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Abstract—In the scientific domain, extremely large amounts of
data are generated by large-scale high performance computing
(HPC) simulations. Storing and sending such vast volumes of
data poses serious scalability and performance issues, which can
be considerably mitigated by data compression techniques which
significantly reduced storage size and data movement burdens.
Since scientific data are being shared by scientists more and more
frequently, data security methods that ensure the confidentiality,
integrity, and availability of data itself are becoming increasingly
important. As such, combing compression and encryption is
critical to storing large-scale datasets securely. In this work, we
explore how to integrate data compression and cryptography
techniques as efficiently as possible for big scientific datasets in
the HPC field. We perform thorough experiments using different
scientific datasets with the state-of-the-art error-bounded lossy
compressor - SZ - on a real-world supercomputing environment.
Experiments verify that performing encryption before lossy com-
pression (a.k.a., encr-cmpr method) may invalidate the advantage
of compression algorithms. By contrast, executing encryption
after lossy compression (a.k.a., cmpr-encr method) keeps not
only high compression ratios but high overall execution speed.
Experiments also verify that the encryption overhead under the
cmpr-encr method decreases with increasing compression ratios,
which means very good scalability.

Index Terms—data compression, cryptography, data security

I. INTRODUCTION

High-performance computing (HPC) is one of the fastest-
growing technical fields, which may produce extremely large
volumes of data to process or analyze. Researchers conduct
large-scale simulations in HPC and cloud environments to
resolve challenging physical problems or exploit new strate-
gies/products. Large-scale simulations such as the cosmologi-
cal simulation code - HACC [1] are capable of generating more
than 20 PB of down-sampled particle snapshots during one
single full system run. Limited storage space is the first serious
concern in practice. Many scientific projects or companies
require a large number of devices to cope with the ever-
increasing storage demand but larger storage capacity takes
up the energy and resource expenditure of systems [2]. On
the other hand, the I/O performance is also a big concern
for the large-scale applications. One study by Cappello et
al. [3] highlights that for supercomputers like IBM’s Summit
at the Oak Ridge National Laboratory, storing the full memory
content to the parallel file system (PFS) may take more than
1 hour. Future systems will produce larger amounts of data,
which means much higher cost to save the computation results.
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Data compression has become one of the most promising
solutions to the big-scientific-data problem. Lossless compres-
sion is generally not suitable for scientific data compression
because most of lossless compressors depend on the repeated
patterns in the data stream while scientific dataset is mainly
composed of floating-point values, whose representations con-
tain rather random ending mantissa bits. Error-bounded lossy
compressors have been proposed for years to resolve the big
scientific data compression issue, in that not only can it obtain
fairly high compression ratios but it can strictly control the
data distortion based on user-specified error bounds [4], [5].

In addition to data compression, data security in HPC
systems is another critical topic, which has been paid increas-
ing attentions in recent years [6], [7]. There are numerous
scientific research projects funded by government agencies and
they increasingly rely on large-scale computing systems. The
related data managed by the scientific projects provide a basis
for national security and policy decisions and sometimes can
directly affect the future economy and security of a country.
Crucially, these datasets must be trustworthy and have high
integrity. Prior work shows that even a single bit-corruption in
lossy compressed data can cause violations of the compressor’s
error bound or make the decompression process fail [8].
Moreover, the data could be intercepted/altered by malicious
attacks inside the system or during the data transfer on wide
area network (WAN). Cryptography algorithms are methods
that protect the critical data that has a practical level of security
to users [9].

How to combine error-bounded lossy compression and data
security algorithms efficiently is a critical yet non-trivial issue
in practice because of the following two key challenges. On
the one hand, applying data security algorithms on either raw
datasets or compressed datasets would affect the overall per-
formance, so how to minimize the encryption overhead needs
to be investigated carefully. In fact, since the main goal of HPC
simulations is to accelerate the large and complex calculations
in parallel, the security mechanisms must be fairly efficient
and also effective such that it does not significantly degrade
the overall computing performance. Prior work [10] studied
the applicability of the hardware-based Trusted Execution
Environments (TEEs) to achieve secure scientific computing.
The results, however, showed that AMD Secure Encrypted
Virtualization (SEV) may induce 1~4x performance slow-
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down compared to native execution for graph applications. As
such, the software-based encryption mechanism is the main
focus of our work. On the other hand, the security/encryption
algorithms always need to inject extra information, which,
in turn, may degrade the overall compression ratios. How
to minimize the overhead of encryption from the perspective
of error-bounded lossy compression quality is non-trivial to
answer, in that a comprehensive investigation needs to involve
different datasets each with multiple fields as well as diverse
settings related to encryption algorithms.

In this paper, we carefully investigate the interplay between
error-bounded lossy compression and encryption algorithms,
which is the first attempt to the best of our knowledge. We
make the following contributions:

We analyze the interplay between the use of compression
algorithms along with cryptography methods in the HPC field
for scientific datasets based on two combination methods
regarding encryption: compression-after-encryption (or encr-
cmpr) and encrytion-after-compression (or cmpr-encr).

We evaluate the two methods on two HPC systems with
real-world scientific datasets. Our takeaway is two fold:

o The cmpr-encr method does not significantly impact the
overall execution performance when compression band-
width is low and/or the compression ratio is high. By con-
trast, the encr-cmpr model may cause very significantly
degraded compression ratios and overall throughput, be-
cause of considerably increased entropy after encryption.

o We model the overall time overhead that considers ad-
vances in compressor technology and show that the
encryption/decryption overhead is low except for hard-
to-compress data and fast compressors.

The rest of the paper is organized as follows. In Section II,
we carefully analyze the use-cases of integrating the error-
bounded lossy compression with cryptography. In Section
III, we discuss two combination methods we investigate. In
Section IV, we present and discuss the experimental results.
We discuss the related work in Section V and conclude the
paper in Section VI.

II. USE-CASES OF COMBINING ERROR-BOUNDED LOSSY
COMPRESSION AND CRYPTOGRAPHY

In this section, we analyze the use-cases that require both
error-bounded lossy compression and cryptography in practice.

A. Fast and Secure Data Transmission

Data transmission to/from HPC systems is an important
portion of many scientific workflows allowing users to share
data with collaborators. The volume of data produced during
the HPC application execution could be extremely large (such
as 20TB for one single HACC simulation run, as mentioned
previously). The bandwidth of the current internal interconnect
network, however, is only around reached 200 Gb/s [11].
Transferring the vast volumes of data on Internet is even more
challenging because of limited network bandwidth on WAN.
Applying error-bounded lossy compression is indispensable to
today’s HPC applications and data sharing.
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Data transmission faces a serious threat of eavesdropping
or intercepting [12] in practice, and cryptography schemes
offer effective solutions. Today’s scientific projects often have
security concerns for their sensitive data. Some data must
be confidential at all times, and loss of valuable data can
slow down or even stop the scientific process, leading to loss
of scientific opportunities. Besides, the output of scientific
instruments and applications is the basis for future analysis,
so they must be protected against being compromised. Cryp-
tography schemes ensure that even if the data is intercepted,
the transmitted data is still unreadable to attackers. For the
schemes that are adopted by the federal government, such as
Advanced Encryption Standard (AES), a sufficient level of
security is afforded to satisfy user’s needs [13].

B. Effective and Safe Long-term Data Storage

Storing the large amount of data generated by simulations
or instruments [3] in PFS requires both error-bounded lossy
compression and cryptography technology. The compression
technology is used to significantly reduce the size of scientific
datasets so as to reduce the storage space, and the cryptogra-
phy scheme is applied to guarantee the safety of the data stored
in the persistent storage device. As mentioned previously,
lossless compression cannot work effectively in compressing
the scientific datasets that are composed of mainly floating-
point values. Some studies [14] showed that lossless com-
pression algorithms can only get compression ratios of ~2
in most cases, while error-bounded lossy compressors [4],
[5] can achieve compression ratios of 10~1000 also with
satisfied reconstructed data quality. On the other hand, from
the perspective of security, HPC systems are accessible by
many people from multiple entities and locations, and the jobs
could be executed with high permissions to a certain extent
after they connect. Open science is particularly vulnerable
because the resource is often fully exposed and tends to share
large amounts of data or experimental results with several
entities. All these characteristics make them a notable target
for attackers. The data saved in storage systems have high
post hoc analysis value and are vulnerable to attackers. In
this case, cryptography schemes are needed to prevent the
content of the data from being intercepted by unauthorized
access. Encryption algorithms transform the plain data files
to ciphertext such that only the users with the matched keys
can decrypt the content. Such encryption methods have a
fairly high security level. For example, AES-128 has a 128-
bit long key, which means there are 2'2® possible keys [15].
If a brute-force attack is launched to decrypt the AES-128-
encryped data on a supercomputer even with 10° key searches
per nanosecond, it still requires nearly 5.3 x 10'7 years to try
all possible keys.

C. Hindering Cryptanalysis Attacks

Data compression could benefit the cryptographic process
from the security point of view. Cryptanalysis is the subject
of obtaining the plaintext from the ciphertext without knowing
the key and cryptographic algorithm. A common cryptanalysis
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method is frequency analysis, and the ciphertext with higher
redundancies is easier to crack [16]. By contrast, data compres-
sion shrinks the volume of data by removing redundancy. In
other words, the redundancy that is reduced by data compres-
sion can potentially hinder certain cryptanalysis attacks and
decrease their effectiveness. Besides, the less ciphertext there
is, the fewer clues it includes and it is harder for attackers to
break cryptography [17]. Even if attackers get the key through
other means or crack the cryptographic algorithm, they can
only get the compressed data, the unification of compression
and cryptography techniques will further increase the difficulty
for opponents to reconstruct the original data sets thus prevent
them from obtaining the content.

III. ANALYSIS OF TWO COMBINATION METHODS

In this section, we provide an in-depth analysis of the two
candidate methods: compression after encryption (or encr-
cmpr) vs. encryption after compression (or cmpr-encr).

A. Compression after Encryption (Encr-Cmpr)

In the encr-cmpr method, encryption occurs before com-
pression. This kind of cryptosystem is for people who want to
encrypt sensitive data as early as possible to prevent untrusted
entities from accessing the data or transmitting data over an
insecure channel. In this case, the untrusted transmitter or
compressor has no privilege to access the private content.

Generally, the encr-cmpr method is inherently format
compliant but it may adversely impact compression effi-
ciency [13]. Cryptography methods change scientific data sets
from floating-point to random bytes which is not compatible
with lossy compression. However, this reversed system may be
preferable because compression schemes may suffer from in-
formation leakage caused by observable properties such as the
compression ratio in some cases. For example, if the attacker
enumerates a set of possible inputs and knows the compression
algorithm, he/she can use the length of the input plus the
compression ratio as a checksum to derive the input [18].
This is considered a side-channel attack. Assuming this attack
occurs in an HPC system that processes with biomedical data
and if the attacker somehow gets the information, then it is
possible for him/her to obtain the input data. Once this private
information is leaked, the consequences can be disastrous. The
encr-cmpr method avoids this kind of information leakage.
Even though the attacker gets knowledge of the compression
algorithm and obtains the compressor’s input, it has already
been encrypted, so the attacker is unable to obtain the con-
tent without the secret key. A reverse cryptosystem can still
achieve perfect security and the same compression efficiency
as performing lossy compression before encryption for any
fixed distortion if the original source is Gaussian [19].

B. Encryption after Compression (Cmpr-Encr)

The cmpr-encr method performs the compression before
encryption. Compared to the encr-cmpr method, it has no
impact on the compression quality, except for a very small
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overhead (i.e., encryption key) to be introduced. Moreover,
there is no need to modify the encoder and decoder.

Our analysis shows that the cmpr-encr method is more suit-
able for scientific data compression in most of cases, from the
perspective of both compression quality and security concern.
(1) Not only does error-bounded lossy compression eliminate
the correlation between each data point but it also reduces the
predictability of the cryptography process [13]. (2) The cmpr-
encr method is an excellent way to take advantage of both
techniques (lossy compression and encryption). On the one
hand, cryptographic schemes resolve security problems such
as interception and confidentially that are neglected during
compression. On the other hand, the error-bounded lossy
compression can reduce the data size significantly, thereby
making the encoding process much faster and more efficient
than without the compression technique applied in advance.

All in all, this combination method has a minor influence
on the performance of the compressor itself, retaining the
compression ratio very well. Furthermore, as a relatively fast
cryptographic scheme is adopted, the overall performance
overhead can be very limited. We show the advantage of this
approach in Section IV.

C. Selection between Encr-Cmpr vs. Cmpr-Encr

In principle, the cmpr-encr is superior to the encr-cmpr
method, considering the following reason. An ideal encryption
algorithm should be able to remove all the redundancies in
the plaintext and produce a ciphertext that has an uniform
distribution of characters. Error-bounded lossy compression is
a method that significantly relies on the redundancy and corre-
lation of the raw data. If the encryption scheme is performed
before lossy compression (i.e., encr-cmpr method), the com-
pression ratio is significantly degraded because of considerably
lower correlation in the encrypted data. By comparison, the
cmpr-encr method performs the lossy compression first, which
takes full advantage of the correlations in the dataset to get
high compression ratios. The encryption algorithms performed
after lossy compression inject tiny additional information, to
further improve the security level.

In order to verify how much the compressibility of data
changes after the encryption, we compare the Shannon entropy
for the original raw data versus the encrypted data based on
the real-world scientific datasets. The scientific datasets we
use here are described in details in next section. Shannon
entropy is a measure of the unpredictability or randomness
of information content, which is defined in Formula (1).

H=-Y p(x)logp(x) )

where H is value of entropy, p(z) is the probability of
occurrence of the symbol z in the dataset, and log p(x) is the
information quantity carried by observing x. If the entropy H
is high, then the distribution of each symbol is uniform, which
means the probability of occurrence for each symbol is similar,
so it is hard to compress the data. In contrast, if the entropy
is low, this means the occurrence of some symbol are more
frequent than others, and the dataset is easier to compress.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on March 29,2022 at 16:37:12 UTC from IEEE Xplore. Restrictions apply.



TABLE I: Entropy calculated before and after encryption.

Datasets  Entropy(Original)  Entropy(Encrypted)
Height 7.468389 8.0000
Q2 6.671749 7.999997
QI 5.894355 8.0000
T 6.618928 8.0000

Table I presents the entropy value of the original raw data
versus the encrypted data. It is observed that the entropy value
is always increased prominently after data encryption. In fact,
when the dataset is ideally encrypted, the entropy reachs the
theoretical maximum [20] which makes it extremely difficult
to compress. Floating-point scientific data has high diversity
and needs strict accuracy for post hoc analysis [9]. The entropy
of the original data is already high (~6 as shown in the table),
and the encryption algorithm further increases the entropy,
meaning that the encrypted data in turn is much harder to
compress than before.

IV. EVALUATION RESULTS

A. Experimental Setup

To study the effectiveness of applying error-bounded lossy
compression and encryption schemes together on various real-
world scientific datasets, we use two HPC systems, Palmetto
at Clemson University and Bebop at Argonne National Labo-
ratory. Table II shows the specification of each system.

TABLE II: Detailed hardware used for experiments

Palmetto Bebop
CPU Intel Xeon Gold 6148  Intel Xeon E5-2695v
RAM 376 GB 125 GB
Cache 27.5 MB 48 MB
Cores 20 18

To investigate the combination of lossy compression and
encryption of HPC data, we use Wf04 from the Hurricane
Isabel simulation in SDRBench [21] and four typical fields
Height, Q2, QI, and T from SCALE-LetKF [22], a atmo-
spheric modeling code. The datasets we use in experiments
are summarized in Table III

TABLE III: Attributes of the datasets used in experiments.

dataset Dimensions Size Description
Wr£04 100x500x500 95.37MB  Hurricane wind speed
Height 98 x1200x 1200 1.1GB Height above ground
Q2 11x1200x 1200 61MB 2m Specific humidity
QI 11x98x1200x 1200 5.8GB Cloud Ice mixing ratio
T 11x98x1200x 1200 5.8GB Temperature

We execute the error-bounded lossy compressor SZ-2.1 [23]
with absolute error bound mode by LibPressio [24], a generic
library binding to abstract between different compressors and
their configurations. We focus on SZ as it has been proven
to have the best overall compression performance and quality
from among existing state-of-the-art lossy compressors [4],
[25]. As for the encryption, we explore several methods
via OpenSSL [26]: Data Encryption Standard (DES), 3DES,
Advanced Encryption Standard (AES), Blowfish. GCC 8.3.1
compiles all of our code, and we run all codes with a single
thread of execution. Each data point is an average of five runs.
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Fig. 1: Compression performance of SZ on Hurricane data.

B. Separate Cost of Compression and Encryption

To compare the execution throughput (or bandwidth) be-
tween compression/decompression and encryption/decryption
on scientific data, we use the combination methods using the
Hurricane dataset on Clemson’s Palmetto Cluster. Figure la
shows the throughput (MB/s) of compression and decompres-
sion under SZ. In Figure 1b, as the error bound increases,
the throughput increases, and more distortion is observed in
the data with higher compression ratios. We see a maximal
compression bandwidth of 194 MB/s and a decompression
bandwidth of 514 MB/s per CPU core. Mathematical calcula-
tions such as prediction and quantization in the compression
process makes its bandwidth smaller than decompression.

For encryption to have minimal impact on compression
we require an encryption bandwidth that is larger than the
compression bandwidth. To determine the throughput of data
encryption and decryption, we use random datasets of various
sizes to pinpoint an exact file size. The encryption algorithms
are data agnostic. Figure 2 shows the encryption and de-
cryption bandwidth for our selected algorithms. Looking at
the performance, we see that there is a large discrepancy
in performance between the algorithms. For DES, 3DES,
and Blowfish we see small bandwidth improvements as the
input data size increases. However, for AES, we see that the
bandwidth dramatically increases for larger data files. We use
the Cipher Block Chaining(CBC) mode of AES because CBC
mode is able to introduce a limited amount of metadata to the
compressor while ensuring a sufficient security level. For AES-
128, the throughput exceeds 400 MB/s for encryption and 490
MB/s for decryption. Therefore, for AES the time overhead
between compression and encryption does not significantly
impact total reduction time.

This experiment demonstrates that encryption would not
significantly impact the time to compress data for lower error
bounds when compression bandwidth is low; however, as the
error bound and compression ratio increases, the size of the
data to encrypt is less and encryption performance suffers. For
other algorithms like DES, 3DES, and Blowfish, the band-
widths are low. Most of them are lower than 100MB/s, and if
we integrate these methods with SZ, the overhead would cause
dramatic decreases in the compression and decompression
bandwidth. For the remaining experiments, we utilize AES-
128 because it has the best performance.
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C. Combining Compression and Encryption

From the results in Section IV-B, we see that the cost of
adding encryption into the data reduction varies, depending on
the throughput of the compressor and the encryption algorithm.
To further explore this trade-off, we use the four SCALE-
LetKF datasets and test them on the Bebop cluster at Argonne.

We now quantify the impact on the compression ratio. From
Table IV (our compression ratio baseline), we notice that,
even though the compression ratio of each datasets depends on
its own characteristics, it increases with larger error bounds.
Compared to other datasets, Q1 is the most compressible with
compression ratios in the range of 70-1.41E+08 x, while 7" has
a low compression ratio 2—16x. The reason is that SZ depends
on prediction accuracy, and ()1 has a stronger data correlation
then 7" which has more random/disordered data values, which
is validated by their entropy values (see Table I).

TABLE IV: Baseline compression ratio with no encryption.
Absolute Error Bound

Dataset le-7 le-5 le-4 le-3 le-2

Height 1.927854  5.732317  7.522575 12.08979  23.98324
Q2 4246728  12.57578  31.41299  209.5349  1662.381
QI 70.94958  591.3201 4235384  18413.63  1.41E+08
T 2.854135  2.737459  5.065659  9.485292  16.98267

Encrypting the data allows opportunities to diminish the
compression ratio through increasing the entropy and/or extra
data. Here we explore two methods of integrating encryption.

1) Encr-Cmpr: Table V shows the performance of each
stage in the encr-cmpr pipeline. All error bounds show
similar performance. Notably, the compression ratio for all
four datasets is low; most lower than 1. Compression ratios
being lower than 1 indicates inflation of the file size. We
attribute this to AES’s obfuscation operations, which eliminate
data correlations; making the ciphertext appear random and
increasing the data size. Moreover, the lossy compressor also
needs to store some metadata — e.g., Huffman tree, lookup
table — , which also increases the size in turn. Compared to
the compression ratios in Table IV, we see a sharp decline in
the compression ratio. Thus, we conclude that naive encr-cmpr
as two disjoint passes is not suited for HPC use-cases because
of poor compression ratios.

2) Cmpr-Encr: Cmpr-encr applies encryption after com-
pression. Thus, the lossy compressor is able to take full
advantage of data correlations. Figure 3 shows the overhead of
encryption/decryption when compressing/decompressing the
SCALE-RM datasets, where shading represents the standard
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TABLE V: Performance of different datasets with encr-cmpr.

Data Encrypt Compress  Decompress Decrypt Compr.
Set BW(MB/s) BW(MB/s) BW(MB/s) BW(MB/s) Ratio
Height 372.25 327.45 394.23 631.47 1.99
Q2 290.47 151.68 375.35 670.34 0.99
QI 402.13 160.81 361.52 693.63 0.99
T 343.84 146.49 335.46 730.77 0.99

deviation. We see similar overhead for compression and
decompression among the datasets, but we note that the
decompression overhead is low due to the fast decompres-
sion bandwidth of SZ (see Figure la). In general, as the
compression ratio drops, the overhead increases as the size
of the data turns larger and encryption takes longer. The
overhead for QI is quite low (<1.5%) because its large
compression ratio leads to a small amount of data to encrypt.
Compressing T with an error bound of le-5 has slightly
higher overhead than the overhead with the error bound of
le-7 because the compression ratio drops slightly and thus
increasing encryption time. The variable Height exhibits the
largest overhead for compression and decompression since it
has the lowest compression ratio and therefore the largest
encryption time. Observing the effective compression ratios
of cmpr-encr in Table VI shows that most situations yield less
than a 0.01% deterioration in compression ratio compared to
the those in Table IV. However, for datasets that has extremely
high compression ratios before encrypting, the overhead of
metadata becomes far more visible because the input data for
encryption is very small. In summary, we conclude that cmpr-
encr retains 99.9% of the compression ratio in most cases with
decreasing overhead as the compression ratio increases.
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(a) Compression. (b) Decompression.

Fig. 3: Overhead in time when adding encryption after com-
pression and decrypting before decompression.

D. Modeling the Combination of Compression and Encryption

The size of the dataset may significantly grow in future HPC
systems. To explore the compression/encryption overheads for
larger data files, we tested a 100 GB data file. We model the
expected time overhead for cmpr-encr where we parameterize
the compressor to account for improvements in performance
and compression ratio. As for the encryption/decryption’s
performance, we use the data from Figure 2.

Using our model, we plot Figure 4, where the overhead is
the percentage encryption/decryption time compared to com-
pression/decompression. Darker blocks indicate low overhead,
while lighter blocks indicate high overhead. We cap the color
bar at 100% to clearly highlight regions. Actual percentages
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TABLE VI: Compression ratio after encryption. Value in parentheses is the percentage that we obtain from Table IV.
Absolute Error Bound

Dataset le-7 le-5 le-4 le-3 le-2

Height 1.93 (99.9%) 5.73 (99.9%) 7.52 (99.9%) 12.09 (99.9%) 23.98 (99.9%)
Q2 4.25 (99.9%) 12.58(99.9%) 31.41(99.9%) 209.51(99.9%) 1661.07 (99.9%)
QI 70.95 (99.9%)  591.32(99.9%)  4235.29(99.9%)  18412.49(99.9%) 9.7E+07 (68.8%)
T 2.85 (99.9%) 2.74(99.9%) 5.06(99.9%) 9.49(99.9%) 16.98 (99.9%)
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Fig. 4: Performance Overhead of The Cmpr-Encr Method.

are displayed on each grid cell. For example, for compression
ratio 40x and 200MB/s compression throughput, the overhead
of AES is 1.4%, which means it takes a small fraction of the
total time to encrypt the data. Mapping to the real-world use
case, such as using SZ to compress W f04, the compression
ratio ranges from 4 x to 821 x, while the compression through-
put is between 100M—-200MB/s. These points map to darker
blocks (low overhead). This holds true for decompression
and decryption too. However, for the situations with high
compression/decompression throughput, higher compression
ratios are required to avoid sizable overheads. Thus, for hard-
to-compress data, encryption dominates performance by 253%
(compression) and 444% (decompression).

V. RELATED WORK

Combining compression and encryption has been studied
in the multimedia field. Most research focuses on integrating
selective encryption within compression, where only the essen-
tial part of the compressed bitstream is encrypted to achieve
several levels of security. For example, Lei [27] encrypts only
the I-frames of the MPEG stream. DC and AC coefficients are
encrypted in [28]. A encryption-after-compression method is
proposed for JPEG2000 in [29], where the algorithm identifies
a start and stop of a data packet to encrypt using AES-
Cipher Feedback mode. The highest visual degradation is
achieved by encrypting 20% of the data and there is no
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impact on compression performance. Compressive sensing
is a signal-acquisition framework that performs compression
and encryption simultaneously [30]-[32], but cannot control
compression errors as error-bounded lossy compressor (such
as SZ and ZFP) does.

The algorithms proposed in the multimedia field generally
use static definitions of encrypted parts and encryption param-
eters. This limits the usability of the algorithm to a restricted
set of compressors and applications that is not feasible for
scientific data. When it comes to HPC systems, the serious
challenge we have to face is how to use the characteristics
of lossy compressors themselves to better integrate compres-
sion and security without changing the traditional encryption
algorithm that already has a sufficient level of security.

An encryption-after-compression method that only com-
presses and encrypts the partial value in the key-value pair
and Sorted Strings Table(SSTable) is implemented in the
National Energy Research Scientific Computing Center [9].
They found that the overhead of compression and encryption
for data is much smaller than the I/O overhead in NVM
devices. Some researchers are dedicated to improving security
by transforming the compressor. Mazharul et. al proposed a
Huffman coding-based encryption scheme HELiOS for data
transmission [33], where a dynamic order statistic tree is built
to compress the plain text. HELiOS encrypts the classical
Huffman tree and chaotic random seed using the receiver’s
public key. Attackers are not able to reconstruct the statistic
tree and without the possession of the receiver’s private key.

Compared with all the related studies, we explore how
to combine error-bounded lossy compression and encryption
technology and also investigate the pros and cons of different
solutions using real-world scientific datasets on HPC systems,
which is the first attempt, to our best knowledge.

VI. CONCLUSION

This paper analyzes and quantifies the pros and cons two
solutions by combining error-bounded lossy compressor and
different encryption schemes based on real-world scientific
datasets. Our experimental results demonstrate that the encr-
cmpr method is not an ideal combination method since the
latter compression method is unable to take advantage of data
redundency and correlation, thus leading to very low com-
pression ratios. By contrast, the cmpr-encr method performs
well in preserving a good compression ratio and suffers little
encryption overhead, which is acceptable in most cases. As
the compression ratio increases, the overhead of encryption
decreases. In the future, we plan to investigate the cmpr-encr
method using more datasets and more security levels.
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