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We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-
dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain
formulation of the problem based on frequency-domain sufficient statistic for the observed time series is
presented. We investigate an alternating direction method of multipliers (ADMM) approach for optimiza-
tion of the sparse-group lasso penalized log-likelihood. We provide sufficient conditions for convergence
in the Frobenius norm of the inverse PSD estimators to the true value, jointly across all frequencies,
where the number of frequencies are allowed to increase with sample size. This result also yields a rate
of convergence. We also empirically investigate selection of the tuning parameters based on the Bayesian
information criterion, and illustrate our approach using numerical examples utilizing both synthetic and
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1. Introduction

Graphical models are a useful tool for analyzing multivariate
data [1-3]. A central concept is that of conditional independence.
Given a collection of random variables, one wishes to assess the
relationship between two variables, conditioned on the remaining
variables. In graphical models, graphs are used to display the con-
ditional independence structure of the variables.

Consider a graph G = (V, &) with a set of p vertices (nodes)
V={1,2,...,p} =[p], and a corresponding set of (undirected)
edges & c[p] x[p]. Given a (real-valued) random vector x=
[x1 x5 --- xp]T, in the corresponding graph G, each variable x; is
represented by a node (i in V), and associations between variables
x; and x; are represented by edges between nodes i and j of G. In
a conditional independence graph (CIG), there is no edge between
nodes i and j if and only if (iff) x; and x; are conditionally indepen-
dent given the remaining p — 2 variables. Gaussian graphical mod-
els (GGM) are CIGs where x is real-valued multivariate Gaussian.
Suppose X has positive-definite covariance matrix X (=E{xx'})
with inverse covariance matrix (also known as precision matrix or
concentration matrix) £ = X!, Then ;;, the (i, j)th element of
R, is zero iff x; and x; are conditionally independent [1-3].
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Graphical models were originally developed for random vectors
with multiple independent realizations, i.e., for time series that is
independent and identically distributed (i.i.d.). Such models have
been extensively studied [4-8]. Graphical modeling of real-valued
time-dependent data (stationary time series) originated with [9],
followed by [10]. Time series graphical models of i.i.d. or depen-
dent data have been applied to intensive care monitoring [11],
financial time series [12-15], social networks [16], air pollution
data [10,13], analysis of EEG [17-19], and fMRI (functional mag-
netic resonance imaging) data [14,20,21], colon tumor classification
[22] and breast cancer data analysis [23]. A significant technical is-
sue in these analyses and applications is that of model selection.
Given p nodes in V, in an undirected graph, there are p(p —1)/2
distinct edges. Which edges are in &, and which are not - this is
the model selection (graph learning) problem.

Now consider a stationary (real-valued), zero-mean,
p—dimensional multivariate  Gaussian time series  Xx(t),
t=0,+1,42,..., with ith component x;(t). In a dependent
time series GGM ¢, edge {i, j} € £ iff time series components
{xi(t)} and {x;(t)} are conditionally dependent. In [10] the term
“partial correlation graph” is used for such graphs. A key insight
in [10] was to transform the series to the frequency domain
and express the graph relationships in the frequency domain.
Denote the power spectral density (PSD) matrix of {x(t)} by Sx(f),
where Sx(f) = 322 Rw(t)e 127/7, the Fourier transform of
R (t) = E{x(t + T)XT(t)}. Here f is the normalized frequency,
in Hz. Since for real-valued time series, Sx(f):Sff(—f), and
Sx(f) is periodic in f with period one, knowledge of Sx(f) in the
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interval [0,0.5] completely specifies Sx(f) for other values of f.
In [10] it was shown that conditional independence of two time
series components given all other components of the time series,
is encoded by zeros in the inverse PSD, that is, {i, j} ¢ £ iff the
(i, j)th element of Sy (f), [S;' (f)];j =0 for every f. This paper
is concerned with sparse high-dimensional graphical modeling of
dependent time series. It is noted in [10] that for partial corre-
lation graph estimation via nonparametric methods, checking for
[S;1 (f)]ij = 0 is computationally much less demanding than using
time-domain methods where one would need to calculate 2(’2’)
linear filters (see [10, p. 161] for details).

Comparing the facts that {i, j} ¢ £ & ;; =0 for vector GGMs,
while {i,j} ¢ € & [S;'(f)]j =0V f<[0,0.5] for dependent time
series GGMs, we see that S;l (f) plays the same role for a depen-
dent time series as is done by the concentration matrix € in the
i.i.d. time series (i.e., random vector) setting. The normalized DFT
dx(fm), fm = m/n, of real-valued time-domain data {x(t)}{':‘(}, de-
fined in (1), plays a central role in our proposed approach, and
use of DFT can also be viewed as a way to decorrelate time-
domain dependent data by transforming it to frequency-domain
where {dy (fm)}"m/i0 is an approximately independent sequence (see
Section 2.1). Representing data {x(t) ?;(} as well as the DFT se-
quence {dx(fm)}”m‘:]0 as column vectors, the two can be related
via a unitary n x n matrix, signifying that {dyx(fn) ”m;lo represents
any {x(t) ;’:‘(} via an orthonormal basis in C" [24, p. 71]. One may
also view this transformation (linear projection) as feature extrac-
tion from raw data, more suitable than raw data for further pro-
cessing for some intended task. In our case this transformation is
invertible. In other applications, not necessarily related to graphi-
cal modeling, one may resort to combined projection and dimen-
sion reduction to a lower rank subspace; possible examples in-
clude [25,26] and references therein. Low rank bilinear projections
of matrices (or higher-order tensors) are proposed in [25] to im-
prove the performance of existing two-dimensional discriminant
analysis algorithms for classification tasks. A self-supervised learn-
ing method is proposed in [26] to train a deep feature extraction
network without the need for numerous manually labeled video
samples. It is not yet clear how such ideas and approaches apply
to graphical model learning for dependent time series.

1.1. Related work

Prior work on graphical modeling for dependent time series
in the low-dimensional settings (sample size n > p) is concerned
with testing whether {i, j} € £ for all possible edges in the graph,
based on some nonparametric frequency-domain test statistic such
as partial coherence [10,11,17-19,27,28] which, in turn, is based on
estimates of Sx(f) given time-domain data. These approaches do
not scale to high dimensions where p is comparable to or larger
than the sample size n. As an alternative to nonparametric model-
ing of time series, parametric graphical models utilizing a (Gaus-
sian) vector autoregressive (VAR) process model of x(t), have been
advocated in [13,29,30], but these approaches are suitable for only
small values of p. As an alternative to exhaustive search over var-
ious edges, a penalized maximum likelihood approach in conjunc-
tion with VAR models has been used in [14] where the penalty
term incorporates sparsity constraints, making it suitable for high-
dimensional setting. For every pair of series components, the cor-
responding partial coherence is thresholded to decide if it is zero
(exclude the edge), or nonzero (include the edge). No systematic
(or principled) method is given for threshold selection.

Nonparametric approaches for graphical modeling of real time
series in high-dimensional settings have been formulated in
frequency-domain in [31,32] using a neighborhood regression
scheme, and in the form of penalized log-likelihood in frequency-
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domain in [33-35], all based on estimates of Sx(f) at various fre-
quencies, given time-domain data. A key model assumption used
in these papers is that 5;1 (f), fe]0,1], is sparse, i.e., for any f,
the number of off-diagonal nonzero elements are much smaller
than the total number p(p—1) of off-diagonal elements. Spar-
sity is enforced during optimization of the chosen objective func-
tion, making the problem well-conditioned. Reference [35] consid-
ers latent variable graphical models. References [34,35] exploit the
framework of [33], and therefore, inherit some of its drawbacks,
discussed in more detail later in Section 4.2 (see also Remark 1 in
Section 2.5). Reference [34] considers a Bayesian framework with
a focus on multiple time series realizations whereas [33] deals
with a single realization of the time series. Sufficient conditions
for graph edge recovery are provided in [33] whereas there is no
such analysis in [34,35]. A recent approach [36] considers a vec-
tor Gaussian time series with uncorrelated samples but possibly
nonstationary covariance matrices. This paper [36] addresses real-
valued time series using a neighborhood regression scheme. How-
ever, the results in [36] are applied to the discrete Fourier trans-
form (DFT) of stationary time series without analyzing the resul-
tant complex-values series (complex in the frequency-domain), and
without noting the fact the DFT over the entire observation set
does not result in (approximately) uncorrelated Gaussian sequence;
see Sections 2.1 and 4.2 later where it is pointed out that only
“half” of the DFT sequence is uncorrelated.

1.2. Our contributions

In this paper we address the same problem as in [33], namely,
first estimate the inverse PSD S;!(f) at distinct frequencies, given
time-domain data, and then select the graph edge {i, j} based on
whether or not [S;l (f)];j =0 for every f. As in [33], we use a pe-
nalized log-likelihood function in frequency-domain as our objec-
tive function to estimate S, 1(f), given time-domain data. However,
there are significant differences between our choice of frequencies
and objective function, and our analysis, and that of [33]. We enu-
merate these differences below and elaborate on them some more
later in the paper after introducing some concepts and notation in
Section 2.

(i) Our log-likelihood function is different from that in [33]. In
terms of the DFT dx(fmn), fm = m/n, of real-valued time-domain
data {x(t)}’t:g, defined in (1), we establish that {dx(fm)};/jo, (n
even), is a sufficient statistic for our problem, a fact not recog-
nized in [33] (see also Remark 1 in Section 2.5, and Section 4.2),
who uses some redundant frequencies fp's from the set

(4.1), in addition to those from the set [0, }]. Our proposed

frequency-domain formulation is based on {dx(fm)}gﬁ)’l, ne-
glecting dy(f;n) at m =0 and m = n/2 where the DFT is real-
valued Gaussian. We use a sparse-group lasso penalty on off-
diagonal elements of inverse PSD estimates at individual fre-
quencies (lasso) as well as jointly across all frequencies (group
lasso), whereas [33] uses only a group lasso penalty that is ap-
plied to all elements, including diagonal elements, of inverse
PSD estimates. The objective of lasso/group lasso penalty is
to drive possible zero entries of inverse PSD matrix to zero.
However, since PSD matrix at any frequency is assumed to be
positive-definite, its inverse is also positive-definite, hence, all
diagonal elements of inverse PSD matrix at any frequency are
strictly positive, therefore, do not need any sparsity penalty.
Our sparse-group lasso penalty is more general than the group
lasso penalty of [33] and it reduces to group lasso penalty if we
remove the lasso penalty at individual frequencies. In our op-
timization approach, we allow for the possibility of zero lasso
penalty.
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(ii) In [33], a test statistic based on the estimated inverse PSD’s is
compared to a nonzero threshold to infer presence/absence of
edges in the graph where no method is given regarding how to
choose the threshold. In this paper the threshold is set to zero.
We also empirically investigate selection of the tuning parame-
ters (lasso and group-lasso penalty parameters) needed for our
sparse-group lasso approach, based on the Bayesian information
criterion (BIC). No such results are available in [33].

(iii) We provide sufficient conditions (Theorem 1 in Section 5) for
convergence in the Frobenius norm of the inverse PSD estima-
tors to the true value, jointly across all frequencies, where the
number of frequencies are allowed to increase with sample size
so that the entire sufficient statistic set {dx(fm)},(qg’f])’1 is ex-
ploited. This results also yields a rate of convergence of the in-
verse PSD estimators with sample size n. Reference [33] pro-
vides sufficient conditions for consistent graph edge recovery in
[33, Proposition I11.2] when the number of frequencies are fixed
independent of sample size, and [34,35] offer no theoretical
analysis. A consequence of using fixed number of frequencies is
that in [33], only a subset of sufficient statistic set is exploited;
we elaborate on this later in Remark 1 in Section 2.5. We
do not have any counterpart to [33, Proposition IIl.2] whereas
[33] does not have any counterpart to our Theorem 1.

(iv) We propose an alternating direction method of multipliers
(ADMM) approach for optimization of the sparse-group lasso-
based penalized log-likelihood formulation of the problem.
Note that [33] also used ADMM but only for group lasso for-
mulation. We discuss practical ADMM issues such as choice of
ADMM penalty parameter and stopping rule for termination of
the algorithm whereas there is no such discussion in [33].

1.3. Relationship to prior conference publications

Preliminary versions of parts of this paper appear in confer-
ence papers [37,38]. The sufficient statistic for our problem was
first discussed in [37] where a sparse-group lasso problem was also
formulated in frequency-domain. But an alternating minimization
(AM) based solution to this problem, using the penalty method,
is given in [37]. The performance of this method depends upon
the penalty parameter, and strictly speaking, convergence of this
solution to the desired solution requires the penalty parameter
to become large, which can make the problem numerically ill-
conditioned. Use of the ADMM approach mitigates the dependence
on the penalty parameter used in the AM approach. The theoret-
ical analysis (Theorem 1) presented in Section 5 is partially given
in [38] where the proof is incomplete. In this paper we provide a
complete proof and also correct some typos. In turn, the proof of
Theorem 1 relies on some prior results in [39] which deal with
complex-valued Gaussian vectors, not time series. Lemma 1 ap-
pears in [37] without a proof. Lemma 3 is from [38] where a com-
plete proof is given, here we simply state and use it. A version of
Lemma 4 is stated without proof in [39], here we give a complete
proof. Lots of details of proof of Theorem 1 are missing in [38]. The
material in Sections 4.1.5, 4.3 and 6 of this paper does not appear
in [37-39].

1.4. Outline and notation

The rest of the paper is organized as follows. The sufficient
statistic in the frequency-domain for our problem and the re-
sulting log-likelihood formulation of the problem are presented
in Section 2 where we also provide some background mate-
rial on Wirtinger calculus needed for optimization w.r.t. com-
plex variables, and Whittle likelihood used in [33]. A sparse-group
lasso-based penalized log-likelihood formulation of the problem
is introduced in Section 3. An ADMM algorithm is presented in
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Section 4 to optimize the objective function to estimate the inverse
PSD and the edges in the graph. Selection of the tuning parame-
ters based on BIC is presented in Section 4.3. In Section 5 we ana-
lyze consistency (Theorem 1) of the proposed approach. Numerical
results based on synthetic as well as real data are presented in
Section 6 to illustrate the proposed approach. We present numer-
ical results for both synthetic and real data. In synthetic data ex-
ample the ground truth is known and this allows for assessment of
the efficacy of various approaches. In real data example where the
ground truth is unknown, our goal is visualization and exploration
of the dependency structure underlying the data. In both cases we
wish to compare our proposed approach with the widely used i.i.d.
modeling approach where the underlying time series is either as-
sumed to be i.i.d., or one uses only the covariance of the data.
Proofs of Lemma 1 and Theorem 1 are given in Appendix A and
Appendix B, respectively.

The superscripts %, T and H denote the complex conjugate,
transpose and Hermitian (conjugate transpose) operations, respec-
tively, and the sets of real and complex numbers are denoted by
R and C, respectively. Given A € CP*P, we use ¢nin(A), Pmax(A),
|A|, tr(A) and etr(A) to denote the minimum eigenvalue, maxi-
mum eigenvalue, determinant, trace, and exponential of trace of
A, respectively. We use A>0 and A > 0 to denote that Hermi-
tian A is positive semi-definite and positive definite, respectively.
The Kronecker product of matrices A and B is denotes by A® B.
For B € CP*4, we define the operator norm, the Frobenius norm

and the vectorized ¢; norm, respectively, as ||B|| = v/¢max (B B),

IBllF = v/tr(B"B) and ||B||; = ¥_; ; |Bj;|, where By; is the (i, j)th el-
ement of B, also denoted by [B];;. For vector € CP, we define

101y =>F, 16;] and (0]l =,/>F 16,12, and we also use ||6]| for

10]l,. Given A e CP*P, A" = diag(A) is a diagonal matrix with the
same diagonal as A, and A~ =A — A" is A with all its diagonal el-
ements set to zero. We use A~* for (A*)~!, the inverse of com-
plex conjugate of A, and A~" for (AT)~!. Given A € C"™P, column
vector vec(A) € C" denotes the vectorization of A which stacks
the columns of the matrix A. The notation y,, = Op(x;) for random
Y., Xn € CP means that for any ¢ > 0, there exists 0 < M < oo such
that P(||ly, |l < M||xn]|) > 1 —¢ Vn > 1. The notation x ~ N:(m, X)
denotes a complex random vector x that is circularly symmetric
(proper), complex Gaussian with mean m and covariance X, and
X ~ N;(m, X) denotes real-valued Gaussian x with mean m and co-
variance X. The abbreviations PSD, w.r.t, w.h.p., h.o.t,, iff and pdf
stand for power spectral density, with respect to, with high prob-
ability, higher-order terms, if and only if, and probability density
function, respectively.

2. Background and problem formulation

Given time-domain data {x(t)}?:‘(} originating from a
p—dimensional stationary Gaussian sequence, our objective is
to first estimate the inverse PSD S, 1(f) at distinct frequencies,
and then select the edge {i, j} in the time series GGM G based
on whether or not [S;l(f)],-j =0 for every f. We will follow a
maximum likelihood approach, and to this end we need to express
the likelihood function of time-domain data in terms its PSD
matrix.

2.1. Sufficient statistic and log-likelihood

Given x(t) fort =0,1,2,...,n— 1. Define the (normalized) DFT
dx(fm) of x(t), (j =v-1),

n—1

() = 7= 3O exp (-2 fut) M
t=0
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where

fm=m/n, m=0,1,....n—1. (2)

Since {x(t)} is Gaussian, so is dx(fm). Note that dy(fm) is peri-
odic in m with period n, and is periodic in normalized frequency
fm with period 1. Since x(t) is real-valued, we have d;(fn) =
dx(—fm) = dx(1 = fin), so dx(fm) for m=0,1,..., (n/2), (n even),
completely determines dx(fn) for all integers m. As proved in
[40, p. 280, Sec. 6.2], for any statistical inference problem, the
complete sample is a sufficient statistic, and so is any one-to-
one function of a sufficient statistic. Since the inverse DFT yields
(one-to-one transformation) x(t) = ﬁ Y0 dy(fm)el7 It the set

{dy( fn«,)}']n‘:l0 is a sufficient statistic, which can be further reduced
to {dx(fm)};/io since x(t) is real-valued, inducing symmetries
d; (fm) = dx(—fm) = dx(1 — fm). Thus, the set of complex-valued
random vectors {dx( fm)}”m/i0 is a sufficient statistic for any statis-
tical inference problem, including our problem of estimation of in-
verse PSD.

We need the following assumption in order to invoke [41, The-

orem 4.4.1], used extensively later.

(A1) The p—dimensional time series {x(t)}2__ is zero-mean sta-
tionary and Gaussian, satisfying

> I[Ru(T) kel < oo for every k, e e V.

T=—00

It follows from [41, Theorem 4.4.1] that under assumption
(A1), asymptotically (as n — oo), dx(fm), m=1,2,...,(n/2) — 1, (n
even), are independent proper (i.e., circularly symmetric), complex
Gaussian N¢(0, Sx(fm)) random vectors, respectively. Also, asymp-
totically, dx(fp) and dx(f,,2), (n even), are independent real Gaus-
sian NV;(0, Sx(fo)) and N (0, Sx(fn2)) random vectors, respectively,
independent of dyx(fm), me{1,2,...,(n/2) —1}. We will ignore
these two frequency points fo and fy ;.

Define

D= [dx(fl) dx(f(n/z)—l)] e C(/2-xp, (3)

Under assumption (A1), the asymptotic joint probability density
function (pdf) of D is given by

W2 exp (~df (fn)S;" () (fin))

=11 Gl @
leading to the log-likelihood function
(n/2)-1
nfo@=- > (In|Sc(fm)| +d (fi)S;" (f)de(fn))
m=1
n
—p(i—l)lnn. (5)

2.2. Complex Gaussian vectors

Here we recall some facts regarding proper and improper com-
plex Gaussian random vectors from [42]. We need these results to
clarify different expressions for the pdf of a proper complex Gaus-
sian vector, used later for optimization w.r.t. complex variables us-
ing Wirtinger calculus [42, Appendix 2], [43]. Define Ry = E{vw'}
for (zero-mean) v, w € RP, and define the covariance matrix Ryy =
E{vw!'}, and the complementary covariance matrix Ry, = E{vw'}
[42, Sec. 2.2], for zero-mean v,w < CP. Given u = u; + ju; € CP,
with real part u, and imaginary part u;, define the augmented
complex vector y and the real vector z as

y=[u" u”]T, z=[uf ulT]T. (6)
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The pdf of an improper complex Gaussian u is defined in terms
of that of the augmented z or y [42, Sec. 2.3.1]. Assume E{u} = 0.
Then we have z ~ N (0, R;;) where

R R R. R
R,, — Urly Url; , R, — ~i’u uu [ RH ) 7
= |:Ru1ur Ruiuii| Y |:Ruu R;;J w 2
Since z ~ N (0, R,), its pdf is given by (assuming R;; > 0)
= ! LS 8
+42) =g 0 (-7 ') ®

One can also express (8) as [42, Sec. 2.3.1]

fuu) := f(¥) = W exp (—%y”R;;y) (9)

For proper complex u, Ry, = 0, and (9) reduces to
e TR u—} (wR ju)"

7P |Ryu |12 Ry, |12

Ju(u) = (10)

Since Ry, = R, |Ry| = |R%,|, it follows that (uR;'u)* = ufR;'u,
for proper u, and therefore, (10) has the familiar form used in (4).

2.3. Wirtinger calculus

In this paper we will optimize a scalar objective function of
complex-values matrices. So we will use Wirtinger calculus (com-
plex differential calculus) [42, Appendix 2], [43], coupled with
corresponding definition of subdifferential/subgradients [44,45],
to analyze and minimize a strictly convex objective function of
complex-values matrices, e.g., function Lgg; ({®}) of complex {®}
defined in (40). We will use the necessary and sufficient Karush-
Kuhn-Tucker (KKT) conditions for a global optimum. Consider a
complex-valued z = x + jy € CP, &,y reals, and a real-valued scalar
function g(z) = g(z,z*) = g(x,y). In Wirtinger calculus, one views
g(z) as a function g(z, z*) of two independent vectors z and z*, in-
stead of a function a single z, and defines

0g(z.z*) 1| 0dg  .0g
0g(z,z") 1| dg .dg|
oz '_Z[Bx_]ay] (1)

see [42, Appendix 2]. For g(z) one defines its subdifferential 0g(zq)
at a point zg as [44,45]

08(z0) ={s € €7 : 8(2) = g(20) + 2Re(s" 2~ 20))
for all z cﬁ}. (13)

In particular, for scalar z € C, g(z) = |z|, we have [45]

. ]7/l7 ifz#0
8|Z|_t_{e{v:|v|§1,vec} ifz=0" (14)
Similarly, with hy(x) :=g(z1,22,...,2k_1,X, 2441, ..., 2Zp), X € C, the

partial subdifferential 0g;,, (z) := 0hy(zq,) is the subdifferential
ahy (zox) of hy(x) at zg. Also [45]

0g(2)
0z*

0g(20) = (15)

2=z,

when this partial derivative exists and g is convex.
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2.4. Whittle likelihood

Define y=[x"(0)x"(1) --- " (n—1)]T e RP". By assumption
¥~ N:(0,Xy) where X, =E{yy"}. Since X, >~ 0, the pdf of y is
given by

= exp(-y" %, 'y). (16)

1
Q)% 172
Based on some large sample (n — oo) results of Whittle [46-48],
Whittle approximation to fy(y) is stated in [49, Eqn. (5)] and [50,
Eqn. (1)] as follows. [50, Eq. (1)] is

_rexp (fdg(fm)s;l(fm)dx(fm))
w1 Sx (] ’

m=0
which specifies the joint pdf up to some constants, while [49,
Eqn. (5)] specifies

(17)

n-1

In @) ~— 5 3 (18| + (S, i) el ()

m=0
- % In(2m), (18)

up to some constants. As noted in Section 2.1, the terms in
(17) and (18) corresponding to the indices m = § + 1 through n — 1
are completely specified by terms corresponding to the indices
m =0 through 3. For instance, dx(fi;2)41) =dx(1— fin/2)11) =
dy(f(nj2)-1). Therefore, unlike (4) and (5), (17) and (18), respec-
tively, have lots of redundant frequencies. We note that [33] uses a
likelihood function based on such Whittle approximation. The like-
lihood of [33] is examined further in Remark 1 in Section 2.5.

2.5. Problem formulation

Recall that our objective is to first estimate the inverse PSD
S;l(f) at distinct frequencies, and then select the edge {i, j} in
the time series GGM G based on whether or not [S;l (N];j =0 for
every f. Suppose to obtain a maximume-likelihood estimate of in-
verse PSD S;l(f), we minimize —In fp(D) with respect to ®;, :=
S;l (fm). Then the problem is separable in m, and we choose ®p,
to minimize

h(®m) == —In|®p| +d}f (fin) Prmdx(fin)
1 1 "
= —jln|‘1’m| - jln|q)m|

ot Bud Fa)df () + @4 ()] () (19)

where the expression after equality above follows by specifying
the pdf of dx(fm) in terms of joint pdf of dx(fm) and d;(fm)
as in (10) (correct way to handle complex variates [42]). Using
Wirtinger calculus (Section 2.3), at the optimal solution the gra-
dient of h(®,;) w.r.t. ®;, vanishes:

0— oh(®n)
a®;,
= @) 4 ] ()T
= 1o L () (20)
leading to the solution (<i>m denotes estimate of ®,,)
b, = d.(u)dl (). 1)

Since dy (fm)df (fm) is rank one, we cannot obtain &, by inverting
dx(fm)df(fm). Indeed, dx(fm)df(fm) is the periodogram [24] and
it is known to be a poor estimator of the PSD Sx(fm) = <I>;1. To
obtain a consistent PSD estimator of Sx(fn), one needs to smooth
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(average) dy( fk)df (fi) over values of k centered around m, either
directly (periodogram smoothing) or indirectly (Blackman-Tukey
estimators operating on estimated correlation function) [24, Chap-
ter 2], [49, Sec. II-D.2]. Under high dimensional case, one also
needs sparsity constraints in order to regularize the problem.

We assume that Sy(fr) is locally smooth (a standard assump-
tion in PSD estimation [24, Chapter 2|, [41]), so that Sx(fm) is
(approximately) constant over K = 2m; + 1 consecutive frequency
points. Pick

o (k= DKem 1
K — )

n

n —mt—l
M= {ZKJ (23)

leading to M equally spaced frequencies fk in the interval (0,0.5), at
intervals of K/n. It is assumed that for each f;, (local smoothness),

k=1,2,....M, (22)

Sx(fre) = Sx(fi) for € = —m¢, —m¢ +1,...,my, (24)
where
f,(,[,: (k—l)K+nmt+l+e_ (25)

Using (24) in (4), we have

Mo exp (—dy (fo S (Fodi(fio))

D) = . — . . (26)
h® =1 [Hn 77 1S: o)
Define
D) =[de(Fie_m) i ms1) - Fem)] (27)
D(f) =Y de(fi)dy (o). (28)

f=—m;

Sk =Il<ﬁ(fk) (29)

where §, represents PSD estimator at frequency fk using un-
weighted frequency-domain smoothing [41]. The joint pdf of D(f})
is given by

exp (—tr(D(fi)S; ' (fi)))

fog) PG = —— XL (30)
_exp (—tr(KS;S," () 1)
S e IS(flk
Then we can rewrite (26) as
M
fo@) =TT faz,, D)) (32)
k=1
M _ $ S 1(F
1T exp (—tr(KS;S, (fk)))' (33)

e T IS (folk

This is the joint pdf we will use in the rest of the paper.

Remark 1. Ref. [33] cites the Whittle approximation (18) given
in [49] as a basis for their negative log likelihood function, which
can be inferred from [33, Eq. (6)] after removing the lasso penalty
therein. In the notation of this paper, it is given by

F
—Infy@) o> (tr(§iXy — In X, |) (34)

k=1
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where §,, is the PSD matrix estimator at frequency f, = 1, k=
1,2,...,F, and X parametrizes the unknown inverse PSD SX (fi)-
Minimization of penalized —In fy (¥) w.r.t. X, k=1,2,..., F, yields
the estimates of S;'(f,), which are then used to infer the un-
derlying graph. We will now relate (34) with F frequencies, to
(18) with n frequencies. In the analysis of [33], F is kept fixed
while the sample size n is allowed to increase. The estimate S
is obtained via Blackman-Tukey method which is mathematically
equivalent to frequency-domain weighted smoothing of period-
gram Py, := dx(fm)dff(fm) for values of m in a neighborhood of k,
ie.,

Z Wzdx(fkw)d (frre) = Z WePy, (35)

l=— (=—W

where the weights w, and effective width W depend upon the
window function used in the time-domain on estimated correla-
tion function (see [33, Eqn. (8)] and also discussion in [49, Sec. II-
D.2]| and [24, Sec. 2.5.1]). A standard assumption is that of local
smoothness of the true PSD matrix Sx(f), hence of X, as in (24).
This allows us to rewrite (34) as

F
(tr(SiXy — In |X|)
k=1

F W
~ Z Z (tr(WePyy Xpy o) — In | Xy ]). (36)
k=1 t=—W
The total number of DFT frequencies used in (36), hence in (34),
is (2W + 1)F whereas that in (18) is n. For §k to be a consistent
estimator of Sx(f;), one must have 2W +1 — oo and 24+1 0
as n— oo [41, Secs. 5.6 and 7.4]: 2%+, 0 makes S asymptotl—
cally unbiased and 2W +1 — oo makes estimator covariance ma-
trix tend to zero. To have the same number of frequencies in
(34) (or (36)) and (18), one must have 2W +1)F ~n, ie., F~
n/(2W +1) (— oo for consistency), which is not possible for the
approach of [33] with fixed F. Note that the analysis of [33] re-
quires §k to be a consistent estimator of Sx(f;), which is possible
by letting 2W + 1 — oo and 2%+1 — 0. But with fixed F, the prod-
uct (2W + 1)F « n for large n since F is fixed. Thus, for large n,
[33] exploits only a subset of the sufficient statistic set, whereas in
our approach the product KM ~ § (K and M correspond to 2W + 1
and F, respectively, in (36)), thereby using the entire sufficient
statistic set. As noted in Section 5 (after (59)), in our case, as
n—>oo.W€haveK—>oo,M—>ooand%—)O. |

3. Penalized log-likelihood

We wish to estimate inverse PSD matrix @ :=S;!(f). In
terms of ®, we rewrite (33) as

|(I,k|l<e—tr(K§k<I>k)

fb(fk) (D(fk)) = TKp

| q,k |I(/2 | <I)* |K/2
ke

(%(sk‘l’k'*—g;‘l’i)) (37)

where the last expression in (37) follows by specifying the pdf of
D in terms of joint pdf of D and D* as in (10). Then we have the
log-likelihood (up to some constants) [37]

In fp(D) o« —G({®}. {®"}) (38)

M
1
=Y s[anied+ o) - (3.0, + 597) |- 39)
k=1

In the high-dimensional case of K < p? (number of real-valued
unknowns in S;l(f,())), one has to use penalty terms to enforce
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sparsity and to make the problem well-conditioned. Consider min-
imization of a convex objective function g(f) w.r.t. # < RP. If 0 is
known to be sparse (only a few nonzero entries), one may choose
6 to minimize a lasso-penalized cost g(@) + 1|@]|; where A > 0 is
the lasso penalty or tuning parameter used to control sparsity of
the solution [51]. Suppose @ has M groups (subvectors) 0™ m=
1,2, ..., M, where rather than just sparsity in @, one would like a
solution which uses only a few of the groups o™ (group sparsity).
To this end, [52] proposed a group lasso penalty where 6 is chosen
to minimize a group lasso penalized cost g(6) +}\Z"n/1':1 ||0(m)||2
and where A > 0 is the group-lasso penalty parameter. As noted
in [53,54], while the group-lasso gives a sparse set of groups,
if it includes a group in the model, then all coefficients in the
group will be nonzero. To enforce sparsity of groups and within
each group, sparse-group lasso framework has been proposed in
[53,54] where 6 is chosen to minimize a sparse-group lasso penal-
ized cost g(0) +aA||0]l; + (1 —a)A M, 0", where o € [0, 1]
provides a convex combination of lasso and group-lasso penalties.
Note that o =0 gives the group-lasso fit while « =1 yields the
lasso fit, thus sparse-group lasso penalty is more general than ei-
ther lasso or group-lasso penalties.

Lasso penalty has been used in [22,55-57], group lasso has been
used in [58] and sparse-group lasso has been used in [4,59], all for
graphical modeling of real-valued random vectors (i.e., i.i.d. time
series) in various contexts. Group lasso has been used in [33] for
graphical modeling of dependent time series. Results of [53,54] for
a regression problem and that of [59] for graphical modeling of
random vectors in a multi-attribute context (a random vector is
associated with each node of a graph instead of just a random vari-
able), both show significant performance improvements over either
just lasso or just group lasso penalties. For our problem in this pa-
per we will use sparse-group lasso penalty.

Imposing a sparse-group sparsity constraint, we propose to
minimize a penalized version of negative log-likelihood w.r.t.
{®} ={®, k=1,2,...,M}, given by L, ({®}),

Lt ({®@}) = G({®@}. {®"}) + P{ D)), (40)

PUO) —ar 3 3" [EA ECEA 3 ) (41)
k=1 i#j i#]

where

@D = [[®:]; [®2]ij --- [®u;]T e CY, (42)

A>0 and o €[0,1]. In (41), an ¢; penalty term is applied to
each off-diagonal element of ®; via A ‘[Q,c]ij‘ (lasso), and to the

off-block-diagonal group of M terms via (1 — a))»,/zfl”:] [[®]i;I?

(group lasso).
To optimize L ({®}), using variable splitting, one may refor-
mulate as in [37]:

min, {G<{<I>} {<I>*})+P({W}>} (43)

subject to W, =®, >0, k=1,2,....,M, where {W}={W,;, k=
1,2,...,M}. Using the penalty method, [37] considers the relaxed
problem (p > 0 is “large”)

1{nm{G({<I>} (@) +PW}) + 2 Z | @y — Wk||5} (44)

(w) k

where it is solved via an alternating minimization (AM) based
method [60]. The final result depends on p and strictly speaking,
one must have p — oo which can make the problem numerically
ill-conditioned. In the numerical example of [37], a fixed value
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p = 10 was considered which does not necessarily achieve the con-
straint ®, — W, = 0. On the other hand, in the ADMM approach
which also uses a penalty parameter p, the final solution to the
optimization problem does not depend upon the chosen p > 0, al-
though the convergence speed depends on it [61]. In this paper we
consider ADMM. Some authors [62,63] have suggested that when
both AM and ADMM approaches are applicable, the ADMM which
requires dual variables, is inferior to the AM method which is a
primal-only method, in terms of computational complexity and ac-
curacy, but their claims do not account for the need to solve the
AM problem multiple times, each time with increased value of p,
and moreover, they do not consider graphical modeling problems.

4. Optimization via ADMM

In ADMM, we consider the scaled augmented Lagrangian for
this problem [44,61], given by

L,({®@}. {W}.{U}) = G({®}. {®"}) + P({W})
M
+ 2 10 - Wi+ UL (45)
k=1
where {U} = {U,, k=1,2,...,M} are dual variables, and p > 0 is
the “penalty parameter” [61].

4.1. ADMM Algorithm

Given the results {®™}, {W ™}, {U™} of the mth iteration, in
the (m + 1)st iteration, an ADMM algorithm executes the following
three updates:

(a) {@"™V} — argmin;g) L, ({®). (W™}, {U™})
(b) (WD} — argmingy L, (@), (W} {U™})

(c) (UMD} — (umy 4 ({q,(m+l)} _ {W(m+1)}>

4.1.1. Update (a)

Notice that L,({®}, (W™} {U™)}) is separable in k with
Ly({®}, (wm™} (umy =y M %ka(Qk,W,(cm), U;{m)) up to some
terms not dependent upon ®;’s, where

Ly (@, W™ UM™) = —In | @] - In || +tr<§k<l>k +§Z<1>;)

+pll @ -W™ +UM™ |2 (46)

As in [61, Sec. 6.5] but accounting for complex-valued vec-
tors/matrices in this paper compared to real-valued vec-
tors/matrices in [4], and therefore using the Wirtinger calculus,
the solution to argminq,kka(d)k,W,((’"),Ul(cm)) is as follows. A
necessary and sufficient condition for a global optimum is that the
gradient of L (®. W,((m),U,(cm)) w.r.t. @, given by (48), vanishes,

with &, = @' ~ 0 (we set A=W\™ —U™) :
0= 8ka((I)kv W;{m), UI((m))
B d®;
~H
= (@) +8, + p(® - A)

(47)

=8 — @'+ p(®, - A). (48)

The solution to (48) follows as for the real-valued case discussed
in [61, Sec. 6.5]. Rewrite (48) as

S$c—pA=8— pW" —U™) = &' - p&,. (49)

Let VDV denote the eigen-decomposition of the Hermitian matrix
S, — pA where D is diagonal with real values on the diagonal, and
vvH = vHV = I. Then we have

D=V (@' - pd )V =D"—pb (50)
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where D := V#®,V. Assume that D is a diagonal matrix and solve
(50) for diagonal D. That is, D;, should satisfy

Dy¢ = 1/Dye — pDee. (51)
The solution

~ 1

D= 55 (-Du /D +4p) (52)

satisfies (51) and yields D, >0 for any p > 0. Therefore, so
constructed D ~ 0, and hence, ®, = &™) =VDV" ~ 0 satisfies
(48) and (49).

4.1.2. Update (b)
Update {W;{m”)}f:”:l as the minimizer w.rt. (W} of

M
LY Wi — (@™ + U ™) |2 + PW)), (53)
k=1

Here we use Lemma 1 first stated (but not proved) in [37], and
is based on the real-valued results of [53]. Lemma 1 is proved in
Appendix A.

Lemma 1. Givena € C9, A; > 0 (i=1,2), h(#) = (1/2)|la - 0% +
A Y0 16i1 + A2]10]| is minimized w.r.t. 6 € C7 by 6 with the ith
component

R As
91': 1- —— S i,)\.
( ||s<a,m||>+ (@ 11)

where (b); := max(0, b), soft-thresholding operator S(b,8) :=
(1—pB/]|b))+b (for complex scalar b#0), and vector operator
[S(a. B)]j =S(a;, B), aj = [a];. o
Define A; = <I>,(<m“) +U,({m). Invoking Lemma 1, the solution to
minimization of (53) is
[Adi, ifi=j
W™D = 1 S(A;, 0%)(1 -
ifij

(54)

__(-ap
PlISA . ar/p)] >+ 59)

4.1.3. Update (c)
For the scaled Lagrangian formulation of ADMM [61], for k =
1.2.....M, update U™ = U™ + ("D —w™D),

4.14. Algorithm outline
(i) Initialize the variables: @ =1,
1,2, ..., M. Pick scalar p > 0.
(ii) Until convergence, for m=1,2,...,... , do steps (iii)-(v):
(iii) For k=1,..., M, update <I>,<<m+1) as in Section 4.1.1.
(iv) For k=1,..., M, update W,ﬁm“) as in Section 4.1.2

(v) For k=1, ..., M, update U;(”“” as in Section 4.1.3.

©) _ y0) _ _
w, ' =U0"=0 for k=

(vi) Denote the converged estimates as <i>k, k=1,..., M. Edge se-
lection:
if ||| > 0, then (i, j} e £, else {i, j} ¢ €. (56)

4.1.5. Stopping rule, variable penalty p, and convergence

Stopping Rule: In step (ii) of the Algorithm of Section 4.1.4, we
need a stopping (convergence) criterion to terminate the ADMM
steps. We will use a stopping criterion following [61, Sec. 3.3.1].
We also use a varying penalty parameter p(™ at the mth iteration,
following [61, Sec. 3.4.1]. The stopping criterion is based on primal
and dual residuals of the ADMM approach being small. Minimiza-
tion in (43) is done under the equality constraints ®, — W, =0,
k=1,2,..., M. The error in this equality during ADMM iterations
is called primal residual as it measures the primal feasibility [61,
Sec. 3.3]. The primal residual matrix is given by

Ry=[® -W;, -, &y —Wy]ecr®
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and the primal residual vector is rp = vec(Rp) € CP’M, vectoriza-
tion of Rp. At the (m+ 1)st iteration, the primal residual matrix
will be denoted by

(m+1) _ (m+1) (m+1) (m+1) (m+1)
Rp - [‘I>1 -wi ) <I>M -Wy ]

(m+1)
p

must have — 0. Based on some dual feasibility conditions
for optimization of the ADMM problem, a dual residual at the
(m + 1)st iteration is defined in [61, Sec. 3.3]. For our problem, the
dual residual matrix at the (m + 1)st iteration is given

with corresponding vector r =vec(Rl(,m“)). As m — oo, one

r(m+1)

(1) — pm[yymeD) _yy(m (m+1) _ yym
Rd =p [W1 —Wl , .., WM _WM ]
where R;m“) e CPx(PM) and the dual residual vector is ré”‘“) =

vec(Rt(jm”)) € CP°M, As m — oo, one must have r™1 _ 0,

The convergence criterion is met when the norms of these
residuals are below primary and dual tolerances 7, and 4,4, re-
spectively:

dp ::”Rﬁ)mﬂ)”F = Tpri
. 1
dg :=lIR{™ ™V |IF < Tauar-

Following [61, Sec. 3.3.1], the tolerances 7, and 74,y are chosen
using an absolute and relative criterion based on user chosen ab-
solute and relative tolerances 7, and t,,. The absolute tolerance
component of both 7,; and Ty is pv'M 745 Where pvM equals
square-root of length of rl(,m“) as well as of rém”). The relative
tolerance components of 7,; and 74,4 are proportional to the mag-

nitude of the primary variables <I>,(<m+l) and W;{mﬂ), and dual vari-
able U,E’"“). k=1,2,..., M, respectively. Let

1 1
e =[|[®™D . @My,
ex =W W,
1 1
es =[[U™D . UID]E.

Then following [61, Sec. 3.3.1], we pick
Tpri =P\/M Taps + Trel Max(er, e2)
Tdual :pm Tabs T Trel e3/10(m)-

Variable Penalty p: As stated in [61, Sec. 3.4.1], one may use
“possibly different penalty parameters o™ for each iteration, with
the goal of improving the convergence in practice, as well as mak-
ing performance less dependent on the initial choice of the penalty
parameter.” For scaled Lagrangian formulation, the variable penalty
p is updated as [61, Sec. 3.4.1]

2pm if dp > pdy
o™ =L pm 2 if dy > pd,
pm otherwise

for some w > 1. As stated in [61, Sec. 3.4.1], “The idea behind this
penalty parameter update is to try to keep the primal and dual
residual norms within a factor of p of one another as they both
converge to zero.” For all numerical results presented later, we
used p©@ =2 (initial value of p), it = 10, and Ty = T = 1074,

Convergence: The objective function Lgg; ({®}), given by (40), is
strictly convex in {®} for ®, ~0, k=1,2,..., M. It is also closed,
proper and lower semi-continuous. Hence, for any fixed p > 0, the
ADMM algorithm is guaranteed to converge [61, Sec. 3.2], in the
sense that we have primal residual convergence to 0, dual residual
convergence to 0, and objective function convergence to the opti-
mal value. For varying p, the convergence of ADMM has not yet
been proven [61, Sec. 3.4.1].
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4.2. Further on comparison with existing works

Here we briefly summarize comparisons with [33-35]. As noted
earlier in Section 2.1, {dx(fn«l)}”m/i0 is a frequency-domian suffi-
cient statistic for this problem. However, in [33] (and [34,35]), one
uses some estimate of PSD Sx(fm), or dx(fm), for m=0,1,...,n—
1 appealing to Whittle approximation which, as discussed in
Section 2.4, has lots of redundant frequencies. Also, in [33], fre-
quencies (fi, or fk in our notation) are fixed a priori as (f —1)/F €
[0,1), f=1,2,...,F, for some even integer F. For instance, in
the simulation example of [33], F =4, leading to four frequen-
cies {0,0.25,0.5,0.75} for any data size n. Note that $x(0.75) =
§5(0.25) (and so are their estimates), so there is no new informa-
tion in it. Also, Sx(0) and $4(0.5), and their estimates, are real-
valued, not complex, but as their estimates are based on dx(f})’s
for k in a neighborhood of m =0 or 0.5, any information in the
imaginary part of dx(f,)’s is not exploited. Furthermore, as noted
in item (i) in Section 1.2, [33] considers only group-lasso penalty
which is subsumed by our more general sparse-group lasso. In our
analysis presented later in Section 5, the number of frequencies
are allowed to increase with sample size, and as discussed in Re-
mark 1, Section 2.5, increasing the number of frequencies allows
one to exploit the entire sufficient statistic set, unlike the analy-
sis in [33] where with fixed F, one uses only a subset of sufficient
statistics.

4.3. BIC For tuning parameter selection

Let &, k=1,..., M, denote the converged estimates, as noted
in item (vi) of Section 4.1.4. Given n and choice of K and M, the
Bayesian information criterion (BIC) is given by

M
BIC(L. o) = 2K > (~In | @] + tr(S,Dy))
k=1
M A
+1In(2 KM) Z(#of nonzero elements in ®;) (57)
k=1

where 2KM are total number of real-valued measurements in
frequency-domain and 2K are number of real-valued measure-
ments per frequency point, with total M frequencies in (0, 7). Each
nonzero off-diagonal element of &, consists of two real variables,
but since ®,, is Hermitian, the number of (nonzero) real unknowns
in @, equal the number of nonzero elements of ®,. Pick o and A
to minimize BIC. We use BIC to first select A over a grid of values
with fixed «, and then with selected A, we search over « values in
[0,0.3]. This sequential search is computationally less demanding
than a two-dimensional search.

We search over A in the range [A,, Ay] selected via the follow-
ing heuristic (as in [59]). The heuristic lies in the fact that we limit
the range of o and A values over which the search is performed.
For o =g (=0.1), we first find the smallest A, labeled Agpy, for
which we get a no-edge model (i.e., |£| =0, where & denotes the
estimated edge set based on (56)). Then we set A, = Asn/2 and
Ae = Ay/10. The given choice of A, precludes “extremely” sparse
models while that of A, precludes “very” dense models. The choice
o €[0,0.3] reflects the fact that group-lasso penalty across all fre-
quencies is more important ((i, j)th element of inverse PSD at all
frequencies must be zero for edge {i, j} ¢ £) than lasso penalty at
individual frequencies.

5. Consistency

In this section we analyze consistency of the proposed ap-
proach. In Theorem 1 we provide sufficient conditions for conver-
gence in the Frobenius norm of the inverse PSD estimators to the
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true value, jointly across all frequencies, where the number of fre-
quencies are allowed to increase with sample size. As discussed in
Remark 1, Section 2.5, increasing the number of frequencies allows
one to exploit the entire sufficient statistic set, unlike the analysis
in [33]. Theorem 1 also yields a rate of convergence w.r.t. sample
size n. We follow proof technique of [22] which deals with i.i.d.
time series models and lasso penalty, to establish our main result,
Theorem 1.
Define p x (pM) matrix £ as

Q=[P P, - Byl (58)

With 0 < « < 1, re-express the objective function (40) as

My Pn
Lici(®) = GU®)A® D + ks 3 D |4l
k=1 l,i;:jl
Pn My, 2
F-ai 3 3|10y (59)
ij=1 \ k=1

i#]

where we now allow p, M, K (see (22), (23)), and A to be functions
of sample size n, denoted as pn, My, K, and A,, respectively. We
take p, to be a non-decreasing function of n, as is typical in high-
dimensional settings. Note that K;M, ~ n/2. Pick K, =a;n¥ and
=ayn'~7 for some 0.5<y <1, 0<ay,a; < oo, so that both
My, /Ky, — 0 and K,/n — 0 as n — oo (cf. Remark 1). As discussed
in Remark 2 later, Theorem 1 clarifies how to choose M, and K,
(or put additional restrictions on it) so that for given {p,}, the es-
timate of 2 converges to its true value in the Frobenius norm.
Assume

(A2) Define the true edge set of the graph by &, implying that & =
{i. 7} : [Sg"(N]ij#0. i#j. 0<f <05} where Sy(f) denotes
the true PSD of x(t). (We also use ®, for 551(fk) where fk is
as in (22), and use ( to denote the true value of ). Assume
that card(&y) = | ()| < Sno-

(A3) The minimum and maximum eigenvalues of p, x pn PSD
So(f) > 0 satisfy

0< lgmin = min ¢min So())

< fTaX Pmax (So(f)) < IBmaX < o0.

Here Bin and Bmax are not functions of n (or py).

Under assumptions (A1)-(A3), our main theoretical result is
Theorem 1 stated below. Assumption (A1), stated in Section 2.1,
ensures that Sx(f) exists ([41, Theorem 2.5.1]) and it allows us
to invoke [41, Theorem 4.4.1] regarding statistical properties of
dx(fm) discussed in Section 2.1. Assumption (A2) is more of a
definition specifying the number of connected edges in the true
graph to be upperbounded by s,o. The maximum possible value
of sy is pn(pn — 1) (where we count edges {i, j} and {j,i}, i # j,
as two distinct edges), but we are interested in sparse graphs
with sp0 < pn(pn —1). The lower bound in assumption (A3) en-
sures that Sal(f) exists for every f [0, 1]. Existence of 551(f) is
central to this paper since its estimates are used to infer the un-
derlying graph and it implies certain Markov properties of the con-
ditional independence graph [10, Lemma 3.1 and Theorem 3.3]. The
upper bound in assumption (A3) ensures that all elements in So(f)
are uniformly upperbounded in magnitude. To prove this, first note
that for any Hermitian A € CP*P, by [64, Theorem 4.2.2],

yAy
yiy -

Pmax(A) = max (60)
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Consider eg;) € CP with one in the ith position and zeros every-

where else. Then e Ae(,) = [A];; and e(l)e(i) =1, leading to

(I)A
¢mﬂx (A) - T -
e eq

= [Al;. (61)
Therefore, by (61), for 1 <i < pp,

[So(N]ii < Pmax(So(f)) < Pmax for f €[0,0.5]. (62)
Finally, by [41, p. 279],

180 () Tkel* < [So(f) Tk [So (f)]ee

implying that [[So(f)]xe| < Bmax for f €[0,0.5], 1 <k, ¢ < pn.
Let R, =arg minQ:q,kw Lsg  (2). Theorem 1 whose proof is
given in Appendix B, establishes consistency of flx.

Theorem 1 (Consistency). For T > 2, let

Ny
Co =80 max([So(Nl)y | frea (63)
where
N; = 2In(16pI My,). (64)
Given any real numbers §; € (0,1), 8§, > 0 and C; > 0, let
R=CCo/Biin: Co=22+Ci+8)(1+68)> (65)
. :\/Mn(pn 80 In(pn) o o)) (66)
K
_ : . Sl,Bmin
N, =argmin {n I < 6 [ (67)
N3=argmin{n : Kn>N1}. (68)

Suppose the regularization parameter A, and « < [0, 1] satisfy

C In(pn) < An
WK, T UM,
GG ( Dn ) In(py)
S b N R ] . 69
STt a(IM,—1) s0/) Ka (69)

Then if the sample size is such that n > max{N,, N3} and assump-
tions (A1)-(A3) hold true, 2, satisfies

12, — RollF < R (70)

with probability greater than 1 —1/p%~2. In terms of rate of con-
vergence (i.e., for large n),

192, — ollr =op(ln<Mn> My rn). (71)

A sufficient condition for the lower bound in (69) to be less
than the upper bound for every o < [0,1] is C; =2(1 + a (/M —
1)). e

Remark 2. Theorem 1 helps determine how to choose M, and Kj
so that for given {pn}, limy_ [|€2; — €|l = 0. This behavior is
governed by (71), therefore we have to examine In(Mp)/Mp 1.
As noted before, since K,Mp ~ n/2, if one picks K, = ayn?, then
My = a;n'~7 for some 0 < y <1, 0 < a1, a, < oo. Suppose that the
maximum number of nonzero elements in Sal (f), Pn + Sno, satisfy
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Pn + Spo = azn? for some 0 <6 < 1, 0 < a3 < oo. Then we have

O('H(Mn) Mnrn>=0<ln(M")M“ (pn+sno)ln(pn)>

K
O(anm»W%1yﬁﬂ>

nv/2

(In(n))*
O(,w)

0if 1.5 —1—0.56 > 0.

(72)

ntoo
—
If & =0 (fixed graph size and fixed number of connected edges
w.r.t. sample size n), then we need % <y < 1. By (72), we must
have 1> y > % + %. If 8 >0, y has to be increased beyond what
is needed for € =0, implying more smoothing of periodogram
dx(fm)d,':’(fm) around f, to estimate Sx(f;) (recall (29)), leading
to fewer frequency test points M,. Clearly, we cannot have 6 > 1
because pn + Spo = @(n?) will require y > 1 which is impossible.
If « =0, then C; is a constant, and therefore, ||SAZA -l =
Op(In(Mp)ry). In this case we have

IN(Ma) /My (Pr + S20) 1n<pn))

O(In(Mp)rn) = 0( e

g

(In(n))3/?
= O<n(2y19)/2>

"X 0if2y —1-6>0.

(]n(n) )3/2n(1—y)/2n0/2
nrv/2

(73)

Now we must have 1>y > 1 +§.1f 0 =0, we need 1 <y <1.
Also, we cannot have 6 > 1 because will require y > 1. O

6. Numerical examples

We now present numerical results for both synthetic and real
data to illustrate the proposed approach. In synthetic data exam-
ple the ground truth is known and this allows for assessment of
the efficacy of various approaches. In real data example where the
ground truth is unknown, our goal is visualization and exploration
of the dependency structure underlying the data.

6.1. Synthetic data

Consider p =128, 16 clusters (communities) of 8 nodes each,
where nodes within a community are not connected to any nodes
in other communities. Within any community of 8 nodes, the data
are generated using a vector autoregressive (VAR) model of order
3. Consider community ¢, ¢ = 1,2, ..., 16. Then ¥@ (t) € R8 is gen-
erated as

3
XD () = ZAi(q)X(Q) (t —i) + W)
i=1

with w@ (t) as iid. zero-mean Gaussian with identity covari-
ance matrix. Only 10% of entries of AI.(q)'s are nonzero and the
nonzero elements are independently and uniformly distributed
over [-0.8,0.8]. We then check if the VAR(3) model is stable
with all eigenvalues of the companion matrix < 0.95 in magni-
tude; if not, we re-draw randomly till this condition is fulfilled. The
overall data x(t) is given by x(t) = [*DT(t) ... x1OT(£) |7 ¢ RP.
First 100 samples are discarded to eliminate transients, and gen-
erate stationary Gaussian data. This set-up leads to approximately
3.5% connected edges. In each run, we calculated the true PSD
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S(f) for f e[0,0.5] at intervals of 0.01, and then take {i, j} € £ if
>f |Si;1 (f)| > 106, Note that average value of diagonal elements
(Z,P:l X5 S];] (f))/p, averaged over 100 runs, turns out to be 75.10
(+1.85). Therefore, the threshold of 10~ in ", |Si31 ()| >1076 is
quite low, resulting in some very “weak” edges in the graph.

Simulation results are shown in Fig. 1 where the performance
measure is Fj-score for efficacy in edge detection. The F;-score
is defined as F; = 2 x precision x recall/(precision + recall) where
precision = |EN&|/|€|, recall = |En&|/|&|, and & and & de-
note the true and estimated edge sets, respectively. For our pro-
posed approach, we consider three different values of M ¢ {2, 4, 6}
for five samples sizes n e {128, 256, 512, 1024, 2048}. For M = 2,
we used K =31, 63,127, 255, 511 for n = 128, 256, 512, 1024, 2048,
respectively, for M =4, we used K = 15,31, 63,127,255 for n=
128, 256, 512, 1024, 2048, respectively, and for M =6, we used
K =9,21,41, 85,169 for n = 128, 256, 512, 1024, 2048, respectively.
These approaches are labeled as “proposed: M=2," “proposed:
M=4," and “proposed: M=6," in Fig. 1. The tuning parameters A
and o were selected by searching over a grid of values to maxi-
mize the F-score (over 100 runs). The search for o was confined
to [0,0.3]. For a fixed @ = 0.1, we first picked the best A value, and
then with fixed best A value, search over « < [0, 0.3]. Fig. 1 shows
the results for thus optimized (A, ). In practice, one cannot calcu-
late the F;-score since ground truth is unknown. For M = 4 we se-
lected (A, ) in each run via BIC as discussed in Section 4.3 (where
knowledge of the ground truth is not needed). The obtained re-
sults based on 50 runs are shown in Fig. 1, labeled as “proposed:
M=4,BIC.” The conventional i.i.d. modeling approach exploits only
the sample covariance % ?;(} x(t)xT (t) whereas the proposed ap-
proaches exploit the entire correlation function (equivalently PSD),
and thus, can deliver better performance. In Fig. 1, the label “IID
model” stands for the ADMM lasso approach (|61, Sec. 6.4]) that
models data as i.i.d., and the corresponding results are based on
100 runs with lasso parameter A selected by exhaustive search
over a grid of values to maximize F; score. We also show the
results of the ADMM approach of [33], labeled “GMS” (graphical
model selection), which was applied with F =4 (four frequency
points, corresponds to our M = 4) and all other default settings of
[33] to compute the PSDs (see also Section 4.2). The lasso param-
eter A for [33] was selected by exhaustive search over a grid of
values to maximize F; score.

The F;-scores are shown in Fig. 1 and average timings per run
are shown in Fig. 2 for sample sizes n = 128, 256, 512, 1024, 2048.
All ADMM algorithms were implemented in MATLAB R2020b, and
run on a Window Home 10 operating system with processor In-
tel(R) Core(TM) i5-6400T CPU @2.20 GHz with 12 GB RAM. It is
seen from Fig. 1 that with F;-score as the performance metric, our
proposed approach for all three values of M (number of normal-
ized frequency points in (0,0.5)) significantly outperforms the con-
ventional IID model approach. The BIC-based approach for M =4
yields performance that is close to that based on optimized param-
eter selection for n > 512. It is also seen that [33]| performs bet-
ter than IID modeling but much worse than our proposed sparse
group lasso approach, while also taking more time to convergence.
The stopping rule, variable penalty and thresholds selected for
all approaches were the same since all approaches are ADMM-
based; these values have been specified as p(® =2, i =10, and
Tabs = Tret = 1074 in Section 4.1.5.

The conventional i.i.d. modeling approach estimates the (sparse)
precision matrix € = (E{x(t)x" (t)})71 =R} (0): there is an edge
{i,j} in CIG iff Q;; #0. Since this approach ignores Ry (m) for
m # 0 for dependent data, its performance is the worst for all sam-
ple sizes, although the performance does improve with n since
{i.j} ¢ £ = ©;; =0 and accuracy of the estimate of ;; improves
with increasing n. The method of [33] performs better than IID
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Fig. 1. F-score for synthetic data example. The label “GMS” refers to the approach of [33].

p=128

102} . . . .

time (s)

— ¥ — prposed: M=2

—=&— proposed: M=4
—-4-— proposed: M=6
—-B-— 11D model 1
— % -cMs ]

1 1 1 1 1

10-1 1 1 1 1
0 200 400 600 800

1000 1200 1400 1600 1800 2000

n

Fig. 2. Average timing per run for synthetic data example. The label “GMS” refers to the approach of [33].

modeling since it does use Ryx(m) for m # 0 in estimating S;,(1 .
Also, the performance of [33] improves with n as accuracy of the
estimates of the PSD improves with n. However, as summarized in
Section 4.2, [33] makes some peculiar choices which are likely rea-
sons why its performance is inferior to our proposed approach.
Note that for our example, there is no explicit mathematical ex-
pression for calculating the true edge set &. In each run, we cal-
culated the true PSD S(f) for f €[0,0.5] at intervals of 0.01, and
then took {i, j} € £ if >, |Sl.31 (f)| > 1076, where the average value

of diagonal elements (Zf’zl >f Sijl (f))/p, averaged over 100 runs,

1

turns out to be 75.10 (£1.85). That is, we have some very “weak”
edges in the graph which are not easy to detect with relatively
“short” sample sizes, resulting in relatively low F scores. Neverthe-
less, when comparing different approaches, our proposed approach
performs much better.

For a typical Monte Carlo run with n = 1024, we show the es-
timated weighted adjacency matrices resulting from the conven-
tional “IID model” approach and from the “proposed: M=4,BIC” ap-
proach in Figs. 3 and 4 respectively. For the IID model approach,
tuning parameter A used is the one used for Fig. 1, selected by
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(b) Estimated |€2;;] as edge weight.

Fig. 3. 1ID modeling-based weighted adjacency matrices. The red squares (in dotted
lines) show the communities - they are not part of the adjacency matrices. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

exhaustive search to maximize the F; score. Figure 3 shows true
and estimated |€2;;| as edge weights, whereas Fig. 4 shows true

VM [[@];j12 and estimated /Y M, |[®;];;|? as edge weights.

While clustering is quite evident in both Figs. 3 and 4, there are
some spurious (as well as missed) connections reflecting estima-
tion errors, which are inevitable for any finite sample size.

6.2. Real data: Financial time series

We consider daily share prices (at close of the day) of 97 stocks
in S&P 100 index from Jan. 1, 2013 through Jan. 1, 2018, yielding
1259 samples. This data was gathered from Yahoo Finance website.
If ym(t) is the share price of mth stock on day t, we consider (as is
conventional in such studies [12]) Xy (t) = In(ym (t) /ym(t — 1)) as
the time series to analyze, yielding n = 1258 and p = 97. These
97 stocks are classified into 11 sectors (according to the Global
Industry Classification Standard (GICS)), and we order the nodes
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Fig. 4. Weighted adjacency matrices for dependent time series modeling: M = 4.
The red squares (in dotted lines) show the communities — they are not part of the
adjacency matrices. (For interpretation of the references to colour in this figure leg-
end, the reader is referred to the web version of this article.)

to group them according to GICS sectors as information technol-
ogy (nodes 1-12), health care (13-27), financials (28-44), real es-
tate (45-46), consumer discretionary (47-56), industrials (57-68),
communication services (69-76), consumer staples (77-87), en-
ergy (88-92), materials (93), and utilities (94-97). The weighted
adjacency matrices resulting from the conventional i.i.d. modeling
approach and the proposed approach with M = 4, (K = 155), are
shown in Fig. 5. In both cases we used BIC to determine the tun-
ing parameters with selected A = 0.0387 for the IID model and
(A, @) = (0.7,0.3) for the proposed approach. While the ground
truth is unknown, the dependent time series based proposed ap-
proach yields sparser CIG (429 edges for the proposed approach
versus 1293 edges for conventional modeling, where we now count
edges {i, j} and {j,i}, i # j, as the same one edge). Based on the
GICS sector classification, one expects to see clustering in the es-
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Fig. 5. Weighted adjacency matrices for financial time series, p = 97, n = 1258. (a)
IID model approach, (b) Proposed approach, M = 4. The red squares (in dashed
lines) show the 11 GISC sectors - they are not part of the adjacency matrices. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

timated weighted adjacency matrix, conforming to the GICS classi-
fication in that stocks within a given sector are more connected,
and with higher weights, to other stocks within the sector, and
have fewer connections, and with lower weights, to stocks in other
sectors. In this sense, our proposed approach also conforms bet-
ter with the GICS sector classification when compared to the i.i.d.
modeling approach.

7. Conclusions

Graphical modeling of dependent Gaussian time series was con-
sidered. A sparse-group lasso-based frequency-domain formulation
of the problem was proposed and analyzed where the objective
was to estimate the inverse PSD of the data via optimization of
a sparse-group lasso penalized log-likelihood cost function. The
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graphical model is then inferred from the estimated inverse PSD.
We investigated an ADMM approach for optimization. We estab-
lished sufficient conditions for convergence in the Frobenius norm
of the inverse PSD estimators to the true value, jointly across all
frequencies, where the number of frequencies were allowed to in-
crease with sample size. We also empirically investigated selection
of the tuning parameters based on the Bayesian information crite-
rion, and illustrated our approach using numerical examples utiliz-
ing both synthetic and real data. The synthetic data results show
that for graph edge detection, the proposed approach significantly
outperformed the widely used i.i.d. modeling approach where the
underlying time series is either assumed to be i.i.d., or one uses
only the covariance of the data. The proposed approach also out-
performed the approach of [33] for synthetic data.
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Appendix A. Proof of Lemma 1

Lemma 1 is proved following [53] (which deals with real vari-
ables), and using Wirtinger calculus and complex subgradients.
Since h(#) is convex in @, a necessary and sufficient condition for a
global minimum at 0 is that the subdifferential of h(@) at 0, Bh(é)
given by (A.1), must contain 0:

a1 4 A1 Ao

0€8h(0)_§(0—a)+7t+7w (A1)
where (t; = [t];, jth component of t)
w [0/101 if020 A2)

cel{u:|ull<1,uect} if0=0

0./10:] if0;,#0
ti=1"" < . A3
J {e{v:|v|51,ve(€} if0;=0 (A3)

Lemma 1 is a consequence of KKT conditions (A.1). We will show
that (54) satisfies (A.1). Consider the following two cases:

(i) Suppose ||S(a, A1)|| < Ap. Then (54) implies that é,- =0 Vi. We
need to show that this solution satisfies (A.1), that is, given a,
there exist w and t satisfying

aj — )\.]tj
Ay

Following real-valued results of [53], consider minimization of
J(¢), defined below, w.r.t. t;’s subject to |tj|2 <1,j=1.2,....q:

w;j =1,2,...,q (A4)

q q
1
J@) =) |lwj|* = ﬁZlaj_)"ltﬂz- (A5)
j=1 2 j=1
The problem is separable in ;s with the solution
- aj/Aif ajl < A
ti=1" o d A.6
i {aj/|aj| if a;] > Ar. (A6)

Thus aj —)nlfj = (1 —A1/|aj|)+aj and with W} = (a] —)\.]fj)/)\Q,
we have
minj(6) =J&) = ) 1w;|* = (A7)

1
Sls@anl? <1
j=1 2

Thus (A1) holds for given W and f satisfying (A.2) and (A.3),
respectively.
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(ii) Now suppose ||S(a,Aq)|| > A,. Then (54) implies that 9;&0,
therefore, at least one component of 6 is nonzero. Again we
need to show that this solution satisfies (A.1). If |g;] < Aq,
then 6, =0 and f; = a;/A; satisfies (A.3). If |a;| > A4, then 0;
0 and we take f; =6;/|6;|. For an arbitrary a;, but satisfying
IIS(a, X1)|| > Ay, let us express our claimed solution éi #0 as

b =yaia, o= (1-r/la], (A.8)

q
y =1-1/(Q_aila;[»)'? > 0.
j=1
We need to show that this solution satisfies (A.1). The ith com-
ponent of 20h(#) with W and £ satisfying (A.2) and (A.3), re-
spectively, is

(A.9)

A -t o g0
16i] el
=9A,~|:1+)il+k}:| —a;=a;B—q (A.10)
16il 10l
where, with D := (Z?Z1 Ot?laﬂz)l/z,
)\,1 )\,20[,'
B=vao; + — + All
YA el T D (A
The proof is completed by showing that B = 1. We have
B :yai|a,-|D+)»1D+}~20li|ai| (A12)
la;|D
_ilaiD — Ay0i]ai| + 21D + Azeilail (A13)
la;|D
_oilailth My (A14)
|ai] |ai]

where, for éi #0, 05 =1- X1/l

This proves the desired result H

Appendix B. Proof of Theorem 1

Our proof relies on the method of [22] which deals with i.i.d.
time series models and lasso penalty, and our prior results in
[39] dealing with complex Gaussian vectors (not time series). From
now on we use the term “with high probability” (w.h.p.) to de-
note with probability greater than 1 — 1/p3~2. First we need sev-
eral auxiliary results.

Lemma 2 below is specialization of [57, Lemma 1] to Gaussian
random vectors. It follows from [57, Lemma 1] after setting the
sub-Gaussian parameter o in [57, Lemma 1] to 1.

Lemma 2. Consider a zero-mean Gaussian random vector z € R?
with covariance R > 0. Given n i.i.d. samples z(t), t =0,1,...,n—
1, of z, let R= (1/n) Z{'z’(} zz" denote the sample covariance ma-
trix. Then R satisfies the tail bound

o né?
P[RR [ - 8) <a e (_ 3200 max,(R?.))
n

for all § € (0,40 max;(R;)) e
Exploiting Lemma 2, we have Lemma 3 regarding §k. We de-
note So(f,) as Sy in this section. A proof of Lemma 3 is in [38,
Lemma 2]. The statement of Lemma 3 below is a corrected version
of [38, Lemma 2] with no changes to its proof given therein.
Lemma 3. Under Assumption (A2), §, satisfies the tail bound

(B.1)

e In(py) 1
P(f’?ﬁ(‘[sk —Soklqr| > Co I(nn ) < 2 (B.2)
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for T > 2, if the sample size n and choice of K, is such that K, >
N; =2In(16pi M), where Cp is defined in (63). e

Lemma 4 deals with a Taylor series expansion using Wirtinger
calculus.

Lemma 4. For ®, = @} -~ 0, define a real scalar function

c(®y, @) = In| P | + In|DPy]. (B.3)
Let @) = @y, + I, with @, = <I>gk =0and I'y = I‘i’. Then using

Wirtinger calculus, the Taylor series expansion of c(®y, ®;) is
given by

c(Py, @) = (Poy, D) + tr( Py Ty + D T)
1 — -
— 5 (vec(T'))" (@5 ® @p; )vec(Iy)

1
- j(vec(r;;))H(<I>g,3 ® @, )vec(T;) + hot. (B4)

where h.o.t. stands for higher-order terms in I'y and I';. e

Proof: Only for the proof of this lemma, we will drop the sub-
script k, and donate @, ®, and T, as ®, ®, and T, respectively.
Treating ® and ®* as independent variables, the Taylor series ex-

pansion of c(®, ®*) is
ac .,
M)*F“>

(P, D) = c(®g, P) + (
0 ; 0 Post Ost

1 . r
+5 ;;[qu I 1Dogrst [FJ +hot. (B.5)
where
ac ac(®, ¢*)
= , B.6
0 CI>Ost 0 q)st Dy =D ( )
5t=Post
Jac ac(®, &%)
= ) B.7
0 (Dz‘)st 9 g Psr=Dost (B.7)
st =Post
0%c(®, ®*) 0%c(®, D)
| 0Pgr0 Dy 0Dy 0 P
Dogrst = | g2c(d, @%)  92c(®, @)
0D ®: 0D Dy =Dy, DL =D,
d qra st ad qra st ‘:qu:q)gqr.q);;,:(l?%q,
0%¢c(®, @)  9%c(P, ®*) ]
3d>0qr3d>0$[ 3d>oqr8d>’6
= 92c(®, @)  9%c(®, B (B.8)
3‘1>’5q,3‘1>05r 8CI>’5qr8CI>’55[_
Consider the following facts [65,66]
dln|®| 1 . dln|®| _
TPy =[® s = [® s since —7— =", (B.9)
oln|®*|  —_,
W—[¢ lts, (B.10)
Jdln|®| _ J1n|®"| _
0B, T ady (B11)
2In|® [ '] e e
00,00, ~ 0%, 10 ll® s (B12)
92%1In |®*| . .
W——[‘I’ leg[@ " Irs, (B.13)
2 2 2 % 2 %
0°In[®| 9’In|®| 0°In|®*| 9 ln|<I>|_0‘ (B.14)

00,00,  00;00g  0Dg00; 050Dy
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Using the above partial derivatives in the first derivative terms
in the Taylor series, we have

d ac
Z(acbc FS”Lacb* r;;)
=Y ([90' IisTs + [®571:sT %)
St

=tr(®,'T + ®,°T"). (B.15)
The quadratic terms in the Taylor series yield
r
Z Z[qu Fsr]DqustI:Fiti|
st
q.r st
92¢c(®, ®*) 92c(®, &%)
= I Do+ 72212
;;[ qracqurad)Ost et qrad)éqraqbést st
= _ZZ I:qu[q’ ]tq[‘po rs st
q.r st
+ D105 ]l @1 |
-y [(Z Tor[ @' 1rs> + (Z Ty @5 ]tq)]
q.s r t
- Z |:<Z F;r[q)a*]m) + (Z F;}[q’a*]tq>j|
q.s r t
==Y [IT®; 1ss[T D5 g + [T* @5 [gs[ T D51 |
q.s
= —tr(T®,' T ;" + " ®; T ;7). (B.16)

Given matrices A and B for which product AB is defined, and
additionally given matrix Y such that product AYB is defined, we
have vec(AYB) = (B" ® A)vec(Y) and tr(AB) = (vec(A)) vec(B).
Using these results we have

(vec(A))" (D ® B)vec(C) = (vec(A)) vec(BCD")
= tr(A"BCD"). (B.17)
Using (B.17), we rewrite terms in (B.16) as
tr(F®, ' Ty') = (vec(TT)T (@, ® @' )vec(T)
= (vec(I))" (@, ® @, )vec(T), (B.18)
tr(T* @, T ®;") =(vec(I'))™(®," @ ®;*)vec(I™). (B.19)
In (B.18), we have used (vec(I'"))T = (vec(I'*))T = (vec(I'))H

and ®; = (®))! = ®;*, since I =T and &, = ®}. In (B.19),
we have used (vec(T'))T = (vec(I))T = (vec(T*))* and @, =
(®f)~' = ®,'. Using (B.15), (B.16), (B.18) and (B.19) in (B.5), we
obtain the desired result (B.4). MW

Lemma 4 regarding Taylor series expansion immediately leads
to Lemma 5 regarding Taylor series with integral remainder,
needed to follow the proof of [22] pertaining to the real-valued
case.

Lemma 5. With c(®, ®;) and ®, = ®(, + I, as in Lemma 4,
the Taylor series expansion of c(®,, ®;) in integral remainder
form is given by (v is real)

c(®y. B}) = c(Bor. Bfy) + tr(Pg Ty + i Th)

1
_g'(Ty) ( /0 (1 - V)H(®p. Ty v) dv)g(rk)
(B.20)
where

vec(Ty)

8Ty = |:vec(l“i):|’ H(®q, Ty, v) = I:H(l)lk H(2)21<i| (B21)
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Hiy = (®o + vT) ™ @ (Pgi + VL) ! (B.22)

and

Hy = (®or + VL) ' @ (Ror + VL) ™ @ (B.23)
We now turn to the proof of Theorem 1.

Proof of Theorem 1.. Let 2 = 2, + A where

A=[T1 T, - Tyl (B.24)

=&, — @y, k=1,2,...,M,, (B.25)

and ®,, ¥, are both Hermitian positive-definite, implying I, =
I, Let

Q(R2) := L1 () — Lscr (o). (B.26)

The estimate QA, denoted by € hereafter suppressing dependence
upon A, minimizes Q(£2), or equivalently, A=Q- 2, minimizes
G(A) :=Q (¢ + A). We will follow the method of proof of [22,
Theorem 1] pertaining to real-valued i.i.d. time series. Consider the
set

On(R) :={A : Ty =T} Vk. |A|lr =Ry} (B.27)

where R and r,, are as in (65) and (66), respectively. Observe that
G(A) is a convex function of A, and

G(A)=Q(R+A) <G(0) =0 (B.28)
Therefore, if we can show that
igf{G(A) tAe®,R)} >0, (B.29)

the minimizer A must be inside the sphere defined by ®,(R), and
hence

I AllF < Rra. (B.30)
Using Lemma 5 we rewrite G(A) as
WA 1
G(A) = ;(EAlk + EAzk + Asi) +Ag, (B.31)
where, noting that <I>5k1 = Sok
1
Ag = g"(Ty) (/0 (1 -v)H(®g, Ty, v) dU).g(rk), (B.32)
Agi = tr((8k — So) Tie + (S — So) T). (B.33)
Asie = ohn([| Rop + Tyl = [ @gll1). (B.34)
p" . . .
As=(1-a)hn Y (125" + AP [Ir — 1257 ]IF). (B.35)
i#]
" = [[®orly -+ [®ow,Ij]" e T, (B.36)
AD =[]y - [T, Jy]" e €. (8.37)
Define
In
din = | 2P i /(o sw0). (B.38)

Ky

We first bound A;;’s and A;. Note that H(®, I, v) is a Hermitian
matrix and its eigenvalues consist of the eigenvalues of Hy;, and
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H,,,. Since the eigenvalues of A® B are the product of the eigen-
values of A and eigenvalues of B for Hermitian A and B, the eigen-
values of Hyy; are the product of the eigenvalues of (@, + vI'})~*
and that of (@ + vIy)~!. But these two matrices have the same
set of eigenvalues since one matrix is the complex conjugate of
the other, and both have real eigenvalues since they are Hermitian.
Since Hyy, = H3,,, it follows that the eigenvalues of Hyy; are the
same as the eigenvalues of H,,,. Thus

Dmin (H(®@or, T, 1)) = Pinin (H11k) = Pmin (H22)
= ¢r2nin((q>0k + vrk)i]) = ¢;1§X(¢Ok + Urk)-
Since X"AX > ¢in (A)|X]|2, we have

(B.39)

1
A = 18T 1> Pmin (fo (1 =)H(®yy. Ty, v) dU)

1
= 2lvec(T) | [ (1= v)dv min g (H(®os, Ty )
= Tyl min G2 (@oi + VL), (B.40)

where we have used the facts that fol (1 -v)dv=1/2. Since

Gmax (Por + VIk) < || Pox + vkl < | Roxll + vIITwll, (B41)
we have
Brmax (Poi + VL) = (| gl + V]| Tiel])

> (| @ocll + ITel)? for 0 <w < 1. (B42)
Thus,
Ay = Wﬂfn”)z > Tl (Bt + an)72 (B.43)
where we have used the fact that [[®gll = IS, | = Pmax(Sy,) =

(PminSox)) ™! < Bty and [Tl < [ITyllF < [IAllF = Rrn = O(rn).
Therefore,

My Mhn 2 2
r A
2A1 — ZAlk > Zk:1 ” I<||F2 — ” ”F : (B.44)
-1 -1
k=1 (ﬂmin + an) (IBmin + an)
Turning to Ay, we have
|Azk| < 2Ly1x + 2Look (B.45)
where
Lot = | D I8k — SoxliiTkii| = | D[Sk — Sowl;i T (B.46)
"L#]J' ilﬁgj
Looe = | Y I8k — SowliiTuii| = | D8k — Soli |- (BA47)
i i

To bound Ly, using Lemma 3, with probability > 1 —1/p% 2,
Ly < ITk 111 max |18k — Soilii| =< 1Ty I Codn. (B.48)

Using Cauchy-Schwartz inequality and Lemma 3, with probability
>1-1/p2,

pn
[&8 & & 112
Ly < IT¢ e /D7 |8k — Sokli]
i1

< T¢I v/Pn 1122)( |[§k —50k1n‘|
< IT¢ Il v/Prn Codin
< [IT{ [IF Co dan (B.49)

where s, is the cardinality of the true edge set & (see Assumption
(A1)). Thus, with probability > 1 —1/p5~2,

1Agi] = 2Go(IT Il dun + T 1r dan)- (B.50)
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Hence with A, = Y\ (1/2)Ay,

M

My
A2l = Y (12l <Go 3 (il Tilh + Tl ).  (B5T)
k=1 k=1

We now derive an alternative bound on A;. We have w.h.p.
pn My

Aol < D7 3|18 = Soulij| - |[Tlij| (B.52)

ij=1 k=1

Pn My

< Godin Y Y |[Tulyj

i.j=1k=1

(B.53)

Dn

< Godin Y. (VMallAP[lf)

ij=1

= VMaGodin(IA™ |11 + 1A7]]1)

where A € RPr*Pn has its (i, j)th element Aj; = [| AW .

We now bound As. Let £§ denote the complement of &, given
by &5 ={{i.j} [551(f)],-]- =0, i#j, 0<f<0.5}. For an in-
dex set B and a matrix C € CP*P, we write Cg to denote a ma-
trix in CP*P such that [Cgl;j =G if (i,j) € B, and [Cg];; =0 if
(i,j) #B. Then T = T + Ty, and [ITclly = T, Il + [ Tyl
We have

Asie = (195 + Ty [l = 195010
= ok ([l @o¢ + T, I + 1 T 11 — 1| @i ll1)

(B.54)

(B.55)

= oA ([ Tpee 1 = [Ty [11) (B.56)
leading to (A3 = Y™, Asy)
My
As = ahn’ Y (ITge Il — 1T, ). (B.57)
k=1
Similarly,
As= (1= ) ha([Agelli = 1Ag, I10). (B.58)

By Cauchy-Schwartz
VSnolITk [lF, hence

Mn
> T, 11 < v/Masnoll Al
k=1

Set |[Illh= ||l',;£0||1 + ||I'l;gé||1 in Ay of (B.51) to deduce that
w.h.p.

inequality, || ll1 < V/Snoll Ty, lIF =

(B.59)

C(Az —|—A3 > —(X|A2| +A3

My
> ot (An — Codin) Y [T yee 4
k=1
M, My
—a(Codin +An) Y 1T, ll1 — aCodan Y IT Il
k=1 k=1

>« ((Codln + A0+ codzn)\/Mn Al (B.60)

where we have used the fact that A, > Cy/Mydy, > Cody, and

ZkML ITS IF < o/MallAll. Now use Ay of (B.55) to deduce that
w.h.p.

(1= @)+ Ag = (1= ) Gn = Cov/Mudio) 1Bl

— (Coy/Mudin + A | A |11 — cm/anndmuAnF)
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> (1= )| Allr(havBio + Coy/Main (Vo + VBr) ) (BS1)

where we have used the facts that A, > Cy/Mpdy,, and ||5;0||1 <
VSollAg, llr < Suoll Allp (by Cauchy-Schwartz inequality).
Since rp = \/Mpdyp > /MpSpo dq,, W.h.p. we have

Ay +A3 +As > —||A||F(ot(2C0r,, + }\'n\/ MnsnO)

+ (1= ) (An/5m0 + 2C0rn))

>~ Al (260 + 2o ey/My + (1-)) )
= ~lIAlle(@+C)Gor ) (B62)
where we have used the fact that, by (66) and (69),

An/Sno(@y/Mp + (1 —@)) < CCyry. Using (B.31), (B.44) and (B.62),
and ||A||f = Rrp, we have w.h.p.

GA) = |AI[ 3 (Bl + ) "~ 2]

For n > N, if we pick R as specified in (65), we obtain Rry < Rry, <
5] /IBmin- Then

(B.63)

1 o Bl _ 224+G+8)G
Gty Sl
5 224C)G
R ’

implying G(A) > 0 w.h.p. This proves (B.30), hence the desired re-
sult (70).

Given any € >, pick T > 2 such that p> " <€ for n> N, for
some N4, where N4 exists since p, is non-decreasing in n. Then
by (70), ||SAZA — Q|lr = Op(Rry) = Op(CyCyry). It is easy to see that
a sufficient condition for the lower bound in (69) to be less
than the upper bound for every o € [0,1] is C; = 2(1 + o (/Mp —
1)) = O(y/Mn). By (63), Cp = O(In(My)). Therefore, ||$2; — Qol|r =

Op (ln(Mn) My, rn>. This completes the proof of Theorem 1. O
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