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Abstract—Lossy compression plays a growing role in scientific
simulations where the cost of storing their output data can
span terabytes. Using error bounded lossy compression reduces
the amount of storage for each simulation; however, there is
no known bound for the upper limit on lossy compressibility.
Correlation structures in the data, choice of compressor and
error bound are factors allowing larger compression ratios and
improved quality metrics. Analyzing these three factors provides
one direction towards quantifying lossy compressibility. As a
first step, we explore statistical methods to characterize the
correlation structures present in the data and their relationships,
through functional regression models, to compression ratios. We
observed a relationship between compression ratios and several
statistics summarizing the correlation structure of the data,
which is a first step towards evaluating the theoretical limits
of lossy compressibility used to eventually predict compression
performance and adapt compressors to correlation structures
present in the data.

Index Terms—compression, lossy compression, high perfor-
mance computing, statistical correlation analysis

I. INTRODUCTION

Scientific research increasingly uses error-bounded lossy

compressors to achieve greater compression ratios in relation

to lossless compressors [1]. This improved performance allows

applications to run with larger and more frequently produced

datasets due to faster I/O times and smaller I/O volumes.

The theoretical limit on compressibilty of data using lossless

compression is given by the entropy [2]. The entropy quantifies

the information content present in a symbol from a source

sequence based upon its probability of occurrence. Thus, for

a given sequence of symbols the entropy enables computing

the minimum number of bits, on average, needed to represent

the data. For over 70 years, this concept has guided the de-

velopment and evaluation of lossless compression algorithms.

However, for lossy compression algorithms, there is currently

no known bound for the maximum degree of compression

that can be achieved for some specified point-wise error

bound regardless of the compressor at stake. Establishing

this compressor-free bound will allow researchers to antici-

pate compression performance alleviating manual assessments.

This bound can be used to evaluate with respect to this

compressor-free roofline and adapt existing compressors to

correlation structures of the data ensuring they get the best

compression ratio possible. Eventually, establishing the limit

for lossy compression allows for the maximum efficiency for

storing large scientific datasets.
One possible direction to establish an entropy-like bound for

lossy compression is studying the impact on compressibility

of correlation structures (correlations in space, time, or other

dimensions) of the data, compressor types and error bounds.

We refer to “compressibility” as the maximum compression

ratio associated with a given error bound. As many compres-

sors implicitly or explicitly exploit correlation structures of

the data (e.g. SZ [3], ZFP [4]), analyzing the relationships

between correlation structures and compression performances

will allow researchers to anticipate compression performances.

Ultimately, we seek to establish an entropy-like metric for

lossy compression algorithms which can guide the lossy

compression community to optimal development and usage

by adapting compressors to correlation structures present in

the data.
In this work, we focus on correlations in datasets and their

link to compression ratios for several compressors. The goal

of the research paper is to explore:

1) statistical methods to characterize the correlation struc-

tures of the data and

2) their relationships, through functional models, to com-

pression ratios.

These models will form the first step into evaluating the theo-

retical limits of lossy compressibility used to eventually predict

compression performance. In particular, we focus on estimated

correlation ranges through variograms and its effect on com-

pressibility. The variogram is commonly used in geostatistics

to estimate second-order dependence and more precisely how

data are correlated with distance. It can be applied to regularly

and irregularly spaced data. Under stationary conditions, the

variogram and covariance function have a direct correspon-

dence. However, in practice the variogram can be estimated

under more relaxed assumptions than the covariance and thus

is preferred by practitioners. To characterize compressibility,

we use the compression ratio, which is an important statistic

within lossy compression due to its informing link to storing

and processing as much data as possible.
In this study, we focus on 2D-gridded datasets and through

variogram analysis, perform a characterization of the corre-

lation between grid-points along with a compression analysis

(Section IV-C) with several compressors (Section IV-B). We
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consider two types of data (Section IV-A), synthetic datasets

consisting of correlated stochastic Gaussian fields with known

correlation structures and another one consisting of simula-

tions from a hydrodynamical model Miranda [5].

II. BACKGROUND

A. Compressors

SZ [3], ZFP [4], and MGARD [6] are some of the leading

error bounded lossy compressors. In this section we explain

from an algorithmic perspective how these compressors exploit

correlations in data.

SZ scans through the data block by block, with a block size

of 16× 16 for 2D data. For each block, a prediction is made

mimicking the data in each block via the Lorenzo predictor

or the regression predictor. The Lorenzo predictor uses the

neighboring points to estimate the value at the current position.

The regression predictor fits a hyper-plane through the block,

and uses the fitted hyper-plane to interpolate the values within

each block. If these predictions are linearly quantized, and with

sufficient accuracy according to the error bound, the quantized

values are stored. Otherwise, the values are stored exactly.

Finally, the entire sequence is passed first through a Huffman

encoding, and then through the Zstd lossless compressor to

exploit patterns in the quantized sequence. However, since the

predictor does not observe values outside of its block, it cannot

exploit global correlation structures easily.

ZFP likewise uses local correlations, but uses a different

compression principle based on near orthogonal transforms

– a similar approach to JPEG image compression. ZFP first

partitions 2D data into blocks of size 4 × 4, then it converts

each block of floating point data into a common fixed point

representation, performs the near orthogonal transform, applies

an embedded encoding that orders bits from most significant

to least significant and finally truncates to archive a desired

tolerance. Again, since blocks are compressed independently,

the compressor cannot acquire a global knowledge of the data

correlation structures.

MGARD, however, is a newer compressor and uses an

approach that can account for global correlation structures.

MGARD relies on the mathematical theory of multi-grid

methods in order to compress the data. It operates by decom-

posing the data into multi-level coefficients which represent

recursively defined sub-regions until the block is represented

within the allowed tolerance. These multi-level coefficients

are then quantized and compressed with either Zlib (in older

versions) or Zstd (in the newest unreleased version). Because

these multi-level coefficients can represent regions of differing

sizes and potentially the entire dataset, MGARD can capture

multi-level effects in a way that SZ and ZFP cannot, making

it an important comparison for our paper.

B. Variogram

The variogram is a function describing the degree of depen-

dence of a correlated spatial field [7], [8], it gives a measure

of how much two points of the same field correlate depending

on the distance h between those points. The variogram is a

Fig. 1. Example of a variogram as a function of the distance h between
points. [9]

function of the distance h and is typically characterized by sev-

eral parameters: nugget (microscale variability), sill (variance

of the studied field), range (distance at which autocorrelation

vanishes), see Figure 1. In the following, we focus solely

on the variogram range a as it corresponds to the distance

(h) where the variogram (γ) plateaus (at the sill value) and

indicates the distance beyond which the spatial correlation

among grid-points vanishes. Intuitively, the larger the range

is the stronger the correlation is across grid-points.

In practice, the empirical semi-variogram is computed on

the data via Equation (1):

γ(h) =
1

2N(h)

N(h)∑

|xi−xj |=h

(z(xi)− z(xj))
2
, (1)

where z is the studied field of interest (e.g. velocityx from

the Miranda dataset), xi and xj are grid-points coordinates or

indexes, N(h) is the number of points at distance h from each

other. The variogram corresponds to 2γ(h), in practice the

terms semi-variogram and variogram are used interchangeably.

In the following, we will refer to variogram as γ(h). Note that

this formula is valid in the general context of datasets that are

accompanied by coordinates or for which coordinates could

be attributed that represent a notion of proximity (structured

meshes, unstructured meshes or even irregularly sampled spa-

tial points). Finally, to estimate the variogram range a we fit

by least-squares a parametric squared-exponential variogram

(γ(h) = c0(1 − exp(−h2/a))) to the empirical variogram

range estimated via Equation (1).

C. Complex correlation patterns

Statistical tools exist beyond the variogram to quantify

and extract complex correlation structures of datasets for

instance in order to analyze long-range dependencies [10], to

detect change-point in time series [11], to cluster and identify

correlation regimes [12]. Identifying multiscale components of

scientific datasets mostly relies on eigen or a basis-function

decompositions such as singular value decomposition (SVD)

or wavelet decomposition [13], [14]. However due to the

often extreme complexity of correlations and dependencies in

data, developing methods to extract spatial and spatio-temporal

heterogeneity or non-stationarity is still an on-going research.

Although the detailed use of these techniques is outside the

scope of the current work and left for future efforts, we provide
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preliminary results and future work directions with SVD at the

end of the Section V.

III. RELATED WORK

Beyond the classical efforts to estimate compressibility

using entropy, there has been relatively little attention afforded

to the topic of lossy compressibility. As a parallel in data

reduction techniques, [15] investigated the determination of

thresholds for singular value decomposition of large matrices

based on some optimality loss criteria. [16] identified several

factors that affect compression ratios for SZ and ZFP. They

relied on a block-based sampling approach which considered

individual data points tailored to each compressor that they

consider and used Gaussian models to estimate the subse-

quent compressibility. For SZ, they considered a number of

predictors such as the number of elements in the dataset,

the quantization interval, information about the Huffman tree

constructed, and the number of points that are unpredictable by

SZ’s predictor. For ZFP, they offered a proof of their sampling

methods estimated accuracy and empirically show it to be 99%

accurate across many datasets. In the same vain, [17], based

on their prior work, used deep neural networks to estimate the

compression ratio instead of a Gaussian model. However the

built neural network may not generalize to other applications

and could over-learn the training data while the testing data

would not prevent the over-learning [18]. [19] designed an

automated methodology to switch between SZ and ZFP based

on which compressor is estimated to have a greater compres-

sion ratio. Compression ratios are estimated in a block-based

sampling approach using Shannon entropy [2] of the sampled

quantized blocks to investigate SZ’s behavior. Most of these

works have limited generalizability because of their reliance

on algorithmic details of each studied compressor or reduction

technique.

Finally, little effort has been directed to explore explicit

links of correlation structures in the data to reduction and com-

pression techniques and their performance. [20] has explored

the decorrelation efficiency of specific reduction methods on

scientific datasets in order to identify trade-offs for parame-

terization. [21] lead an evaluation and comparison of several

lossy reduction techniques that are based on basis-function

decompositions adapted to temporal and spatial data. [22]

developed an adaptive hierarchical geospatial field data rep-

resentation (Adaptive-HGFDR) based on blocked hierarchical

tensor decomposition to exploit multidimensional correlations

of the data. However, none of these works systematically

investigate the explicit link between correlation structures and

compressibility. Our work goes beyond these approaches to

consider a direction that is compressor independent by looking

only at local spatial relationships in the data. Contrary to [16],

[18], [19], in the following study as an initial step to establish

a compressibility limit, we do not assess the computation

overhead of our methodology.

Fig. 2. Original images of 2D Gaussian fields (top) and Miranda dataset
2D-slices (bottom)

IV. METHODOLOGY

A. Datasets

In the following, we refer to datasets as a particular field at a

particular time when in an application (e.g. a single continuous

variable in memory). In particular, we work with a single

temporal snapshot of the studied data.

The first dataset consists of synthetic 2D Gaussian fields

with a controllable correlation structure following a squared-

exponential correlation model. These 2D fields are 1028×1028

grid-points. We consider these fields as “ideal” as the corre-

lation range is known and varied to create multiple correlated

fields. Gaussian fields z over a grid defined by indexes xi are

generated using the following probability distribution f

f(z(x1), . . . , z(xk)) =
exp

(− 1
2 (z− μ)TΣ(x)−1(z− μ)

)
√
(2π)k|Σ(x)|

(2)

with z = (z(x1), . . . , z(xk)) ∈ R
k, the mean μ = 0 ∈ R

k in

this study, and a squared-exponential correlation Σ(xi, xj) =
σ2 exp(−|xi − xj |2/a2), where the variance σ2 is set to 1, a
is the correlation range that is known and varied, and xi are

spatial grid-points of the 2D field images. In our evaluation, we

consider two types of synthetic Gaussian datasets: single cor-

relation range fields and multiple correlation range fields. We

consider single correlation range Gaussian fields as a proof of

concept that gives us a high degree of control over correlation

structures in the data. However, because application datasets

are likely to exhibit complex correlation structure as multiple

correlation ranges, we consider also multiple range Gaussian

fields. For the multi-range correlation, we generate Gaussian

fields with two distinct correlation ranges contributing equally

to the total field. This provides a controlled case with increased

complexity.

The final dataset is generated from the Miranda [5] code,

designed for hydrodynamical large turbulence simulations.

These data are more complex than the Gaussian fields due

to multiple correlation ranges and complex dependencies.

These original 3D data dimensions are 256×384×384. The
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Software Version Purpose
ZFP [3] @2.1.11.1 lossy compressor
ZFP [4] @0.5.5 lossy compressor

MGARD [6] @0.1.0 lossy compressor
gstat [23] @2.0-7 obtain variogram range

numpy [24] @1.21.1 polyfit function to graph the curves
Libpressio [25] @0.70.0 compress and measure the data

TABLE I
COMPRESSORS AND SOFTWARE USED FOR THE STUDY

3D datasets are split into separate 2D slices based on equally

spaced slices along the first dimension. In this paper, we use

slices of the velocityx variable as shown in Figure 2.

B. Compressors and Software

Each lossy compressor in Table I is run with the following

absolute error bounds: 1E-5, 1E-4, 1E-3, and 1E-2. We choose

the software and compressor versions from the latest available

on Spack from a selection of leading error-bounded lossy

compressors. We use the absolute error bound because it

is supported by each of the considered error-bounded lossy

compressors. Additionally, there are formal equivalences be-

tween the absolute error bound mode and other error bounds

modes such as the value range relative error bound mode

which are used by compressors such as SZ [3]. Therefore,

considering the compressiblity given an absolute error bound

is generalizable to other kinds of bound. All experiments are

run on Clemson’s Palmetto cluster using a node with two 32

core Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz and 384

GB of RAM. The OS is Linux CentOS 8 with compiler GCC

8.4.1. Additional software and packages used in the study are

listed in Table I.

C. Compression Statistics and Statistical Methods

1) Compression Statistics: Compression ratio, the ratio of

the uncompressed data size by the compressed data size, is

used to compare the different compressors and their efficiency.

Compression ratio depends on: error bound, compressor used,

and correlation structures within the data. The compression

ratio is comparable between different compressors and error

bounds. In the following, this quantity is computed on the

studied datasets from Section IV-A for different compressors

and error bounds, and investigated as function of a measure

of several correlation statistics of data computed through the

variogram range described below.

2) Variogram study: In the following section, we com-

pute the empirical variogram of each 2D data-slice from

the datasets described in Section IV-A and based on the

Euclidean distance between grid-points. The corresponding

range a is then estimated and reported in the following section

as estimated variogram range. In particular, we estimate the

variogram ranges on the entire 2D field in order to assess

the overall correlation structure of the fields. However, this

is insufficient to characterize local heterogeneity in datasets,

hence we compute the variogram ranges in windows of a given

size that cover the entire 2D field in a tiled fashion [26]. More

specifically, we compute and report the standard deviation of

variogram ranges estimated over the windows covering the

Fig. 3. Compression ratios against estimated variogram range for 2D Gaussian
fields with single correlation range (left) and multi-range correlation (right).
Each color is associated with an error bound. Empirical calculations are
depicted with dots and fitted logarithmic regressions are in solid lines.
Estimated logarithmic regression coefficients α and β are given in the legend.

entire field. This statistic provides information on the spatial

diversity and spread of local correlations present in the data.

V. EXPERIMENTAL RESULTS

A. Compressibility and global correlation

In the following figures, the variogram range estimated on

entire 2D fields is referred to as “Estimated global variogram

range”, the standard deviation of locally estimated variogram

range on 32 × 32 windows is denoted as “Std estimated of

local variogram range (H=32)”. Finally, an additional statistic

is considered to illustrate future research directions. It consists

in the standard deviation of locally extracted SVD thresholds

on 32× 32-windows. Thresholds correspond to the number of

required singular modes to recover 99% of the variance of the

initial field. This statistic is referred to as “Std of truncation

level of local SVD (H=32)”.

In Figures 3 and 4 , the compression ratios for SZ [3] and

ZFP [4] (top panels) are plotted against the variogram range

estimated on entire 2D fields. These statistics are respectively

estimated on the synthetic Gaussian fields (left: single-range

correlation and right: multi-range correlation) and Miranda

datasets. As the estimated global variogram range increases

indicating stronger dependence between spatial points, dataset

variability decreases yielding smoother, more compressible

data. This increasing relationship between compression ratio

and variogram range exhibits a plateau for highly correlated

data (large variogram ranges) suggesting a limit in compress-

ibility of the data for a given error bound and compressor. Note

that this trend is less visible on the multi-range correlation
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Fig. 4. Compression ratios against estimated variogram range for Miranda
velocityx. Empirical calculations are depicted with dots and fitted logarithmic
regressions are in solid lines. Each color is associated with an error bound.
Estimated logarithmic regression coefficients α and β are given in the legend.
Due to the large spread of compression ratios for SZ (top left panel), the top
right panel corresponds to results for error bounds strictly below 1E-2 in order
to ease the reading.

Gaussian fields (right column of Figure 3) due to the equal

contributions of each correlation to the total field, preventing

any dominant correlation pattern to prevail and thus to be

characterized properly by the variogram range of the entire

field. Compression ratios for MGARD [6] are less sensitive

to the dependencies to correlation ranges present in the data

which is likely due to the global scope of the compressor.

Finally, in order to quantify these relationships and com-

pare them across different compressors and error bounds,

the compression ratios are fitted by least-squares to log-

arithmic regressions of the estimated variogram range a:

CR = α+β log(a)+ε, where CR is the compression ratio, a
the estimated variogram range, and α and β are estimated

coefficients and reported in the legend box of each panel.

The fitted logarithmic regressions show a good match to the

datapoints indicating in most cases a logarithmic dependence

of the compression ratios to the estimated variogram ranges.

Lower compression error bounds exhibit lower variance of

datapoints around the fitted curve and fewer outliers. The

outliers present in the top-left corner of Figure 4 are due

to datasets having similar variogram ranges however different

variances and hence different compression ratios. This sug-

gests the need to add information to the variogram range as

an exploratory variable. Regressions fit better the single-scale

correlation Gaussian fields (Figure 3 left column) than multi-

range correlation Gaussian fields and the Miranda data due to

their lower complexity that is captured reasonably well by the

global variogram range. In particular, the fitting on datapoints

from Miranda data show more dispersion around the fitted

curves but a matching trend.

B. Compressibility and local correlation

The variogram range estimated on each entire 2D field

represents an average correlation range observed on the entire

field and is not suited to characterize spatial local heterogene-

Fig. 5. Compression ratios against standard deviation of the local variogram
range for single range correlation Gaussian fields (right) and for multi-
range correlation Gaussian fields (right). Initial step towards the use of
decomposition techniques to analysis fields with multiscale patterns. Empirical
calculations are depicted with dots and fitted logarithmic regressions are
shown with solid lines. Each color is associated with an error bound. Estimated
logarithmic regression coefficients α and β are given in the legend.

ity nor multiple scales that can be present in complex scientific

datasets, such as in Miranda datasets or multi-range Gaussian

fields. Hence, we estimate the variogram ranges on local

windows (32 × 32) tiling each entire 2D-field. Additionally,

exploring local heterogeneity is important since many error-

bounded lossy compressors exploit some notions of locality in

their algorithms as discussed in Section II-A. In Figure 3, as

the global variogram range increases, the compression ratio

fails to have a slope of greater than absolute value of 1E-2

for mutli-range Gaussian fields (right column). This illustrates

the shortcomings of the global variogram range statistic while

dealing with multi-range correlation datasets. Figure 5 shows

the compression ratios computed on single-range correlation

Gaussian fields (left) and multi-range correlation fields (right)

as a function of the local variogram ranges and the left

column of Figure 7 shows the statistics computed on the

Miranda fields. Both figures corroborate and illustrate the

benefit of considering local information for complex datasets

to better explain compression ratios by local variograms rather

than global ones. In particular, we observe that Figures 3

and 4 depict several close values of compression ratios for

close variogram ranges, whereas this effect is less visible in

Figures 5 and 7 indicating a stronger explanatory skill of the

local statistic to the compression ratios. However, results for

the single-range correlation Gaussian fields show a weaker

sensitivity of the compression ratios to this local statistic. This

might suggest the need to use several statistics to provide
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Fig. 6. Compression ratios against standard deviation of the truncation level
of local SVD for single scale Gaussian fields (left) and for multiscale Gaussian
datasets (right). Empirical calculations are depicted with dots and fitted
logarithmic regressions are shown with solid lines. Each color is associated
with an error bound. Estimated logarithmic regression coefficients α and β
are given in the legend.

appropriate explanatory skills. Future work will explore this

path.

C. Towards multiscale analysis and summary statistics

Figure 6 and the right column of Figure 7 illustrate an

initial step towards the use of decomposition techniques to

analyze fields with multiscale patterns. In this section, local

SVDs are performed on the fields and summarized via the

standard deviation of locally required numbers of singular

modes to capture 99% of the variance of each local window.

This local statistic, larger values of required singular modes

are associated with less compressible fields so we expect

mostly decreasing relationship of compression ratios to this

local statistic. For brevity, as this section provides insights

to future works, we do not show results for MGARD as it

exhibits less sensitivity to the previous statistics and a weak

link to the current statistic. Figure 6 and the right column

of Figure 7 indicate that this local statistic provide a more

diverse representation of the data as seen by the span of unique

values over the x-axis, than the two other statistics based

on variogram. This statistic tends to exhibit several relating

trends to compression ratio, highlighting a need to refine it.

Future work will explore transformation of this statistic or

other representations based local SVDs and variograms, as

both methods provided different and valuable information to

explain compression ratios.

VI. CONCLUSIONS AND FUTURE WORK

Establishing the theoretical and compressor-free limit for

lossy compression would allow for the maximum efficiency

for compressing and storing large scientific datasets. Our work

represent a first step toward this goal. We have demonstrated

that estimated global and local variogram ranges can explain

compression ratio in a logarithmic fashion for some compres-

sors and given error bounds. This hypothesis was illustrated

on synthetic Gaussian fields providing a proof of concept

Fig. 7. Compression ratios against local statistics, standard deviation of the
local variogram range (left) and standard deviation of the truncation level of
local SVD (left) for Miranda velocityx 2D field. Empirical calculations are
depicted with dots and fitted logarithmic regressions are shown with solid
lines. Each color is associated with an error bound. Estimated logarithmic
regression coefficients α and β are given in the legend. Due to the large
spread of compression ratios for SZ, the central panels correspond to results
for error bounds strictly below 1E-2 in order to ease the reading.

and corroborated by results on a user scientific dataset from

Miranda. With the studied datasets, SZ and ZFP seem to utilize

the global and local spatial correlation ranges in a logarithmic

fashion with various coefficients showing the strength of the

dependence. MGARD seems less sensitive to these trends in

its compression ratios.

Since heterogeneous (non-stationary) and multiscale cor-

relations in the data may be mis-represented by the global

spatial variogram, other statistics, including local variograms

and local SVD, have been studied to address these issues.

In continuation of this research, there are a few goals for

the future: i) explore more complex dependent variables

(local correlation combined with multiscale statistics based

on decomposition) as candidate predictors, ii) create more

complex synthetic multiscale 2D Gaussian fields, iii) test the

robustness of the proposed statistics and the method on other

datasets, in particular from SDRBench, and iv) create a model

of compression ratio based on correlation metrics and error

bound. Future work will investigate the effects of correlation

structures on quality metrics of reconstructed data such as

PSNR along with a design of the statistics to a 3D context.

Another aspect for future work is how to quickly assess this

metric. The current implementation relies on the singular value

decomposition which is slow relative to modern compressors.

We plan to leverage a sampling approach similar to prior work

[16], [19]. We are hopeful that increasing levels of sampling

by block can provide an increasingly accurate proxy for our

metric.
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