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At high concentration, free swimming nematodes known as vinegar eels (Turbatrix aceti), col-
lectively exhibit metachronal waves near a boundary. We find that the frequency of the collective
traveling wave is lower than that of the freely swimming organisms. We explore models based on
a chain of oscillators with nearest neighbor interactions that inhibit oscillator phase velocity. The
phase of each oscillator represents the phase of the motion of the eel’s head back and forth about its
mean position. A strongly interacting directed chain model mimicking steric repulsion between or-
ganisms robustly gives traveling wave states and can approximately match the observed wavelength
and oscillation frequency of the observed traveling wave. We predict body shapes assuming that
waves propagate down the eel body at a constant speed. The phase oscillator model that impedes
eel head overlaps also reduces close interactions throughout the eel bodies.

I. INTRODUCTION

Concentrations of biological organisms can be consid-
ered active materials as they are comprised of self-driven
units and energy is continuously expended through loco-
motion [1]. Collective behavior of groups of organisms
include flocking or swimming in schools [2, 3] and syn-
chronization [4, 5]. Synchronization processes in nature
include glowing rhythms of colonies of fireflies [4], crowd
synchrony of pedestrians walking on a bridge [6] and flag-
ella beating in phase with one another [7].

The head or tail of an individual snake, flagellum,
cilium or nematode moves back and forth with respect
to a mean position. This periodic motion can be de-
scribed with a phase of oscillation (e.g., [8]). In concen-
trations of mobile oscillators, both synchronization and
swarming can occur together, and such systems can dis-
play a rich diversity of collective states (e.g., the swar-
malators studied by O’Keeffe et al. [9]) including col-
lectively organized and coordinated motions known as
traveling or metachronal waves. A metachronal rhythm
or metachronal wave refers to a locally synchronized mo-
tion of individuals with a delay between them, in contrast
to globally synchronized patterns of oscillation.

Metachronal waves require coordinated motions be-
tween neighboring structures or organisms [10, 11].
Swimming spermatozoa synchronize the beating of their
cilia, and flagellates can synchronize the motions of their
flagella when they are in close proximity [7, 12–16]. When
a constant phase difference or time delay is maintained
between neighboring oscillating structures, the collective
motion has the appearance of a traveling wave.

One approach to modeling metachronal wave forma-
tion in cilia or flagella is to model them as an array of
flexible filaments that oscillate or beat when alone. Self-
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organized metachronal waves then arise due to hydro-
dynamic [8, 11, 13, 14, 17–20] or steric [21] interactions
between neighboring filaments. Even though a filament
can bend and flex, its behavior can approximately be
described with an angle or phase which specifies the po-
sition of its moving tip (e.g., [11, 13, 14]). Although
each filament moves in three dimensions, simplified mod-
els consisting of discrete linear chains of interacting os-
cillators can describe the collective behavior [11, 13, 14].

Phase oscillator chain models, known as local Ku-
ramoto models, exhibit both long lived synchronous and
traveling wave states [22–27]. However, in many of these
models, a system with randomly chosen initial phases
is more likely to evolve into a synchronous state than
a traveling wave state [26, 27]. Simple criteria are not
available for predicting whether an interacting phase os-
cillator model is likely to give traveling wave states if ini-
tialized with random phases. However, physically moti-
vated interacting phase oscillator models for metachronal
waves in cilia and flagella have succeeded in robustly giv-
ing traveling wave states [13, 14].

In this study we report on collective behavior in a sys-
tem of undulating free-swimming organisms, vinegar eels,
species Turbatrix aceti (T. aceti), which are a type of free-
living nematode. They are found living in beer mats,
slime from tree wounds and cultures of edible vinegars.
Because they are hardy, they are used in aquaculture by
fish keepers and aquarists as food for newly hatched fish
or crustaceans. Vinegar eels are tolerant of variation in
acidity and they subsist on yeast. The metachronal waves
in T. aceti, reported by Peshkov [28], Peshkov et al. [29],
are similar to those seen in cilia. However, unlike cilia
which are affixed to a cell membrane, the vinegar eels are
freely swimming organisms. At about 1 mm in length,
the vinegar eels are visible by naked eye and are much
larger than cilia (typically a few µm in length) or flagella
on colonies of microorganisms that display metachronal
waves (e.g., with flagella length ∼ 10µm; [14]). Concen-
trated suspensions of vinegar eels are a novel biological
system in which we can study ensemble coordination and
synchronization. Henceforth we refer to the vinegar eels
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colloquially as ‘eels’ even though they are nematodes.
Ensembles of active particles can exhibit a phase tran-

sition from gaseous to collective behavior at higher num-
ber density due to particle interactions (e.g., for unipo-
lar self-propelled particles [30]). Metachronal waves are
only present in high concentrations of vinegar eels [29]
so interactions between them are necessary for the co-
ordinated wave motion. Collective coordinated motion
is likely to be mediated by the interactions between the
organisms. In our study we compare the motion of the
vinegar eels participating in metachronal waves to those
that are freely swimming to probe the nature of these
interactions.

While the well studied nematode Caenorhabditis ele-
gans (C. elegans) naturally grows in soil, C. elegans is
also an undulatory swimmer in water (e.g., [31]). C. ele-
gans nematodes congregate near surfaces and boundaries
(they exhibit bordertaxis) [31]. In close proximity, a pair
of swimming C. elegans nematodes will synchronize their
gait [32]. Collective behavior of C. elegans includes the
formation of a network on a surface [33] and synchro-
nization of clusters of tens of nematodes [32]. We have
observed similarities between the reported behavior of C.
elegans and our vinegar eel nematodes. These similarities
include undulatory swimming, bordertaxis, and synchro-
nization in the gait of clusters of organisms. We have
not found descriptions of metachronal waves in concen-
trations of C. elegans or other nematodes in the literature
nor have we seen metachronal waves in concentrations of
C. elegans in our lab [29].

We briefly describe our experimental methods in II.
Measurements of individual vinegar eels at low concen-
tration are discussed in section III. We describe the be-
havior of high concentrations of vinegar eels in section
IV. Models of metachronal waves in cilia and flagella have
described these systems as a chain of interacting phase
oscillators, where each phase describes the motion of a
cilium or flagellum tip [13, 14]. In section V we adopt a
similar approach and model our ensemble of vinegar eels
with a chain of interacting oscillators, but each phase
describes the motion of an eel’s head. A summary and
discussion follows in section VI.

II. EXPERIMENTAL METHODS

We obtained our T. aceti nematode and yeast culture
from an aquarium supply store, and we grow it at room
temperature in a 1:1 mixture of water and food grade
apple cider vinegar. A few slices of apple were added to
the mixture as a food source for the yeast. After a few
ml of the purchased culture is added to the vinegar and
apple mixture, it takes a few weeks before large numbers
of vinegar eels are visible by eye in the mixture. The
vinegar eels congregate at the surface and crawl up the
container walls.

To study the motion of the vinegar eels, we used a
Krontech Chronos 1.4 high speed video camera at 1057

frames per second (fps) giving image frames with 1024
× 1280 pixels. To connect the video camera to a con-
ventional stereo compound microscope under bright field
illumination, we used a 0.5X reduction lens adapter that
matches the C-mount of our camera. The other end of
the adapter fits in the 23.2 mm diameter eyepiece holder
of our microscope. Videos were taken using the X4 or
X10 microscope objectives.

At each magnification, we made short videos of a cali-
bration slide with a small ruler on it. Frames from these
videos were used to measure the pixel scale, giving 315
mm/pixel and 838 mm/pixel at X4 and X10 magnifica-
tion, respectively. The field of view is 1.22 mm × 1.53
mm at X4 magnification and 3.25 mm × 4.06 mm at X10
magnification.

We present two videos, both taken on Feb 26, 2020.
The first video [34], denoted Video A, filmed at X10 mag-
nification, is of the vinegar eels at low concentration. The
second video [35], denoted Video B, is at higher concen-
tration and was filmed at X4 magnification. To achieve
high vinegar eel concentration, we placed about 10 ml
of the vinegar eel culture in a test tube and then used
a centrifuge (a few minutes at a few thousand rpm or
about 1000 g) to concentrate the eels at the bottom. A
pipette was then used to extract fluid from the bottom
of the tube.

Each video views a drop of about 100µl of dilute vine-
gar containing vinegar eels that was deposited on a dry
glass slide. The drop was not covered with a coverslip,
so its surface is curved due to surface tension. The slides
wet so the drop is not spherical. The outer edge of the
drop where it touches the slide remains fixed due to sur-
face tension. In both videos, the drop was about a cm in
diameter. In Video B, we touched the edge of the drop
with a metal pin a few times to pull and extend the drop
radially outward. This increased the drop surface area on
the slide and decreased its depth. This system is nearly
two dimensional as the vinegar eels rarely swim above
or below one another. Additional experiments of drops
containing T. aceti are discussed by Peshkov et al. [29].

III. OBSERVATIONS OF LONE EELS AT LOW
CONCENTRATION

In Video A, the vinegar eels are at low concentration
and we can find intervals when an individual eel is not
strongly influenced by nearby eels or borders. We focus
on an adult ∼ 1 mm long vinegar eel, shown in Figure 1,
because it can be directly compared to prior work study-
ing 1 mm long C. elegans kinematics (e.g., [31, 36, 37])
and because eels of this length actively participate in the
metachronal wave.

A median image was subtracted from all frames in
Video A to remove smooth variations in lighting. Af-
ter subtracting the median image, we rotated the video
frames so that the lone vinegar eel swims to the left.
To find the eel’s oscillation or gait period we summed 5
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TABLE I. Properties of a freely swimming vinegar eel

Quantity Symbol units Value

Length L mm 0.96± 0.03

Diameter w mm 0.021± 0.001

Length/diameter L/w - 45

Wavelength λu mm 0.50± 0.02

Amplitude Au mm 0.045± 0.005

Swim speed vswim mm/s 0.38± 0.03

Amplitude/phys. length Au/hx - 0.055

Amplitude times wave-vector Auku - 0.56

Oscillation period Tu ms 170± 6

Oscillation frequency fu = 1/Tu Hz 5.9± 0.2

Undulation wave speed along body vu = λu/Tu mm/s 3.0
The length hx is the linear distance between head and tail measured along the direction of motion. The length L is that of

the eel, integrated along its body or measured if it were extended to its maximum length. Because the eel is not straight while
it is swimming hx < L. The wave speed along the body is that of undulation. Uncertainties describe the range of values that

would be consistent with the motion during a 1 s long segment of video. The vinegar eel is shown in Figure 1.

equally spaced (in time) video frames. We adjusted the
time interval between the frames until the eel body shape
was similar in each of the 5 frames, indicating that they
are at about the same phase of undulation. This time in-
terval gives us an estimate for the eel undulation period
Tu. The sum of 5 images is shown in Figure 1a with the
eel head on the left.

We estimated the eel’s mean swim speed, vswim by
shifting the images so that the eel bodies in the 5 video
frames appear to be at the same position. The required
shift to align the eels after one oscillation period divided
by the oscillation period Tu gives the mean swim speed,
vswim.

We used the mean swim speed to shift the video im-
ages so that positions are viewed in the reference frame
moving with this average speed. At 9 different phases
of oscillation during a single oscillation period, we mea-
sured eel body centerlines by fitting Gaussian functions
to equally spaced vertical slices in the image. The mean
of the Gaussian gives the eel’s centerline y value as a
function of horizontal distance x. The body centerlines
at these 9 different phases of oscillation are shown with
different colored dots in Figure 1b. The body centerlines
are plotted on top of the first video frame in the sequence
which is shown with the underlying grayscale image. In
this figure, the origin is near the head’s mean position.
The positive x axis opposite to the swim direction and
the y axis is perpendicular to it.

By integrating distances between the points along the
eel’s centerline, we computed the length L of the eel.
We measured the eel’s body diameter w by measuring
its apparent width across its middle. In Figure 1b the
horizontal extent of the eel hx along the x axis is smaller
than the eel length because the eel body is not straight.

To estimate a beat amplitude Au and a wave vector
ku, we fit a sine wave to the body centerline at one phase

of oscillation

y(x) = Au cos(kux− φ0). (1)

Figure 1c shows the fit sine function with a red line. The
sine describes the y coordinate of the eel’s centerline as
a function of x and φ0 is a phase. The wavelength of the
body shape λu = 2π/ku. The amplitude Au describes the
size of deviations from the mean of the centerline. The
speed that waves travel down the body vu is estimated
from vu = λu/Tu.

Measurements of the freely swimming vinegar eel are
summarized in Table I. Uncertainties listed in this table
give the range of values that are consistent with the eel’s
motion during a 1 s long segment of video.

The centerline positions in Figure 1b show that larger
amplitude motions, or larger deviations from a pure sine
shape occur at the head and tail of the vinegar eel. Over
much of the body the eel’s shape is well described with
a sine function and the eel’s body is nearly sinusoidal in
shape during most of its oscillation. The spacing and
offsets between centerline curves at different phases of
oscillation in Figure 1b and c imply the advance of the
sine shape occurs at a nearly constant wave speed.

Our vinegar eels culture contains nematodes of differ-
ent sizes, ranging from about 0.3 to 2 mm in length (see
Figure 2a). We measured the frequency of oscillation for
different length eels and found that this frequency is not
strongly dependent on eel length. We have noted that the
ratio of length to wavelength L/λu is larger for the larger
and longer eels than the smaller ones. In the longer eels
about 1.5 wavelengths are present whereas only 1 wave-
length is present on the shorter ones.

The key findings of this section are the measurement of
the frequency of undulation for freely swimming vinegar
eels (fu ∼ 6 Hz) and that the shape and motion of much
of the vinegar eel’s body can be described with a sine
function.
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FIG. 1. Characteristics of an adult mm long freely-swimming
vinegar eel. (a) The gray-scale image shows a sum of 5 frames
from high speed Video A showing the same freely swimming
eel. The 5 frames are equally spaced in time with interval
Tu = 170.3 ms that is approximately one oscillation or un-
dulation period. The oscillation frequency is written on the
lower left in Hz; fu = 1/Tu. The swim speed, vswim, eel
length, L and diameter w are written on the top of the frame.
The images have been rotated so that the organism is swim-
ming in the horizontal direction and to the left. (b) Body
positions are shown with colored dots at 9 equally spaced
times during a single oscillation period. The images used to
measure the body position have been shifted to take into ac-
count the mean swim speed. The body positions are plotted
on top of the first video frame in the sequence. (c) Using
the first time shown in (b), the y position of the center of
the eel body as a function of x is plotted with red dots en-
closed in black circles. The red line shows the sine function
y = Au cos(kux−φ0) fit to these points. The wavelength and
amplitude of this function are shown on the lower left. The
colored lines show y = Au cos(kux− φ0 − 2πj/9) for integers
j ∈ 1...8 corresponding to the phases of oscillation shown in
(b). The eel body is approximately sinusoidal in shape over
much of its body and during most of its gait.

A. Comparison between C. elegans and T. aceti

Since the C. elegans nematode is well studied, we com-
pare its kinematics to that of the vinegar eel nematode,
T. aceti. The frequency of undulation we measured in the
vinegar eels ∼ 6 Hz is faster than the ∼ 2 Hz measured
in similar length (1 mm long) C. elegans [31, 36]. The
length to diameter ratio for our 1 mm eel is about L/w ∼
45 whereas C. elegans is not as slender with L/w ∼ 12
[36]. More than 1 wavelength fits within the eel body in
T. aceti, particularly in the longer eels. In contrast about
a single wavelength fits on the C. elegans body while it

is swimming [36]. The speed that waves travel down the
body, vu ∼ 3 mm/s for the eel, is somewhat higher than
than of C. elegans (2.1 mm/s, [36]). The swim speeds
are similar; 0.4 mm/s for the 1 mm long vinegar eel and
0.36 mm/s in C. elegans.

In the vinegar eels, the amplitude of motion is larger
at the head and tail, than in the middle and is largest at
the tail. This behavior is similar to swimming C. elegans
[31] (see their Figure 1a) though Sznitman et al. [36]
measured the largest body curvature variations near the
head.

For vinegar eels at low concentration, we did not find
a significant difference between the undulation frequency
of eels that are swimming near or along the edge of the
drop and of those that are swimming in the center of
a drop. In this respect our vinegar eels are similar to
C. elegans. For C. elegans exhibiting bordertaxis and
swimming near a surface, the frequency of oscillation is
similar to that of the freely swimming organism [31].

IV. OBSERVATIONS OF METACHRONAL
WAVES AT HIGH CONCENTRATIONS

At high concentration and a few minutes after the drop
is placed on the slide, the eels collect near the edge of the
drop, where the air/fluid boundary touches the slide, and
just within the outer rim of the drop. Collective motion
in the form of a traveling wave becomes progressively
stronger and can be seen without magnification by eye
as the vinegar eels are about 1 mm long (see Figure 2).

In Figures 2a and 3 we show frames from taken from
Video B. The frames in Figure 3 have been rotated to
orient the drop edge horizontally and at the bottom of
each panel. To aid in comparing the frames at differ-
ent times, we geometrically distorted each frame with a
near identity quadratic coordinate transformation so as
to make the boundary horizontal. The transformation

used is (x, y)→
(
x, y − 1

2Rc
(x− xc)2

)
with xc the x co-

ordinate of the center of the image and Rc is a radius of
curvature. Due to surface tension the actual drop edge is
curved, with a radius of curvature of about Rc ≈ 7 mm.

Using frames from the rotated and distorted video we
created a time series of one dimensional arrays by in-
tegrating intensity along the vertical axis of the image.
The vertical distance integrated is 1 mm and covers the
frames in the series shown in Figure 3. This integration
gives an intensity array ρ(x, t) as a function of time t
with x axis parallel to the drop edge. We use ρ(x, t) to
estimate the metachronal travel speed. We compute a
correlation function, shown in Figure 4,

C(∆x,∆t) =

∫
dx ρ(x, t)ρ(x+ ∆x, t+ ∆t)∫

dx ρ(x, t)2
. (2)

where ∆x is a horizontal shift and ∆t is a time delay.
The ridges in Figure 4 are regions of higher intensity
that propagate as a wave and their slope, shown with a
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TABLE II. Metachronal wave measurements

Quantity Symbol Value

Metachronal wave velocity vMW 3.7 ± 0.2 mm/s

Metachronal wave frequency fMW 4.0 ± 0.2 Hz

Wavelength of metachronal wave λMW 0.89 ± 0.03 mm

Number of eels per wavelength NMW 13-16

Ratio of frequencies fMW/fu ∼ 0.68

Amplitude of motion AMW ∼ 0.07 mm

red segment, is the metachronal wave speed, vMW. We
estimate the metachronal wave speed by shearing the
correlation function image until the ridges are vertical.
The uncertainty in vMW is estimated from the range of
shear values that give vertical ridges upon visual inspec-
tion of the sheared correlation array. We estimate the
metachronal wavelength λMW with a Fourier transform
of the orientation angles array shown in Figure 6 (which
is discussed in more detail below). The size of the error is
based on the estimated covariance of a Gaussian fit to the
Fourier transform. We checked that this wavelength was
consistent with that measured from the distance between
peaks in the correlation function shown in Figure 4. The
wavelength and wave speed also give a metachronal wave
oscillation frequency fMW = vMW/λMW. The measure-
ments of the metachronal wave, vMW, λMW, and fMW,
are listed in Table II.

Head positions for 4 eels were tracked by clicking on
their head positions in two hundred frames spanning 2
seconds from Video B and their trajectories are shown
in red in Figure 5. The eels don’t swim forward very
quickly. The four eels were chosen because their heads
were easiest to identify during the 2 s video clip. The am-
plitude of back and forth motion for the eel heads is about
AMW ∼ 0.07 mm. This amplitude is an estimate for the
amplitude of motion for eels engaged in the metachronal
wave and it exceeds the amplitude of motion Au ∼ 0.045
mm in the 1 mm long freely swimming eel.

By counting eel widths, we estimate that NMW = 13
to 15 eels per metachronal wavelength λMW are involved
in the traveling wave. However only about 8 eels per mm
have heads visible near the edge of the drop. Some of
the eel heads are more distant from the edge of the drop
and are confined between other eel bodies. For deeper
water/vinegar drops, the number of eels per unit length
in the metachronal wave is sensitive to wetting angle [29].

The metachronal wave frequency fMW ∼ 4 ± 0.2 Hz
is significantly lower than the undulation frequency of
individual freely swimming eels, fu ≈ 6 Hz. Studies of
metachronal wave formation in cilia and flagellate bac-
teria have found that as the filaments or flagella enter
a traveling wave state, their frequency of oscillation in-
creases because hydrodynamic drag on the filaments is
reduced when they are collectively beating in a wave pat-
tern [13, 14]. However, here we find that the metachronal
wave frequency is lower than that of the freely swimming
eels. Since eels swimming along the edge of the drop

do not exhibit a lower undulation frequency, the reduced
frequency must be due to interactions between organisms
and we infer that interactions between neighboring eels
reduce, rather than increase, their oscillation frequency.

A. Body orientations

Figure 3 suggests that when engaged in the
metachronal wave, portions of the eel’s bodies spend
more time at some orientation angles than others. Fig-
ure 5 shows that during some phases of the wave, the eel
heads move away from their neighbors. There are larger
gaps between eels at some phases of the wave. These
observations suggest there are deviations from sinusoidal
motion. In this section we measure body orientations
from the video frames to quantitatively examine this pos-
sibility.

To measure the local orientation of the eel bodies we
compute local histograms of oriented gradients (HOG).
These histograms are commonly used in object recogni-
tion software [38]. Figure 6 was made from one of the
panels shown in Figure 3. In each 12x12 pixel square cell
in the image, we computed histograms of oriented gradi-
ents with the hog routine that is part of the image pro-
cessing python package scikit-image. We use unsigned
gradients so orientation angles lie between [−π/2, π/2].
At each cell an average direction was computed using the
histograms and these are plotted as blue segments on top
of the original video frame in Figure 6a. In Figure 6b, the
same blue segments are plotted on top of a color image
with color showing the angles themselves. The color bar
on the right relates orientation angle to color, with white
corresponding to a horizontal orientation. In non-empty
regions, we estimate an uncertainty less than ±20◦ in the
orientational angles based on inspection of Figure 6a.

To examine statistical variations in the body orien-
tations we computed distributions from the orientation
angles (like those shown in Figure 6) but using 200 video
frames from Video B spanning a duration of 2 s. A large
number of video frames were used to average over the dif-
ferent phases of the wave. Orientation angle distributions
are shown in Figure 7b.

Three rectangular regions are drawn in Figure 7a on
one of the image frames and each region is plotted with
the same color and thickness line as used in Figure 7b.
In Figure 7b we show distributions of orientation an-
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FIG. 2. (a) A raw video frame from Video B. This video is
of a dilute vinegar drop containing a high concentration of
vinegar eels seen through a conventional microscope at X4
magnification. The edge of the drop on the slide is marked
with yellow arrows. The concentration of eels is higher near
the edge of the drop. There are eels of different lengths and
ages in the solution, however the smaller eels are less likely
to participate in the metachronal wave. (b) A photograph
taken from above of a drop on a slide containing a high con-
centration of vinegar eels. Detritus in the culture has been
pushed to the center of the drop. The feathery white ridges
on the edge of the drop are the metachronal wave. (c) An il-
lustration of the drop of concentrated vinegar eel solution on
a slide. The white feathery features represent the traveling
wave in the vinegar eels near the edge of the drop.

FIG. 3. Each panel show the same subregion of a series of
frames from Video B. The edge of the drop is near the bottom
of each panel. The time of each frame from the beginning of
the sequence is shown in yellow on the top right of each panel.
The x and y axes are in mm.

gles measured in these three rectangular regions. The
three region centers have different distances from the
edge of the drop, 0.47, 0.29 and 0.13 mm. The higher
color opacity lines in Figure 7b are distributions com-
puted with weights so that regions of high eel intensity
contribute more to the histogram. The lighter and lower
opacity lines are distributions computed without weight-
ing. The difference between the higher and lower opacity
lines shows that the orientation angle distributions are
not sensitive to local variations in image intensity. The
red rectangular region (plotted with wider lines) is more
distant from the edge of the drop than the blue region.
The red histogram is wider than the blue one, indicating
that there is a wider range of body orientation angles
more distant from the drop edge.

The distributions shown in Figure 7b have a trough
and are asymmetric or lopsided, with one peak higher
than the other. This asymmetry is not expected as
a sine wave has distribution of orientations (computed
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FIG. 4. Correlation function computed using equation 2 from
image intensity as a function of spatial shift ∆x and time delay
∆t. The metachronal wave speed depends on the slope of the
ridges. The estimated metachronal wave speed of vMW = 3.7
mm/s is shown with the red segment.

FIG. 5. Head positions for 4 eels were tracked over 2 sec-
onds of video and their trajectories are shown in red on the
image. The black dots show the location of the eel heads at
the same time as the video frame. The eels don’t advance
forward very quickly or at all while they are engaged in the
metachronal wave. The amplitude of back and forth motion
is about AMW ∼ 0.07 mm, and exceeds that of the freely
swimming eel.

from its slope) that would be symmetrical about a mean
value. Models for the orientation angle distribution are
discussed further in section V D.

In summary, we find that for vinegar eels engaged in
a metachronal wave, the distribution of body orientation
angles has two peaks of different heights and depends on
distance to the drop edge. The asymmetry in the ori-
entation angle distribution and inspection of eel heads
near the drop edge implies that eel body shapes and mo-
tions are not perfectly sinusoidal. This contrasts with our
study of the freely swimming eels in section III where we
found that the shape and motion of freely swimming eels
is nearly sinusoidal.

V. OSCILLATOR MODELS FOR TRAVELING
WAVES

Experimental observations have shown that motility
of swimming nematodes, such as C. elegans, is due to
the propagation of bending waves along the nematode’s
body length [39]; (for a summary of nematode locomo-
tion neurobiology, see [40]). The bending waves consist of
alternating phases of coordinated dorsal and ventral mus-
cle contractions and extensions [41]. During locomotion,
motor neurons excite muscles on either (ventral/dorsal)
side of the body while inhibiting muscles on the opposite
side.

The gait of C. elegans adapts to the mechanical load
imposed by the environment [42]. Swimming involves
higher frequency and longer wavelength undulations than
crawling on agar, though both behaviors may be part of
a continuous spectrum of neural control [43, 44]. Oscil-
lation frequencies also decrease for C. elegans swimming
in higher viscosity aqueous media [36]. Proprioception
is when sensory receptors in muscles or other tissues are
sensitive to the motion or position of the body. In mod-
els for nematode locomotion, the sensitivity to environ-
ment involves proprioceptive integration or feedback on
the neuronal control model [37, 40, 43, 45].

Experiments of restrained C. elegans [37] show that the
bending of the posterior regions requires anterior bend-
ing (see Figure 3 by Wen et al. [37]). If the nematode is
held fixed at its middle, the body can undulate between
head and constraint, but past the constraint to the tail,
there will be no undulation. These experiments suggest
that the body itself lacks central pattern generating cir-
cuits and motivates locomotion models that rely on an
oscillator in the head [37].

To create a model for collective motion in the vinegar
eels, we assume that the waves that propagate down the
nematode’s body are initiated at the organism’s head.
We use the phase of the head’s back and forth motion
with respect to its mean position to describe the state of
each organism and we model our ensemble of eels as a
chain of phase oscillators. In the absence of interactions,
each oscillator has intrinsic frequency equal to the oscil-
lation frequency of a freely swimming eel. Because the
mean positions (averaged over the oscillation period) of
the eel’s heads drift very slowly (see Figure 5), we neglect
drift in the mean or averaged (over a period) oscillator
positions. Here the oscillator phase is associated with
back and forth motion of an eel head because the head
is assumed to be the source of the body wave. This dif-
fers from the models by Niedermayer et al. [13], Brumley
et al. [14] where the phase describes motions of a cilium
or flagellum tip.

When the vinegar eels are engaged in metachronal
waves, the organisms are often touching each other.
Chelakkot et al. [21] simulated steric interactions be-
tween active and elastic filaments in arrays and found
that short-ranged steric inter-filament interactions can
account for formation of collective patterns such as
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FIG. 6. Body orientation angles. In (a) and (b) panels the blue segments are oriented with the means of locally computed
histograms of oriented gradients. The histograms of oriented gradients were computed from one of the images in Figure 3 from
Video B. The same image is shown in gray-scale in panel (a). The color image in panel (b) displays the orientation angles, with
color-bar on the right in degrees.

metachronal waves. Because undulation frequency of C.
elegans is slower when under mechanical load imposed
by the environment, we assume that steric interactions
in our vinegar eels reduce the phase velocity of oscilla-
tion.

To construct a model for metachronal waves, we con-
sider the head of a single organism to be an oscillator
and we consider ensembles of N oscillators. The i-th os-
cillator can be described with a phase θi and a frequency
of oscillation or a phase velocity dθi

dt = θ̇i. Here i is an
integer index and θi is a function of time t.

Collective phenomena involving synchronization of os-
cillators has been described with different nomenclature.
Following [13, 46], a synchronized state of an ensemble
of N oscillators is one where all oscillators have iden-
tical phases, θi(t) = θj(t) for all i, j ∈ (0, 1, ...N − 1).
A phase-locked or frequency synchronized state [22–24]
is one where all oscillators have identical phase veloci-
ties θ̇i(t) = θ̇j(t) for all i, j ∈ (0, 1, ...N − 1). An en-
trained state has identical mean phase velocities ω̃i = ω̃j
for all i, j ∈ (0, 1, ...N − 1). The time average of the
phase velocity can be computed with an integral over

time, ω̃i = limt→∞
1
t

∫ t
0
θ̇(t)dt, or by integrating over an

oscillation period if oscillator motions become periodic.

For a chain of oscillators, the index i specifies the or-
der in the chain. One type of traveling wave is a non-
synchronous phase-locked state characterized by a con-
stant phase delay or offset between consecutive oscilla-
tors in a chain or loop of oscillators. In other words
θi+1 = θi + χ for consecutive oscillators, where χ is the

phase delay and θ̇i 6= 0 for all i. If individual oscillators
undergo similar periodic motions, then another type of
traveling wave is a non-synchronous but entrained state
characterized by a time delay between the motions of
consecutive oscillators. In other words θi(t+τ) = θi+1(t)
with time delay τ . In this case the phase velocities would
be periodic and need not be constant. Both types of trav-
eling waves involve periodic oscillator motions and are
known in the biological literature as metachronal waves.

A. Local Kuramoto models

The Kuramoto model [46–48] consists of N oscillators,
that mutually interact via a sinusoidal interaction term

dθi
dt

= ωi +

N∑
j=1

Kij sin(θj − θi) (3)

where Kij are non-negative coefficients giving the
strength of the interaction between a pair of oscillators.
In the absence of interaction, the i-th oscillator would
have a constant phase velocity ωi which is called its in-
trinsic frequency.

With only nearest neighbor interactions a well stud-
ied model, sometimes called a local Kuramoto model, is
described by

dθi
dt

= ωi +K [sin(θi+1 − θi) + sin(θi−1 − θi)] (4)
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FIG. 7. Distributions of orientation angles in the metachronal
wave. (a) Three rectangular regions are shown on top of one
of the image frames. The color and line width showing each
region is the same as in panel (b). (b) Normalized distri-
butions of orientation angles in the three rectangular image
regions. The histograms were computed using orientations
like those shown in Figure 6, but using 200 video frames from
Video B spanning a duration of 2 s. The higher opacity lines
are histograms computed with intensity weights with regions
of higher eel density contributing more to the histogram. The
lighter lines are histograms computed without weighting. The
distribution is narrower near the edge of the drop. The gray
bars have orientation equivalent to their x coordinates on the
plot and are plotted at multiples of 30◦. The difference in the
two peak heights in each distribution suggest that there are
deviations from sinusoidal shapes and motions.

[22–27]. At low values of positive interaction parameter
K, the oscillators are not affected by their neighbors. At
higher K, the oscillators cluster in phase velocity, and the
number of clusters decreases until they fuse into a single
cluster that spans the system. At and above a critical
value of K = Ks the entire system must enter a global
phase-locked state [49]. Above the critical value K > Ks,
there can be multiple stable phase-locked attractors, each
with its own value of global rotation rate Ω = 1

N

∑
i ωi

[26, 50].
What fraction of possible initial conditions would con-

verge onto a phase-locked solution that is not syn-
chronous? The set of initial conditions that converge onto
a particular solution are called its basin of attraction.
The basins of attraction for traveling wave solutions (or
non-synchronous phase-locked states) are smaller than
that of the synchronous state [26, 27]. Using random and
uniformly generated initial phases in 0 to 2π for each os-
cillator, the system is more likely to enter a synchronous
rather than a traveling wave state.

Because well studied local Kuramoto models like that
of equation 4 are more likely to enter a synchronous than
a traveling wave state, they do not capture the behav-
ior illustrated by our vinegar eels, or other systems that

exhibit metachronal waves such as chains of cilia [13] or
flagella on the surface of Volvox carteri alga colonies [14].
Relevant models should exhibit a larger basin of attrac-
tion for traveling wave states than for the synchronous
state.

In models for metachronal waves in cilia or flagellates
[13, 14, 18] the end of a filament moves in a plane and on a
trajectory of radius R from a central position with phase
θ in polar coordinates. Active forces are induced via tan-
gential forces exerted on the filament. Interactions be-
tween the oscillators are based on hydrodynamic interac-
tions between pairs of filaments and are computed using
Stokes equation which is valid at low Reynolds number
[8, 13, 14, 18]. Motion is over-damped so the equations
of motion are a balance between driving and hydrody-
namic forces. The filament velocities are computed as
a function of their positions and it is not necessary to
compute accelerations. The equations of motion describe
motions of the phase, radius and orientation angle of the
end of the filament’s trajectory. However, if the distance
between filaments is large compared to the radius of mo-
tion, the dynamical system can be approximated with
nearest neighbor interactions and neglecting variations
in the radius or plane of motion [13]. This gives a local
oscillator chain model dependent only on phases.

B. An oscillator model based on heads that overlap

We desire a model that has a wide basin of attrac-
tion for traveling wave states, similar to those by Nie-
dermayer et al. [13], Brumley et al. [14]. The oscilla-
tor chain model by Niedermayer et al. [13] included sine
and cosine terms of the sums and differences of pairs of
phases and that by Brumley et al. [14] included both ra-
dial and phase motions. We can similarly assume that
motion is over-damped and can be described by equations
for phase and phase velocity and lacking phase accelera-
tions. Since steric interactions are likely to be important,
we can adopt a model with only nearest neighbor interac-
tions, as did Niedermayer et al. [13]. However, opposite
to the hydrodynamic interaction models, the interactions
between our eels are likely to be strong, and they should
reduce the oscillator phase velocity rather than increase
it. We observe that eel heads near the edge of the drop
(see Figures 3, 5) were not near other eel bodies during
portions of the traveling wave. If undulation is generated
at the eel head, then interactions on it are only strong
during about half of the head’s oscillation cycle.

Consider two eels oriented horizontally as shown Fig-
ure 8a with x the horizontal axis and y the vertical one.
The eels undulate with amplitude A and without varying
the head’s x position or the orientation of its mean cen-
terline, which is shown with dotted lines. The y position
of the i-th head

yi = A cos θi − id, (5)

where d is the distance between the neighboring eel’s
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mean centerlines. The phase of oscillation is given by
the angle θi. The distance between the two heads with
index i and i− 1 is

Δleft = d+A cos θi −A cos θi−1. (6)

The eels with index i and i− 1 overlap near their heads
if the left-sided overlap function

oleft(θi−1, θi) =
Δleft

A
= cos θi − cos θi−1 + β < 0, (7)

where the dimensionless overlap parameter

β ≡ d

A
. (8)

We assume that a strong steric interaction on the i-
th eel’s head would reduce its phase velocity when
oleft(θi−1, θi) < 0. Otherwise, the eel head’s phase veloc-
ity would remain at its intrinsic phase velocity. Because
the eels tend to be closer together than the amplitude
of undulation when they are involved in a metachronal
wave, we expect β to be smaller than 1. The amplitude
A of body motions for eels engaged in the metachronal
wave need not be the same as that of the freely swimming
eel, Au.
Consider three eels oriented at an angle as shown in

Figure 8b. The oscillator in the i-th eel’s head is more
strongly influenced by the motions of the organism to its
left (with index i− 1) and less so by the one to its right
(with index i+ 1). When the eels are tilted with respect
to the edge of the drop, we expect directed interactions
where the phase of the eel’s head is primarily influenced
by its nearest neighbor on one side.

A modification to the local Kuramoto model with di-
rected or one-sided nearest neighbor interactions

dθi
dt

ω−1
0 = 1−Kf(θi−1, θi). (9)

Here positive and dimensionless parameter K describes
the strength of the interaction. The nearest neighbor in-
teraction function 0 < f(θi−1, θi) ≤ 1, reduces the phase
velocity and mimics the role of one-sided steric interac-
tions. The intrinsic angular phase velocity ω0 is the same
for each oscillator. We work with time in units of ω−1

0

which is equivalent to setting ω0 = 1.
One choice for the interaction function should give 1 if

the overlap function oleft (defined in equation 7) is nega-
tive and there is an overlap and gives 0 otherwise. This
choice neglects eel body width. We have checked with nu-
merical integrations that a numerical model based on a
Heaviside step function can robustly give traveling wave
solutions. However, numerical integration of a discontin-
uous function with a conventional numerical integrator
can give results that are dependent on step size or sen-
sitive to round-off or discretization errors. To mitigate
this problem we use a smooth function to approximate

the step function, f(θi−1, θi) =
1
2

[
1− tanh oleft(θi−1,θi)

hol

]

FIG. 8. (a) Two eels undulate with amplitude A but without
moving their mean centerlines. The two mean centerlines are
shown with dotted lines and are separated by distance d. The
eal heads are shown with large black dots. We assume that
the undulation on the body is initiated by oscillators in the
eel’s heads. The oscillators have phases θi and θi−1. When
Δleft = d + A cos θi − A cos θi−1 < 0, the eel heads overlap
and steric interaction would slow their motion. (b) Three
consecutive eels are tilted by angle φtilt with respect to the
horizontal direction. The oscillator in the i-th eel’s head is
more strongly influenced by the motions of the organism to
its left (with index i−1) than the one to its right (with index
i+1). At lower tilt angle φtilt, the interactions are increasingly
lopsided.

where dimensionless parameter hol sets the abruptness of
the transition of the function from 0 to 1. In the limit of
small hol we recover the Heaviside function. An oscilla-
tor model that uses this smooth function has equation of
motion

dθi
dt

ω−1
0 = 1− K

2

[
tanh

(
cos θi−1 − cos θi − β

hol

)
+ 1

]
.

(10)

C. Numerical integrations of a directed overlap
phase oscillator chain model

The directed overlap phase oscillator model given by
equation 10 depends on three positive parameters, the
interaction strength K, an overlap parameter β and the
parameter setting the smoothness of the interaction func-
tion hol. The model is also sensitive to the number of
oscillators in the chain or loop N , the boundary condi-
tion and the choice of initial conditions. We integrate
this model using a first order explicit Euler method. The
initial phases for each oscillator are randomly generated
using a uniform distribution spanning [0, 2π].
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FIG. 9. A directed oscillator chain model numerical integration. Equation 10 is integrated with N = 200 oscillators in a chain
with a non-periodic boundary condition and randomly chosen initial phases. The interaction parameter K = 0.5, intrinsic
frequency ω0 = 1, overlap parameter β = 0.25, smoothness parameter hol = 0.05 and time-step dt = 0.05. The system was
integrated to time t = 1001. At the end of this integration the average phase velocity ω̃ = 0.77ω0 and the average wavelength
is Nλ = 12 oscillators. (a) From top to bottom panels, the phase angles θj , phase velocity dθj/dt and phase difference
χj = θj+1 − θj are plotted as a function of index j at two different times. The outputs at t = 1000 and t = 10001 are plotted
with red and blue lines. Comparison between these two outputs shows that they are similar but shifted by a time delay.
The system is an entrained state which can also be described as a traveling wave state. (b) From top to bottom panels, the
images show phase angle θj , phase velocity dθj/dt and phase difference χj with color shown in the color-bars on the right.
The horizontal axes is time and the vertical axes are the oscillator index j. The fine diagonal features at large times are the
traveling waves. The horizontal features are discontinuities that eventually disappear as coherent regions merge.
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FIG. 10. Wavelengths Nλ and mean phase velocity ω̃ com-
puted for numerical integrations at t = 1000 of the directed
oscillator chain model given in equation 10. The integra-
tions have N = 200 oscillators, the timestep is dt = 0.05
the smoothness parameter is hol = 0.1, the boundary is not
periodic and initial phases were randomly chosen. If the en-
tire chain of oscillators did not reach a traveling wave state
at t = 1000, a black dot is plotted otherwise the dot has color
giving the wavelength Nλ (top panel) and mean phase veloc-
ity ω̃ (bottom panel). The x axis is the interaction strength
parameter K and the y axes are the overlap parameter β.

In local Kuramoto models, stable solutions that are
present in a loop may not be present if one link is dis-
solved and the loop becomes a chain [26, 51]. To ensure
that traveling waves are robustly generated in our model,
we purposely do not chose a periodic boundary condition.
The boundary at the end of the chain or for θN−1 does
not affect the dynamics because of the direction of the
interactions. For the left boundary (with phase θ0) we
set the phase velocity dθ0

dt = (1 −K)ω0. We find that a
slow left boundary is less likely to excite perturbations
that propagate through the system.

A numerical integration with N = 200 oscillators, in-
trinsic frequency ω0 = 1, interaction parameter K = 0.5,
overlap parameter β = 0.25, and smoothness parameter
hol = 0.05 is shown in Figure 9. The time step used is
dt = 0.05 and we have checked that a smaller step size
does not significantly change the integration output. In
Figure 9a the panels show phase angle θj , phase veloc-
ity dθj/dt and phase shift χj = θj+1 − θj as a function

of index j for an integration at two times t = 1000 and
t = 1001. In Figure 9b we show the same quantities but
with color arrays as a function of both index and time.
Despite the absence of a diffusive-like interaction term
(similar to that in equation 4), the model has attracting
entrained or traveling wave solutions. A comparison be-
tween the two outputs in the top panel shows that phases
at different times can be related with a time delay. At
the beginning of the integration clusters of entrained or
nearly phase-locked groups form and later merge to give
a fully entrained or traveling wave state. This type of
behavior was previously seen in the oscillator models de-
veloped for hydrodynamic interactions between cilia and
flagella [13, 14].

When initial conditions are random, there are initially
groups of neighboring oscillators with large phase differ-
ences and these large differences can remain on the same
group of oscillators for many oscillation periods. These
are nearly horizontal streaks seen in the bottom panel
showing phase difference χ in Figure 9b. Had we added
a diffusive-like term to our model, small wavelength per-
turbations would be more rapidly damped, but such a
term would also affect the velocity and wavelength of
traveling wave states.

We ran the integration to a maximum time t = 1001
with ω0 = 1 corresponding to 1001/(2π) ≈ 160 oscillation
periods (2π/ω0). For an oscillation frequency of fu ∼ 6
Hz (as we observed for our vinegar eels) this duration
corresponds to 27 seconds. The metachronal waves take
a few minutes appear after the drop is placed on the slide.
The time it takes for all entrained clusters to merge in
the numerical model is shorter than the few minutes it
takes for traveling waves to form on a large portion of the
drop edge in our concentrated eel experiments. However,
our model is of a fixed chain of oscillators so it does not
take into account the time it takes for the vinegar eels to
collect on the boundary or sources of noise in the system.

At the end of the numerical integration shown in Fig-
ure 9, the average phase velocity ω̃ = 0.77ω0 (computed
from all oscillators at that time), the average wavelength
is Nλ = 12 oscillators. The phase delay for the entrained
state τ = 2π

ω̃Nλ
= 0.68. The number of oscillators for a

change of 2π in phase, Nλ, is comparable to that we esti-
mated for the metachronal wave in the vinegar eels (see
Table II). The average phase velocity ratio ω̃/ω0 is near
but somewhat higher than the ratio of metachronal wave
to freely swimming undulation frequency fMW/fu ∼ 0.67
that we estimated for the vinegar eels (listed in Table II
and discussed in section IV).

If all phases are initially set to the same value, the
dynamical system described by equation 10 remains in a
synchronous state. However, if some noise is introduced
into the system (in the form of small stochastic pertur-
bations on each oscillator) then the system is likely to
enter the traveling wave state even with flat initial con-
ditions. The basin of attraction for the traveling wave
state is significantly larger than that of the synchronous
state.
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With a fixed value of smoothness parameter hol, we
integrated equation equation 10 for different values of in-
teraction parameter K and overlap parameter β. These
integrations have random initial conditions and non-
periodic boundary, as described above, intrinsic fre-
quency ω0 = 1 and smoothness parameter hol = 0.1. At
t = 1000 we inspected plots like those in Figure 9 to see if
the system was in an entrained state. If so, we measured
the mean wavelength Nλ and the mean phase velocity
ω̃. In Figure 10 points are plotted as a function of β
and K and with color set by their wavelength Nλ (top
panel) or mean phase velocity ω̃ (bottom panel). Systems
that exhibited discontinuities at the end of the simulation
(other than at the left boundary) are plotted in black. A
fairly wide range of interaction and overlap parameters
robustly gives entrained or traveling wave states.

At larger overlap parameter, β, the oscillators spend
less time overlapped and this tends to give a shorter wave-
length and higher mean phase velocity ω̃ in the entrained
state. If eels are more distant from each other or have
lower amplitude oscillations then β is larger. At large
overlap parameters β & 0.4 (on the top of each panel in
Figure 10) the system is less likely to be in a traveling
wave state at t = 1000. This is due to clusters of os-
cillators that begin with large phase differences between
neighbors that do not dissipate. High eel concentration
would reduce the overlap parameter β, so the model does
account for the sensitivity of the metachronal wave to eel
concentration on the boundary.

Figure 10 shows that for K < 0.4 (on the left side of
the figure) entrained states are not present at the end
of the integration. This is due to groups of neighbor-
ing oscillators with initially large phase differences. If
integrated longer, these irregularities or discontinuities
might eventually disappear. The interaction parameter
K influences the time it takes for the short wavelength
structure to dissipate. In a more realistic model, noise
and diffusive interactions would also affect the range of
parameters giving an entrained or traveling wave state.
The odd black points at β ≈ 0.25,K = 0.7 are due to dis-
continuities at the left boundary that continuously prop-
agate through the system. We are not sure why our left
boundary condition caused this problem only in this re-
gion of parameter space.

What properties of a phase oscillator model are re-
quired for a large basin of attraction to an entrained or
traveling wave state? The model by Brumley et al. [14]
is two dimensional as it depends on oscillator radius as
well as phase so it is more complex than a model that
consists only of a chain of phases. With only phases,
both our model and that by Niedermayer et al. [13] are
not potential models, and interactions between pairs of
oscillators are not applied equally and oppositely to each
oscillator in a pair, the way conventional physical forces
are applied. These three examples (our model, and those
by Niedermayer et al. [13], Brumley et al. [14]) of models
developed for traveling waves in biological systems might
yield clues for more general classification of the basins of

FIG. 11. Distributions for the directed chain integrated os-
cillator chain model shown in Figure 9 are plotted in blue.
These are compared to distributions for a constant phase ve-
locity model which is shown in orange and referred to as ‘sinu-
soidal’. (a) The distribution of phase angles for the integrated
oscillator chain model and the sinusoidal model. (b) The dis-
tribution of phase velocities for the integrated oscillator chain
model. The sinusoidal model has dθ/dt ω−1

0 = 1. (c) The dis-
tribution of orientation angles for both oscillator chain and
sinusoidal models computed using equation 15, φtilt = 0 and
πA = Aω0/v = 1. The red dotted line shows the distribu-
tion function (in equation 17) for the sinusoidal model. (d)
We show smoothed distributions of orientation angles com-
puted using equation 15, φtilt = 20◦ and πA = 0.7 for both
oscillator chain and sinusoidal models. The sinusoidal and os-
cillator chain model distributions have been smoothed with a
Gaussian filter with a standard deviation of σ = 12◦. With a
thick green line, we show the distribution of orientations mea-
sured from the vinegar eels in Video B. This distribution is
the same as plotted in green in Figure 7b. The directed chain
oscillator model displays an asymmetry in the associated ori-
entation angle distributions (i.e., peaks of different heights)
that is present in the observed distribution.

attraction for phase oscillator models with local interac-
tions.

For most of our integration parameters we saw only a
single possible entrained state. Is it possible to predict
the phase delay τ , or wavelength, Nλ, of this entrained
state? The integration shown in Figure 9a of the model
given by Equation 10 shows that the phase at a single
output time has two regions, One region has a low phase
velocity and the other region has a higher phase velocity.
In the fast and slow regions, the phase velocity is constant
and phase differences between neighboring oscillators are
maintained. In appendix A, we estimate the phase delay
τ and wavelength Nλ of the entrained state from the
phase shifts that occur during the transitions between
the fast and slow regions.
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D. Distributions of orientation angles

How do we relate the oscillator chain model to the
orientation distributions displayed in Figure 7b for the
vinegar eels engaged in a metachronal wave? The un-
dulation velocity we measured in the freely swimming
eel vu ∼ 3.0 mm/s is similar to the metachronal wave
velocity vMW ∼ 3.7mm/s so we could use either one to
make an estimate for how motions of the head propa-
gate to the rest of the body. The free eel undulation
frequency of fu = 5.9 Hz gives intrinsic phase velocity
ω0 = 2πfu = 37 s−1. It is useful to compute the dimen-
sionless ratio

πA,MW ≡
AMWω0

vMW
≈ 0.70 (11)

using parameters listed in Table I and Table II that we
measured for the freely swimming eel and metachronal
wave.

The phase θ in our oscillator model represents the
phase of back and forth oscillation in an eel’s head. We
constructed our interaction function assuming that the
eel head moves away from its mean centerline with coor-
dinate perpendicular to the mean centerline y = A cos θ.
We assume that the head’s motion excites a constant ve-
locity traveling wave along the eel body y(x, t) with dis-
tance y from the mean centerline a function of distance
x along the mean centerline. The head’s motion gives
boundary condition

y(x = 0, t) = A cos [θ(t)] , (12)

where the function θ(t) gives the phase of the head oscil-
lation as a function of time. With constant undulation
wave velocity v

y(x, t) = A cos
[
θ
(
t− x

v

)]
(13)

is consistent with the boundary condition at x = 0 (equa-
tion 12). The velocity that waves propagate down the eel
body v may not be the same as vu, the wave velocity for
the freely swimming eel.

The slope of the body

dy(x, t)

dx
= A sin

[
θ
(
t− x

v

)]
θ′
(
t− x

v

)
v−1. (14)

Here θ′ is the derivative of the function θ(t). The distri-
bution of the slopes should be the same as the distribu-
tion of A

v
dθ
dt sin θ where the phases θ and phase velocities

θ̇ are those at different times and positions for the heads
in the oscillator array after the integration achieves an
entrained state. The slope of the body is dy

dx = tanφ
where φ is the body orientation angle. From our model
phases and phase velocities we can compute the distri-
bution of body orientation angles φ assuming a constant
wave velocity v with

φ = arctan

[
πA

(
dθ

dt

1

ω0

)
sin θ

]
+ φtilt, (15)

with

πA ≡
Aω0

v
. (16)

We have purposely written equation 15 in terms of di-
mensionless parameters so as to facilitate comparison of
our model with the vinegar eel collective motions. Here
the tilt angle φtilt, illustrated in Figure 8, lets us adjust
the angle of the eel centerlines with respect to the drop
edge.

We generate model orientation distributions for the
oscillator chain model with parameters and integration
shown in Figure 9. In Figure 11 we use the arrays from
20 different times (spaced at 0.5 duration intervals) to
compute the distributions of phase angle θ, phase ve-
locity dθ

dt , and orientation angle φ. The orientation an-
gles are computed with equation 15 from the phases and
phase velocities. The distributions have been normalized
so that they integrate to 1. For comparison, we similarly
generate and show distributions for a constant phase ve-
locity model that has dθ

dt = ω0. This model has a flat
distribution of phases and can be considered purely sinu-
soidal. In this special case, the orientation angle distri-
bution function consistent with equation 15 and equation
16 is

p(φ)sinusoidal =
1

π

1 + tan2(φ− φtilt)√
π2
A − tan2(φ− φtilt)

. (17)

The phase velocity distribution for the oscillator chain
model shown in Figure 11b shows two peaks, a low one
for when there are interactions between neighboring os-
cillators and a high one that is at the intrinsic phase
velocity. This is what we would expect from inspection
of the phase velocities in Figure 9. Figure 11c shows
orientation angles φ computed with no tilt, φtilt = 0,
and ratio πA = Aω0/v = 1. Orientation angle distribu-
tions for both oscillator chain model and constant phase
velocity model exhibit two peaks and a trough. in Fig-
ure 11c, the constant phase velocity model distribution,
in orange, is consistent with the distribution function of
equation 17 that is shown with a dotted red line. The
peaks of the orientation angle distribution for the oscilla-
tor chain model have different heights due to the uneven
phase velocity distribution, whereas the distribution is
symmetrical about φ = 0 for the sinusoidal (constant
phase velocity) model.

We can compare the modeled distribution of body ori-
entations to those measured in our videos of the eels en-
gaged in the metachronal wave, shown in Figure 7b, and
discussed in section IV A. Figure 11d shows orientation
angle distributions computed with φtilt = 20◦ and ra-
tio πA = 0.7 which is that of equation 11. To facilitate
comparison between distributions we have smoothed the
model distributions using a Gaussian filter with standard
deviation of 12◦. In Figure 11c, we replot one of the
orientation angle distributions that was shown in Fig-
ure 7b and is measured from Video B of a metachronal
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wave. The model orientation distributions shows two
peaks, and when corrected by the same factor (setting
πA = πA,MW) and smoothed, they have a width and two
peaks similar to that observed for the metachronal wave.
Unlike the observed distribution, the sinusoidal model’s
orientation angle distribution is symmetrical about φtilt
and its two peaks are the same height. In contrast, the
oscillator chain model distribution is asymmetric or lop-
sided and its two peaks have different heights. Because
there are variations in oscillator phase velocity in the
oscillator chain model, the associated orientation angle
distribution is lopsided. The oscillator chain model of-
fers an explanation for the asymmetry that is present in
the observed orientation angle distribution.

To compare the oscillator chain model to the observed
orientation angle distribution we smoothed the model.
Noise-like variations in the observed orientation angle
distribution can be due to eels that are not aligned with
their neighbors and variations in shading that affect the
accuracy of the HOG algorithm. The oscillator chain
model’s distribution is more lopsided than the observed
distribution which implies that variations in the phase
velocity are not as extreme as predicted in Figure 11b.
A more complex oscillator chain model would be needed
to give a better fit to the observed orientation angle dis-
tribution.

E. Body shapes

In equation 15 we used model phases to compute the
distribution of body orientation angles φ assuming a con-
stant wave velocity v. With the same assumption we can
compute the position and shape of the entire body using
a time series of model outputs. Our procedure for doing
this is described in appendix B.

In Figure 12a we show computed eel body shapes that
are derived from the integrated phase oscillator model
output shown in Figure 9 (integrating equation 10) and
computed along the body lengths using equation B7. To
generate the body positions we used amplitude A = 0.07
mm, (based on that measured from eel head motions
for eels engaged in the metachronal wave), and intrin-
sic phase velocity ω0 = 2πfu with fu = 5.9 Hz based on
freely swimming eels. We adopted tilt angle φtilt = 20◦

(the same as we used to generate orientation distribu-
tions in Figure 11). To match the metachronal wave-
length we used a horizontal distance between eel mean
centerlines of D = 0.11 mm, (as defined in Figure 8).
Lastly we use a wave speed v = 4.1 mm/s. The ratio
πA = Aω0/v = 0.63 is similar to given in equation 11 and
was used to create the model orientation distributions in
Figure 11d. The eel body shapes using these parame-
ters are shown in Figure 12a and they illustrate similar
morphology to the vinegar eels themselves when engaged
in the metachronal wave. Figure 12b shows a panel like
those of Figure 3 from Video B for comparison.

Figure 12a shows that the periodic variations in phase

delay and phase velocity of an entrained state from our
oscillator chain model (equation 10) reduce overlap be-
tween eels, not just near the eel heads but throughout
their bodies. The eel bodies are nearly equidistant from
each other everywhere. In Figure 12c we show body po-
sitions generated with a constant phase velocity (ω0) and
constant phase delay (with the same wavelength Nλ)
model. The constant phase delay and phase velocity
model fails badly. Variations in phase delay between
neighboring eels and in their phase velocity during differ-
ent parts of the oscillation are probably needed to prevent
strong steric interactions between the eels.

We chose the wave speed v along the body to best
match the observed morphology, however it exceeds both
the metachronal wave speed of about vMC ∼ 3.7 mm/s
and the undulation wave speed on the 1 mm long freely
swimming eel of vu ∼ 3.0 mm/s. We might expect
v = vMC/ cosφtilt = 3.9 mm/s using vMC = 3.7 mm/s
and φtilt = 20◦. Our chosen value for v exceeds this. Our
assumption for computing orientation angle φ in equation
15 and body shape ignores interactions between organ-
isms that should affect the speed of wave propagation
down the eel bodies. A more complex model that takes
into account proprioception feedback throughout the eels
body lengths might give a smoother and more symmet-
ric orientation angle distribution, (reducing the discrep-
ancy between that modeled and measured in Figure 11d)
and a closer match to the wave morphology (improving
the comparison between Figure 12a and b). We observe
that the amplitude of motion in the metachronal wave
AMW > Au exceeds the amplitude of undulation when
freely swimming, AMW > Au and the speed of waves
traveling down the body exceeds that when freely undu-
lating v > vu. A feedback motor control model, perhaps
based on local body curvature, might predict or explain
these characteristics.

There is a discrepancy between the overlap parame-
ter β = d/A = 0.25 of the numerical oscillator model we
adopted (shown in Figure 9 and used to create Figures 11
and 12) and that derived from the additional parameters
we used to make Figure 12a for the eel bodies. The dis-
tance between eel centerlines d is related to the horizontal
distance between mean centerlines D with d = D sinφtilt
(see Figure 8). For the model shown in Figure 12a, we
used D = 0.11 mm, A = 0.07 mm and φtilt = 20◦ giving
d = 0.038 mm. We can estimate an overlap parame-
ter for the tilted system β ∼ D sinφtilt/A = 0.54 which
exceeds our oscillator model overlap. This discrepancy
might be reduced if we included the eel body width and
the tilt angle φtilt in our overlap criterion function. A
more complex model that takes into account feedback
throughout the eels body lengths might also resolve this
discrepancy.
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FIG. 12. (a) Eel body positions that are computed with a series of outputs at different times of the phase oscillator model
shown in Figure 9 and using equation B7. Overlaps are reduced not only at the eel heads but throughout their body. (b) A
panel from Video B similar to those shown in Figure 3. The morphology of the model wave in (a) resembles that seen in the
vinegar eels. (c) Eel body positions were estimated via equation B7 but with a constant time delay and constant phase velocity
model. Other parameters were the same. This model causes eel bodies to overlap. A comparison between (a) and (c) suggests
that there must be variations in the phase velocities to reduce steric interactions.

VI. SUMMARY AND DISCUSSION

We presented high speed videos of swimming vine-
gar eel nematodes (T. aceti) at low and high concen-
tration. In a drop containing a high concentration of
the vinegar eels, the eels concentrate at the edge of a
drop and engage in collective wave-like motion known as
a metachronal wave. We found that freely swimming or-
ganisms have oscillation frequency of about 6 Hz. How-
ever, at high concentration the nematodes cluster on a
boundary and exhibit traveling waves with a lower fre-
quency of about 4 Hz. For a freely swimming vinegar
eel, the body shape is nearly sinusoidal over much of its
body length. In contrast, the distribution of body orien-
tation angles for organisms engaged in the metachronal
wave has two peaks of different heights, implying that the
motion is not purely sinusoidal. The bodies spend more
time at higher orientation angles w.r.t to their mean body
orientation angle (averaged over a cycle).

We constructed a model for the collective behavior
based on a chain of phase oscillators. Because we do
not see large drifts in the mean eel head positions, av-
eraged over an oscillation cycle, we neglect the head’s
forward motion. Because experiments of a similar nema-
tode, C. elegans, support a model where the undulation
is initiated at the head [37], we use the phase of the
head’s back and forth motion to describe it as an oscil-
lator. Because the metachronal wave frequency is lower
than the undulation frequency of a freely swimming eel,

we adopt interactions that reduce the oscillator phase ve-
locity. Our oscillator model uses strong but directed or
one-sided nearest neighbor to mimic steric interactions
between organisms. The oscillator model (equation 10)
robustly exhibits entrained or traveling wave solutions
and can have traveling waves with wavelength (in terms
of numbers of organisms or oscillators) and mean phase
velocity (in units of the intrinsic or freely swimming un-
dulation frequency) similar to that of the vinegar eels
when engaged in a metachronal wave.

To estimate the distribution of body orientation angles
and body shapes from our oscillator model, we assume
that the undulation waves propagating down the body
from the eel head have a constant wave velocity. This
gives a two humped distribution of body orientations
with peaks of different heights, similar to that observed
for vinegar eels engaged in the metachronal wave. The
body shapes are similar to those engaged in the wave and
the eel bodies don’t overlap over their entire length. The
model which was designed to impede eel head overlaps
also reduces close interactions throughout the eel bodies.

Our model neglects interactions between organisms
that should affect the amplitude and speed of wave prop-
agation down the eel bodies. Our model also neglects the
ability of the eels to change direction and congregate. Im-
proved models could take into account the positions and
phases of all points in the eel’s bodies and allow them to
swim, reorient and congregate.

Few known simple phase oscillator models exhibit a



17

large basin of attraction to an entrained or traveling wave
state. Perhaps our model (given in equation 10) and
that by Niedermayer et al. [13] can serve as examples
that might give insight for more general classification of
coupled phase oscillator models that would be helpful for
predicting wavelike collective behavior.

Vinegar eels are visible by eye and are large compared
to other biological systems that exhibit metachronal
waves, such as carpets of cilia [12, 15, 52] or flagella on the
surface of Volvox carteri alga colonies [14]. Their large
size facilitates study, however it also places them in an in-
teresting intermediate hydrodynamic regime, with swim-
ming Reynolds number Re = vswimL/ν ∼ 0.4 (where
ν ∼ 1 mm2s−1 is the kinematic viscosity of water), so
the nature of hydrodynamic interactions between them
should differ from that of microorganisms which are at
much lower Reynolds number (e.g., [16, 53]). Their prox-
imity when involved in collective behavior suggests that
steric interactions may be important. Studies of the sim-
ilar nematode C. elegans locomotion [37] imply that feed-
back in motor control affects their gait. It is exciting to
have a relatively large system in which collective motion
can be studied, however, this system also presents new
challenges for understanding its behavior.

In on-going studies we will describe experiments of
concentrations of C. elegans, explore collectively formed
dense coherent filaments in T. aceti that we have ob-
served advance on a vinegar/oil interface and explore the
role of concentration, drop shape and wetting angle in
affecting metachronal wave formation in T. aceti [29].
Similarities between T. aceti and C. elegans suggest that
it may be possible to use techniques developed for C. el-

egans to perform genetic modifications on the T. aceti
nematode. In future, genetically modified strains may
help us better understand the molecular underpinnings
of the collective motion. Future studies could question
whether there is an evolutionary advantage to the collec-
tive behavior which may help populations of nematodes
penetrate crowded environments to reach food or drive
flows that transport oxygen and nutrients.
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Appendix A: Compression and rarefaction in
entrained states
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by Equation 10 shows that each oscillator has a periodic
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phase delay and phase velocity and the other region has
a higher phase delay and phase velocity. We can also
show this behavior by plotting phase angle θ against time
for a series of oscillators. This type of plot is often used
to study shock compression or rarefaction. On this plot,
the inverse of the slope gives the phase velocity and the
horizontal distance between consecutive lines gives the
phase delay. We show such a plot in Figure 13 for an
integration with the same parameters as in Figure 9. We
plot phase θ vs time for 11 consecutive oscillators after
integrating to t = 1000 and for a duration of ∆t = 10.
The region of lower phase velocity lies between the thick
gray vertical lines which are at θ = 0.25π and 0.82π.

We make the assumption that an entrained state has
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FIG. 13. We plot phase θ vs time for 11 consecutive oscil-
lators for the directed chain oscillator model with the same
parameters as shown in Figure 9. Each oscillator is plotted
with a different color and the oscillator indices are given in
the key. The figure shows the periodic compression and rar-
efaction of phase in the entrained state. The region of lower
phase velocity, between θ ≈ 0.25π and 0.82π, is marked with
the vertical thick light gray lines. The inverse of the local
slope of one of the curves gives the phase velocity and the hor-
izontal distance between neighboring curves gives the phase
delay between consecutive oscillators.

equation 10, which we repeat here for clarity,

dθi
dt
ω−10 = 1− K

2

[
tanh

(
cos θi−1 − cos θi − β

hol

)
+ 1

]
.

(A1)
the high value of the phase velocity is the intrinsic phase
velocity ω0 and the low value is ω0(1−K). An entrained
state has a phase delay τ where

θj(t+ τ) = θj+1(t). (A2)

We expand the left side to first order in τ and write θj+1

in terms of the phase delay χj = θj+1 − θj , giving

θ̇j(t)τ ≈ χj . (A3)

We denote the phase delay for the slower state as χs and
that of the faster state as χf . Equation A3 gives

χs ≈ ω0(1−K)τ

χf ≈ ω0τ. (A4)

In the fast and slow regions, the phase velocity is con-
stant and phase differences between oscillators are main-
tained. The properties of the entrained states must be
set by the transition regions. We consider two oscillators,
one in the slow region and the other that is exiting the
slow region. We can estimate the change in phase delay

between the two regions from the time ∆tfs it takes a
single oscillator to exit the slow region

χf − χs ≈ ∆tfs ω̃, (A5)

where

ω̃ ≈ (1−K/2)ω0 (A6)

is the average phase velocity. We use equation A5 to
estimate the phase delay τ .

For small phase delay χj−1 = θj − θj−1 equation A1
can be written to first order in phase shift χj−1 as

dθj
dt
ω−10 ≈ 1− K

2

[
tanh

(
sin θj χj−1 − β

hol

)
+ 1

]
. (A7)

The time ∆tfs it takes oscillator j to pass through the
transition from slow to fast regions we estimate from the
time it takes | sin θjχj−1|/hol to change by about 2 (corre-
sponding the region of high slope for the tanh function).
This transition time is approximately

∆tfs ∼ 2hol

∣∣∣∣cos θj
dθj
dt
χj−1

∣∣∣∣−1 . (A8)

We assume that the transition boundaries are where
| cos θ| ∼ 1 and take an average of the fast and slow
values for dθ

dt and χ (using equations A4 and A6) to es-
timate the duration of the transition from a fast to slow
region or vice versa

∆tfs ∼
8hol

(χf + χs)(2−K)ω0
. (A9)

Using equations A5 and A4 we estimate the delay τ

τ ∼ 2

ω0

√
hol

K(2−K)
(A10)

and the wavelength

Nλ ∼
2π

ω̃τ
∼ 2π

√
K

(2−K)hol
. (A11)

For hol = 0.05 and K = 0.5 this gives Nλ ∼ 16 which is
a reasonable value but exceeds the value of 12 we see in
the integration shown in Figure 13. We verified that Nλ
decreases with increasing hol, though it does not decrease
as quickly as predicted by equation A11. A better predic-
tion would take into account the phases of the transitions
and the difference between compression and rarefaction
transitions. The comparison between estimated and nu-
merically measured wavelengths suggests that techniques
used to study non-linear differential equations may be
useful for predicting the properties of entrained states.
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Appendix B: Predicting body positions and shapes
from a phase oscillator model

In this section we show how we compute eel body
shapes and positions from an oscillator chair model. We
assume the eel head positions are described by a chain
of oscillators as illustrated in Figure 8. We assume that
waves propagate down the body with a constant speed v.

We adopt an Cartesian coordinate system X = (X,Y )
on the plane to describe positions of points on the body
of a chain of eels, as shown in Figure 8b. We assume
the mean centerline position of the i-th eel’s head has
coordinates Xi,hc and the eel’s mean centerline is tilted
by angle φtilt with respect to the horizontal direction. We
assume that the mean centerline head positions are fixed
and are equally spaced on the X axis

Xi,hc =

(
iD

0

)
, (B1)

where D is the horizontal distance between the mean
centerlines. We assume the wave travels down the body
with velocity v, as given in equation 13 which we repeat
here

yi(x, t) = A cos
[
θi

(
t− x

v

)]
. (B2)

The i-th eel’s head position is at y(x = 0, t). Here x
is the distance along the mean centerline and yi is the
distance perpendicular to it. We rotate the centerlines
by φtilt so that in the (X,Y ) coordinate system the head
of the i-th eel is at

Xi,h(t) =

(
cosφtilt − sinφtilt
sinφtilt cosφtilt

)(
0

A cos(θi(t))

)
+ Xi,hc. (B3)

We can use the coordinate along the mean centerline x

to specify body positions

Xi(x, t) =

(
cosφtilt − sinφtilt
sinφtilt cosφtilt

)(
x

A cos
[
θi
(
t− x

v

)])
+ Xi,hc. (B4)

With x = 0, this is consistent with equation B3 for the
i-th eel’s head.

Using equation B2, at t = 0, the y position of the i-th
eel is determined by its head position at an earlier time,

yi(x, t = 0) = A cos
[
θi

(
−x
v

)]
, (B5)

where the earlier time is

t′ = −x
v
. (B6)

Using a phase oscillator model we can generate arrays of
phases θi at a series of times. The arrays at different out-
put times t′ then can be used to predict the X positions
at t = 0 along the eel’s bodies;

Xi(t
′) =

(
cosφtilt − sinφtilt
sinφtilt cosφtilt

)(
−vt′

A cos [θi (t′)]

)

+

(
iD

0

)
, (B7)

where we have used equations B1, B4 and B6.
From a series of phase arrays computed at different

output times for the phase oscillator model of equation
10 we can generate eel body positions using equation B7.
To do this we require values for the velocity of waves
along the eel body v, the amplitude A, the horizontal
distance between the mean positions of organism heads
D and the body tilt angle φtilt. Also, the outputs of
the integration must be put in units of time using the
intrinsic oscillator phase velocity ω0.
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