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Abstract—We consider the problem of inferring the conditional
independence graph (CIG) of a high-dimensional stationary
multivariate Gaussian time series. A sparse-group lasso-based
frequency-domain formulation of the problem has been con-
sidered in the literature where the objective is to estimate
the sparse inverse power spectral density (PSD) of the data
via optimization of a sparse-group lasso based penalized log-
likelihood cost function that is formulated in the frequency-
domain. The CIG is then inferred from the estimated inverse
PSD. Optimization in the previous approach was performed using
an alternating minimization (AM) approach whose performance
depends upon choice of a penalty parameter. In this paper
we investigate an alternating direction method of multipliers
(ADMM) approach for optimization to mitigate dependence on
the penalty parameter. We also investigate selection of the tuning
parameters based on Bayesian information criterion, and illus-
trate our approach using synthetic and real data. Comparisons
with the “usual” i.i.d. modeling of time series for graph estimation
are also provided.

I. INTRODUCTION

Graphical models are an important and useful tool for
analyzing multivariate data [1]. Graphical modeling is a form
of multivariate analysis where one uses graphs to represent
models. A central concept is that of conditional independence.
Given a collection of random variables, one wishes to assess
the relationship between two variables, conditioned on the
remaining variables. In graphical models, graphs are used to
display the conditional independence structure of the variables.

Consider a graph G = (V,&) with a set of p vertices
(nodes) V. = {1,2,---,p} = [p], and a corresponding
set of (undirected) edges & C [p] x [p]. Also consider a
stationary (real-valued), zero-mean, p—dimensional multivari-
ate Gaussian time series x(t), t = 0,+1,£2,---, with ith
component z;(t), and correlation (covariance) matrix function
R,.(1) = E{z(t+7)xT(t)}, 7 =0,%1,---. Given {z(t)},
in the corresponding graph G, each component series {z;(¢)}
is represented by a node (z in V'), and associations between
components {x;(t)} and {x;(t)} are represented by edges
between nodes ¢ and j of G. In a conditional independence
graph (CIG), there is no edge between nodes ¢ and j if and
only if (iff) x;(¢t) and z;(¢) are conditionally independent
given the remaining p-2 scalar series x¢(t), £ € [p], £ # i,
¢ # j. Gaussian graphical models (GGM) are CIGs where
{z(t)} is a multivariate Gaussian sequence.
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A key insight in [2] was to transform the series to
the frequency domain and express the graph relationships
in the frequency domain. Denote the power spectral den-
sity (PSD) matrix of {x(t)} by S,(f), where S,(f) =
S22 Ruu(7)e772™/7, the Fourier transform of Ry, (7).
Here f is the normalized frequency, in Hz, in the interval
[0,1) or (—0.5,0.5]. In [2], [3] it was shown that conditional
independence of two time series components given all other
components of the time series, is encoded by zeros in the
inverse PSD, that is, {i,j} & & iff the (4,)-th element of
S.(f). 155 (f)]ij = 0 for every f.

Graphical models were originally developed for random
vectors with multiple independent realizations [4, p. 234], i.e.,
for time series that is independent and identically distributed
(i.i.d.): p—dimensional (t), t = 1,2, - - -, with &(¢1) indepen-
dent of x(t9) for t; # to, and x(t) identically distributed for
any (integer) ¢. Such models have been extensively studied,
and found to be useful in a wide variety of applications [5]-
[7]. Graphical modeling of real-valued time-dependent data
(stationary time series) originated with [3], followed by [2].

Graphical modeling of real-valued time-dependent data (sta-
tionary time series) originated with [3], followed by [2]. To
test whether {4,j} ¢ &, [2] suggested a test based on the
maximum of nonparametrically estimated partial coherence
over f € [0,0.5]. Edge exclusion tests in this context are also
given in [8]-[11]. When p is large, it may not be feasible
to test all p(p — 1)/2 edges. Nonparametric approaches for
graphical modeling of real time series in high-dimensional
settings (p is large and/or sample size N is of the order of p)
have been formulated in the form of penalized log-likelihood
in frequency-domain in [12].

In this paper we investigate a penalized log-likelihood
approach, as in [13]. An alternating minimization (AM)
based solution to this problem is in [13] where simulation
comparisons with [12] were also provided; [13] significantly
outperforms [12]. An analysis of the properties of the min-
imizer of the objective function of [13] is given in [14]. In
this paper we investigate an alternating direction method of
multipliers (ADMM) approach for optimization. While the
sparse-group lasso-based penalized log-likelihood formulation
of the problem is as in [13], the solution in this paper is via
ADMM whose performance does not depend upon a penalty
parameter used in variable splitting solution, unlike the AM
method of [13].

Notation: |A| and tr(A) denote the determinant and the

Asilomar 2021

Authorized licensed use limited to: Auburn University. Downloaded on March 29,2022 at 15:55:11 UTC from IEEE Xplore. Restrictions apply.



trace of the square matrix A, respectively. [B];; denotes the
(i,7)-th element of B, and so does B;;. I is the identity ma-
trix. The superscripts * and H denote the complex conjugate
and the Hermitian (conjugate transpose) operations, respec-
tively. The notation & ~ N_(m, X) denotes a random vector
x that is circularly symmetric (proper) complex Gaussian with
mean m and covariance X, similarly,  ~ N.(mm, X) denotes
a random vector zx that is real-valued Gaussian with mean m
and covariance 3.

II. SUFFICIENT STATISTIC AND PENALIZED
LOG-LIKELIHOOD

Given x(t) for t = 0,1,2,--- ,n — 1. Define the (normal-

ized) DFT d,(f,n) of @(t), (j = v=T),
n—1
dy(fn) =% > ol0)exp (=21 /) (1)
fn = m=0,1,--+ ,n— 1. @)
n

It is established in [11] that the set of complex-valued
random vectors {d( fm)}:ln/io is a sufficient statistic for
any inference problem based on dataset {x(¢)}7—;. Suppose
Sz (fr) is locally smooth (a standard assumptlon in PSD
estimation), so that S, (fx) is (approximately) constant over
K = 2m; + 1 consecutive frequency points f,,s. Pick
M=|(%—-m;—1)/K]| and

- (k—1DK+m+1

fe = )

n

k:1727"'7M7 (3)

yielding M equally spaced frequencies fj, in the interval
(0,0.5). By local smoothness

S.(fre) =S

where fk-j =

$(f~]€) for { = —mt,—mt—i—l,-n
(k—1K +my+1+¢
n .

“4)
®)

It is known ( [15, Theorem 4.4.1]) that asymptotically (as
n — 00), dg(frm),m=1,2,---,(n/2)—1, (n even), are inde-
pendent proper (i.e., circularly symmetric), complex Gaussian
N:(0,S.(f)) random vectors, respectively; x(¢) need not
be Gaussian but must satisfy some regularity conditions [11].
Then the joint probability density of the sufficient statistic, for
large n, is

, My,

M
1 R
I s, e o (Fo@USz )

(6)
M
H B (D) )
where D(fk) = {d;c(fk,—m,t) dac(.fk,—ﬂbt-i-l) dx(fk,m,,) "

(fk) E_fmt a;(fk’e)df(fk)g) =: KS’k, and the PSD
estimator using unweighted frequency-domain smoothing is

k]

In the high-dimension case of K < p(p — 1)/2 (# of
unknowns in S !(fx))), one may need to use penalty terms
to enforce sparsity and to make the problem well-conditioned.
We wish to estimate inverse PSD matrix ®; := S; (/). In
terms of ®j, we have the log-likelihood [13]

Infp(D) o —G({®},{®"})

:: i % [0 [®4] + 1n|@5]) - tr (@4 + 51 )|
k=1

(10)

where the first expression in (10) follows by specifying the
pdf of D in terms of joint pdf of D and D* (correct way
to handle complex variates [16]). Imposing a sparse-group
sparsity constraint [5], [17], [18], minimize a penalized version
of negative log-likelihood w.r.t. {®}

€))

Lscr({®}) = GU®}.{®"}) + P({@)), (an
M P P

PU®Y = Y0 D |[@eli| +22 Y 12 a2
k=1 ij i#j

where ®07) .= [[®,];; [®2];; -~ [®a]i] € T (13)

and A1, A2 > 0 are tuning parameters. An alternating mini-
mization (AM) based solution to this problem is in [13] where
simulation comparisons with [12] were also provided; [13]
significantly outperforms [12]. An analysis of the properties of
the minimizer {®} of Ly ({®}) is given in [14]. Following
[14], we will set \; = o) and A2 = (1 — a)\ with A > 0,
and « € [0, 1] providing a convex combination of lasso and
group-lasso penalties [17], [18].

To optimize Lgar({®}), using variable splitting, one may
reformulate as in [13]:

R (Cl(C IR LR S(10) S
subject to Wy, = ®, >~ 0, k = 1,2,--- /M, where
{®} = {®k, k =1,2,--- M} and {W} = {W,, k =
1,2,--+ ,M}. In the AM method, using the penalty method,

[13] considers the relaxed problem (p > 0 is “large”)

4P
Z [®r — Wkp} :

2
(15)

The result depends on p and strictly speaking, one must
have p — oo which can make the problem numerically ill-
conditioned.

Hlln

{ ({@}.{®"}) + P{W}) +

{W}

III. ADMM FOR SPARSE-GROUP GRAPHICAL LASSO

In ADMM, we consider the scaled augmented Lagrangian
for this problem [5], [19]

L,({®}, {W},{U}) =G({®},{®"}) + P{W})

M
P 2
+ = g b, — Wi + 1
2 e || k k Uk”F ( 6)

S, - — gy Where {U} ={Uy, k=1,2,---, M} are dual variables, and
TR Lth fk ’ fk o) ®) p > 0 is the “penalty parameter” [19].
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A. ADMM Algorithm

Given the results {®(™} {W ™} {U™)} of the mth
iteration, in the (m + 1)st iteration, an ADMM algorithm
executes the following three updates:

(@) {2V}« argmingay L,({®}, (W™}, {U™})

(b) {W U} arg minyy) L, ({81}, (W}, {U™})

(C) {U(m+1)} « {U(m)} + ({q)(m—&-l)} _ {W(m+1)})

1) Update (a): Notice that L,({®},{W ™} {UM™)})
is separable in k with L ({<I>} (wm (umy) =
S 2ka(<f’k, wm U(m)) up to some terms not depen-
dent upon ®;,’s, where

Loo(®, W™ UM™Y = In | @] + In | B |—tr(,§’k<I>k

+Si@p) + @ - W+ UM R a7

As in [19, Sec. 6.5] but accounting for complex-
valued vectors/matrices in this paper compared to real-
valued vectors/matrices in [5], and therefore using the
CR or Wirtinger calculus as in [13], the solution to
argming, L,i (P, W(m) U(m)) is as follows. Let V.DVH
denote the eigen-decomposition of the matrix (S & — pW(m) +
pU(m)) Then @(mH) VDVH where D is the diagonal
matrix with (th dlagonal element

Dy = 55 (-Dee + /| Du|? + 4p)
p

By construction Dy, > 0 for any p > 0, hence, <1>§€W+1) _
VDV - 0.

2) Update (b) Update {W(m+1 MM | as the minimizer
wrt (WL, o

pXNWf

The solution is given by [13] (which follows real-valued results
of [17]). Define (b)4+ := max(0, b), soft-thresholding operator
S(b,B) := (1 — B/|b])+b, and vector operator [S(a, B)]; =

(18)

@ +U™)|2+ PEWY). (19)

S(aj,a), a; = [a];. Let A, = &™) + U{™. The solution
to minimization of (19) is
[Aglii,  ifi=j
Vil =4 S([Au], 2y (1 - —-DAy
Wil (LAl =5%) ( PISAT axi /ol ) |

if i £
3) Update (c): For the scale Lagrangian formulation of

ADMM [19], for k = 1,2,--- , M, update U™V = (™ +
((Pém-i-l) B Wk(mﬂ))-

4) Algorithm Outline:

(i) Initialize the variables: ®\” = I,, W = U = 0

for k=1,2,---, M. Pick scalar p> 0.

(i) Until convergence, for m = 1,2, ---, do steps (iii)-(v):
(iii) Fork =1,2,--- , M, update &™) as in Sec. M-A1.
(iv) Update {W ™M | 45 in Sec. IM-A2
(v) Fork=1,2,---

, M, update U ,gmﬂ) as in Sec. III-A3.

(vi) Denote the converged estimates as @k, k=1,---
Edge selection:

.M.

If |®09)|| > 0, then {i,j} € &, else {i,j} € E. (20)

B. BIC for selection of A and «

Let <i>k, k =1,---, M, denote the converged estimates.
Given n and choice of K and M, the Bayesian information
criterion (BIC) is given by

M
BIC(\, a) = 2Kkz=:1 (— In |®g| + tr (Skq’k))
M

+In(2KM) Z(# of nonzero elements in ®;) (21)
k=1

where 2K M are total number of real-valued measurements
in frequency-domain and 2K are number of real-valued mea-
surements per frequency point, with total M frequencies in
(0, 7). Pick a and A\ to minimize BIC. We use BIC to
first select A over a grid of values with fixed «, and then
with selected A\, we search over « values in [0,1]. This
sequential search computationally less demanding than a two-
dimensional search.

IV. NUMERICAL EXAMPLES
A. Synthetic Data

Consider p = 128, 16 clusters (communities) of 8 nodes
each, where nodes within a community are not connected
to any nodes in other communities. Within any community
of 8 nodes, the data are generated using a vector autore-
gressive (VAR) model of order 3. Consider community g,

q=1,2,---,16. Then z(?(t) € R® is generated as
3
2@ (t) =3 AP (t — i) + w (1)
i=1

Only 10% of entries of Al(-q)’s are nonzero and the nonzero
elements are independently and uniformly distributed over
[—0.8,0.8]. We then check if the VAR(3) model is stable
with all eigenvalues of the companion matrix < 0.95 in
magnitude; if not, we re-draw randomly till this condition
is fulfilled. The overall data «(t) is given by x(t) =
(D7) - 209OT(#)]T € RP with w(@(t) as i.i.d. zero-
mean Gaussian with identity covariance matrix. First 100
samples are discarded to eliminate transients. This set-up leads
to approximately 3.5% connected edges.

Simulation results are shown tn Table I where we used
M = 4 for all samples sizes and K = 15,31,63, 127,255
for n = 128,256,512,1024, 2048, respectively. All ADMM
approaches used variable penalty parameter p, as in [19,
Sec. 3.4.1], and the stopping (convergence) criterion following
[19, Sec. 3.3.1]. The performance measure is Fj-score for
efficacy in edge detection. The Fi-score is defined as F} =
2 x precision x recall/(precision + recall) where precision =
1€ N E|/|E, recall = | N & |/|E], and & and € denote the
true and estimated edge sets, respectively. The conventional
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[ Model: VAR(3) model: number of nodes p=128 |
sample size n 128 256 512 [ 1024 [ 2048
Approach Fy score (£o)

1.i.d. modeling
Proposed: exhaustive
Proposed: BIC

0.1388 +0.0295
0.3215 +0.0323
0.2519 40.0426

0.1649 £0.0434
0.4256 +0.0368
0.2610 4-0.0492

0.1609 +0.0405
0.5356 +0.0298
0.4942 1+0.0555

0.2864 £0.0509
0.6036 +0.0293
0.6102 40.0290

0.3017 £0.0301
0.6861 +0.0236
0.6615 4-0.0306

TABLE I: “ii.d. modeling” stands for the “conventional” ADMM lasso approach ( [19, Sec. 6.4]) that models data as i.i.d.,
“Proposed: exhaustive” denotes our proposed ADMM approach where («, \) were selected via exhaustive search over a 2-
dimensional grid to maximize the Fy-score, and “Proposed: BIC” denotes our proposed ADMM approach where (o, \) were

selected via BIC.

i.i.d. modeling approach exploits only the sample covariance
% ?:_01 x(t)x " (t) whereas the proposed approaches exploits
the entire correlation function (equivalently PSD), and thus,
can deliver better performance. In Table I, the label “i.i.d.
modeling” stands for the conventional ADMM lasso approach
( [19, Sec. 6.4]) that models data as i.i.d., “Proposed: exhaus-
tive” denotes our proposed ADMM approach where («, \)
were selected via exhaustive search over a 2-dimensional grid
to maximize the F}-score, and “Proposed: BIC” denotes our
proposed ADMM approach where («, \) were selected via
BIC.

The conventional i.i.d. modeling approach estimates the
(sparse) precision matrix Q = (E{m(t)wT(t)})flz there is
an edge {i,j} € £. For a typical Monte Carlo run, we show
the estimated weighted adjacency matrices resulting from the
conventional approach and from the proposed:BIC approach
in Figs. 1 and 2 respectively. Fig. 1 shows true and estimated
{i,j} € & as edge weights, whereas Fig. 2 shows true

22/1:1 |[®x]ij]? and estimated chw:l |[<i’k]ij|2 as edge
weights.

true weighted adjacency

estimated weighted adjacency: n= 1024

o

100 =2 w0l - ]

= 002
120 o 120 L i

20 40 60 80 100 120 20 40 60 80 100 120

(a) True |Q2;;| as edge weight. (b) Estimated |[Q;;| as edge
weight.

Fig. 1: IID modeling weighted adjacency matrices. The red
squares (in dotted lines) show the communities — they are not
part of the adjacency matrices.

B. Real data: Financial Time Series

We consider daily share prices (at close of the day) of
97 stocks in S&P 100 index from Jan. 1, 2013 through Jan.
1, 2018, yielding 1259 samples. If y,,(t) is share price of
mth stock on day ¢, we consider (as is conventional in such
studies) X, (t) = In(ym(t)/ym(t — 1)) as the time series to
analyze, yielding n = 1258 and p = 97. These 97 stocks are

n=1024

true weighted adjacency estimated weighted adj

20 40 60 80 100 120 20 40 60 80 100 120

(a) True /3750 |[@4]i;]2
as edge weight.

(b) Estimated
as edge weight.

@i 12

Fig. 2: Weighted adjacency matrices for dependent time series
modeling: M = 4. The red squares (in dotted lines) show the
communities — they are not part of the adjacency matrices.

classified into 11 sectors and we order the nodes to group them
as information technology (nodes 1-12), health care (13-27),
financials (28-44), real estate (45-46), consumer discretionary
(47-56), industrials (57-68), communication services (69-76),
consumer staples (77-87), energy (88-92), materials (93), util-
ities (94-97). The weighted adjacency matrices resulting from
the conventional i.i.d. modeling approach and the proposed
approach with M = 4, are shown in Fig. 3. In both cases
we used BIC to determine the tuning parameters. While the
ground truth is unknown, the dependent time series based
proposed approach yields sparser, more interpretable CIG (429
edges for the proposed approach versus 1285 edges for con-
ventional modeling) which also conforms better with the sector
classification according to the Global Industry Classification
Standard.

V. CONCLUSIONS

Graphical modeling of dependent Gaussian time series was
considered. A sparse-group lasso-based frequency-domain for-
mulation of the problem has been considered in [13] using an
alternating minimization (AM) approach whose performance
depends upon choice of a penalty parameter. In this paper we
investigate an ADMM approach for optimization of sparse-
group lasso-based penalized log-likelihood formulation of the
problem. The frequency-domain formulation results in consid-
eration of optimization w.r.t. complex-values variables using
Wirtinger calculus. The approach was illustrated via synthetic
and real data examples.
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(a) Estimated |Q2;;] as edge weight; 1285 edges.
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(b) Estimated \/Ziil |[@4]i;]? as edge weight; 429 edges.

Fig. 3: Weighted adjacency matrices for financial time series.
The red squares (in dashed lines) show the 11 sectors: informa-
tion technology (nodes 1-12), health care (13-27), financials
(28-44), real estate (45-46), consumer discretionary (47-56),
industrials (57-68), communication services (69-76), consumer
staples (77-87), energy (88-92), materials (93), utilities (94-97)
— they are not part of the adjacency matrices.
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