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Abstract—Lossy compression plays a growing role in scientific
simulations where the cost of storing their output data can
span terabytes. Using error bounded lossy compression reduces
the amount of storage for each simulation; however, there is
no known bound for the upper limit on lossy compressibility.
Correlation structures in the data, choice of compressor and
error bound are factors allowing larger compression ratios and
improved quality metrics. Analyzing these three factors provides
one direction towards quantifying lossy compressibility. As a
first step, we explore statistical methods to characterize the
correlation structures present in the data and their relationships,
through functional regression models, to compression ratios. We
observed a relationship between compression ratios and several
statistics summarizing the correlation structure of the data,
which is a first step towards evaluating the theoretical limits
of lossy compressibility used to eventually predict compression
performance and adapt compressors to correlation structures
present in the data.

Index Terms—compression, lossy compression, high perfor-
mance computing, statistical correlation analysis

I. INTRODUCTION

Scientific research increasingly uses error-bounded lossy
compressors to achieve greater compression ratios in relation
to lossless compressors [1]. This improved performance allows
applications to run with larger and more frequently produced
datasets due to faster I/O times and smaller I/O volumes.
The theoretical limit on compressibilty of data using lossless
compression is given by the entropy [2]. The entropy quantifies
the information content present in a symbol from a source
sequence based upon its probability of occurrence. Thus, for
a given sequence of symbols the entropy enables computing
the minimum number of bits, on average, needed to represent
the data. For over 70 years, this concept has guided the de-
velopment and evaluation of lossless compression algorithms.
However, for lossy compression algorithms, there is currently
no known bound for the maximum degree of compression
that can be achieved for some specified point-wise error
bound regardless of the compressor at stake. Establishing
this compressor-free bound will allow researchers to antici-
pate compression performance alleviating manual assessments.
This bound can be used to evaluate with respect to this
compressor-free roofline and adapt existing compressors to
correlation structures of the data ensuring they get the best
compression ratio possible. Eventually, establishing the limit

for lossy compression allows for the maximum efficiency for
storing large scientific datasets.

One possible direction to establish an entropy-like bound for
lossy compression is studying the impact on compressibility
of correlation structures (correlations in space, time, or other
dimensions) of the data, compressor types and error bounds.
We refer to “compressibility” as the maximum compression
ratio associated with a given error bound. As many compres-
sors implicitly or explicitly exploit correlation structures of
the data (e.g. SZ [3], ZFP [4]), analyzing the relationships
between correlation structures and compression performances
will allow researchers to anticipate compression performances.
Ultimately, we seek to establish an entropy-like metric for
lossy compression algorithms which can guide the lossy
compression community to optimal development and usage
by adapting compressors to correlation structures present in
the data.

In this work, we focus on correlations in datasets and their
link to compression ratios for several compressors. The goal
of the research paper is to explore:

1) statistical methods to characterize the correlation struc-

tures of the data and

2) their relationships, through functional models, to com-

pression ratios.

These models will form the first step into evaluating the theo-
retical limits of lossy compressibility used to eventually predict
compression performance. In particular, we focus on estimated
correlation ranges through variograms and its effect on com-
pressibility. The variogram is commonly used in geostatistics
to estimate second-order dependence and more precisely how
data are correlated with distance. It can be applied to regularly
and irregularly spaced data. Under stationary conditions, the
variogram and covariance function have a direct correspon-
dence. However, in practice the variogram can be estimated
under more relaxed assumptions than the covariance and thus
is preferred by practitioners. To characterize compressibility,
we use the compression ratio, which is an important statistic
within lossy compression due to its informing link to storing
and processing as much data as possible.

In this study, we focus on 2D-gridded datasets and through
variogram analysis, perform a characterization of the corre-
lation between grid-points along with a compression analysis
(Section IV-C) with several compressors (Section IV-B). We
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consider two types of data (Section IV-A), synthetic datasets
consisting of correlated stochastic Gaussian fields with known
correlation structures and another one consisting of simula-
tions from a hydrodynamical model Miranda [5].

II. BACKGROUND

A. Compressors

SZ [3], ZFP [4], and MGARD [6] are some of the leading
error bounded lossy compressors. In this section we explain
from an algorithmic perspective how these compressors exploit
correlations in data.

SZ scans through the data block by block, with a block size
of 16 x 16 for 2D data. For each block, a prediction is made
mimicking the data in each block via the Lorenzo predictor
or the regression predictor. The Lorenzo predictor uses the
neighboring points to estimate the value at the current position.
The regression predictor fits a hyper-plane through the block,
and uses the fitted hyper-plane to interpolate the values within
each block. If these predictions are linearly quantized, and with
sufficient accuracy according to the error bound, the quantized
values are stored. Otherwise, the values are stored exactly.
Finally, the entire sequence is passed first through a Huffman
encoding, and then through the Zstd lossless compressor to
exploit patterns in the quantized sequence. However, since the
predictor does not observe values outside of its block, it cannot
exploit global correlation structures easily.

ZFP likewise uses local correlations, but uses a different
compression principle based on near orthogonal transforms
— a similar approach to JPEG image compression. ZFP first
partitions 2D data into blocks of size 4 x 4, then it converts
each block of floating point data into a common fixed point
representation, performs the near orthogonal transform, applies
an embedded encoding that orders bits from most significant
to least significant and finally truncates to archive a desired
tolerance. Again, since blocks are compressed independently,
the compressor cannot acquire a global knowledge of the data
correlation structures.

MGARD, however, is a newer compressor and uses an
approach that can account for global correlation structures.
MGARD relies on the mathematical theory of multi-grid
methods in order to compress the data. It operates by decom-
posing the data into multi-level coefficients which represent
recursively defined sub-regions until the block is represented
within the allowed tolerance. These multi-level coefficients
are then quantized and compressed with either Zlib (in older
versions) or Zstd (in the newest unreleased version). Because
these multi-level coefficients can represent regions of differing
sizes and potentially the entire dataset, MGARD can capture
multi-level effects in a way that SZ and ZFP cannot, making
it an important comparison for our paper.

B. Variogram

The variogram is a function describing the degree of depen-
dence of a correlated spatial field [7], [8], it gives a measure
of how much two points of the same field correlate depending
on the distance h between those points. The variogram is a
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Fig. 1. Example of a variogram as a function of the distance h between
points. [9]

function of the distance h and is typically characterized by sev-
eral parameters: nugget (microscale variability), sill (variance
of the studied field), range (distance at which autocorrelation
vanishes), see Figure 1. In the following, we focus solely
on the variogram range a as it corresponds to the distance
(h) where the variogram () plateaus (at the sill value) and
indicates the distance beyond which the spatial correlation
among grid-points vanishes. Intuitively, the larger the range
is the stronger the correlation is across grid-points.

In practice, the empirical semi-variogram is computed on
the data via Equation (1):

1 N(h) ,
") = 5xm ‘w_;:h(z(xi)—z(xm SN

where z is the studied field of interest (e.g. velocityx from
the Miranda dataset), x; and x; are grid-points coordinates or
indexes, N (h) is the number of points at distance h from each
other. The variogram corresponds to 2y(h), in practice the
terms semi-variogram and variogram are used interchangeably.
In the following, we will refer to variogram as (k). Note that
this formula is valid in the general context of datasets that are
accompanied by coordinates or for which coordinates could
be attributed that represent a notion of proximity (structured
meshes, unstructured meshes or even irregularly sampled spa-
tial points). Finally, to estimate the variogram range a we fit
by least-squares a parametric squared-exponential variogram
(y(h) co(1 — exp(—h?/a))) to the empirical variogram
range estimated via Equation (1).

C. Complex correlation patterns

Statistical tools exist beyond the variogram to quantify
and extract complex correlation structures of datasets for
instance in order to analyze long-range dependencies [10], to
detect change-point in time series [11], to cluster and identify
correlation regimes [12]. Identifying multiscale components of
scientific datasets mostly relies on eigen or a basis-function
decompositions such as singular value decomposition (SVD)
or wavelet decomposition [13], [14]. However due to the
often extreme complexity of correlations and dependencies in
data, developing methods to extract spatial and spatio-temporal
heterogeneity or non-stationarity is still an on-going research.
Although the detailed use of these techniques is outside the
scope of the current work and left for future efforts, we provide
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preliminary results and future work directions with SVD at the
end of the Section V.

III. RELATED WORK

Beyond the classical efforts to estimate compressibility
using entropy, there has been relatively little attention afforded
to the topic of lossy compressibility. As a parallel in data
reduction techniques, [15] investigated the determination of
thresholds for singular value decomposition of large matrices
based on some optimality loss criteria. [16] identified several
factors that affect compression ratios for SZ and ZFP. They
relied on a block-based sampling approach which considered
individual data points tailored to each compressor that they
consider and used Gaussian models to estimate the subse-
quent compressibility. For SZ, they considered a number of
predictors such as the number of elements in the dataset,
the quantization interval, information about the Huffman tree
constructed, and the number of points that are unpredictable by
SZ’s predictor. For ZFP, they offered a proof of their sampling
methods estimated accuracy and empirically show it to be 99%
accurate across many datasets. In the same vain, [17], based
on their prior work, used deep neural networks to estimate the
compression ratio instead of a Gaussian model. However the
built neural network may not generalize to other applications
and could over-learn the training data while the testing data
would not prevent the over-learning [18]. [19] designed an
automated methodology to switch between SZ and ZFP based
on which compressor is estimated to have a greater compres-
sion ratio. Compression ratios are estimated in a block-based
sampling approach using Shannon entropy [2] of the sampled
quantized blocks to investigate SZ’s behavior. Most of these
works have limited generalizability because of their reliance
on algorithmic details of each studied compressor or reduction
technique.

Finally, little effort has been directed to explore explicit
links of correlation structures in the data to reduction and com-
pression techniques and their performance. [20] has explored
the decorrelation efficiency of specific reduction methods on
scientific datasets in order to identify trade-offs for parame-
terization. [21] lead an evaluation and comparison of several
lossy reduction techniques that are based on basis-function
decompositions adapted to temporal and spatial data. [22]
developed an adaptive hierarchical geospatial field data rep-
resentation (Adaptive-HGFDR) based on blocked hierarchical
tensor decomposition to exploit multidimensional correlations
of the data. However, none of these works systematically
investigate the explicit link between correlation structures and
compressibility. Our work goes beyond these approaches to
consider a direction that is compressor independent by looking
only at local spatial relationships in the data. Contrary to [16],
[18], [19], in the following study as an initial step to establish
a compressibility limit, we do not assess the computation
overhead of our methodology.
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IV. METHODOLOGY
A. Datasets

In the following, we refer to datasets as a particular field at a
particular time when in an application (e.g. a single continuous
variable in memory). In particular, we work with a single
temporal snapshot of the studied data.

The first dataset consists of synthetic 2D Gaussian fields
with a controllable correlation structure following a squared-
exponential correlation model. These 2D fields are 1028 x 1028
grid-points. We consider these fields as “ideal” as the corre-
lation range is known and varied to create multiple correlated
fields. Gaussian fields z over a grid defined by indexes x; are
generated using the following probability distribution f

e (-3 @)z - )
20 =)

fz(z1),..., 2(zk))

(@)
with z = (z(z1),...,2(z;)) € R¥, the mean u =0 € R* in
this study, and a squared-exponential correlation X(xz;, ;) =
o2 exp(—|z; — xj|*/a?), where the variance o2 is set to 1, a
is the correlation range that is known and varied, and z; are
spatial grid-points of the 2D field images. In our evaluation, we
consider two types of synthetic Gaussian datasets: single cor-
relation range fields and multiple correlation range fields. We
consider single correlation range Gaussian fields as a proof of
concept that gives us a high degree of control over correlation
structures in the data. However, because application datasets
are likely to exhibit complex correlation structure as multiple
correlation ranges, we consider also multiple range Gaussian
fields. For the multi-range correlation, we generate Gaussian
fields with two distinct correlation ranges contributing equally
to the total field. This provides a controlled case with increased
complexity.

The final dataset is generated from the Miranda [5] code,
designed for hydrodynamical large turbulence simulations.
These data are more complex than the Gaussian fields due
to multiple correlation ranges and complex dependencies.
These original 3D data dimensions are 256x384x384. The
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Software Version Purpose
ZFP [3] @2.1.11.1 lossy compressor
ZFP [4] @0.5.5 lossy compressor
MGARD [6] @0.1.0 lossy compressor
gstat [23] @2.0-7 obtain variogram range
numpy [24] @1.21.1 polyfit function to graph the curves
Libpressio [25] @0.70.0 compress and measure the data

TABLE I
COMPRESSORS AND SOFTWARE USED FOR THE STUDY

3D datasets are split into separate 2D slices based on equally
spaced slices along the first dimension. In this paper, we use
slices of the velocityx variable as shown in Figure 2.

B. Compressors and Software

Each lossy compressor in Table I is run with the following
absolute error bounds: 1E-5, 1E-4, 1E-3, and 1E-2. We choose
the software and compressor versions from the latest available
on Spack from a selection of leading error-bounded lossy
compressors. We use the absolute error bound because it
is supported by each of the considered error-bounded lossy
compressors. Additionally, there are formal equivalences be-
tween the absolute error bound mode and other error bounds
modes such as the value range relative error bound mode
which are used by compressors such as SZ [3]. Therefore,
considering the compressiblity given an absolute error bound
is generalizable to other kinds of bound. All experiments are
run on Clemson’s Palmetto cluster using a node with two 32
core Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz and 384
GB of RAM. The OS is Linux CentOS 8 with compiler GCC
8.4.1. Additional software and packages used in the study are
listed in Table I.

C. Compression Statistics and Statistical Methods

1) Compression Statistics: Compression ratio, the ratio of
the uncompressed data size by the compressed data size, is
used to compare the different compressors and their efficiency.
Compression ratio depends on: error bound, compressor used,
and correlation structures within the data. The compression
ratio is comparable between different compressors and error
bounds. In the following, this quantity is computed on the
studied datasets from Section IV-A for different compressors
and error bounds, and investigated as function of a measure
of several correlation statistics of data computed through the
variogram range described below.

2) Variogram study: In the following section, we com-
pute the empirical variogram of each 2D data-slice from
the datasets described in Section IV-A and based on the
Euclidean distance between grid-points. The corresponding
range a is then estimated and reported in the following section
as estimated variogram range. In particular, we estimate the
variogram ranges on the entire 2D field in order to assess
the overall correlation structure of the fields. However, this
is insufficient to characterize local heterogeneity in datasets,
hence we compute the variogram ranges in windows of a given
size that cover the entire 2D field in a tiled fashion [26]. More
specifically, we compute and report the standard deviation of
variogram ranges estimated over the windows covering the
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Fig. 3. Compression ratios against estimated variogram range for 2D Gaussian
fields with single correlation range (left) and multi-range correlation (right).
Each color is associated with an error bound. Empirical calculations are
depicted with dots and fitted logarithmic regressions are in solid lines.
Estimated logarithmic regression coefficients o and /3 are given in the legend.

entire field. This statistic provides information on the spatial
diversity and spread of local correlations present in the data.

V. EXPERIMENTAL RESULTS
A. Compressibility and global correlation

In the following figures, the variogram range estimated on
entire 2D fields is referred to as “Estimated global variogram
range”, the standard deviation of locally estimated variogram
range on 32 x 32 windows is denoted as “Std estimated of
local variogram range (H=32)". Finally, an additional statistic
is considered to illustrate future research directions. It consists
in the standard deviation of locally extracted SVD thresholds
on 32 x 32-windows. Thresholds correspond to the number of
required singular modes to recover 99% of the variance of the
initial field. This statistic is referred to as “Std of truncation
level of local SVD (H=32)".

In Figures 3 and 4 , the compression ratios for SZ [3] and
ZFP [4] (top panels) are plotted against the variogram range
estimated on entire 2D fields. These statistics are respectively
estimated on the synthetic Gaussian fields (left: single-range
correlation and right: multi-range correlation) and Miranda
datasets. As the estimated global variogram range increases
indicating stronger dependence between spatial points, dataset
variability decreases yielding smoother, more compressible
data. This increasing relationship between compression ratio
and variogram range exhibits a plateau for highly correlated
data (large variogram ranges) suggesting a limit in compress-
ibility of the data for a given error bound and compressor. Note
that this trend is less visible on the multi-range correlation
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Fig. 4. Compression ratios against estimated variogram range for Miranda
velocityx. Empirical calculations are depicted with dots and fitted logarithmic
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Estimated logarithmic regression coefficients o and 3 are given in the legend.
Due to the large spread of compression ratios for SZ (top left panel), the top
right panel corresponds to results for error bounds strictly below 1E-2 in order
to ease the reading.

Gaussian fields (right column of Figure 3) due to the equal
contributions of each correlation to the total field, preventing
any dominant correlation pattern to prevail and thus to be
characterized properly by the variogram range of the entire
field. Compression ratios for MGARD [6] are less sensitive
to the dependencies to correlation ranges present in the data
which is likely due to the global scope of the compressor.

Finally, in order to quantify these relationships and com-
pare them across different compressors and error bounds,
the compression ratios are fitted by least-squares to log-
arithmic regressions of the estimated variogram range a:
CR = a+ plog(a) +¢, where CR is the compression ratio, a
the estimated variogram range, and « and (3 are estimated
coefficients and reported in the legend box of each panel.
The fitted logarithmic regressions show a good match to the
datapoints indicating in most cases a logarithmic dependence
of the compression ratios to the estimated variogram ranges.
Lower compression error bounds exhibit lower variance of
datapoints around the fitted curve and fewer outliers. The
outliers present in the top-left corner of Figure 4 are due
to datasets having similar variogram ranges however different
variances and hence different compression ratios. This sug-
gests the need to add information to the variogram range as
an exploratory variable. Regressions fit better the single-scale
correlation Gaussian fields (Figure 3 left column) than multi-
range correlation Gaussian fields and the Miranda data due to
their lower complexity that is captured reasonably well by the
global variogram range. In particular, the fitting on datapoints
from Miranda data show more dispersion around the fitted
curves but a matching trend.

B. Compressibility and local correlation

The variogram range estimated on each entire 2D field
represents an average correlation range observed on the entire
field and is not suited to characterize spatial local heterogene-
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Fig. 5. Compression ratios against standard deviation of the local variogram
range for single range correlation Gaussian fields (right) and for multi-
range correlation Gaussian fields (right). Initial step towards the use of
decomposition techniques to analysis fields with multiscale patterns. Empirical
calculations are depicted with dots and fitted logarithmic regressions are
shown with solid lines. Each color is associated with an error bound. Estimated
logarithmic regression coefficients o and § are given in the legend.

ity nor multiple scales that can be present in complex scientific
datasets, such as in Miranda datasets or multi-range Gaussian
fields. Hence, we estimate the variogram ranges on local
windows (32 x 32) tiling each entire 2D-field. Additionally,
exploring local heterogeneity is important since many error-
bounded lossy compressors exploit some notions of locality in
their algorithms as discussed in Section II-A. In Figure 3, as
the global variogram range increases, the compression ratio
fails to have a slope of greater than absolute value of 1E-2
for mutli-range Gaussian fields (right column). This illustrates
the shortcomings of the global variogram range statistic while
dealing with multi-range correlation datasets. Figure 5 shows
the compression ratios computed on single-range correlation
Gaussian fields (left) and multi-range correlation fields (right)
as a function of the local variogram ranges and the left
column of Figure 7 shows the statistics computed on the
Miranda fields. Both figures corroborate and illustrate the
benefit of considering local information for complex datasets
to better explain compression ratios by local variograms rather
than global ones. In particular, we observe that Figures 3
and 4 depict several close values of compression ratios for
close variogram ranges, whereas this effect is less visible in
Figures 5 and 7 indicating a stronger explanatory skill of the
local statistic to the compression ratios. However, results for
the single-range correlation Gaussian fields show a weaker
sensitivity of the compression ratios to this local statistic. This
might suggest the need to use several statistics to provide
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Fig. 6. Compression ratios against standard deviation of the truncation level
of local SVD for single scale Gaussian fields (left) and for multiscale Gaussian
datasets (right). Empirical calculations are depicted with dots and fitted
logarithmic regressions are shown with solid lines. Each color is associated
with an error bound. Estimated logarithmic regression coefficients o and /3
are given in the legend.

appropriate explanatory skills. Future work will explore this
path.

C. Towards multiscale analysis and summary statistics

Figure 6 and the right column of Figure 7 illustrate an
initial step towards the use of decomposition techniques to
analyze fields with multiscale patterns. In this section, local
SVDs are performed on the fields and summarized via the
standard deviation of locally required numbers of singular
modes to capture 99% of the variance of each local window.
This local statistic, larger values of required singular modes
are associated with less compressible fields so we expect
mostly decreasing relationship of compression ratios to this
local statistic. For brevity, as this section provides insights
to future works, we do not show results for MGARD as it
exhibits less sensitivity to the previous statistics and a weak
link to the current statistic. Figure 6 and the right column
of Figure 7 indicate that this local statistic provide a more
diverse representation of the data as seen by the span of unique
values over the x-axis, than the two other statistics based
on variogram. This statistic tends to exhibit several relating
trends to compression ratio, highlighting a need to refine it.
Future work will explore transformation of this statistic or
other representations based local SVDs and variograms, as
both methods provided different and valuable information to
explain compression ratios.

VI. CONCLUSIONS AND FUTURE WORK

Establishing the theoretical and compressor-free limit for
lossy compression would allow for the maximum efficiency
for compressing and storing large scientific datasets. Our work
represent a first step toward this goal. We have demonstrated
that estimated global and local variogram ranges can explain
compression ratio in a logarithmic fashion for some compres-
sors and given error bounds. This hypothesis was illustrated
on synthetic Gaussian fields providing a proof of concept
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Fig. 7. Compression ratios against local statistics, standard deviation of the
local variogram range (left) and standard deviation of the truncation level of
local SVD (left) for Miranda velocityx 2D field. Empirical calculations are
depicted with dots and fitted logarithmic regressions are shown with solid
lines. Each color is associated with an error bound. Estimated logarithmic
regression coefficients o and (8 are given in the legend. Due to the large
spread of compression ratios for SZ, the central panels correspond to results
for error bounds strictly below 1E-2 in order to ease the reading.

and corroborated by results on a user scientific dataset from
Miranda. With the studied datasets, SZ and ZFP seem to utilize
the global and local spatial correlation ranges in a logarithmic
fashion with various coefficients showing the strength of the
dependence. MGARD seems less sensitive to these trends in
its compression ratios.

Since heterogeneous (non-stationary) and multiscale cor-
relations in the data may be mis-represented by the global
spatial variogram, other statistics, including local variograms
and local SVD, have been studied to address these issues.
In continuation of this research, there are a few goals for
the future: i) explore more complex dependent variables
(local correlation combined with multiscale statistics based
on decomposition) as candidate predictors, ii) create more
complex synthetic multiscale 2D Gaussian fields, iii) test the
robustness of the proposed statistics and the method on other
datasets, in particular from SDRBench, and iv) create a model
of compression ratio based on correlation metrics and error
bound. Future work will investigate the effects of correlation
structures on quality metrics of reconstructed data such as
PSNR along with a design of the statistics to a 3D context.

Another aspect for future work is how to quickly assess this
metric. The current implementation relies on the singular value
decomposition which is slow relative to modern compressors.
We plan to leverage a sampling approach similar to prior work
[16], [19]. We are hopeful that increasing levels of sampling
by block can provide an increasingly accurate proxy for our
metric.
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