

a universal interface for lossy compression, but rather spe-

cialized interfaces for specific domains. ImageMagick further

supports a variety of features that generally feel out of place in

scientific computing such as image transforms or color map-

ping. The same is true for the various libraries such as the one

in VLC media player application called libcompression.

In addition to these libraries there are also specialized libraries

for specific algorithms such as libjpeg-turbo. These

libraries use still different interfaces which optimize for there

use-case by providing a “by-scanline” interface which allows

reading images by row for ease of rendering. This falls short

of the various random and parallel strides access patterns used

by HPC codes.

In Python, there are tools that are closer to LibPressio. For

example, NumCodecs [10] is a Python library that provides

a set of “codecs” which implement various lossless and lossy

compressors. An important limitation of NumCodecs is that it

is a Python library, and a vast majority of HPC codes are not

written in Python. The translation between Python and C++,

even with the Python buffer protocol introduced in Python

3.2 and improved in 3.3 is still moderately expensive. The

further restrictions of the global interpreter lock for multi-

threading in C Python make it unlikely that applications will

embed Python to perform compression in a multi-threaded C

or Fortran application. Moreover, the interface requirements of

NumCodecs are overly strict. For example, at time of writing,

SZ – one of the leading error bounded lossy compressors

cannot fully implement NumCodecs’ interface correctly due

to SZ’s use of global memory to store some configuration

parameters. Additionally, NumCodecs does not support all

of the kinds of options modern lossy compressors in HPC

require. For example, it doesn’t support passing structures

or opaque pointers that cannot be serialized as JSON such

as MPI_Comm or sycl::queue structures used by some

compressors to control parallelism. Finally, NumCodecs does

not have a uniform way to query certain kinds of important

information about compressors such as their thread safety

level.

Analysis tools such as Z-checker[5] and Foresight[2] also

provide there own lossy compression interface. Older version

of Z-Checker as well as current versions of CBench – the

compression library behind Foresight – provide their own

compressor interface layers. Both of these interface are limited

in that they aim to adapt only a subset of compressor options.

Z-checker is notable in that it provides adapters to convert the

native bounds kept by error bounded lossy compressors those

supported by SZ using mathematical relationships between the

bounds. Both of these tools use “string-ly typed” configura-

tion parameters. Neither of these libraries provide run-time

information such as thread safety that can be used to safely

parallelize workloads. Furthermore, only parts of Zchecker [5]

which are designed to collect and store metrics are designed

to be embedded into other applications. While for CBench the

actual compressor interface can be embedded, Foresight was

designed as a standalone application cannot.

IV. DESIGN OVERVIEW

The architecture of LibPressio was developed considering

all the strengths and weaknesses of the existing compressor

libraries. Our goal is to develop a library which would fit the

specific needs of users in the HPC community who have some

of the most complex needs of any compression user.

LibPressio has six major components, as illustrated in Fig-

ure 1. The pressio component is used to create references

to, enumerate, and handle errors while creating compressors,

metrics and IO modules. The pressio_data is an abstrac-

tion for handling memory management, and different shapes

2
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Fig. 1. Major Components of LibPressio

and types of data buffers. The pressio_compressor
component is used to compress and decompress data. The

pressio_options structure holds introspect-able con-

figuration for compressors, metrics, and IO objects. The

pressio_io component provide convenience functions

for reading data from various sources into our out of

pressio_data buffers. The pressio_metrics compo-

nent provides functions for measuring the performance of

compression and the quality of compression.

To illustrate the usage of the library, we provide a com-

plete example of the LibPressio API in Appendix A. In the

remainder of this section, we mainly discuss some of the key

architectural decisions in LibPressio.

A. Data Abstraction

A compressor interface library ought to have an abstraction

to describe the type and layout of data. This is because

every compressor library that we studied has a different

understanding of what it should be passed. This also allows

the underlying implementation to use the dimension and type

information if it can be used, and ignore it if it cannot be.

Memory management is another key aspect of the data

abstraction because of diverse use-cases in practice. The com-

pression library may need to put compressed/decompressed

data into a user-provided memory space, may need to allocate

the compressed or decompressed buffer for compression and

decompression respectively, or it may need to run on a GPU

or on persistent memory [11]. If the library does not take

responsibility for memory management, users would not know

how to pass memory to or from each application and it would

leak through the abstraction.

In our design, we adopt the most flexible solution, which

is essentially a pointer, with an array to store the dimension

information, and an enum to store the datatype, a function

pointer to a deleter method, and an optional void pointer to

state for the deleter method. As an alternative to an enum the

address of a fully specialized template function could be used;

this design is used by many implementations of std::any
to allow it to be used without Run-time Type Information

(RTTI). The advantage of this design is that it trivially supports

new types. The disadvantage of this design is that this address

could differ from compiler to compiler, and could foil network

serialization in a heterogeneous environment. The design al-

lows users to use persistent or GPU unified memory memory

function with APIs like mmap or sycl::malloc_device
easily. The deleter can be a static function to memunmap or

sycl::free respectively. Likewise, this design allows for

shallow copies where the deleter function is a noop.

B. Compression and Decompression

Compressor interfaces themselves differ in a many ways. A

good interface needs to handle all compressors.

Ensuring users use the correct ordering of dimension in

the lossy compression is a critical prerequisite of getting

expected compression quality. In fact, passing the wrong

dimension ordering can result in a seriously poor compression

quality because of incorrect strides to be used to represent

the data. Whereas, the existing lossy compressors adopt di-

verse dimension orderings in their interfaces. For instance,

ZFP, image and video libraries tend to use a Fortran based

dimension ordering whereas SZ and MGARD expect a C

based dimension ordering in their interfaces. For the sake

of simplicity and credibility, LibPressio provides a uniform

interface with consistent dimension ordering across different

compressors, and the underlying ordering corresponding to

different compressors is handled transparently to users.

Compressors have different construction methods, which

could be another heavy burden for users to call different

compressors correctly. SZ, for example, has a single shared

configuration store which is created by SZ_Init and de-

allocated by SZ_Finalize. ZFP can have multiple in-

dependent configuration stores. This has impacts on thread

safety since a thread can only call SZ Finalize if they are

confident no other thread (possibly in a different library) is

still using SZ. The safest approach is reference count instances

of compressors and to provide an interface to indicate if the

instance returned is a shared instance or not – allowing use of

multi-threading if it is not shared.

Compressors may not encode the compressor configuration

into the compressed byte stream. LibPressio allows users to

provide the configuration outside of the use of the compressor,

and provide interfaces to use the stream encoded metadata if

it exists, which is similar to NumCodecs.

Compressors may or may not clobber the buffers passed

to them by the user. Some versions of SZ and MGARD, for

example, treat the input data as mutable to save on memory

during compression. However, clobbering the input data is

unusual amongst compressors, and could surprise the user.

Enforcing const-ness of the input data is preferable from a

3
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consistency perspective, so compressors that clobber the input

data should generally make a copy and compress on the copy.

Another diversity amongst various error bounded compres-

sors is they generally have different notions of error bounds

or options. SZ for example has 27+ different configuration

parameters, where as some lossless compressors have either

zero or one parameter. The compressor interface – LibPressio

allows compressors to have arbitrarily many options, while

at the same time providing a list of “common” options

understood by one or more compressors. Since LibPressio also

provides introspection, users can select the compressors that

meet their specific needs programmatically.

C. Option Abstractions

Now that we have discussed the ways in which compressors

can differ, we consider the abstractions for representing these

configuration options. Introspection of types is key to an

interpret-able interface between compressors. Users need to

know what type the compressor expects in order to supply

arguments of the correct type. In LibPressio, each option

reports its type as one of 9 options: signed and unsigned

integers of size 8, 16, 32, and 64, IEEE 32-bit single precision

floating point, IEEE 64-bit double precision floating point,

string, array of string, data, user data, and unset. The first 5

store a scalar of the specified type. The array of string option

stores a dynamically sized list of string. It can be used for

compressors which support multiple error bounds at a time.

The data option stores a full pressio_data buffer. It can be

used for compressors which need a mask such as SZ’s ExaFEL

mode [12]. The user data mode stores a void pointer. It is used

to pass opaque types that represents parallel resources such as

MPI Comm. The unset type is used to indicate an invalid error

state and does not actually contain data.

D. Plugins

At time of writing, we have developed over 54 public first-

party plugins in LibPressio, based on the connection with

researchers and scientists from across 6 different institutions.

These plugins include all of the leading error bounded lossy

compressors as well as common lossless and image compres-

sors. LibPressio also supports common IO formats used in

scientific computing such as flat binary files, HDF5 files, and

character-delimited files such as CSV. These plugins enabled

researchers to quickly adopt LibPressio into their existing

work flows. Figure 2 gives an overview of the available

plugins. Descriptions of these are found in the glossary.

LibPressio also supports a number of meta compressors.

Some of these plugins allow performing common, useful

pre/post processing steps such as transposition, resizing, and

linear quantization. Others provide more robust capabilities

such as fault or statistical error injection, auto tuning, and

automatic task-based parallelization. This allows users or even

compressor developers to experiment with different compres-

sor designs out of their consistent functional parts such as

quantization, transform, prediction, and encoding stages. This

even allows new approaches to compressor architecture by

Fig. 2. List of Plugins, Applications and Language Bindings using LibPressio.
Descriptions can be found in the Glossary. A up to date list and description
can be found at https://github.com/robertu94/libpressio
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ADIOS-2 [6] � � � � � � � �
ffmpeg [9] � � � � � � � �
Foresight/CBench [2] � � � � � � � �
HDF5 [13] � � � � � � � �
imagemagick [8] � � � � � � � �
libarchive [14] � � � � � � � �
NumCodes [10] � � � � � � � �
SCIL [3] � � � � � � � �
Z-checker (0.7) [5] � � � � � � � �

LibPressio � � � � � � � �

allowing compressor developers to focus on providing specific

pieces of the compression pipeline.

Beyond meta compressors, unlike prior approaches of de-

veloping tools for compression which were tied to specific

compressors, meta compressors and external tools built upon

LibPressio benefit the entire compression community. Ab-

stractions such as ZFP’s inline arrays, python bindings for

a compressor, HDF5 plugins no longer have to be developed

for a single compressor, but all of them simultaneously.

V. DESIGN IMPACTS ON PERFORMANCE

In this section, we compare compression interface libraries

in terms of the following criteria that impact runtime and

compression performance and explained in subsequent para-

graphs: (1) Does it support lossless compressors? (2) Does it

support lossy compressors? (3) Is it dimension aware? (4) Is

it datatype aware? (5) Is it embedable in-process? (6) Does it

allow arbitrary pointers for configuration? Table I provides an
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overview of the features of the compressor interface libraries.

The remaining columns are discussed in Section VII.

The first two categories are relatively self explanatory. If a

compressor interface provides any lossless compressors, it has

a � for lossless compressors. If a compressor interface pro-

vides any lossy compressor, it has a � for lossy compressors.

Most lossy compressors and some lossless compressors

support multi-dimensional data in their compression [15],

[16], [17], which strongly depend on the layout (or spatial

features) of the data during the compression. We give a �
to libraries which support arbitrary dimensions, a � to have

dimensions, but do not support arbitrary ones, and a � to

libraries consume only 1d data. Passing the information about

dimensions correctly is critical to getting high compression

quality for three reasons. First, Incorrect ordering of dimension

may significantly degrade the compression quality. According

to our measurements, on the CLOUD field of the hurricane

dataset, mistakenly reversing the order of the dimensions in

SZ would lower the compression ratio between 1.4× to 1.8×
for the value range relative error bounds of 1e-5 to 1e-2.

Second, using mismatched number of dimensions may also

significantly degrade the compression quality. Although most

compressors supporting high-dimensional compression can of-

ten treat the contiguious higher dimensional datasets as lower

dimensions with a larger stride, the corresponding compression

would suffer from significantly lower compression quality. Our

measurements show that treating the same multi-dimensional

data buffers/files as 1D reduces compression ratios between

1.2× and 1.3×. Third, data cannot always be treated as 1D,

e.g., MGARD requires at least 3 rows in each dimension

or it returns an error rather than compressing the data [17].

Likewise while compression may not fail, passing incorrect

information about dimensions can produce inefficient com-

pression. For example, with ZFP, passing any one dimension

smaller than the blocksize (i.e 3 × N ) results in inefficient

compression due to required zero padding for the algorithm.

If a compressor interface is data-type aware, it requires

information about data type and supports at least two data

types. This information is critical to correctly preserving data

especially for lossy compression. One cannot preserve a data

type to a non-zero error tolerance if he/she does not know how

the data is stored. Lossless compressors can allow multiple

data types without being aware of data-type because they

treat all input types as a stream of bytes regardless of the

underlying structure of the data. However, they also typically

do not accept information about type information 1.

If a compressor interface is embeddable, it can be embedded

into an application written in native languages such as C or

C++ without the use of the exec or loading an interpreter.

Zchecker and Foresight/CBench get a � because only portions

of their API are embeddable. This is important because many

HPC environments and frameworks (such as MPI) limit the

use of exec to start other processes, and running interpreters

can be expensive overhead for running an application [18]. In

1For two exceptions consider fpzip [7] and ZFP’s reversible mode [16]

our measurements, spawning an external process and copy-

ing the data back and forth across process boundaries (i.e.

NumCodecs/ZChecker) takes on the order of 174ms where

compressing the CLOUD field of Hurricane takes on the order

of 993ms; meaning that ignoring embedding can have a per-

formance penalty of ≈ 17.5% on each compression operation

preformed. Some compressors can take much longer if they

have complex initialization (i.e. if the specific compressor uses

MPI [4]) on the order of 1997ms overhead or 201.1%.

If a compressor interface supports arbitrary configuration, it

can accept arguments of arbitrary type. This is essential to sup-

port compressors that can be configured with non-serializable

native types such as MPI_Comm or cudaStream_t to con-

trol the degree and placement of parallel resources [11], [19].

These compressors can be dramatically faster that variants

that do not use these types. This can also be important for

compressors such as SZ which require structs be passed for

configuration of certain modes that may not have native seri-

alizable representations. For this reason, compressor interface

which are string-ly typed (use strings to store configuration

[20], [2], and parse the string to the appropriate type at

runtime) or JSON typed are not appropriate for existing

lossy compressors since they cannot accurately configure these

compressors.

VI. OVERHEAD EVALUATION

In this section, we run an experiment to measure the over-

head of LibPressio relative to the native compressor interfaces.

For this evaluation we use one 40 core Intel Xeon 6148G

processor with 372 GB of RAM. We used SZ 2.1.10, ZFP

0.5.5, MGARD 0.1.0, and LibPressio 0.70.4 compiled with the

default flags from Spack and the system GCC 8.3.1 compiler.

To measure the timings, we placed calls to

std::chrono::steady_clock::now() around

the invocation to the compressor’s compress and

decompress function which on our platform reads from

a monotonic timing register on the processor. For

LibPressio based usages, we place the timings around

the call to pressio_compressor_compress and

pressio_compressor_decompress. This means that

we capture any translation overhead from LibPressio’s

interface relative to the native API. We execute the

experiments in matched pairs – one native, one using

LibPressio – to measure the overhead.

We considered 3 datasets from SDRBench [21]:

ScaleLetKF, NYX, HACC choosen as some of the largest

single buffers. We also consider several error bounds for each

of the compressors. We apply the value range based relative

error bound, which calculates the absolute error bound based

on a percentage (1e-4 ∼ 2e-2 in our setting) of the dataset’s

value range. We run each configuration 30 times and compute

the median and largest overhead to account for variation

between runs induced by the system.

The largest overhead we measured across all configurations

was 2.08% slower in a single observation, the largest median

overhead across configurations was 0.47%. The distribution
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Fig. 3. Distribution of Median Percent Overheads Across all 35 configurations
tested. Each configuration was run 30 times

of the median overheads is show in Figure 3. The largest

variation range from 1.6% slower to 1.7% faster. We assess

the statistical significance of this using a Wilcoxon sign rank

test. We find there is insufficient evidence to conclude that

these overheads meaningfully differ from 0 (p=.600) 2.

VII. PRODUCTIVITY EVALUATION

There are two other columns in table I relating to developer

productivity: (7) Can options of compressors be introspected?

(8) Does it allow 3rd party extensions? If a compressor

interface is introspect-able, it allows users to query options

with types a compressor supports. This is more important

the more compressor plugins that an interface provides. Users

need to have some common ways of enumerating the options

supported by a compressor in order to programmatically

configure them. The compressor interface which allow this

for all non-arbitrary types are introspect-able. If a compressor

interface supports third party extensions, it allows additional

implementations to be added to the interface interface with-

out modifying the code for the interface. This is important

because it allows developers to create and distribute their

plugins without modifying the library so that they can be used

experimentally before being released publicly.

In this section, we evaluate productivity improvements

from executing lossy compression/decompression operations

by LibPressio in three ways. First, we consider the number

of lines of normalized client code which has long been used

as an estimate of effort for developing new applications and

maintenance effort required for an implementation and show

a 50% to 90% reduction in lines of client code.

We assess the effort of developing or maintaining a code

base supporting multiple compressors by the number of lines

of code. We started with a number of use cases each supporting

at least one of the leading lossy compressors: ADIOS2,

Julia bindings, Python bindings, Rust bindings, command

line interfaces (CLI), HDF5 filters, a configuration optimizer,

and Z-Checker. We added to our list a few use cases that

were requested by our collaborators: R bindings, an experi-

mental test harness written in C++ distributed with MPI, a

fuzzer which provides random inputs to the compressor to

identify implementation flaws in the compressors. We then

implemented each of these facilities in LibPressio to at least

feature parity with the native tool. In some cases such as

2We choose the non-parametric Wilcoxon sign rank test to be robust to
possible machine run-to-run variance which is known to possibly be large
relative to the observations at this timescale. While this does not prove that
there is no overhead (obviously there is some), it suggests that it is de minimis
relative to machine noise for most uses.

TABLE II
LINES OF CLIENT CODE FOR VARIOUS USAGES, † INDICATES NO NATIVE

MULTI-COMPRESSOR IMPLEMENTATION EXISTS

C
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ss
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L

ib
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re
ss

io

Im
p
ro
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em

en
t

R
el

at
iv

e
Im

p
ro

v
em

en
t

Task

ADIOS2 [20] 3 744 367 377 50.67%
BindingJulia [22] 1 299 25 274 91.64%

BindingPython [23], [12] † 2 768 363 405 52.73%
BindingR - - 793 - -
BindingRust [24] 1 112 34 78 69.64%

CLI [17], [16], [12] † 3 1649 756 893 54.15%
Configuration Optimizer [25] 1 4683 1869 2814 60.09%
DistributedExperiment - - 613 - -
Fuzzer - - 24 - -

HDF5 filter [16], [12] † 2 1469 438 1031 70.18%
Z-Checker [5] 7 3052 405 2647 86.73%

the LibPressio CLI, the LibPressio version implements many

more features – for example, the libpressio CLI can compress

and decompress HDF5 datasets where as the SZ, ZFP, and

MGARD cannot. Additionally, in some cases the LibPressio

bindings use the compressors in a more correct way such as

passing dimensionality information correctly. Finally, in there

of these cases – the CLI, Python bidings and HDF5 filter –

the implementation do not have competing a multi-compressor

implementation: in these cases, we simply sum the lines of

code in each implementation. While this will over-count some

code, like command line argument parsing code, it is often

less than the code required to implement a correct interface.

For clarity, we mark these entries in Table II. To account for

differences in formatting/style, clang-format was applied to

all files, and we then measured the number of lines of code

example applications utilities using the cloc utility. In the

case of larger libraries like ADIOS2 [20] or Z-checker ([5],

we include only the files that directly include compressor

library headers. Table II provides a summary of our results.

We consistently find that LibPressio decreases the number of

lines of code required between 50-90%.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present our developed LibPressio, and de-

scribe how they can be used to enable a wide array to tools to

advance the state of compression by simplifying existing work

flows. We demonstrate a at least a 50% reduction in client code

while maintaining insignificant overhead. These improvements

brought many new features to existing compressors and new

compressors to new languages and tools while simplifying

the existing compressor work flows and reducing redundant

work. To this end tools such as Z-Checker and ADIOS2 have

integrated LibPressio for interfacing with compressors.

For future work on the interface of compressors, we plan

to extend LibPressio to account for the following use cases.

1. Better support for accelerators both in plugins and core,
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2. Better support for asynchrony and streaming Compression,

and 3. Better support for sparse data Compression.
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1 #include <libpressio.h>
2

3 float* make_input_data();
4

5 int
6 main(int argc, char* argv[])
7 {
8 // get a handle to a compressor
9 struct pressio* library =

pressio_instance();↪→

10 struct pressio_compressor* compressor =
pressio_get_compressor( library,
"sz");

↪→

↪→

11

12 // configure metrics
13 const char* metrics[] = { "size" };
14 struct pressio_metrics* metrics_plugin

=

pressio_new_metrics( library,
metrics, 1);

↪→

↪→

15 pressio_compressor_set_metrics(
compressor, metrics_plugin);↪→

16

17 // configure the compressor
18 struct pressio_options* sz_options =

pressio_compressor_get_options(
compressor);

↪→

↪→

19

20 pressio_options_set_string( sz_options,
"sz:error_bound_mode_str", "abs");↪→

21 pressio_options_set_double( sz_options,
"sz:abs_err_bound", 0.5);↪→

22 pressio_compressor_check_options(
compressor, sz_options);↪→

23 pressio_compressor_set_options(
compressor, sz_options);↪→

24

25 // load a 300x300x300 dataset into data
created with malloc↪→

26 double* rawinput_data =
make_input_data();↪→

27 size_t dims[] = { 300, 300, 300 };
28 struct pressio_data* input_data =

pressio_data_new_move(
pressio_double_dtype, rawinput_data,
3, dims, pressio_data_libc_free_fn,
NULL);

↪→

↪→

↪→

↪→

29 // setup compressed and decompressed
data buffers↪→

30 struct pressio_data* compressed_data =
pressio_data_new_empty(
pressio_byte_dtype, 0, NULL);

↪→

↪→

31 struct pressio_data* decompressed_data =
pressio_data_new_empty(
pressio_double_dtype, 3, dims);

↪→

↪→

32

33 // compress and decompress the data

34

pressio_compressor_compress( compressor,
input_data, compressed_data);↪→

35

pressio_compressor_decompress(
compressor, compressed_data,
decompressed_data);

↪→

↪→

36

37

// get the compression ratio

38

struct pressio_options* metric_results =
pressio_compressor_get_metrics_results(
compressor);

↪→

↪→

39

double compression_ratio = 0;

40

pressio_options_get_double(
metric_results,
"size:compression_ratio",
&compression_ratio);

↪→

↪→

↪→

41
printf("compression ratio: %lf\n",

compression_ratio);↪→

42

43 // free the input, decompressed, and
compressed data↪→

44 pressio_data_free( decompressed_data);
45 pressio_data_free( compressed_data);
46 pressio_data_free( input_data);
47

48 // free options and the library
49 pressio_options_free( sz_options);
50 pressio_options_free( metric_results);
51 pressio_compressor_release( compressor);
52

pressio_release( library);
53

return 0;
54

}

APPENDIX B

GLOSSARY

kth order error

Metrics module that computes The size of kth largest

absolute value of the differences observed between

the uncompressed and decompressed data.

ADIOS2

A parallel IO, data movement, and data processing

framework.

auto-correlation

Metrics module that computes the Pearson’s corre-

lation coefficient between the data and itself shifted

=

29 // setup compressed and decompressed
data buffers↪→

30 struct pressio_data* compressed_data =
pressio_data_new_empty(
pressio_byte_dtype, 0, NULL);

↪→

↪→

struct pressio_data* decompressed_data =
pressio_data_new_empty(
pressio_double_dtype, 3, dims);

↪→

↪→

32

33 // compress and decompress the data

34

pressio_compressor_compress( compressor,
input_data, compressed_data);↪→

35

pressio_compressor_decompress(
compressor, compressed_data,
decompressed_data);

↪→

↪→

36

37

// get the compression ratio

38

struct pressio_options* metric_results =
pressio_compressor_get_metrics_results(
compressor);

↪→

↪→

39

double compression_ratio = 0;

40

pressio_options_get_double(
metric_results,
"size:compression_ratio",
&compression_ratio);

↪→

↪→

↪→

41
printf("compression ratio: %lf\n",

compression_ratio);↪→

42

43 // free the input, decompressed, and
compressed data↪→

44 pressio_data_free( decompressed_data);
45 pressio_data_free( compressed_data);
46 pressio_data_free( input_data);
47

48 // free options and the library
49 pressio_options_free( sz_options);
50 pressio_options_free( metric_results);
51 pressio_compressor_release( compressor);
52

pressio_release( library);
53

return 0;
54

}

APPENDIX A

LIBPRESSIO USAGE EXAMPLE

A basic example of using LibPressio with error handling

omitted for conciseness. Adapted from the example on [26].

It takes a buffer in memory, and compresses it with the SZ

compressor using an absolute error bound of 0.5. To adapt this

example for ZFP or another supported compressor, only lines

10, 20, and 21 would need to be changed.
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by one or more “lags”. For example for the points

�v = {1, 2, 3, 4, 5} with a lag of 2 would compute

the correlation between �v1 = {1, 2, 3} and �v2 =
{3, 4, 5}.

AutoSFX

An automated crystallography analysis and process-

ing framework being developed at the Stanford Lin-

ear Accelerator Center.

Bit Grooming

Compressor that applies various manipulation tech-

niques to increase comparability of IEEE floating

point numbers.

BLOSC

A family of lossless compressors that have been

optimized for performance.

chunking

a meta-compressor which divides a dataset into con-

tiguous chunks dispatching each of them to a another

meta-compressor. This is useful for automatic paral-

lelization.

CSV

IO plugin that consumes character delimited values.

delta encoding

Meta-compressor that applies a delta encoding a

preprocessing step. Delta encoding encodes values

encodes the values using adjacent differences. For

example �v = {1, 2, 3, 4, 5} would be encoded as

�v = {1, 1, 1, 1, 1}.

dense tensor

a multi-dimensional generalization of an array with

a large number of non-zero values often stored

contiguously in memory. In C/C++, these are stored

in row-major order which has indicies that advance

from slowest to fastest. In Fortran, column major

order is used where indicies advance from fastest to

slowest.

differences-probabilities densities function (pdf)

Metrics module that generates an empirical probabil-

ity density function of the differences between the

uncompressed and decompressed values.

Digit Rounding

Compressor that applies various rounding techniques

to increase comparability of IEEE floating point

numbers.

error statistics

Metrics module that computes basic descriptive

statistics using algorithms that can be computed in a

single pass.

Fault Injector

Meta-compressor that applies a sequence of single

bit errors into the compressed data. Useful for im-

plementing fuzz testing.

fpzip

A specialized lossless and lossy compressor for IEEE

floating point values.

HDF5

IO plugin that uses the HDF5 parallel IO library and

file format.

HDF5 Filter

A feature of the HDF5 IO library that allows com-

pression to be preformed inline to dataset access.

Supports plugins to support different compressors.

Image Magick

A extensive library for image manipulation and com-

pression.

Iota

A IO plugin that generates synthetic data using C++’s

std::iota which fills a buffer with sequentially

increasing values.

Kolmogorov-Smirnov (KS) Test for Goodness of Fit

Metrics module that compute a non-parametric sta-

tistical hypothesis test which test the hypothesis that

two distributions are two samples are drawn from the

same distribution that operates by determining the

largest difference between the empirical cumulative

density function.

Kullback-Liebler (KL) Divergence

A metrics module that computes A measure of rel-

ative entropy from one distribution to another. It is

defined as D(P ||Q)kl =
∑

x∈X P (x) log
(

P (x)
Q(x)

)
. It

is used in information theory and machine learning.

LibPressio-Fuzz

A Fuzzer developed for this paper that use LibPressio

and Clang/LLVM’s libfuzzer.

LibPressio-Opt

A meta-compressor that implements an optimizer

that can be used to determine an optimal configu-

ration. Previous version of this were named FRaZ

and OptZConfig..

LibPressio-Tools

A set of tools developed for this paper that use

LibPressio to implement a command line interface

for LibPressio compressors and meta-compressors.

linear quantization

Meta-compressor that preforms linear quantization.

Quantization is a transformation that maps a con-

tiguous domain (i.e. floats) to a countable domain

(i.e. integers). Linear Quanitization, does so with a

mapping like Q(x) = �x−m
Δ � where x is the value,

Q(x) is the quantized value, Δ is a scaling factor,

and m is some centering term. Quantizization is often

used in lossy compression because coutable domains

often have lower entropy than contiguous domains

and are thereby more compress-able.
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Many Dependent

A Meta-compressor that implements a parallel

pipeline that does the following. The first buffer

is operated upon and metrics are gathered from

it. Metrics from the first buffer are passed to one

or more compression that are done in parallel as

configuration options. As each buffer finishes, the

value of the latest indexed buffer to complete is

stored to be passed to future invocations. This is

used for forwarding a guess for a configuration to

subsequent time steps.

Many Independent

A meta-compressor that implements a embarrass-

ingly parallel compression of multiple data-sets.

masked

Metrics module that removes specified points from a

data set prior to computing another metric.

Meta-Compressor

A concept within LibPressio. Meta-Compressors im-

plement the compressor interface, but are not com-

pressors. Examples may include pre/post processing

steps, parallel run-times, optimizer, etc....

MGARD

A multi-grid based error bounded lossy compressor.

mmap

IO plugin that uses the UNIX system call mmap that

maps the contents of a file or memory of a device

into memory via the virtual memory of a process.

NumPY

IO plugin for the custom file format used by

the python numeric library NumPY for storing n-

dimensional arrays.

Pearson’s Correlation

Metrics module that computes Pearson’s Correlation

Coefficient (often denoted r) measures the strength

of a linear relationship between two values .

PETSc

A IO plugin that reads file created by PETSC, the

“Portable, Extensible Toolkit for Scientific Compu-

tation”.

posix

IO plugin that uses the POSIX functions read and

write to read in an array in a native data format.

R

Metrics module that uses the scripting language R

that is specialized in statistical analysis.

Random Error Injector

A meta compressor that applies randomly generated

noise to each element of the input dataset according

to some specified distribution.

Region of Interest

Metrics module that Computes the arithmetic mean

of a region of interest within a dataset.

resize

A meta-compressor which modifies the dimensions

of the data without modifying the values. This is

useful for compressors which sometimes benefit from

being told the data shape is different than it actually

is – i.e. ZFP if you have a 3d dataset that is A×B×1
so you can treat it as 2D.

sample

A meta-compressor which applies data-sampling

techniques such as uniform sampling with and with-

out replacement prior to compression.

select

IO plugin that selects a sub-region of an input

dataset read in by another IO plugin for compres-

sion/analysis.

Spatial Error

The percentage of elements of a dataset that exceed

some specified threshold.

switch

A meta-compressor which allows runtime switching

between different compressors based on a configura-

tion setting. This is useful because it allow tools like

LibPressio-Opt to select between multiple different

compressors types dynamically.

SZ

a prediction based error bounded lossy compressor.

SZ-OMP

the parallel CPU version of the SZ prediction based

error bounded lossy compressor.

SZ-Threadsafe

the threadsafe serial version of the SZ prediction

based error bounded lossy compressor.

the Feature Detection Toolkit (FTK)

Metrics module that uses the library FTK that tracks

features such as maxima, minima, an saddle points

in data between time-steps of a simulation.

transpose

A meta-compressor which applies a multi-

dimensional abstraction of a transpose to the

data prior to compression.

tthresh

A compressor that uses the principles of singular

value decomposition to compress data.

vecSZ

A version of SZ optimized to leverage SIMD vector

instructions.

ZFP

A transform based error bounded lossy compressor.
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