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Abstract—We consider the problem of estimating the structure
of an undirected weighted sparse graphical model of multivariate
data under the assumption that the underlying distribution is
multivariate totally positive of order 2, or equivalently, all partial
correlations are non-negative. Total positivity holds in several
applications. The problem of Gaussian graphical model learning
has been widely studied without the total positivity assumption
where the problem can be formulated as estimation of the
sparse precision matrix that encodes conditional dependence
between random variables associated with the graph nodes. An
approach that imposes total positivity is to assume that the
precision matrix obeys the Laplacian constraints which include
constraining the off-diagonal elements of the precision matrix
to be non-positive. In this paper we investigate modifications to
widely used penalized log-likelihood approaches to enforce total
positivity but not the Laplacian structure. An alternating direc-
tion method of multipliers (ADMM) algorithm is presented for
constrained optimization under total positivity and lasso as well
as adaptive lasso penalties. Numerical results based on synthetic
data show that the proposed constrained adaptive lasso approach
significantly outperforms existing Laplacian-based approaches,
both statistical and smoothness-based non-statistical.

I. INTRODUCTION

An undirected simple weighted graph is denoted G =
(V, E ,W ) where V = {1, 2, · · · , p} = [p] is the set of
p nodes, E ⊆ [p] × [p] is the set of undirected edges,
and W = W> ∈ Rp×p stores the non-negative weights
Wij ≥ 0 associated with the undirected edges. If there is
an edge between nodes i and j, then edge {i, j} ∈ E and
Wij > 0. If there is no edge between nodes i and j, then
edge {i, j} 6∈ E and Wij = 0. In a simple graph there
are no self-loops or multiple edges, so E consists of distinct
pairs {i, j}, i 6= j and Wii = 0. In an undirected graph,
if {i, j} ∈ E , then {j, i} ∈ E . In graphical models of
data variables x1, x1, · · · , xp, (x = [x1 x2 · · · xp]>), a
weighted graph G = (V, E ,W ) (or unweighted G = (V, E))
with |V | = p is used to capture relationships between the
p variables xis [1]–[3]. If {i, j} ∈ E , then xi and xj are
related (similar or dependent) in some sense, with higher Wij

indicating stronger similarity or dependence.
Graphical models provide a powerful tool for analyzing

multivariate data [1]–[3]. In a statistical graphical model, the
conditional statistical dependency structure among p random
variables x1, x1, · · · , xp, is represented using an undirected
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graph G = (V, E). The graph G then is a conditional inde-
pendence graph (CIG) where there is no edge between nodes
i and j (i.e., {i, j} 6∈ E) iff xi and xj are conditionally
independent given the remaining p-2 variables x`, ` ∈ [p],
` 6= i, ` 6= j. In particular, Gaussian graphical models (GGMs)
are CIGs where x is multivariate Gaussian. Suppose x has
positive-definite covariance matrix Σ with inverse covariance
matrix (also called precision matrix) Ω = Σ−1. Then Ωij , the
(i, j)-th element of Ω, is zero iff xi and xj are conditionally
independent. Such models for x have been extensively studied.
Given n samples of x, in high-dimensional settings where
p � 1 and/or n is of the order of p, one estimates Ω under
some sparsity constraints; see [4]–[8].

More recently, several authors have considered Gaussian
graphical models under the constraint that the distribution is
multivariate totally positive of order 2 (MTP2), or equiva-
lently, that all partial correlations are non-negative (see [9],
[10] and references therein). Such models are also known as
attractive Gaussian random fields [11]. Note that a Gaussian
distribution is MTP2 if and only if its precision matrix Ω is
an M-matrix, i.e., Ωij ≤ 0 for all i 6= j [12]. As discussed in
[9], MTP2 is a strong form of positive dependence, which is
relevant for modeling in various applications including phylo-
genetics or portfolio selection, where the shared ancestry or
latent global market variable often lead to positive dependence
among the observed variables.

On the other hand, graphical models for data variables have
been inferred from consideration other than statistical, depend-
ing upon the intended application, nature of data and available
prior information [1]. One class of graphical models are based
on signal smoothness [1], [13]–[15]. Suppose we are given n
samples {x(t)}nt=1 of the p data variables x1, x1, · · · , xp, with
x(t) = [x1(t) x2(t) · · · xp(t)]>. Define the p× n matrix

X =
[
x(1) x(2) · · · x(n)

]
. (1)

A measure of smoothness of signal x(t) under which the
signal takes “similar” values at “neighboring” vertices of a
given weighted undirected graph, is the function [1], [13], [14]

1

2

p∑
i,j=1

Wij‖Xi. −Xj.‖22 = tr(X>LX) (2)

where Xi. denotes the ith row of X , L = D − W is
the (combinatorial) graph Laplacian (matrix), and D is the
diagonal weighted degree matrix with Dii =

∑p
j=1Wij .
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Graph learning from data X then becomes equivalent to
estimation of the graph Laplacian matrix L [1], [13].

Another set of approaches are based on statistical consid-
erations under the graph Laplacian constraint [1], [16]–[18]
where Laplacian L, after regularization, plays the role of
inverse covariance Ω; L is a symmetric, non-negative-definite
matrix but with non-positive off-diagonal entries. Thus, under
Gaussian distribution we have an MTP2 model.

Graph Laplacian matrix has been extensively used for
embedding, manifold learning, clustering and semi-supervised
learning [19]–[24].

In this paper we investigate modifications to widely used
penalized log-likelihood approaches to enforce total positiv-
ity but not the Laplacian structure. An alternating direction
method of multipliers (ADMM) algorithm is presented for
constrained optimization under total positivity and lasso as
well as adaptive lasso penalties. Numerical results based on
synthetic data show that the proposed constrained adaptive
lasso approach significantly outperforms existing Laplacian-
based approaches, both statistical [17] and smoothness-based
non-statistical [13].

Notation: Given A ∈ Rp×p, tr(A) denotes its trace. For
B ∈ Rp×q , we define its Frobenius norm and the vectorized
`1 norm, respectively, as ‖B‖F =

√
tr(B>B) and ‖B‖1 =∑

i,j |Bij | where Bij is the (i, j)-th element of B. We also
denote Bij by [B]ij . Given A ∈ Rp×p, A+ = diag(A) is a
diagonal matrix with the same diagonal as A, A− = A−A+

is A with all its diagonal elements set to zero, and A � 0
denotes that A is positive-definite.

II. SOME EXISTING APPROACHES

A. Smoothness-Based Graph Learning [13]

With reference to (1) and (2), it follows (see [13]) that
tr(X>LX) = 1

2 tr(WẐ) where W , Ẑ ∈ Rp×p, Ẑij =
‖Xi. −Xj.‖22 and W is the weight matrix (or the weighted
adjacency matrix) with L = D−W , W = W>, Wij ≥ 0 and
Wii = 0 for 1 ≤ i, j ≤ p. Instead of performing a penalized
minimization of tr(X>LX) to estimate L, [13] minimizes
a penalized tr(WẐ) w.r.t. W for graph learning. Given W ,
one has unique L and the edge-set E . In the rest of the paper,
we will scale Ẑ as Ẑ/n and denote the latter as Ẑ.

Define the space Wp of all valid p× p weight matrices W

Wp =
{
W ∈ Rp×p : W = W>, Wij ≥ 0, Wii = 0

}
(3)

In [13] one looks for minW∈Wp fs(W ) where

fs(W ) =tr(WẐ) +
β

2
‖W ‖2F − α

p∑
i=1

ln
( p∑
j=1

Wij

)
(4)

with parameters α > 0 and β ≥ 0 controlling the “shape.”. In
(4), tr(WẐ) is the main cost but minimizing it alone w.r.t. W
is ill-posed (W = 0 minimizes it). Using only the logarithmic
barrier (β = 0) leads to very sparse graphs, and changing α
only changes the scale of the solution. The term β

2 ‖W ‖
2
F

controls graph sparsity. Note that the model of [13] unifies all
prior smoothness-based models for estimation of Laplacian L

[15], [25]–[27]. A forward-backward algorithm based on [28]
is given in [13] to optimize (4), where optimization is carried
for fixed α = 1 and then one scales W to obtain a desired
‖W ‖; a MATLAB implementation is in [29].

B. Graphical Lasso: Penalized Log-Likelihood [7]

With Ŝ denoting the sample covariance (assume zero-mean:
Ŝ = 1

n

∑n
t=1 x(t)x>(t)), seek Ω to yield minΩ�0 fL(Ω)

where

fL(Ω) = tr(ΩŜ)− ln(|Ω|) + λ‖Ω−‖1 , (5)

λ‖Ω−‖1 is the lasso penalty and λ > 0. Unlike Laplacian L,
off-diagonal entries of Ω may not be non-positive.

C. Generalized Graph Laplacian Estimation [17]

In [1], [16]–[18] approaches that make Ω = L (Laplacian,
or some regularized version) in (9) have been considered. In
particular, [17] considers

min
Θ�0

tr(ΘK̂)− ln(|Θ|) where K̂ = Ŝ + λ(I − 1p1
>
p ) (6)

with Θ restricted to be a generalized graph Laplacian matrix.
Software implementation of this algorithm is available in [30].

D. Adaptive Lasso [31]

With Ω̂ = arg minΩ�0 fL(Ω) from Sec. II-B, modify (5)
as

min
Ω�0

tr(ΩŜ)− ln(|Ω|) + λ

p∑
i,j=1, i6=j

Ωij

|Ω̂ij |
, (7)

i.e., use penalty varying with (i, j) as λ/|Ω̂ij |.

III. PROPOSED APPROACH

Define the space Vp of all p × p matrices V that are
symmetric with non-positive off-diagonal elements

Vp =
{
V ∈ Rp×p : V = V >, Vij ≤ 0, i 6= j

}
(8)

A. Proposed Constrained Lasso: Penalized Log-Likelihood
and Total Positivity

We propose to choose Ω as

min
Ω�0, Ω∈Vp

fL(Ω) . (9)

We will use ADMM [32] after variable splitting to minimize
fL(Ω). Using variable splitting, consider

min
Ω�0
V ∈Vp

{
tr(Σ̂Ω)− ln(|Ω|) + λ‖V −‖1

}
subject to Ω = V .

(10)

The scaled augmented Lagrangian for this problem is [32]

Lρ = tr(Σ̂Ω)− ln(|Ω|) + λ‖V −‖1 +
ρ

2
‖V −Ω + U‖2F

(11)

where U is the dual variable, and ρ > 0 is the penalty param-
eter. Given the results Ω(k),V (k),U (k) of the kth iteration,
in the (k + 1)st iteration, an ADMM algorithm executes the
following three updates:
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(a) Ω(k+1) ← arg minΩ La(Ω), La(Ω) := tr(Σ̂Ω) −
ln(|Ω|) + ρ

2‖V
(k) −Ω + U (k)‖2F

(b) V (k+1) ← arg minV ∈Vp Lb(V ), Lb(V ) := λ ‖V −‖1 +
ρ
2‖V −Ω(k+1) + U (k)‖2F

(c) U (k+1) ← U (k) +
(
V (k+1) −Ω(k+1)

)
Solution to update (a) follows from [32, Sec. 6.5] and is given
in Algorithm 1.

In update (b) notice that Lb(V ) is completely separable
w.r.t. each element Vij . Therefore, we solve V

(k+1)
ij ←

arg minVij≤0, i 6=j Jij(Vij), where

Jij(Vij) :=λ|Vij |1i6=j +
ρ

2
(Vij − [Ω(k+1) −U (k)]ij)

2

We claim that the solution is given by

V
(k+1)
ij =

{
[Ω(k+1) −U (k)]ii if i = j
Sneg([Ω

(k+1) −U (k)]ij ,
λ
ρ ) if i 6= j

(12)

where, with (a)+ := max(0, a) and (a)− := min(0, a),

Sneg(a, β) := (1− β/|a|)+a−

denotes scalar soft thresholding for negative values of a and
hard thersholding for a > 0. When i = j, we need to minimize
only (Vij− [Ω(k+1)−U (k)]ij)

2 w.r.t. Vii = Vij , thus the given
solution follows. For constrained optimization under Vij ≤ 0,
after setting Aij = [Ω(k+1)−U (k)]ij , consider the Lagrangian
Lv

Lv = λ|Vij |+
ρ

2
(Vij −Aij)2 + νVij (13)

where ν ≥ 0 is the Lagrange multiplier for the inequality
constraint Vij ≤ 0. With v∗ denoting an optimal solution, the
KKT conditions for minimization are

0 ∈ ∂Lv = λt+ ρ(v∗ −Aij) + ν (14)
νv∗ = 0 (15)
ν ≥ 0 (16)
v∗ ≤ 0 (17)

where ∂Lv denotes the subdifferential of Lv at v∗ and

t =

{
v∗/|v∗| if v∗ 6= 0
∈ {u : |u| ≤ 1, u ∈ R} if v∗ = 0 .

(18)

When Aij > 0, our claimed solution is v∗ = 0. We need
to check if ν ≥ 0 and 0 ∈ ∂Lv for some |t| ≤ 1. The
choice t = 0 and ν = ρAij > 0 satisfies the KKT conditions.
When Aij ≤ 0, our claimed solution is the well-known soft-
thresholding solution which satisfies the KKT conditions with
ν = 0. If |Aij) ≤ ρ/λ, then v∗ = 0 and t = ρAij/λ
satisfies the KKT conditions since |t| ≤ 1. If |Aij) > ρ/λ,
then the given solution with t = Aij/|Aij | satisfies the
KKT conditions. This proves that the solution (12) minimizes
Jij(Vij).

A pseudocode for the ADMM algorithm used in this paper
is given in Algorithm 1 where we use the stopping (conver-
gence) criterion following [32, Sec. 3.3.1] and varying penalty
parameter ρ following [32, Sec. 3.4.1]. For constrained lasso
we take λij = λ for all (i, j) in Algorithm 1.

B. Proposed Constrained Adaptive Lasso

With minΩ�0, Ω∈Vp fL(Ω) from constrained lasso opti-
mization, modify (9) as

min
Ω�0, Ω∈Vp

tr(ΩŜ)− ln(|Ω|) + λ

p∑
i,j=1, i6=j

Ωij

|Ω̂ij |
, (19)

i.e., use penalty varying with (i, j) as λij = λ/|Ω̂ij | where Ω̂ij
is obtained from proposed constrained lasso. Here we follow
[31]. The solution given in Algorithm 1 applies.

Algorithm 1 ADMM Algorithm for Constrained Lasso and
Constrained Adaptive Lasso
Input: Number of samples n, number of nodes p, data
{x(t)}nt=1, x ∈ Rp, regularization and penalty parameters
λij and ρ0, tolerances τabs and τrel, variable penalty factor
µ, maximum number of iterations kmax. λij = λ for lasso
and λij = λ/Ω̂ij for adaptive lasso where Ω̂ij is the result of
lasso.
Output: estimated inverse covariance Ω̂ and edge-set Ê

1: Calculate sample covariance Ŝ = 1
n

∑n
t=1 x(t)x>(t)

(after centering x(t)).
2: Initialize: U (0) = V (0) = 0, Ω(0) = (diag(Ŝ))−1, where

U ,V ∈ R(p)×(p), ρ(0) = ρ0
3: converged = FALSE, k = 0
4: while converged = FALSE AND k ≤ kmax, do
5: Eigen-decompose Ŝ − ρ(k)

(
V (k) + U (k)

)
as Ŝ −

ρ(k)
(
V (k) + U (k)

)
= QDQ> with diagonal ma-

trix D consisting of eigenvalues. Define diagonal ma-
trix D̃ with `th diagonal element D̃`` = (−D`` +√
D2
`` + 4ρ(k) )/(2ρ(k)). Set Ω(k+1) = QD̃Q>.

6: Define thresholding operator Sneg(a, β) := (1 −
β/|a|)+a− where (a)+ := max(0, a) and (a)− :=
min(0, a). The (i, j)th element of V is updated as

V
(k+1)
ij =

{
[Ω(k+1) −U (k)]ii if i = j

Sneg([Ω
(k+1) −U (k)]ij ,

λij

ρ ) if i 6= j

7: Dual update U (k+1) = U (k) +
(
V (k+1) −Ω(k+1)

)
.

8: Check convergence. Set tolerances

τpri =p τabs + τrel max(‖Ω(k+1)‖F , ‖V (k+1)‖F )

τdual =p τabs + τrel ‖U (k+1)‖F /ρ(k) .

Define dp = ‖Ω(k+1) − V (k+1)‖F and dd =
ρ(k)‖V (k+1) − V (k)‖F . If (dp ≤ τpri) AND (dd ≤
τdual), set converged = TRUE .

9: Update penalty parameter ρ :

ρ(k+1) =


2ρ(k) if dp > µdd
ρ(k)/2 if dd > µdp
ρ(k) otherwise .

We also need to set U (k+1) = U (k+1)/2 for dp > µdd
and U (k+1) = 2U (k+1) for dd > µdp.
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Model: Chain Graph: number of nodes p=100
sample size n 50 100 200 400 2000

Approach F1 score (±σ)
Const. Lasso 0.4058 ±0.0115 0.4353 ±0.0113 0.4630 ±0.0107 0.4921 ±0.0095 0.5681 ±0.0102

Kalofolias [13] 0.2631 ±0.0919 0.2656 ±0.0997 0.2753 ±0.1049 0.2770 ±0.1068 0.2941 ±0.1139
GGL [17] 0.6727 ±0.0218 0.6753 ±0.0204 0.6715 ±0.0192 0.6760 ±0.0217 0.6758 ±0.0215

Const. Adap. Lasso 0.9851 ±0.0089 0.9977 ±0.0035 0.9999 ±0.0007 1.000 ±0.0000 1.0000 ±0.0000
Frobenius Error Norm (±σ)

Const. Lasso 0.4752 ±0.0116 0.4041 ±0.0103 0.3405 ±0.0084 0.2785 ±0.0077 0.1620 ±0.0053
Kalofolias [13] 0.5814 ±0.0211 0.5564 ±0.0206 0.5445 ±0.0192 0.5357 ±0.0196 0.5262 ±0.0180

GGL [17] 0.2599 ±0.0216 0.1799 ±0.0135 0.1252 ±0.0099 0.0881 ±0.0066 0.0387 ±0.0031
Const. Adap Lasso 0.2390 ±0.0210 0.1623 ±0.0126 0.1113 ±0.0089 0.0785 ±0.0066 0.0345 ±0.0030

Time(s) (±σ)
Const. Lasso 2.4289 ±0.3891 1.9707±0.0868 1.5710 ±0.0601 1.2978 ±0.0441 0.8413 ±0.0286

Kalofolias [13] 0.2706 ±0.0070 0.2706 ±0.0172 0.2789 ±0.0763 0.2652 ±0.0030 0.2662 ±0.0019
GGL [17] 0.0668 ±0.0055 0.0688 ±0.0086 0.0682 ±0.0051 0.0687 ±0.0064 0.0679 ±0.0022

Const. Adap Lasso 8.1710 ±0.8587 5.7741 ±0.2202 4.8850 ±1.2391 3.4469 ±0.3290 1.5416 ±0.1274

Model: Erdös-Rènyi Graph: number of nodes p=100
F1 score (±σ)

Const. Lasso 0.2363 ±0.0135 0.2462 ±0.0141 0.2585 ±0.0174 0.2745 ±0.0152 0.3119 ±0.0205
Kalofolias [13] 0.1363 ±0.0398 0.1420 ±0.0397 0.1491 ±0.0399 0.1666 ±0.0495 0.1586 ±0.0592

GGL [17] 0.4609 ±0.0232 0.4901 ±0.0232 0.4984 ±0.0197 0.5032 ±0.0175 0.4927 ±0.0218
Const. Adap Lasso 0.7165 ±0.0575 0.8756 ±0.0391 0.9584 ±0.0183 0.9859 ±0.0087 0.9991 ±0.0022

Frobenius Error Norm (±σ)
Const. Lasso 0.9964 ±0.0043 0.9898 ±0.0098 0.6367 ±0.0914 0.4743 ±0.0378 0.3720 ±0.0212

Kalofolias [13] 0.7621 ±0.0316 0.7028 ±0.0236 0.6756 ±0.0224 0.6562 ±0.0200 0.6475 ±0.0166
GGL [17] 0.6062 ±0.0615 0.4204 ±0.0492 0.2866 ±0.0317 0.1963 ±0.0234 0.0848 ±0.0117

Const. Adap Lasso 0.6309 ±0.0609 0.4454 ±0.0501 0.3119 ±0.0379 0.2265 ±0.0301 0.1039 ±0.0186
Time(s) (±σ)

Const. Lasso 3.4578 ±0.6695 2.6559 ±0.2382 2.1640 ±0.1588 1.8420 ±0.0908 1.2341 ±0.0584
Kalofolias [13] 0.2587 ±0.0068 0.2570 ±0.0031 0.2568 ±0.0023 0.2557 ±0.0024 0.2582 ±0.0021

GGL [17] 0.0652 ±0.0047 0.0639 ±0.0013 0.0637 ±0.0012 0.0636 ±0.0015 0.0633 ±0.0014
Const. Adap Lasso 9.3087 ±0.3813 8.5631 ±0.4493 7.0382 ±0.4599 5.3631 ±0.3213 2.8511 ±0.2075

TABLE I: Results for Chain and Erdos-Renyi graphs. Frobenius error norm is ‖cΩ̂− − Ω−0 ‖F /‖Ω
−
0 ‖F where scalar c is

picked to minimize ‖cΩ̂− − Ω−0 ‖F . “Const. Lasso” stands for the proposed constrained lasso approach that enforces total
positivity, and “Const. Adap lasso” denotes its adaptive lasso version.

10: k ← k + 1
11: end while
12: For i 6= j, if |Vij | > 0, assign edge {i, j} ∈ Ê , else
{i, j} 6∈ Ê . Inverse covariance estimate is Ω̂.

IV. SIMULATION EXAMPLES

We consider Gaussian graphical models based on two
graphs: a chain graph where p nodes are connected in succes-
sion, and an Erdös-Rènyi graph where nodes are connected
with probability per = 0.03. In each model, in the upper tri-
angular Ω (inverse covariance), Ωij = 0 if {i, j} 6∈ E , and Ωij
is uniformly distributed over [−0.3,−0.1] if {i, j} ∈ E . With
Ω = Ω>, we take Ωii = −

∑p
j=1 Ωij for every i, yielding the

combinatorial Laplacian matrix L = Ω. Now add κI to Ω
with κ picked to make minimum eigenvalue of Ω+κI equal to
0.001, and with ΦΦ> = (Ω + κI)

−1, we generate x = Φw
with w ∈ Rp as Gaussian w ∼ N (0, I). We generate n i.i.d.
observations from x using p = 100. Addition of κI yields a
generalized Laplacian matrix L = Ω +κI [17]. Given choice
of κ leads to a precision matrix (and corresponding covariance
matrix) with (matrix inversion) condition number > 1000 for
both models, making it a challenging problem.

We apply four methods for estimating the true edgeset E0
and true (off-diagonal) inverse covariance Ω−0 . One of the
methods is the signal smoothness-based method of [13] which
yields the weighted adjacency matrix W , equaling −Ω−0 (off-
diagonal Ω0) under the Laplacian assumption, hence one of
our performance criterion is error in estimating Ω−0 . The
chosen methods are

(1) Proposed constrained lasso approach, labeled “Const.
Lasso” in Table I. We use Algorithm 1 with constant
λ for all (i, j).

(2) Smoothness-based graph learning [13] solved via the
forward-backward algorithm available in [29] (MAT-
LAB function gsp_learn_graph_log_degrees.m), labeled
“smooth [13]” in Table I. It requires one to set small
values in estimated W to be set to zero; following [13],
[29], all Ŵij ≤ 10−4 are set to zero.

(3) Generalized graph Laplacian (GGL) method of [17], us-
ing MATLAB function estimate_ggl.m from [30], labeled
“GGL [17]” in Table I.

(4) Proposed constrained adaptive lasso approach, labeled
“Const. Adap Lasso” in Table I. We use Algorithm 1 with
edge-dependent λ, λij = λ/|Ω̂ij |, where Ω̂ij is obtained
from proposed constrained lasso.

1277

Authorized licensed use limited to: Auburn University. Downloaded on March 29,2022 at 15:53:59 UTC from IEEE Xplore.  Restrictions apply. 



A performance measure is F1-score for efficacy in edge
detection. The F1-score is defined as F1 = 2 × precision ×
recall/(precision + recall) where precision = |Ê ∩ E0|/|Ê |,
recall = |Ê ∩ E0|/|E0|, and E0 and Ê denote the true and
estimated edge sets, respectively. Table I shows the simulation
results where the run time in seconds was calculated via MAT-
LAB tic-toc functions on a Window 10 operating system with
processor Intel(R) Core(TM) i5-6400T CPU @2.20 GHz with
12 GB RAM. For each of the four schemes, tuning parameter
λ (β for [13]) was picked for n = 200 via simulations to max-
imize F1-score, then λ was scaled as ∝

√
ln(p)/n [8], [17]

while β was kept fixed. The performance measures are F1-
score for efficacy in edge detection, and normalized Frobenius
error norm in estimating Ω−0 (off-diagonal true Ω0), defined
as ‖cΩ̂− − Ω−0 ‖F /‖Ω

−
0 ‖F where c is selected as follows.

We scale estimated Ω−0 (when signal-smoothing is used, set
Ω̂−0 = −Ŵ−

0 ), by a scalar c chosen to minimize mean-square
error ‖Ω−0 − cΩ̂

−
0 ‖2F , resulting in c = tr(Ω−0 Ω̂−0 )/tr(Ω̂−0 Ω̂−0 ).

In practice, Ω−0 is unknown. The above scaling preserves
relative weighting among Ωij’s which is what is relevant in
applications [13] and is available without knowing Ω−0 .

The condition number > 1000 of covariance and precision
matrices for both models makes it a challenging problem. We
see that only constrained adaptive lasso performs well, with
high F1 scores.

V. CONCLUSIONS

We considered the problem of estimating the structure of
an undirected weighted sparse graphical model of multivariate
data under the assumption of total positivity where all partial
correlations are non-negative. We investigated modifications
to widely used penalized log-likelihood approaches to enforce
total positivity but not the Laplacian structure. An ADMM
algorithm was presented for constrained optimization under
total positivity and lasso as well as adaptive lasso penalties.
Numerical results show that the proposed constrained adaptive
lasso approach significantly outperforms existing Laplacian-
based approaches.
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