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a b s t r a c t 

We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high- 

dimensional stationary multivariate Gaussian time series. A sparse-group lasso-based frequency-domain 

formulation of the problem based on frequency-domain sufficient statistic for the observed time series is 

presented. We investigate an alternating direction method of multipliers (ADMM) approach for optimiza- 

tion of the sparse-group lasso penalized log-likelihood. We provide sufficient conditions for convergence 

in the Frobenius norm of the inverse PSD estimators to the true value, jointly across all frequencies, 

where the number of frequencies are allowed to increase with sample size. This result also yields a rate 

of convergence. We also empirically investigate selection of the tuning parameters based on the Bayesian 

information criterion, and illustrate our approach using numerical examples utilizing both synthetic and 

real data. 
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. Introduction 

Graphical models are a useful tool for analyzing multivariate 

ata [1–3] . A central concept is that of conditional independence. 

iven a collection of random variables, one wishes to assess the 

elationship between two variables, conditioned on the remaining 

ariables. In graphical models, graphs are used to display the con- 

itional independence structure of the variables. 

Consider a graph G = ( V, E ) with a set of p vertices (nodes) 

 = { 1 , 2 , . . . , p} = [ p] , and a corresponding set of (undirected)

dges E ⊂ [ p] × [ p] . Given a (real-valued) random vector x = 

 x 1 x 2 · · · x p ] 
� , in the corresponding graph G, each variable x i is

epresented by a node ( i in V ), and associations between variables 

 i and x j are represented by edges between nodes i and j of G. In
 conditional independence graph (CIG), there is no edge between 

odes i and j if and only if (iff) x i and x j are conditionally indepen-

ent given the remaining p − 2 variables. Gaussian graphical mod- 

ls (GGM) are CIGs where x is real-valued multivariate Gaussian. 

uppose x has positive-definite covariance matrix � ( = E { x x � } ) 
ith inverse covariance matrix (also known as precision matrix or 

oncentration matrix) � = �−1 . Then �i j , the (i, j) th element of 

, is zero iff x i and x j are conditionally independent [1–3] . 
� This work was supported by the US National Science Foundation under Grants 

CF-1617610 and ECCS-2040536. 
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Graphical models were originally developed for random vectors 

ith multiple independent realizations, i.e., for time series that is 

ndependent and identically distributed (i.i.d.). Such models have 

een extensively studied [4–8] . Graphical modeling of real-valued 

ime-dependent data (stationary time series) originated with [9] , 

ollowed by [10] . Time series graphical models of i.i.d. or depen- 

ent data have been applied to intensive care monitoring [11] , 

nancial time series [12–15] , social networks [16] , air pollution 

ata [10,13] , analysis of EEG [17–19] , and fMRI (functional mag- 

etic resonance imaging) data [14,20,21] , colon tumor classification 

22] and breast cancer data analysis [23] . A significant technical is- 

ue in these analyses and applications is that of model selection. 

iven p nodes in V , in an undirected graph, there are p(p − 1) / 2

istinct edges. Which edges are in E , and which are not – this is 

he model selection (graph learning) problem. 

Now consider a stationary (real-valued), zero-mean, 

p−dimensional multivariate Gaussian time series x (t) , 

 = 0 , ±1 , ±2 , . . . , with i th component x i (t) . In a dependent

ime series GGM G, edge { i, j} ∈ E iff time series components 

 x i (t) } and { x j (t) } are conditionally dependent. In [10] the term
partial correlation graph” is used for such graphs. A key insight 

n [10] was to transform the series to the frequency domain 

nd express the graph relationships in the frequency domain. 

enote the power spectral density (PSD) matrix of { x (t) } by S x ( f ) ,
here S x ( f ) = 

∑ ∞ 

τ= −∞ 
R xx (τ ) e − j2 π fτ , the Fourier transform of 

 xx (τ ) = E { x (t + τ ) x T (t) } . Here f is the normalized frequency,

n Hz. Since for real-valued time series, S x ( f ) = S H x (− f ) , and 

 x ( f ) is periodic in f with period one, knowledge of S x ( f ) in the 

https://doi.org/10.1016/j.sigpro.2022.108539
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108539&domain=pdf
mailto:tugnajk@auburn.edu
https://doi.org/10.1016/j.sigpro.2022.108539
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nterval [0,0.5] completely specifies S x ( f ) for other values of f . 

n [10] it was shown that conditional independence of two time 

eries components given all other components of the time series, 

s encoded by zeros in the inverse PSD, that is, { i, j} �∈ E iff the

i, j) th element of S −1 
x ( f ) , [ S −1 

x ( f )] i j = 0 for every f . This paper

s concerned with sparse high-dimensional graphical modeling of 

ependent time series. It is noted in [10] that for partial corre- 

ation graph estimation via nonparametric methods, checking for 

 S −1 
x ( f )] i j ≡ 0 is computationally much less demanding than using 

ime-domain methods where one would need to calculate 2 
(
p 
2 

)
inear filters (see [10, p. 161] for details). 

Comparing the facts that { i, j} �∈ E ⇔ �i j = 0 for vector GGMs,

hile { i, j} �∈ E ⇔ [ S −1 
x ( f )] i j = 0 ∀ f ∈ [0 , 0 . 5] for dependent time

eries GGMs, we see that S −1 
x ( f ) plays the same role for a depen- 

ent time series as is done by the concentration matrix � in the 

.i.d. time series (i.e., random vector) setting. The normalized DFT 

 x ( f m ) , f m = m/n , of real-valued time-domain data { x (t) } n −1 
t=0 

, de-

ned in (1) , plays a central role in our proposed approach, and 

se of DFT can also be viewed as a way to decorrelate time- 

omain dependent data by transforming it to frequency-domain 

here { d x ( f m ) } n/ 2 
m =0 

is an approximately independent sequence (see 

ection 2.1 ). Representing data { x (t) } n −1 
t=0 

as well as the DFT se-

uence { d x ( f m ) } n −1 
m =0 

as column vectors, the two can be related 

ia a unitary n × n matrix, signifying that { d x ( f m ) } n −1 
m =0 

represents 

ny { x (t) } n −1 
t=0 

via an orthonormal basis in C 
n [24, p. 71] . One may

lso view this transformation (linear projection) as feature extrac- 

ion from raw data, more suitable than raw data for further pro- 

essing for some intended task. In our case this transformation is 

nvertible. In other applications, not necessarily related to graphi- 

al modeling, one may resort to combined projection and dimen- 

ion reduction to a lower rank subspace; possible examples in- 

lude [25,26] and references therein. Low rank bilinear projections 

f matrices (or higher-order tensors) are proposed in [25] to im- 

rove the performance of existing two-dimensional discriminant 

nalysis algorithms for classification tasks. A self-supervised learn- 

ng method is proposed in [26] to train a deep feature extraction 

etwork without the need for numerous manually labeled video 

amples. It is not yet clear how such ideas and approaches apply 

o graphical model learning for dependent time series. 

.1. Related work 

Prior work on graphical modeling for dependent time series 

n the low-dimensional settings (sample size n 
 p) is concerned 

ith testing whether { i, j} ∈ E for all possible edges in the graph,

ased on some nonparametric frequency-domain test statistic such 

s partial coherence [10,11,17–19,27,28] which, in turn, is based on 

stimates of S x ( f ) given time-domain data. These approaches do 

ot scale to high dimensions where p is comparable to or larger 

han the sample size n . As an alternative to nonparametric model- 

ng of time series, parametric graphical models utilizing a (Gaus- 

ian) vector autoregressive (VAR) process model of x (t) , have been 

dvocated in [13,29,30] , but these approaches are suitable for only 

mall values of p. As an alternative to exhaustive search over var- 

ous edges, a penalized maximum likelihood approach in conjunc- 

ion with VAR models has been used in [14] where the penalty 

erm incorporates sparsity constraints, making it suitable for high- 

imensional setting. For every pair of series components, the cor- 

esponding partial coherence is thresholded to decide if it is zero 

exclude the edge), or nonzero (include the edge). No systematic 

or principled) method is given for threshold selection. 

Nonparametric approaches for graphical modeling of real time 

eries in high-dimensional settings have been formulated in 

requency-domain in [31,32] using a neighborhood regression 

cheme, and in the form of penalized log-likelihood in frequency- 
2 
omain in [33–35] , all based on estimates of S x ( f ) at various fre- 

uencies, given time-domain data. A key model assumption used 

n these papers is that S −1 
x ( f ) , f ∈ [0 , 1] , is sparse, i.e., for any f ,

he number of off-diagonal nonzero elements are much smaller 

han the total number p(p − 1) of off-diagonal elements. Spar- 

ity is enforced during optimization of the chosen objective func- 

ion, making the problem well-conditioned. Reference [35] consid- 

rs latent variable graphical models. References [34,35] exploit the 

ramework of [33] , and therefore, inherit some of its drawbacks, 

iscussed in more detail later in Section 4.2 (see also Remark 1 in 

ection 2.5 ). Reference [34] considers a Bayesian framework with 

 focus on multiple time series realizations whereas [33] deals 

ith a single realization of the time series. Sufficient conditions 

or graph edge recovery are provided in [33] whereas there is no 

uch analysis in [34,35] . A recent approach [36] considers a vec- 

or Gaussian time series with uncorrelated samples but possibly 

onstationary covariance matrices. This paper [36] addresses real- 

alued time series using a neighborhood regression scheme. How- 

ver, the results in [36] are applied to the discrete Fourier trans- 

orm (DFT) of stationary time series without analyzing the resul- 

ant complex-values series (complex in the frequency-domain), and 

ithout noting the fact the DFT over the entire observation set 

oes not result in (approximately) uncorrelated Gaussian sequence; 

ee Sections 2.1 and 4.2 later where it is pointed out that only 

half” of the DFT sequence is uncorrelated. 

.2. Our contributions 

In this paper we address the same problem as in [33] , namely, 

rst estimate the inverse PSD S −1 
x ( f ) at distinct frequencies, given 

ime-domain data, and then select the graph edge { i, j} based on 
hether or not [ S −1 

x ( f )] i j = 0 for every f . As in [33] , we use a pe-

alized log-likelihood function in frequency-domain as our objec- 

ive function to estimate S −1 
x ( f ) , given time-domain data. However, 

here are significant differences between our choice of frequencies 

nd objective function, and our analysis, and that of [33] . We enu- 

erate these differences below and elaborate on them some more 

ater in the paper after introducing some concepts and notation in 

ection 2 . 

i) Our log-likelihood function is different from that in [33] . In 

terms of the DFT d x ( f m ) , f m = m/n , of real-valued time-domain

data { x (t) } n −1 
t=0 

, defined in (1) , we establish that { d x ( f m ) } n/ 2 
m =0 

, ( n

even), is a sufficient statistic for our problem, a fact not recog- 

nized in [33] (see also Remark 1 in Section 2.5 , and Section 4.2 ),

who uses some redundant frequencies f m ’s from the set 

( 1 2 , 1) , in addition to those from the set [0 , 1 2 ] . Our proposed

frequency-domain formulation is based on { d x ( f m ) } (n/ 2) −1 
m =1 

, ne- 

glecting d x ( f m ) at m = 0 and m = n/ 2 where the DFT is real-

valued Gaussian. We use a sparse-group lasso penalty on off- 

diagonal elements of inverse PSD estimates at individual fre- 

quencies (lasso) as well as jointly across all frequencies (group 

lasso), whereas [33] uses only a group lasso penalty that is ap- 

plied to all elements, including diagonal elements, of inverse 

PSD estimates. The objective of lasso/group lasso penalty is 

to drive possible zero entries of inverse PSD matrix to zero. 

However, since PSD matrix at any frequency is assumed to be 

positive-definite, its inverse is also positive-definite, hence, all 

diagonal elements of inverse PSD matrix at any frequency are 

strictly positive, therefore, do not need any sparsity penalty. 

Our sparse-group lasso penalty is more general than the group 

lasso penalty of [33] and it reduces to group lasso penalty if we 

remove the lasso penalty at individual frequencies. In our op- 

timization approach, we allow for the possibility of zero lasso 

penalty. 
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ii) In [33] , a test statistic based on the estimated inverse PSD’s is 

compared to a nonzero threshold to infer presence/absence of 

edges in the graph where no method is given regarding how to 

choose the threshold. In this paper the threshold is set to zero. 

We also empirically investigate selection of the tuning parame- 

ters (lasso and group-lasso penalty parameters) needed for our 

sparse-group lasso approach, based on the Bayesian information 

criterion (BIC). No such results are available in [33] . 

ii) We provide sufficient conditions ( Theorem 1 in Section 5 ) for 

convergence in the Frobenius norm of the inverse PSD estima- 

tors to the true value, jointly across all frequencies, where the 

number of frequencies are allowed to increase with sample size 

so that the entire sufficient statistic set { d x ( f m ) } (n/ 2) −1 
m =1 

is ex- 

ploited. This results also yields a rate of convergence of the in- 

verse PSD estimators with sample size n . Reference [33] pro- 

vides sufficient conditions for consistent graph edge recovery in 

[33, Proposition III.2] when the number of frequencies are fixed 

independent of sample size, and [34,35] offer no theoretical 

analysis. A consequence of using fixed number of frequencies is 

that in [33] , only a subset of sufficient statistic set is exploited; 

we elaborate on this later in Remark 1 in Section 2.5 . We 

do not have any counterpart to [33, Proposition III.2] whereas 

[33] does not have any counterpart to our Theorem 1 . 

v) We propose an alternating direction method of multipliers 

(ADMM) approach for optimization of the sparse-group lasso- 

based penalized log-likelihood formulation of the problem. 

Note that [33] also used ADMM but only for group lasso for- 

mulation. We discuss practical ADMM issues such as choice of 

ADMM penalty parameter and stopping rule for termination of 

the algorithm whereas there is no such discussion in [33] . 

.3. Relationship to prior conference publications 

Preliminary versions of parts of this paper appear in confer- 

nce papers [37,38] . The sufficient statistic for our problem was 

rst discussed in [37] where a sparse-group lasso problem was also 

ormulated in frequency-domain. But an alternating minimization 

AM) based solution to this problem, using the penalty method, 

s given in [37] . The performance of this method depends upon 

he penalty parameter, and strictly speaking, convergence of this 

olution to the desired solution requires the penalty parameter 

o become large, which can make the problem numerically ill- 

onditioned. Use of the ADMM approach mitigates the dependence 

n the penalty parameter used in the AM approach. The theoret- 

cal analysis ( Theorem 1 ) presented in Section 5 is partially given 

n [38] where the proof is incomplete. In this paper we provide a 

omplete proof and also correct some typos. In turn, the proof of 

heorem 1 relies on some prior results in [39] which deal with 

omplex-valued Gaussian vectors, not time series. Lemma 1 ap- 

ears in [37] without a proof. Lemma 3 is from [38] where a com-

lete proof is given, here we simply state and use it. A version of 

emma 4 is stated without proof in [39] , here we give a complete

roof. Lots of details of proof of Theorem 1 are missing in [38] . The

aterial in Sections 4.1.5, 4.3 and 6 of this paper does not appear 

n [37–39] . 

.4. Outline and notation 

The rest of the paper is organized as follows. The sufficient 

tatistic in the frequency-domain for our problem and the re- 

ulting log-likelihood formulation of the problem are presented 

n Section 2 where we also provide some background mate- 

ial on Wirtinger calculus needed for optimization w.r.t. com- 

lex variables, and Whittle likelihood used in [33] . A sparse-group 

asso-based penalized log-likelihood formulation of the problem 

s introduced in Section 3 . An ADMM algorithm is presented in 
3 
ection 4 to optimize the objective function to estimate the inverse 

SD and the edges in the graph. Selection of the tuning parame- 

ers based on BIC is presented in Section 4.3 . In Section 5 we ana-

yze consistency ( Theorem 1 ) of the proposed approach. Numerical 

esults based on synthetic as well as real data are presented in 

ection 6 to illustrate the proposed approach. We present numer- 

cal results for both synthetic and real data. In synthetic data ex- 

mple the ground truth is known and this allows for assessment of 

he efficacy of various approaches. In real data example where the 

round truth is unknown, our goal is visualization and exploration 

f the dependency structure underlying the data. In both cases we 

ish to compare our proposed approach with the widely used i.i.d. 

odeling approach where the underlying time series is either as- 

umed to be i.i.d., or one uses only the covariance of the data. 

roofs of Lemma 1 and Theorem 1 are given in Appendix A and 

ppendix B , respectively. 

The superscripts ∗, � and H denote the complex conjugate, 

ranspose and Hermitian (conjugate transpose) operations, respec- 

ively, and the sets of real and complex numbers are denoted by 

 and C , respectively. Given A ∈ C 
p×p , we use φmin ( A ) , φmax ( A ) ,

 A | , tr ( A ) and etr ( A ) to denote the minimum eigenvalue, maxi- 

um eigenvalue, determinant, trace, and exponential of trace of 

 , respectively. We use A � 0 and A 
 0 to denote that Hermi- 

ian A is positive semi-definite and positive definite, respectively. 

he Kronecker product of matrices A and B is denotes by A � B . 

or B ∈ C 
p×q , we define the operator norm, the Frobenius norm 

nd the vectorized � 1 norm, respectively, as ‖ B ‖ = 

√ 

φmax ( B 
H B ) , 

 B ‖ F = 

√ 

tr ( B H B ) and ‖ B ‖ 1 = 

∑ 

i, j | B i j | , where B i j is the (i, j) th el-

ment of B , also denoted by [ B ] i j . For vector θ ∈ C 
p , we define

 θ‖ 1 = 

∑ p 
i =1 

| θi | and ‖ θ‖ 2 = 

√ ∑ p 
i =1 

| θi | 2 , and we also use ‖ θ‖ for
 θ‖ 2 . Given A ∈ C 

p×p , A 
+ = diag ( A ) is a diagonal matrix with the

ame diagonal as A , and A 
− = A − A 

+ is A with all its diagonal el- 

ments set to zero. We use A 
−∗ for ( A 

∗) −1 , the inverse of com- 

lex conjugate of A , and A 
−� for ( A 

� ) −1 . Given A ∈ C 
n ×p , column

ector vec ( A ) ∈ C 
np denotes the vectorization of A which stacks 

he columns of the matrix A . The notation y n = O P ( x n ) for random

 n , x n ∈ C 
p means that for any ε > 0 , there exists 0 < M < ∞ such

hat P (‖ y n ‖ ≤ M‖ x n ‖ ) ≥ 1 − ε ∀ n ≥ 1 . The notation x ∼ N c (m , �)

enotes a complex random vector x that is circularly symmetric 

proper), complex Gaussian with mean m and covariance �, and 

 ∼ N r (m , �) denotes real-valued Gaussian x with mean m and co- 

ariance �. The abbreviations PSD, w.r.t., w.h.p., h.o.t., iff and pdf 

tand for power spectral density, with respect to, with high prob- 

bility, higher-order terms, if and only if, and probability density 

unction, respectively. 

. Background and problem formulation 

Given time-domain data { x (t) } n −1 
t=0 

originating from a 

p−dimensional stationary Gaussian sequence, our objective is 

o first estimate the inverse PSD S −1 
x ( f ) at distinct frequencies, 

nd then select the edge { i, j} in the time series GGM G based 

n whether or not [ S −1 
x ( f )] i j = 0 for every f . We will follow a

aximum likelihood approach, and to this end we need to express 

he likelihood function of time-domain data in terms its PSD 

atrix. 

.1. Sufficient statistic and log-likelihood 

Given x (t) for t = 0 , 1 , 2 , . . . , n − 1 . Define the (normalized) DFT

 x ( f m ) of x (t) , ( j = 

√ −1 ), 

 x ( f m ) = 

1 √ 

n 

n −1 ∑ 

t=0 

x (t ) exp ( − j2 π f m t ) (1) 
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here 

f m = m/n, m = 0 , 1 , . . . , n − 1 . (2)

ince { x (t) } is Gaussian, so is d x ( f m ) . Note that d x ( f m ) is peri-

dic in m with period n , and is periodic in normalized frequency 

f m with period 1. Since x (t) is real-valued, we have d ∗x ( f m ) = 

 x (− f m ) = d x (1 − f m ) , so d x ( f m ) for m = 0 , 1 , . . . , (n/ 2) , ( n even),

ompletely determines d x ( f m ) for all integers m . As proved in 

40, p. 280, Sec. 6.2] , for any statistical inference problem, the 

omplete sample is a sufficient statistic, and so is any one-to- 

ne function of a sufficient statistic. Since the inverse DFT yields 

one-to-one transformation) x (t) = 
1 √ 

n 

∑ n −1 
m =0 d x ( f m ) e j2 π f m t , the set 

 d x ( f m ) } n −1 
m =0 

is a sufficient statistic, which can be further reduced 

o { d x ( f m ) } n/ 2 
m =0 

since x (t) is real-valued, inducing symmetries 

 
∗
x ( f m ) = d x (− f m ) = d x (1 − f m ) . Thus, the set of complex-valued

andom vectors { d x ( f m ) } n/ 2 
m =0 

is a sufficient statistic for any statis- 

ical inference problem, including our problem of estimation of in- 

erse PSD. 

We need the following assumption in order to invoke [41, The- 

rem 4.4.1] , used extensively later. 

1) The p−dimensional time series { x (t) } ∞ 

t= −∞ 
is zero-mean sta- 

tionary and Gaussian, satisfying 

∞ ∑ 

τ= −∞ 

| [ R xx (τ )] k� | < ∞ for every k, � ∈ V. 

It follows from [41, Theorem 4.4.1] that under assumption 

A1), asymptotically (as n → ∞ ), d x ( f m ) , m = 1 , 2 , . . . , (n/ 2) − 1 , ( n

ven), are independent proper (i.e., circularly symmetric), complex 

aussian N c (0 , S x ( f m )) random vectors, respectively. Also, asymp- 

otically, d x ( f 0 ) and d x ( f n/ 2 ) , ( n even), are independent real Gaus-

ian N r (0 , S x ( f 0 )) and N r (0 , S x ( f n/ 2 )) random vectors, respectively,

ndependent of d x ( f m ) , m ∈ { 1 , 2 , . . . , (n/ 2) − 1 } . We will ignore

hese two frequency points f 0 and f n/ 2 . 

Define 

 = 

[
d x ( f 1 ) · · · d x ( f (n/ 2) −1 ) 

]
∈ C 

((n/ 2) −1) ×p . (3) 

nder assumption (A1), the asymptotic joint probability density 

unction (pdf) of D is given by 

f D ( D ) = 

(n/ 2) −1 ∏ 

m =1 

exp 
(
−d 

H 
x ( f m ) S 

−1 
x ( f m ) d x ( f m ) 

)
π p | S x ( f m ) | , (4) 

eading to the log-likelihood function 

n f D ( D ) = −
(n/ 2) −1 ∑ 

m =1 

(
ln | S x ( f m ) | + d 

H 
x ( f m ) S 

−1 
x ( f m ) d x ( f m ) 

)
− p( 

n 

2 
− 1) ln π. (5) 

.2. Complex Gaussian vectors 

Here we recall some facts regarding proper and improper com- 

lex Gaussian random vectors from [42] . We need these results to 

larify different expressions for the pdf of a proper complex Gaus- 

ian vector, used later for optimization w.r.t. complex variables us- 

ng Wirtinger calculus [42, Appendix 2] , [43] . Define R v w = E { v w 
� }

or (zero-mean) v , w ∈ R 
p , and define the covariance matrix R v w = 

 { v w 
H } , and the complementary covariance matrix ˜ R v w = E { v w 

� } 
42, Sec. 2.2] , for zero-mean v , w ∈ C 

p . Given u = u r + j u i ∈ C 
p ,

ith real part u r and imaginary part u i , define the augmented 

omplex vector y and the real vector z as 

 = 

[
u 

� u 
H 
]� 

, z = 

[
u 

� 
r u 

� 
i 

]� 
. (6) 
4 
he pdf of an improper complex Gaussian u is defined in terms 

f that of the augmented z or y [42, Sec. 2.3.1] . Assume E { u } = 0 .

hen we have z ∼ N r ( 0 , R zz ) where 

 zz = 

[
R u r u r R u r u i 

R u i u r R u i u i 

]
, R yy = 

[
R uu ˜ R uu 

˜ R 

∗
uu R 

∗
uu 

]
= R 

H 
yy . (7) 

Since z ∼ N r ( 0 , R zz ) , its pdf is given by (assuming R zz 
 0 ) 

f z ( z ) = 

1 

(2 π) 2 p/ 2 | R zz | 1 / 2 exp 
(
−1 

2 
z � R 

−1 
zz z 

)
. (8) 

ne can also express (8) as [42, Sec. 2.3.1] 

f u ( u ) := f y ( y ) = 

1 

π p | R yy | 1 / 2 exp 
(
−1 

2 
y H R 

−1 
yy y 

)
. (9) 

or proper complex u , ˜ R uu = 0 , and (9) reduces to 

f u ( u ) = 

e −
1 
2 u 

H R −1 
uu u − 1 

2 ( u H R 
−1 
uu u ) 

∗

π p | R uu | 1 / 2 | R 
∗
uu | 1 / 2 . (10) 

ince R uu = R 
H 
uu , | R uu | = | R 

∗
uu | , it follows that ( u H R 

−1 
uu u ) 

∗ = u H R 
−1 
uu u ,

or proper u , and therefore, (10) has the familiar form used in (4) . 

.3. Wirtinger calculus 

In this paper we will optimize a scalar objective function of 

omplex-values matrices. So we will use Wirtinger calculus (com- 

lex differential calculus) [42, Appendix 2] , [43] , coupled with 

orresponding definition of subdifferential/subgradients [44,45] , 

o analyze and minimize a strictly convex objective function of 

omplex-values matrices, e.g., function L SGL ({ �} ) of complex { �} 
efined in (40) . We will use the necessary and sufficient Karush- 

uhn-Tucker (KKT) conditions for a global optimum. Consider a 

omplex-valued z = x + j y ∈ C 
p , x , y reals, and a real-valued scalar 

unction g( z ) = g( z , z ∗) = g( x , y ) . In Wirtinger calculus, one views

( z ) as a function g( z , z ∗) of two independent vectors z and z ∗, in-
tead of a function a single z , and defines 

∂g( z , z ∗) 
∂ z ∗

:= 

1 

2 

[
∂g 

∂ x 
+ j 

∂g 

∂ y 

]
(11) 

∂g( z , z ∗) 
∂ z 

:= 

1 

2 

[
∂g 

∂ x 
− j 

∂g 

∂ y 

]
; (12) 

ee [42, Appendix 2] . For g( z ) one defines its subdifferential ∂g( z 0 )
t a point z 0 as [44,45] 

g( z 0 ) = 

{ 
s ∈ C 

p : g( z ) ≥ g( z 0 ) + 2 Re 
(
s H ( z − z 0 ) 

)
for all z ∈ C 

p 
} 
. (13) 

n particular, for scalar z ∈ C , g(z) = | z| , we have [45] 

| z| = t = 

{
z/ | z| if z � = 0 
∈ { v : | v | ≤ 1 , v ∈ C } if z = 0 

. (14) 

imilarly, with h k (x ) := g(z 1 , z 2 , . . . , z k −1 , x, z k +1 , . . . , z p ) , x ∈ C , the

artial subdifferential ∂g z 0 k ( z ) := ∂h k (z 0 k ) is the subdifferential 
h k (z 0 k ) of h k (x ) at z 0 k . Also [45] 

 g( z 0 ) = 

∂ g( z ) 

∂ z ∗

∣∣∣
z = z 0 

(15) 

hen this partial derivative exists and g is convex. 
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.4. Whittle likelihood 

Define y = [ x � (0) x � (1) · · · x � (n − 1)] � ∈ R 
pn . By assumption 

 ∼ N r ( 0 , �y ) where �y = E{ y y � } . Since �y 
 0 , the pdf of y is

iven by 

f y ( y ) = 

1 

(2 π) np/ 2 | �y | 1 / 2 exp (−y � �−1 
y y ) . (16) 

ased on some large sample ( n → ∞ ) results of Whittle [46–48] ,

hittle approximation to f y ( y ) is stated in [49, Eqn. (5)] and [50,

qn. (1)] as follows. [50, Eq. (1)] is 

f y ( y ) ≈
n −1 ∏ 

m =0 

exp 
(
−d 

H 
x ( f m ) S 

−1 
x ( f m ) d x ( f m ) 

)
| S x ( f m ) | , (17) 

hich specifies the joint pdf up to some constants, while [49, 

qn. (5)] specifies 

n f y ( y ) ≈ − 1 

2 

n −1 ∑ 

m =0 

(
ln | S x ( f m ) | + tr ( S −1 

x ( f m ) d x ( f m ) d 
H 
x ( f m )) 

)
− pn 

2 
ln (2 π) , (18) 

p to some constants. As noted in Section 2.1 , the terms in 

17) and (18) corresponding to the indices m = 
n 
2 + 1 through n − 1

re completely specified by terms corresponding to the indices 

 = 0 through n 
2 . For instance, d x ( f (n/ 2)+1 ) = d ∗x (1 − f (n/ 2)+1 ) =

 
∗
x ( f (n/ 2) −1 ) . Therefore, unlike (4) and (5), (17) and (18) , respec- 

ively, have lots of redundant frequencies. We note that [33] uses a 

ikelihood function based on such Whittle approximation. The like- 

ihood of [33] is examined further in Remark 1 in Section 2.5 . 

.5. Problem formulation 

Recall that our objective is to first estimate the inverse PSD 

 
−1 
x ( f ) at distinct frequencies, and then select the edge { i, j} in 
he time series GGM G based on whether or not [ S −1 

x ( f )] i j = 0 for

very f . Suppose to obtain a maximum-likelihood estimate of in- 

erse PSD S −1 
x ( f ) , we minimize − ln f D ( D ) with respect to �m := 

 
−1 
x ( f m ) . Then the problem is separable in m , and we choose �m 

o minimize 

 ( �m ) := − ln | �m | + d 
H 
x ( f m ) �m d x ( f m ) 

= −1 

2 
ln | �m | − 1 

2 
ln | �∗

m 
| 

+ 

1 

2 
tr ( �m d x ( f m ) d 

H 
x ( f m ) + �∗

m 
d 

∗
x ( f m ) d 

� 
x ( f m )) (19) 

here the expression after equality above follows by specifying 

he pdf of d x ( f m ) in terms of joint pdf of d x ( f m ) and d 
∗
x ( f m )

s in (10) (correct way to handle complex variates [42] ). Using 

irtinger calculus ( Section 2.3 ), at the optimal solution the gra- 

ient of h ( �m ) w.r.t. �∗
m 

vanishes: 

 = 

∂h ( �m ) 

∂ �∗
m 

= −1 

2 
( �H 

m 
) −1 + 

1 

2 
( d ∗x ( f m ) d 

� 
x ( f m )) 

� 

= −1 

2 
�−1 

m 
+ 

1 

2 
d x ( f m ) d 

H 
x ( f m ) (20) 

eading to the solution ( ̂  �m denotes estimate of �m ) 

ˆ 
−1 

m 
= d x ( f m ) d 

H 
x ( f m ) . (21) 

ince d x ( f m ) d 
H 
x ( f m ) is rank one, we cannot obtain ˆ �m by inverting 

 x ( f m ) d 
H 
x ( f m ) . Indeed, d x ( f m ) d 

H 
x ( f m ) is the periodogram [24] and

t is known to be a poor estimator of the PSD S x ( f m ) = �−1 
m 

. To

btain a consistent PSD estimator of S x ( f m ) , one needs to smooth 
5 
average) d x ( f k ) d 
H 
x ( f k ) over values of k centered around m , either

irectly (periodogram smoothing) or indirectly (Blackman-Tukey 

stimators operating on estimated correlation function) [24, Chap- 

er 2] , [49, Sec. II-D.2] . Under high dimensional case, one also 

eeds sparsity constraints in order to regularize the problem. 

We assume that S x ( f m ) is locally smooth (a standard assump- 

ion in PSD estimation [24, Chapter 2] , [41] ), so that S x ( f m ) is

approximately) constant over K = 2 m t + 1 consecutive frequency 

oints. Pick 

˜ f k = 

(k − 1) K + m t + 1 

n 
, k = 1 , 2 , . . . , M, (22) 

 = 

⌊
n 
2 

− m t − 1 

K 

⌋
, (23) 

eading to M equally spaced frequencies ˜ f k in the interval (0,0.5), at 

ntervals of K/n . It is assumed that for each ˜ f k (local smoothness), 

 x ( ̃  f k,� ) = S x ( ̃  f k ) for � = −m t , −m t + 1 , . . . , m t , (24)

here 

˜ f k,� = 

(k − 1) K + m t + 1 + � 

n 
. (25) 

Using (24) in (4) , we have 

f D ( D ) = 

M ∏ 

k =1 

[ 

m t ∏ 

� = −m t 

exp 
(
−d 

H 
x ( ̃

 f k,� ) S 
−1 
x ( ̃  f k ) d x ( ̃  f k,� ) 

)
π p | S x ( ̃  f k ) | 

] 

. (26) 

efine 

ˇ
 ( ̃  f k ) = 

[
d x ( ̃  f k, −m t 

) d x ( ̃  f k, −m t +1 ) · · · d x ( ̃  f k,m t 
) 
]H 

, (27) 

˜ 
 ( ̃  f k ) = 

m t ∑ 

� = −m t 

d x ( ̃  f k,� ) d 

H 
x ( ̃

 f k,� ) , (28) 

ˆ 
 k = 

1 

K 
˜ D ( ̃  f k ) (29) 

here ˆ S k represents PSD estimator at frequency ˜ f k using un- 

eighted frequency-domain smoothing [41] . The joint pdf of Ď ( ̃  f k ) 

s given by 

f 
Ď ( ̃ f k ) 

( ̌D ( ̃  f k )) = 

exp 
(
−tr ( ̃  D ( ̃  f k ) S 

−1 
x ( ̃  f k )) 

)
πKp | S x ( ̃  f k ) | K 

(30) 

= 

exp 
(
−tr (K ̂  S k S 

−1 
x ( ̃  f k )) 

)
πKp | S x ( ̃  f k ) | K 

. (31) 

hen we can rewrite (26) as 

f D ( D ) = 

M ∏ 

k =1 

f 
Ď ( ̃ f k ) 

( ̌D ( ̃  f k )) (32) 

= 

M ∏ 

k =1 

exp 
(
−tr (K ̂  S k S 

−1 
x ( ̃  f k )) 

)
πKp | S x ( ̃  f k ) | K 

. (33) 

his is the joint pdf we will use in the rest of the paper. 

Remark 1 . Ref. [33] cites the Whittle approximation (18) given 

n [49] as a basis for their negative log likelihood function, which 

an be inferred from [33, Eq. (6)] after removing the lasso penalty 

herein. In the notation of this paper, it is given by 

ln f y ( y ) ∝ 

F ∑ 

k =1 

(
tr ( ̂ S k X k − ln | X k | 

)
(34) 
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here ˆ S k is the PSD matrix estimator at frequency f k = 
k −1 
F , k = 

 , 2 , . . . , F , and X k parametrizes the unknown inverse PSD S −1 
x ( f k ) .

inimization of penalized − ln f y ( y ) w.r.t. X k , k = 1 , 2 , . . . , F , yields

he estimates of S −1 
x ( f k ) , which are then used to infer the un-

erlying graph. We will now relate (34) with F frequencies, to 

18) with n frequencies. In the analysis of [33] , F is kept fixed 

hile the sample size n is allowed to increase. The estimate ˆ S k 
s obtained via Blackman-Tukey method which is mathematically 

quivalent to frequency-domain weighted smoothing of period- 

ram P m := d x ( f m ) d 
H 
x ( f m ) for values of m in a neighborhood of k ,

.e., 

ˆ 
 k ≈

W ∑ 

� = −W 

w � d x ( f k + � ) d 
H 
x ( f k + � ) = 

W ∑ 

� = −W 

w � P k + � (35) 

here the weights w � and effective width W depend upon the 

indow function used in the time-domain on estimated correla- 

ion function (see [33, Eqn. (8)] and also discussion in [49, Sec. II- 

.2] and [24, Sec. 2.5.1] ). A standard assumption is that of local 

moothness of the true PSD matrix S x ( f k ) , hence of X k , as in (24) .

his allows us to rewrite (34) as 

F ∑ 

k =1 

(
tr ( ̂ S k X k − ln | X k | 

)

≈
F ∑ 

k =1 

W ∑ 

� = −W 

( tr (w � P k + � X k + � ) − ln | X k + � | ) . (36) 

he total number of DFT frequencies used in (36) , hence in (34) ,

s (2 W + 1) F whereas that in (18) is n . For ˆ S k to be a consistent

stimator of S x ( f k ) , one must have 2 W + 1 → ∞ and 2 W +1 
n → 0

s n → ∞ [41, Secs. 5.6 and 7.4] : 2 W +1 
n → 0 makes ˆ S k asymptoti-

ally unbiased and 2 W + 1 → ∞ makes estimator covariance ma- 

rix tend to zero. To have the same number of frequencies in 

34) (or (36) ) and (18) , one must have (2 W + 1) F ≈ n , i.e., F ≈
/ (2 W + 1) ( → ∞ for consistency), which is not possible for the

pproach of [33] with fixed F . Note that the analysis of [33] re-

uires ˆ S k to be a consistent estimator of S x ( f k ) , which is possible 

y letting 2 W + 1 → ∞ and 2 W +1 
n → 0 . But with fixed F , the prod-

ct (2 W + 1) F � n for large n since F is fixed. Thus, for large n ,

33] exploits only a subset of the sufficient statistic set, whereas in 

ur approach the product K M ≈ n 
2 ( K and M correspond to 2 W + 1

nd F , respectively, in (36) ), thereby using the entire sufficient 

tatistic set. As noted in Section 5 (after (59) ), in our case, as

 → ∞ , we have K → ∞ , M → ∞ and K n → 0 . �

. Penalized log-likelihood 

We wish to estimate inverse PSD matrix �k := S −1 
x ( ̃  f k ) . In 

erms of �k we rewrite (33) as 

f 
Ď ( ̃ f k ) 

( ̌D ( ̃  f k )) = 

| �k | K e −tr (K ̂ S k �k ) 

πKp 

= 

| �k | K/ 2 | �∗
k | K/ 2 

πKp 
e 

−tr 

(
K 
2 

(
ˆ S k �k + ̂ S 

∗
k �

∗
k 

))
(37) 

here the last expression in (37) follows by specifying the pdf of 
ˇ  in terms of joint pdf of Ď and Ď 

∗
as in (10) . Then we have the

og-likelihood (up to some constants) [37] 

ln f D ( D ) ∝ −G ({ �} , { �∗} ) (38) 

:= 

M ∑ 

k =1 

1 

2 

[ 
( ln | �k | + ln | �∗

k | ) − tr 

(
ˆ S k �k + ̂

 S 
∗
k �

∗
k 

)] 
. (39) 

In the high-dimensional case of K < p 2 (number of real-valued 

nknowns in S −1 
x ( ̃  f k )) ), one has to use penalty terms to enforce 
6 
parsity and to make the problem well-conditioned. Consider min- 

mization of a convex objective function g( θ) w.r.t. θ ∈ R 
p . If θ is

nown to be sparse (only a few nonzero entries), one may choose 

to minimize a lasso-penalized cost g( θ) + λ‖ θ‖ 1 where λ > 0 is

he lasso penalty or tuning parameter used to control sparsity of 

he solution [51] . Suppose θ has M groups (subvectors) θ
(m ) 

, m = 

 , 2 , . . . , M, where rather than just sparsity in θ, one would like a

olution which uses only a few of the groups θ
(m ) 

(group sparsity). 

o this end, [52] proposed a group lasso penalty where θ is chosen 

o minimize a group lasso penalized cost g( θ) + λ
∑ M 

m =1 ‖ θ(m ) ‖ 2 
nd where λ > 0 is the group-lasso penalty parameter. As noted 

n [53,54] , while the group-lasso gives a sparse set of groups, 

f it includes a group in the model, then all coefficients in the 

roup will be nonzero. To enforce sparsity of groups and within 

ach group, sparse-group lasso framework has been proposed in 

53,54] where θ is chosen to minimize a sparse-group lasso penal- 

zed cost g( θ) + αλ‖ θ‖ 1 + (1 − α) λ
∑ M 

m =1 ‖ θ(m ) ‖ 2 where α ∈ [0 , 1]

rovides a convex combination of lasso and group-lasso penalties. 

ote that α = 0 gives the group-lasso fit while α = 1 yields the 

asso fit, thus sparse-group lasso penalty is more general than ei- 

her lasso or group-lasso penalties. 

Lasso penalty has been used in [22,55–57] , group lasso has been 

sed in [58] and sparse-group lasso has been used in [4,59] , all for

raphical modeling of real-valued random vectors (i.e., i.i.d. time 

eries) in various contexts. Group lasso has been used in [33] for 

raphical modeling of dependent time series. Results of [53,54] for 

 regression problem and that of [59] for graphical modeling of 

andom vectors in a multi-attribute context (a random vector is 

ssociated with each node of a graph instead of just a random vari- 

ble), both show significant performance improvements over either 

ust lasso or just group lasso penalties. For our problem in this pa- 

er we will use sparse-group lasso penalty. 

Imposing a sparse-group sparsity constraint, we propose to 

inimize a penalized version of negative log-likelihood w.r.t. 

 �} = { �k , k = 1 , 2 , . . . , M} , given by L SGL ({ �} ) , 
 SGL ({ �} ) = G ({ �} , { �∗} ) + P ({ �} ) , (40) 

 ({ �} ) = αλ
M ∑ 

k =1 

p ∑ 

i � = j 

∣∣∣[ �k ] i j 

∣∣∣+ (1 − α) λ
p ∑ 

i � = j 
‖ �(i j) ‖ (41) 

here 

(i j) 
:= [[ �1 ] i j [ �2 ] i j · · · [ �M ] i j ] 

� ∈ C 
M , (42) 

> 0 and α ∈ [0 , 1] . In (41) , an � 1 penalty term is applied to

ach off-diagonal element of �k via αλ
∣∣∣[ �k ] i j 

∣∣∣ (lasso), and to the 
ff-block-diagonal group of M terms via (1 − α) λ

√ ∑ M 

k =1 | [ �k ] i j | 2 
group lasso). 

To optimize L SGL ({ �} ) , using variable splitting, one may refor- 

ulate as in [37] : 

min 
 �} , { W } 

{ 
G ({ �} , { �∗} ) + P ({ W } ) 

} 
(43) 

ubject to W k = �k 
 0 , k = 1 , 2 , . . . , M, where { W } = { W k , k =
 , 2 , . . . , M} . Using the penalty method, [37] considers the relaxed

roblem ( ρ > 0 is “large”) 

in { �} , 
{ W } 

{ 

G ({ �} , { �∗} ) + P ({ W } ) + 

ρ

2 

M ∑ 

k =1 

‖ �k −W k ‖ 
2 
F 

} 

(44) 

here it is solved via an alternating minimization (AM) based 

ethod [60] . The final result depends on ρ and strictly speaking, 

ne must have ρ → ∞ which can make the problem numerically 

ll-conditioned. In the numerical example of [37] , a fixed value 
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= 10 was considered which does not necessarily achieve the con- 

traint �k −W k = 0 . On the other hand, in the ADMM approach 

hich also uses a penalty parameter ρ , the final solution to the 

ptimization problem does not depend upon the chosen ρ > 0 , al- 

hough the convergence speed depends on it [61] . In this paper we 

onsider ADMM. Some authors [62,63] have suggested that when 

oth AM and ADMM approaches are applicable, the ADMM which 

equires dual variables, is inferior to the AM method which is a 

rimal-only method, in terms of computational complexity and ac- 

uracy, but their claims do not account for the need to solve the 

M problem multiple times, each time with increased value of ρ , 

nd moreover, they do not consider graphical modeling problems. 

. Optimization via ADMM 

In ADMM, we consider the scaled augmented Lagrangian for 

his problem [44,61] , given by 

 ρ ({ �} , { W } , { U } ) = G ({ �} , { �∗} ) + P ({ W } ) 

+ 

ρ

2 

M ∑ 

k =1 

‖ �k −W k + U k ‖ 
2 
F (45) 

here { U } = { U k , k = 1 , 2 , . . . , M} are dual variables, and ρ > 0 is

he “penalty parameter” [61] . 

.1. ADMM Algorithm 

Given the results { �(m ) } , { W 
(m ) } , { U 

(m ) } of the m th iteration, in

he (m + 1) st iteration, an ADMM algorithm executes the following 

hree updates: 

a) { �(m +1) } ← arg min { �} L ρ ({ �} , { W 
(m ) } , { U 

(m ) } ) 
b) { W 

(m +1) } ← arg min { W } L ρ ({ �(m +1) } , { W } , { U 
(m ) } ) 

c) { U 
(m +1) } ← { U 

(m ) } + 

(
{ �(m +1) } − { W 

(m +1) } 
)

.1.1. Update (a) 

Notice that L ρ ({ �} , { W 
(m ) } , { U 

(m ) } ) is separable in k with

 ρ ({ �} , { W 
(m ) } , { U 

(m ) } ) = 

∑ M 

k =1 
1 
2 L ρk ( �k , W 

(m ) 
k 

, U 
(m ) 
k 

) up to some

erms not dependent upon �k ’s, where 

 ρk ( �k , W 

(m ) 
k 

, U 

(m ) 
k 

) := − ln | �k | − ln | �∗
k | + tr 

(
ˆ S k �k + ̂

 S 
∗
k �

∗
k 

)
+ ρ‖ �k −W 

(m ) 
k 

+ U 

(m ) 
k 

‖ 
2 
F . (46) 

s in [61, Sec. 6.5] but accounting for complex-valued vec- 

ors/matrices in this paper compared to real-valued vec- 

ors/matrices in [4] , and therefore using the Wirtinger calculus, 

he solution to arg min �k 
L ρk ( �k , W 

(m ) 
k 

, U 
(m ) 
k 

) is as follows. A 

ecessary and sufficient condition for a global optimum is that the 

radient of L ρk ( �k , W 
(m ) 
k 

, U 
(m ) 
k 

) w.r.t. �∗
k , given by (48) , vanishes,

ith �k = �H 
k 
 0 (we set A = W 

(m ) 
k 

−U 
(m ) 
k 

) : 

 = 

∂L ρk ( �k , W 

(m ) 
k 

, U 

(m ) 
k 

) 

∂ �∗
k 

= −( �H 
k ) 

−1 + ̂
 S 
H 

k + ρ( �k − A ) (47) 

= 
ˆ S k − �−1 

k + ρ( �k − A ) . (48) 

he solution to (48) follows as for the real-valued case discussed 

n [61, Sec. 6.5] . Rewrite (48) as 

ˆ 
 k − ρA = 

ˆ S k − ρ( W 

(m ) 
k 

−U 

(m ) 
k 

) = �−1 
k − ρ�k . (49) 

et V D V H denote the eigen-decomposition of the Hermitian matrix 
ˆ  k − ρA where D is diagonal with real values on the diagonal, and 

 V H = V H V = I . Then we have 

 = V H ( �−1 
k − ρ�k ) V = 

˜ D 

−1 − ρ ˜ D (50) 
7 
here ˜ D := V H �k V . Assume that ˜ D is a diagonal matrix and solve 

50) for diagonal ˜ D . That is, ˜ D �� should satisfy 

 �� = 1 / ̃  D �� − ρ ˜ D �� . (51) 

he solution 

˜ 
 �� = 

1 

2 ρ

(
−D �� + 

√ 

| D �� | 2 + 4 ρ
)

(52) 

atisfies (51) and yields ˜ D �� > 0 for any ρ > 0 . Therefore, so 

onstructed ˜ D 
 0 , and hence, �k = �(m +1) 
k 

= V ̃  D V H 
 0 satisfies 

48) and (49) . 

.1.2. Update (b) 

Update { W 
(m +1) 
k 

} M 

k =1 
as the minimizer w.r.t. { W } M 

k =1 
of 

ρ

2 

M ∑ 

k =1 

‖ W k − ( �(m +1) 
k 

+ U 

(m ) 
k 

) ‖ 
2 
F + P ({ W } ) . (53) 

ere we use Lemma 1 first stated (but not proved) in [37] , and

s based on the real-valued results of [53] . Lemma 1 is proved in

ppendix A . 

Lemma 1 . Given a ∈ C 
q , λi > 0 ( i = 1 , 2 ), h ( θ) = (1 / 2) ‖ a − θ‖ 2 +

1 

∑ q 
i =1 

| θi | + λ2 ‖ θ‖ is minimized w.r.t. θ ∈ C 
q by ˆ θ with the i th

omponent 

ˆ 
i = 

(
1 − λ2 

‖ S ( a , λ1 ) ‖ 

)
+ 
S(a i , λ1 ) (54) 

here (b) + := max (0 , b) , soft-thresholding operator S(b, β) := 

1 − β/ | b| ) + b (for complex scalar b � = 0 ), and vector operator

 S ( a , β)] j = S(a j , β) , a j = [ a ] j . •
Define A k = �(m +1) 

k 
+ U 

(m ) 
k 

. Invoking Lemma 1, the solution to 

inimization of (53) is 

 W 

(m +1) 
k 

] i j = 

⎧ ⎨ 

⎩ 

[ A k ] ii , if i = j 

S([ A k ] i j , 
αλ
ρ ) 
(
1 − (1 −α) λ

ρ‖ S ( A (i j) 
k 

, αλ/ρ) ‖ 
)

+ 
if i � = j 

(55) 

.1.3. Update (c) 

For the scaled Lagrangian formulation of ADMM [61] , for k = 

 , 2 , . . . , M, update U 
(m +1) 
k 

= U 
(m ) 
k 

+ ( �(m +1) 
k 

−W 
(m +1) 
k 

) . 

.1.4. Algorithm outline 

i) Initialize the variables: �(0) 
k 

= I p , W 
(0) 
k 

= U 
(0) 
k 

= 0 for k = 

1 , 2 , . . . , M. Pick scalar ρ > 0 . 

ii) Until convergence, for m = 1 , 2 , . . . , . . . , do steps (iii)-(v): 

(iii) For k = 1 , . . . , M, update �(m +1) 
k 

as in Section 4.1.1 . 

(iv) For k = 1 , . . . , M, update W 
(m +1) 
k 

as in Section 4.1.2 

(v) For k = 1 , . . . , M, update U 
(m +1) 
k 

as in Section 4.1.3 . 

i) Denote the converged estimates as ˆ �k , k = 1 , . . . , M. Edge se- 

lection: 

If ‖ ̂
 �
(i j) ‖ > 0 , then { i, j} ∈ E, else { i, j} �∈ E . (56)

.1.5. Stopping rule, variable penalty ρ , and convergence 

Stopping Rule : In step (ii) of the Algorithm of Section 4.1.4 , we

eed a stopping (convergence) criterion to terminate the ADMM 

teps. We will use a stopping criterion following [61, Sec. 3.3.1] . 

e also use a varying penalty parameter ρ(m ) at the m th iteration, 

ollowing [61, Sec. 3.4.1] . The stopping criterion is based on primal 

nd dual residuals of the ADMM approach being small. Minimiza- 

ion in (43) is done under the equality constraints �k −W k = 0 , 

 = 1 , 2 , . . . , M. The error in this equality during ADMM iterations

s called primal residual as it measures the primal feasibility [61, 

ec. 3.3] . The primal residual matrix is given by 

 p = 

[
�1 −W 1 , · · · , �M −W M 

]
∈ C 

p×(pM) 
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p

g

nd the primal residual vector is r p = vec ( R p ) ∈ C 
p 2 M , vectoriza- 

ion of R p . At the (m + 1) st iteration, the primal residual matrix 

ill be denoted by 

 
(m +1) 
p = 

[
�(m +1) 

1 −W 

(m +1) 
1 

, . . . , �(m +1) 
M 

−W 

(m +1) 
M 

]
ith corresponding vector r (m +1) 

p = vec ( R 
(m +1) 
p ) . As m → ∞ , one 

ust have r (m +1) 
p → 0 . Based on some dual feasibility conditions 

or optimization of the ADMM problem, a dual residual at the 

m + 1) st iteration is defined in [61, Sec. 3.3] . For our problem, the

ual residual matrix at the (m + 1) st iteration is given 

 

(m +1) 
d 

= ρ(m ) 
[
W 

(m +1) 
1 

−W 

(m ) 
1 

, . . . , W 

(m +1) 
M 

−W 

(m ) 
M 

]
here R 

(m +1) 
d 

∈ C 
p×(pM) , and the dual residual vector is r (m +1) 

d 
= 

ec ( R 
(m +1) 
d 

) ∈ C 
p 2 M . As m → ∞ , one must have r (m +1) 

d 
→ 0 . 

The convergence criterion is met when the norms of these 

esiduals are below primary and dual tolerances τpri and τdual , re- 
pectively: 

 p := ‖ R 
(m +1) 
p ‖ F ≤ τpri 

 d := ‖ R 

(m +1) 
d 

‖ F ≤ τdual . 

ollowing [61, Sec. 3.3.1] , the tolerances τpri and τdual are chosen 
sing an absolute and relative criterion based on user chosen ab- 

olute and relative tolerances τabs and τrel . The absolute tolerance 
omponent of both τpri and τdual is p 

√ 

M τabs where p 
√ 

M equals 

quare-root of length of r (m +1) 
p as well as of r (m +1) 

d 
. The relative 

olerance components of τpri and τdual are proportional to the mag- 

itude of the primary variables �(m +1) 
k 

and W 
(m +1) 
k 

, and dual vari- 

ble U 
(m +1) 
k 

, k = 1 , 2 , . . . , M, respectively. Let 

 1 = ‖ [ �(m +1) 
1 , . . . , �(m +1) 

M 
] ‖ F , 

 2 = ‖ [ W 

(m +1) 
1 

, . . . , W 

(m +1) 
M 

] ‖ F , 

 3 = ‖ [ U 

(m +1) 
1 

, . . . , U 

(m +1) 
M 

] ‖ F . 

hen following [61, Sec. 3.3.1] , we pick 

τpri = p 
√ 

M τabs + τrel max (e 1 , e 2 ) 

dual = p 
√ 

M τabs + τrel e 3 /ρ
(m ) . 

Variable Penalty ρ: As stated in [61, Sec. 3.4.1] , one may use 

possibly different penalty parameters ρ(m ) for each iteration, with 

he goal of improving the convergence in practice, as well as mak- 

ng performance less dependent on the initial choice of the penalty 

arameter.” For scaled Lagrangian formulation, the variable penalty 

is updated as [61, Sec. 3.4.1] 

(m +1) = 

{ 

2 ρ(m ) if d p > μd d 
ρ(m ) / 2 if d d > μd p 
ρ(m ) otherwise 

or some μ > 1 . As stated in [61, Sec. 3.4.1] , “The idea behind this

enalty parameter update is to try to keep the primal and dual 

esidual norms within a factor of μ of one another as they both 

onverge to zero.” For all numerical results presented later, we 

sed ρ(0) = 2 (initial value of ρ), μ = 10 , and τabs = τrel = 10 −4 . 

Convergence : The objective function L SGL ({ �} ) , given by (40) , is
trictly convex in { �} for �k 
 0 , k = 1 , 2 , . . . , M. It is also closed,

roper and lower semi-continuous. Hence, for any fixed ρ > 0 , the 

DMM algorithm is guaranteed to converge [61, Sec. 3.2] , in the 

ense that we have primal residual convergence to 0, dual residual 

onvergence to 0, and objective function convergence to the opti- 

al value. For varying ρ , the convergence of ADMM has not yet 

een proven [61, Sec. 3.4.1] . 
8 
.2. Further on comparison with existing works 

Here we briefly summarize comparisons with [33–35] . As noted 

arlier in Section 2.1 , { d x ( f m ) } n/ 2 
m =0 

is a frequency-domian suffi- 

ient statistic for this problem. However, in [33] (and [34,35] ), one 

ses some estimate of PSD S x ( f m ) , or d x ( f m ) , for m = 0 , 1 , . . . , n −
 appealing to Whittle approximation which, as discussed in 

ection 2.4 , has lots of redundant frequencies. Also, in [33] , fre- 

uencies ( f m or ˜ f k in our notation) are fixed a priori as ( f − 1) /F ∈
0 , 1) , f = 1 , 2 , . . . , F , for some even integer F . For instance, in

he simulation example of [33] , F = 4 , leading to four frequen-

ies { 0 , 0 . 25 , 0 . 5 , 0 . 75 } for any data size n . Note that S x (0 . 75) =
 
∗
x (0 . 25) (and so are their estimates), so there is no new informa- 

ion in it. Also, S x (0) and S x (0 . 5) , and their estimates, are real-

alued, not complex, but as their estimates are based on d x ( f k ) ’s 

or k in a neighborhood of m = 0 or 0.5, any information in the

maginary part of d x ( f k ) ’s is not exploited. Furthermore, as noted 

n item (i) in Section 1.2 , [33] considers only group-lasso penalty 

hich is subsumed by our more general sparse-group lasso. In our 

nalysis presented later in Section 5 , the number of frequencies 

re allowed to increase with sample size, and as discussed in Re- 

ark 1, Section 2.5 , increasing the number of frequencies allows 

ne to exploit the entire sufficient statistic set, unlike the analy- 

is in [33] where with fixed F , one uses only a subset of sufficient

tatistics. 

.3. BIC For tuning parameter selection 

Let ˆ �k , k = 1 , . . . , M, denote the converged estimates, as noted 

n item (vi) of Section 4.1.4 . Given n and choice of K and M, the

ayesian information criterion (BIC) is given by 

IC (λ, α) = 2 K 

M ∑ 

k =1 

(
− ln | ̂  �k | + tr 

(
ˆ S k ̂  �k 

))

+ ln (2 KM) 
M ∑ 

k =1 

(# of nonzero elements in ˆ �k ) (57) 

here 2 KM are total number of real-valued measurements in 

requency-domain and 2 K are number of real-valued measure- 

ents per frequency point, with total M frequencies in (0 , π) . Each 

onzero off-diagonal element of ˆ �k consists of two real variables, 

ut since ˆ �k is Hermitian, the number of (nonzero) real unknowns 

n ˆ �k equal the number of nonzero elements of ˆ �k . Pick α and λ
o minimize BIC. We use BIC to first select λ over a grid of values 

ith fixed α, and then with selected λ, we search over α values in 

0,0.3]. This sequential search is computationally less demanding 

han a two-dimensional search. 

We search over λ in the range [ λ� , λu ] selected via the follow- 

ng heuristic (as in [59] ). The heuristic lies in the fact that we limit

he range of α and λ values over which the search is performed. 

or α = α0 ( = 0.1), we first find the smallest λ, labeled λsm , for

hich we get a no-edge model (i.e., | ̂  E | = 0 , where ˆ E denotes the
stimated edge set based on (56) ). Then we set λu = λsm / 2 and

� = λu / 10 . The given choice of λu precludes “extremely” sparse 

odels while that of λ� precludes “very” dense models. The choice 

∈ [0 , 0 . 3] reflects the fact that group-lasso penalty across all fre-

uencies is more important ( (i, j) th element of inverse PSD at all 

requencies must be zero for edge { i, j} �∈ E) than lasso penalty at
ndividual frequencies. 

. Consistency 

In this section we analyze consistency of the proposed ap- 

roach. In Theorem 1 we provide sufficient conditions for conver- 

ence in the Frobenius norm of the inverse PSD estimators to the 
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rue value, jointly across all frequencies, where the number of fre- 

uencies are allowed to increase with sample size. As discussed in 

emark 1, Section 2.5 , increasing the number of frequencies allows 

ne to exploit the entire sufficient statistic set, unlike the analysis 

n [33] . Theorem 1 also yields a rate of convergence w.r.t. sample 

ize n . We follow proof technique of [22] which deals with i.i.d. 

ime series models and lasso penalty, to establish our main result, 

heorem 1 . 

Define p × (pM) matrix � as 

= [ �1 �2 · · · �M ] . (58) 

ith 0 ≤ α ≤ 1 , re-express the objective function (40) as 

 SGL ( �) = G ({ �} , { �∗} ) + αλn 

M n ∑ 

k =1 

p n ∑ 

i, j=1 
i � = j 

∣∣∣[ �k ] i j 

∣∣∣

+ (1 − α) λn 

p n ∑ 

i, j=1 
i � = j 

√ 

M n ∑ 

k =1 

∣∣∣[ �k ] i j 

∣∣∣2 (59) 

here we now allow p, M, K (see (22), (23) ), and λ to be functions

f sample size n , denoted as p n , M n , K n and λn , respectively. We

ake p n to be a non-decreasing function of n , as is typical in high-

imensional settings. Note that K n M n ≈ n/ 2 . Pick K n = a 1 n 
γ and

 n = a 2 n 
1 −γ for some 0 . 5 < γ < 1 , 0 < a 1 , a 2 < ∞ , so that both

 n /K n → 0 and K n /n → 0 as n → ∞ (cf. Remark 1). As discussed

n Remark 2 later, Theorem 1 clarifies how to choose M n and K n 
or put additional restrictions on it) so that for given { p n } , the es-
imate of � converges to its true value in the Frobenius norm. 

Assume 

2) Define the true edge set of the graph by E 0 , implying that E 0 =
{{ i, j} : [ S −1 

0 ( f )] i j �≡ 0 , i � = j, 0 ≤ f ≤ 0 . 5 } where S 0 ( f ) denotes

the true PSD of x (t) . (We also use �0 k for S 
−1 
0 ( ̃  f k ) where ˜ f k is

as in (22) , and use �0 to denote the true value of �). Assume

that card (E 0 ) = | (E 0 ) | ≤ s n 0 . 

3) The minimum and maximum eigenvalues of p n × p n PSD 

S 0 ( f ) 
 0 satisfy 

0 < βmin ≤ min 
f∈ [0 , 0 . 5] 

φmin ( S 0 ( f )) 

≤ max 
f∈ [0 , 0 . 5] 

φmax ( S 0 ( f )) ≤ βmax < ∞ . 

Here βmin and βmax are not functions of n (or p n ). 

Under assumptions (A1)-(A3), our main theoretical result is 

heorem 1 stated below. Assumption (A1), stated in Section 2.1 , 

nsures that S x ( f ) exists ( [41, Theorem 2.5.1] ) and it allows us 

o invoke [41, Theorem 4.4.1] regarding statistical properties of 

 x ( f m ) discussed in Section 2.1 . Assumption (A2) is more of a 

efinition specifying the number of connected edges in the true 

raph to be upperbounded by s n 0 . The maximum possible value 

f s n 0 is p n (p n − 1) (where we count edges { i, j} and { j, i } , i � = j,

s two distinct edges), but we are interested in sparse graphs 

ith s n 0 � p n (p n − 1) . The lower bound in assumption (A3) en- 

ures that S −1 
0 ( f ) exists for every f ∈ [0 , 1] . Existence of S −1 

0 ( f ) is

entral to this paper since its estimates are used to infer the un- 

erlying graph and it implies certain Markov properties of the con- 

itional independence graph [10, Lemma 3.1 and Theorem 3.3] . The 

pper bound in assumption (A3) ensures that all elements in S 0 ( f ) 

re uniformly upperbounded in magnitude. To prove this, first note 

hat for any Hermitian A ∈ C 
p×p , by [64, Theorem 4.2.2] , 

max ( A ) = max 
y � = 0 

y H A y 

y H y 
. (60) 
9 
onsider e (i ) ∈ C 
p with one in the i th position and zeros every- 

here else. Then e H 
(i ) 
A e (i ) = [ A ] ii and e 

H 
(i ) 
e (i ) = 1 , leading to 

max ( A ) ≥
e H 
(i ) 
A e (i ) 

e H 
(i ) 
e (i ) 

= [ A ] ii . (61) 

herefore, by (61) , for 1 ≤ i ≤ p n , 

 S 0 ( f )] ii ≤ φmax ( S 0 ( f )) ≤ βmax for f ∈ [0 , 0 . 5] . (62) 

inally, by [41, p. 279] , 

 [ S 0 ( f )] k� | 2 ≤ [ S 0 ( f )] kk [ S 0 ( f )] �� 

mplying that | [ S 0 ( f )] k� | ≤ βmax for f ∈ [0 , 0 . 5] , 1 ≤ k, � ≤ p n . 

Let ˆ �λ = arg min � : �k 
0 L SGL ( �) . Theorem 1 whose proof is 

iven in Appendix B , establishes consistency of ˆ �λ. 

heorem 1 (Consistency) . For τ > 2 , let 

 0 = 80 max 
�, f 

([ S 0 ( f )] �� ) 

√ 

N 1 

ln (p n ) 
(63) 

here 

 1 = 2 ln (16 p τn M n ) . (64) 

iven any real numbers δ1 ∈ (0 , 1) , δ2 > 0 and C 1 > 0 , let 

 = C 2 C 0 /β
2 
min , C 2 = 2(2 + C 1 + δ2 )(1 + δ1 ) 

2 , (65) 

 n = 

√ 

M n (p n + s n 0 ) ln (p n ) 

K n 
, C 0 C 2 r n = o(1) , (66) 

 2 = arg min 

{
n : r n ≤ δ1 βmin 

C 2 C 0 

}
, (67) 

 3 = arg min 

{ 
n : K n > N 1 

} 
. (68) 

uppose the regularization parameter λn and α ∈ [0 , 1] satisfy 

 0 

√ 

ln (p n ) 

K n 
≤ λn √ 

M n 

≤ C 1 C 0 

1 + α( 
√ 

M n − 1) 

√ (
1 + 

p n 

s n 0 

)
ln (p n ) 

K n 
. (69) 

hen if the sample size is such that n > max { N 2 , N 3 } and assump-

ions (A1)-(A3) hold true, ˆ �λ satisfies 

 ̂
 �λ − �0 ‖ F ≤ Rr n (70) 

ith probability greater than 1 − 1 /p τ−2 
n . In terms of rate of con- 

ergence (i.e., for large n ), 

 ̂
 �λ − �0 ‖ F = O P 

(
ln (M n ) 

√ 

M n r n 

)
. (71) 

 sufficient condition for the lower bound in (69) to be less 

han the upper bound for every α ∈ [0 , 1] is C 1 = 2(1 + α( 
√ 

M n −
)) . •

emark 2. Theorem 1 helps determine how to choose M n and K n 
o that for given { p n } , lim n →∞ ‖ ̂  �λ − �0 ‖ F = 0 . This behavior is

overned by (71) , therefore we have to examine ln (M n ) 
√ 

M n r n . 

s noted before, since K n M n ≈ n/ 2 , if one picks K n = a 1 n 
γ , then

 n = a 2 n 
1 −γ for some 0 < γ < 1 , 0 < a 1 , a 2 < ∞ . Suppose that the

aximum number of nonzero elements in S −1 ( f ) , p n + s n 0 , satisfy 



J.K. Tugnait Signal Processing 197 (2022) 108539 

O

I

w  

h  

i

d  

t

b

 

O

O

N  

A

6

d

p

t

g

o

6

w

i

a

3  

e

x

w

a

n

o  

w

t

o  

F

e

3

S  ∑
 

(

(  

q

m

i

p  

n

p  

f  

w  

r  

1  

K  

T

M

a

m

t  

t  

t

l  

l  

k

s  

M

t

p

a

m

m

1

o

r

m

p

[

e

v

a  

A

r

t

s

p

i

v

y

e

t

g

T

a

b  

τ

p

{  

m  

p

{  

w

p n + s n 0 = a 3 n 
θ for some 0 ≤ θ < 1 , 0 < a 3 < ∞ . Then we have 

 

(
ln (M n ) 

√ 

M n r n 

)
= O 

( 

ln (M n ) M n 

√ 

(p n + s n 0 ) ln (p n ) √ 

K n 

) 

= O 

(
( ln (n )) 3 / 2 n 1 −γ n θ/ 2 

n γ / 2 

)

= O 

(
( ln (n )) 3 / 2 

n 1 . 5 γ −1 −0 . 5 θ

)
(72) 

n ↑∞ → 0 if 1 . 5 γ − 1 − 0 . 5 θ > 0 . 

f θ = 0 (fixed graph size and fixed number of connected edges 

.r.t. sample size n ), then we need 2 
3 < γ < 1 . By (72) , we must

ave 1 > γ > 
2 
3 + 

θ
3 . If θ > 0 , γ has to be increased beyond what

s needed for θ = 0 , implying more smoothing of periodogram 

 x ( f m ) d 
H 
x ( f m ) around f k to estimate S x ( f k ) (recall (29) ), leading

o fewer frequency test points M n . Clearly, we cannot have θ ≥ 1 

ecause p n + s n 0 = O(n θ ) will require γ > 1 which is impossible. 

If α = 0 , then C 1 is a constant, and therefore, ‖ ̂  �λ − �0 ‖ F =
 P ( ln (M n ) r n ) . In this case we have 

 ( ln (M n ) r n ) = O 

( 

ln (M n ) 
√ 

M n (p n + s n 0 ) ln (p n ) √ 

K n 

) 

= O 

(
( ln (n )) 3 / 2 n (1 −γ ) / 2 n θ/ 2 

n γ / 2 

)

= O 

(
( ln (n )) 3 / 2 

n (2 γ −1 −θ ) / 2 

)
(73) 

n ↑∞ → 0 if 2 γ − 1 − θ > 0 . 

ow we must have 1 > γ > 
1 
2 + 

θ
2 . If θ = 0 , we need 1 

2 < γ < 1 .

lso, we cannot have θ ≥ 1 because will require γ > 1 . �

. Numerical examples 

We now present numerical results for both synthetic and real 

ata to illustrate the proposed approach. In synthetic data exam- 

le the ground truth is known and this allows for assessment of 

he efficacy of various approaches. In real data example where the 

round truth is unknown, our goal is visualization and exploration 

f the dependency structure underlying the data. 

.1. Synthetic data 

Consider p = 128 , 16 clusters (communities) of 8 nodes each, 

here nodes within a community are not connected to any nodes 

n other communities. Within any community of 8 nodes, the data 

re generated using a vector autoregressive (VAR) model of order 

. Consider community q , q = 1 , 2 , . . . , 16 . Then x (q ) (t) ∈ R 
8 is gen-

rated as 

 
(q ) (t) = 

3 ∑ 

i =1 

A 

(q ) 
i 

x (q ) (t − i ) + w 
(q ) (t) 

ith w 
(q ) (t) as i.i.d. zero-mean Gaussian with identity covari- 

nce matrix. Only 10% of entries of A 

(q ) 
i 

’s are nonzero and the 

onzero elements are independently and uniformly distributed 

ver [ −0 . 8 , 0 . 8] . We then check if the VAR(3) model is stable

ith all eigenvalues of the companion matrix ≤ 0 . 95 in magni- 

ude; if not, we re-draw randomly till this condition is fulfilled. The 

verall data x (t) is given by x (t) = [ x (1) � (t ) · · · x (16) � (t ) ] � ∈ R 
p .

irst 100 samples are discarded to eliminate transients, and gen- 

rate stationary Gaussian data. This set-up leads to approximately 

.5% connected edges. In each run, we calculated the true PSD 
10 
 ( f ) for f ∈ [0 , 0 . 5] at intervals of 0.01, and then take { i, j} ∈ E if
 

f | S −1 
i j 

( f ) | > 10 −6 . Note that average value of diagonal elements

 

∑ p 
i =1 

∑ 

f S 
−1 
ii 

( f )) /p, averaged over 100 runs, turns out to be 75.10 

 ±1 . 85 ). Therefore, the threshold of 10 −6 in 
∑ 

f | S −1 
i j 

( f ) | > 10 −6 is

uite low, resulting in some very “weak” edges in the graph. 

Simulation results are shown in Fig. 1 where the performance 

easure is F 1 -score for efficacy in edge detection. The F 1 -score 

s defined as F 1 = 2 × precision × recall / ( precision + recall ) where 

recision = | ̂  E ∩ E 0 | / | ̂  E | , recall = | ̂  E ∩ E 0 | / |E 0 | , and E 0 and ˆ E de-

ote the true and estimated edge sets, respectively. For our pro- 

osed approach, we consider three different values of M ∈ { 2 , 4 , 6 }
or five samples sizes n ∈ { 128 , 256 , 512 , 1024 , 2048 } . For M = 2 ,

e used K = 31 , 63 , 127 , 255 , 511 for n = 128 , 256 , 512 , 1024 , 2048 ,

espectively, for M = 4 , we used K = 15 , 31 , 63 , 127 , 255 for n =
28 , 256 , 512 , 1024 , 2048 , respectively, and for M = 6 , we used

 = 9 , 21 , 41 , 85 , 169 for n = 128 , 256 , 512 , 1024 , 2048 , respectively.

hese approaches are labeled as “proposed: M = 2,” “proposed: 

 = 4,” and “proposed: M = 6,” in Fig. 1 . The tuning parameters λ
nd α were selected by searching over a grid of values to maxi- 

ize the F 1 -score (over 100 runs). The search for α was confined 

o [0,0.3]. For a fixed α = 0 . 1 , we first picked the best λ value, and

hen with fixed best λ value, search over α ∈ [0 , 0 . 3] . Fig. 1 shows

he results for thus optimized (λ, α) . In practice, one cannot calcu- 

ate the F 1 -score since ground truth is unknown. For M = 4 we se-

ected (λ, α) in each run via BIC as discussed in Section 4.3 (where

nowledge of the ground truth is not needed). The obtained re- 

ults based on 50 runs are shown in Fig. 1 , labeled as “proposed:

 = 4,BIC.” The conventional i.i.d. modeling approach exploits only 

he sample covariance 1 n 
∑ n −1 

t=0 x (t) x 
� (t) whereas the proposed ap- 

roaches exploit the entire correlation function (equivalently PSD), 

nd thus, can deliver better performance. In Fig. 1 , the label “IID 

odel” stands for the ADMM lasso approach ( [61, Sec. 6.4] ) that 

odels data as i.i.d., and the corresponding results are based on 

00 runs with lasso parameter λ selected by exhaustive search 

ver a grid of values to maximize F 1 score. We also show the 

esults of the ADMM approach of [33] , labeled “GMS” (graphical 

odel selection), which was applied with F = 4 (four frequency 

oints, corresponds to our M = 4 ) and all other default settings of 

33] to compute the PSDs (see also Section 4.2 ). The lasso param- 

ter λ for [33] was selected by exhaustive search over a grid of 

alues to maximize F 1 score. 

The F 1 -scores are shown in Fig. 1 and average timings per run 

re shown in Fig. 2 for sample sizes n = 128 , 256 , 512 , 1024 , 2048 .

ll ADMM algorithms were implemented in MATLAB R2020b, and 

un on a Window Home 10 operating system with processor In- 

el(R) Core(TM) i5-6400T CPU @2.20 GHz with 12 GB RAM. It is 

een from Fig. 1 that with F 1 -score as the performance metric, our 

roposed approach for all three values of M (number of normal- 

zed frequency points in (0,0.5)) significantly outperforms the con- 

entional IID model approach. The BIC-based approach for M = 4 

ields performance that is close to that based on optimized param- 

ter selection for n ≥ 512 . It is also seen that [33] performs bet- 

er than IID modeling but much worse than our proposed sparse 

roup lasso approach, while also taking more time to convergence. 

he stopping rule, variable penalty and thresholds selected for 

ll approaches were the same since all approaches are ADMM- 

ased; these values have been specified as ρ(0) = 2 , μ = 10 , and

abs = τrel = 10 −4 in Section 4.1.5 . 

The conventional i.i.d. modeling approach estimates the (sparse) 

recision matrix � = 

(
E{ x (t) x � (t) } )−1 = R 

−1 
xx (0) : there is an edge 

 i, j} in CIG iff �i j � = 0 . Since this approach ignores R xx (m ) for

 � = 0 for dependent data, its performance is the worst for all sam-

le sizes, although the performance does improve with n since 

 i, j} �∈ E ⇒ �i j = 0 and accuracy of the estimate of �i j improves

ith increasing n . The method of [33] performs better than IID 
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Fig. 1. F 1 -score for synthetic data example. The label “GMS” refers to the approach of [33] . 

Fig. 2. Average timing per run for synthetic data example. The label “GMS” refers to the approach of [33] . 
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odeling since it does use R xx (m ) for m � = 0 in estimating S −1 
xx ( f ) .

lso, the performance of [33] improves with n as accuracy of the 

stimates of the PSD improves with n . However, as summarized in 

ection 4.2 , [33] makes some peculiar choices which are likely rea- 

ons why its performance is inferior to our proposed approach. 

Note that for our example, there is no explicit mathematical ex- 

ression for calculating the true edge set E 0 . In each run, we cal-

ulated the true PSD S ( f ) for f ∈ [0 , 0 . 5] at intervals of 0.01, and

hen took { i, j} ∈ E if 
∑ 

f | S −1 
i j 

( f ) | > 10 −6 , where the average value

f diagonal elements ( 
∑ p ∑ 

f S 
−1 ( f )) /p, averaged over 100 runs, 
i =1 ii 

11 
urns out to be 75.10 ( ±1 . 85 ). That is, we have some very “weak”

dges in the graph which are not easy to detect with relatively 

short” sample sizes, resulting in relatively low F 1 scores. Neverthe- 

ess, when comparing different approaches, our proposed approach 

erforms much better. 

For a typical Monte Carlo run with n = 1024 , we show the es-

imated weighted adjacency matrices resulting from the conven- 

ional “IID model” approach and from the “proposed: M = 4,BIC” ap- 

roach in Figs. 3 and 4 respectively. For the IID model approach, 

uning parameter λ used is the one used for Fig. 1 , selected by 
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Fig. 3. IID modeling-based weighted adjacency matrices. The red squares (in dotted 

lines) show the communities – they are not part of the adjacency matrices. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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Fig. 4. Weighted adjacency matrices for dependent time series modeling: M = 4 . 

The red squares (in dotted lines) show the communities – they are not part of the 

adjacency matrices. (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 
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xhaustive search to maximize the F 1 score. Figure 3 shows true 

nd estimated | �i j | as edge weights, whereas Fig. 4 shows true 
 ∑ M 

k =1 | [ �k ] i j | 2 and estimated 

√ ∑ M 

k =1 | [ ̂  �k ] i j | 2 as edge weights. 

hile clustering is quite evident in both Figs. 3 and 4 , there are

ome spurious (as well as missed) connections reflecting estima- 

ion errors, which are inevitable for any finite sample size. 

.2. Real data: Financial time series 

We consider daily share prices (at close of the day) of 97 stocks 

n S&P 100 index from Jan. 1, 2013 through Jan. 1, 2018, yielding 

259 samples. This data was gathered from Yahoo Finance website. 

f y m (t) is the share price of m th stock on day t , we consider (as is

onventional in such studies [12] ) x m (t) = ln (y m (t) /y m (t − 1)) as

he time series to analyze, yielding n = 1258 and p = 97 . These

7 stocks are classified into 11 sectors (according to the Global 

ndustry Classification Standard (GICS)), and we order the nodes 
12 
o group them according to GICS sectors as information technol- 

gy (nodes 1–12), health care (13–27), financials (28-44), real es- 

ate (45-46), consumer discretionary (47-56), industrials (57–68), 

ommunication services (69–76), consumer staples (77–87), en- 

rgy (88–92), materials (93), and utilities (94–97). The weighted 

djacency matrices resulting from the conventional i.i.d. modeling 

pproach and the proposed approach with M = 4 , ( K = 155 ), are

hown in Fig. 5 . In both cases we used BIC to determine the tun-

ng parameters with selected λ = 0 . 0387 for the IID model and 

λ, α) = (0 . 7 , 0 . 3) for the proposed approach. While the ground

ruth is unknown, the dependent time series based proposed ap- 

roach yields sparser CIG (429 edges for the proposed approach 

ersus 1293 edges for conventional modeling, where we now count 

dges { i, j} and { j, i } , i � = j, as the same one edge). Based on the

ICS sector classification, one expects to see clustering in the es- 
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Fig. 5. Weighted adjacency matrices for financial time series, p = 97 , n = 1258 . (a) 

IID model approach, (b) Proposed approach, M = 4 . The red squares (in dashed 

lines) show the 11 GISC sectors – they are not part of the adjacency matrices. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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imated weighted adjacency matrix, conforming to the GICS classi- 

cation in that stocks within a given sector are more connected, 

nd with higher weights, to other stocks within the sector, and 

ave fewer connections, and with lower weights, to stocks in other 

ectors. In this sense, our proposed approach also conforms bet- 

er with the GICS sector classification when compared to the i.i.d. 

odeling approach. 

. Conclusions 

Graphical modeling of dependent Gaussian time series was con- 

idered. A sparse-group lasso-based frequency-domain formulation 

f the problem was proposed and analyzed where the objective 

as to estimate the inverse PSD of the data via optimization of 

 sparse-group lasso penalized log-likelihood cost function. The 
13 
raphical model is then inferred from the estimated inverse PSD. 

e investigated an ADMM approach for optimization. We estab- 

ished sufficient conditions for convergence in the Frobenius norm 

f the inverse PSD estimators to the true value, jointly across all 

requencies, where the number of frequencies were allowed to in- 

rease with sample size. We also empirically investigated selection 

f the tuning parameters based on the Bayesian information crite- 

ion, and illustrated our approach using numerical examples utiliz- 

ng both synthetic and real data. The synthetic data results show 

hat for graph edge detection, the proposed approach significantly 

utperformed the widely used i.i.d. modeling approach where the 

nderlying time series is either assumed to be i.i.d., or one uses 

nly the covariance of the data. The proposed approach also out- 

erformed the approach of [33] for synthetic data. 
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ppendix A. Proof of Lemma 1 

Lemma 1 is proved following [53] (which deals with real vari- 

bles), and using Wirtinger calculus and complex subgradients. 

ince h ( θ) is convex in θ, a necessary and sufficient condition for a

lobal minimum at ˆ θ is that the subdifferential of h ( θ) at ˆ θ, ∂h ( ̂ θ)

iven by (A.1) , must contain 0 : 

 ∈ ∂h ( ̂  θ) = 

1 

2 
( ̂  θ − a ) + 

λ1 

2 
t + 

λ2 

2 
w (A.1) 

here ( t j = [ t ] j , jth component of t ) 

 = 

{
ˆ θ/ ‖ ̂

 θ‖ if ˆ θ � = 0 

∈ { u : ‖ u ‖ ≤ 1 , u ∈ C 
q } if ˆ θ = 0 

, (A.2) 

 j = 

{
ˆ θ j / | ̂  θ j | if ˆ θ j � = 0 

∈ { v : | v | ≤ 1 , v ∈ C } if ˆ θ j = 0 
. (A.3) 

emma 1 is a consequence of KKT conditions (A.1) . We will show 

hat (54) satisfies (A.1) . Consider the following two cases: 

i) Suppose ‖ S ( a , λ1 ) ‖ ≤ λ2 . Then (54) implies that ˆ θi = 0 ∀ i . We

need to show that this solution satisfies (A.1) , that is, given a , 

there exist w and t satisfying 

w j = 

a j − λ1 t j 

λ2 

, j = 1 , 2 , . . . , q. (A.4) 

Following real-valued results of [53] , consider minimization of 

J( t ) , defined below, w.r.t. t j ’s subject to | t j | 2 ≤ 1 , j = 1 , 2 , . . . , q :

J( t ) = 

q ∑ 

j=1 

| w j | 2 = 

1 

λ2 
2 

q ∑ 

j=1 

| a j − λ1 t j | 2 . (A.5) 

The problem is separable in t j ’s with the solution 

ˆ t j = 

{
a j /λ1 if | a j | ≤ λ1 

a j / | a j | if | a j | > λ1 . 
(A.6) 

Thus a j − λ1 ̂ t j = (1 − λ1 / | a j | ) + a j and with ˆ w j = (a j − λ1 ̂ t j ) /λ2 ,

we have 

min 
t 

J( t ) = J( ̂ t ) = 

q ∑ 

j=1 

| ̂  w j | 2 = 

1 

λ2 
2 

‖ S ( a , λ1 ) ‖ 
2 ≤ 1 . (A.7)

Thus (A.1) holds for given ˆ w and ˆ t satisfying (A.2) and (A.3) , 

respectively. 
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ii) Now suppose ‖ S ( a , λ1 ) ‖ > λ2 . Then (54) implies that ˆ θ � = 0 ,

therefore, at least one component of ˆ θ is nonzero. Again we 

need to show that this solution satisfies (A.1) . If | a i | ≤ λ1 ,

then ˆ θi = 0 and ˆ t i = a i /λ1 satisfies (A.3) . If | a i | > λ1 , then ˆ θi � =
0 and we take ˆ t i = 

ˆ θi / | ̂  θi | . For an arbitrary a i , but satisfying
‖ S ( a , λ1 ) ‖ > λ2 , let us express our claimed solution ˆ θi � = 0 as 

ˆ θi = γαi a i , αi := (1 − λ1 / | a i | ) + (A.8) 

γ = 1 − λ2 / ( 

q ∑ 

j=1 

α2 
j | a j | 2 ) 1 / 2 > 0 . (A.9) 

We need to show that this solution satisfies (A.1) . The i th com-

ponent of 2 ∂h ( ̂ θ) with ˆ w and ˆ t satisfying (A.2) and (A.3) , re-

spectively, is 

A := 
ˆ θi − a i + λ1 

ˆ θi 

| ̂  θi | 
+ λ2 

ˆ θi 

‖ ̂
 θ‖ 

= 
ˆ θi 

[
1 + 

λ1 

| ̂  θi | 
+ 

λ2 

‖ ̂
 θ‖ 

]
− a i = a i B − a i (A.10) 

where, with D := ( 
∑ q 

j=1 
α2 

j 
| a j | 2 ) 1 / 2 , 

B = γαi + 

λ1 

| a i | + 

λ2 αi 

D 

. (A.11) 

The proof is completed by showing that B = 1 . We have 

B = 

γαi | a i | D + λ1 D + λ2 αi | a i | 
| a i | D 

(A.12) 

= 

αi | a i | D − λ2 αi | a i | + λ1 D + λ2 αi | a i | 
| a i | D 

(A.13) 

= 

αi | a i | + λ1 

| a i | = α1 + 

λ1 

| a i | = 1 (A.14) 

where, for ˆ θi � = 0 , αi = 1 − λ1 / | a i | . 
This proves the desired result �

ppendix B. Proof of Theorem 1 

Our proof relies on the method of [22] which deals with i.i.d. 

ime series models and lasso penalty, and our prior results in 

39] dealing with complex Gaussian vectors (not time series). From 

ow on we use the term “with high probability” (w.h.p.) to de- 

ote with probability greater than 1 − 1 /p τ−2 
n . First we need sev- 

ral auxiliary results. 

Lemma 2 below is specialization of [57, Lemma 1] to Gaussian 

andom vectors. It follows from [57, Lemma 1] after setting the 

ub-Gaussian parameter σ in [57, Lemma 1] to 1. 

Lemma 2 . Consider a zero-mean Gaussian random vector z ∈ R 
p 

ith covariance R 
 0 . Given n i.i.d. samples z (t) , t = 0 , 1 , . . . , n −
 , of z , let ˆ R = (1 /n ) 

∑ n −1 
t=0 z z 

� denote the sample covariance ma-

rix. Then ˆ R satisfies the tail bound 

 

(∣∣∣[ ̂  R − R ] i j 

∣∣∣ > δ
)

≤ 4 exp 

(
− nδ2 

3200 max i (R 
2 
ii 
) 

)
(B.1) 

or all δ ∈ (0 , 40 max i (R ii )) •
Exploiting Lemma 2, we have Lemma 3 regarding ˆ S k . We de- 

ote S 0 ( ̃  f k ) as S 0 k in this section. A proof of Lemma 3 is in [38,

emma 2] . The statement of Lemma 3 below is a corrected version 

f [38, Lemma 2] with no changes to its proof given therein. 

Lemma 3 . Under Assumption (A2), ˆ S k satisfies the tail bound 

 

(
max 
k,q,l 

∣∣∣[ ̂ S k − S 0 k ] ql 

∣∣∣ > C 0 

√ 

ln (p n ) 

K n 

)
≤ 1 

p τ−2 
(B.2) 
n 

14 
or τ > 2 , if the sample size n and choice of K n is such that K n >

 1 = 2 ln (16 p τn M n ) , where C 0 is defined in (63) . •
Lemma 4 deals with a Taylor series expansion using Wirtinger 

alculus. 

Lemma 4 . For �k = �H 
k 
 0 , define a real scalar function 

( �k , �
∗
k ) = ln | �k | + ln | �∗

k | . (B.3) 

et �k = �0 k + �k with �0 k = �H 
0 k 
 0 and �k = �H 

k . Then using 

irtinger calculus, the Taylor series expansion of c( �k , �
∗
k ) is 

iven by 

( �k , �
∗
k ) = c( �0 k , �

∗
0 k ) + tr ( �−1 

0 k �k + �−∗
0 k �

∗
k ) 

− 1 

2 
( vec ( �k )) 

H ( �−∗
0 k � �−1 

0 k ) vec ( �k ) 

− 1 

2 
( vec ( �∗

k )) 
H ( �−1 

0 k � �−∗
0 k ) vec ( �

∗
k ) + h.o.t. (B.4) 

here h.o.t. stands for higher-order terms in �k and �
∗
k . •

Proof : Only for the proof of this lemma, we will drop the sub- 

cript k , and donate �k , �0 k and �k as �, �0 and �, respectively. 

reating � and �∗ as independent variables, the Taylor series ex- 

ansion of c( �, �∗) is 

( �, �∗) = c( �0 , �
∗
0 ) + 

∑ 

s,t 

(
∂c 

∂�0 st 

�st + 

∂c 

∂�∗
0 st 

�∗
st 

)

+ 

1 

2 

∑ 

q,r 

∑ 

s,t 

[�qr �∗
qr ] D 0 qrst 

[
�st 

�∗
st 

]
+ h.o.t. (B.5) 

here 

∂c 

∂�0 st 

:= 

∂c( �, �∗) 
∂�st 

∣∣∣∣�st =�0 st 

�∗
st =�∗

0 st 

, (B.6) 

∂c 

∂�∗
0 st 

:= 

∂c( �, �∗) 
∂�∗

st 

∣∣∣∣�st =�0 st 

�∗
st =�∗

0 st 

, (B.7) 

 0 qrst = 

⎡ 

⎢ ⎣ 

∂ 2 c( �, �∗) 
∂ �qr ∂ �st 

∂ 2 c( �, �∗) 
∂ �qr ∂ �∗

st 

∂ 2 c( �, �∗) 
∂ �∗

qr ∂ �st 

∂ 2 c( �, �∗) 
∂ �∗

qr ∂ �
∗
st 

⎤ 

⎥ ⎦ 

∣∣∣∣∣∣∣�st =�0 st , �
∗
st =�∗

0 st 

�qr =�0 qr , �
∗
qr =�∗

0 qr 

=: 

⎡ 

⎢ ⎣ 

∂ 2 c( �, �∗) 
∂ �0 qr ∂ �0 st 

∂ 2 c( �, �∗) 
∂ �0 qr ∂ �∗

0 st 

∂ 2 c( �, �∗) 
∂ �∗

0 qr 
∂ �0 st 

∂ 2 c( �, �∗) 
∂ �∗

0 qr 
∂ �∗

0 st 

⎤ 

⎥ ⎦ . (B.8) 

onsider the following facts [65,66] 

∂ ln | �| 
∂�st 

= [ �−� 
] st = [ �−1 

] ts since 
∂ ln | �| 

∂ �
= �−� 

, (B.9) 

∂ ln | �∗| 
∂�∗

st 

= [ �−∗
] ts , (B.10) 

∂ ln | �| 
∂�∗

st 

= 0 , 
∂ ln | �∗| 

∂�st 
= 0 , (B.11) 

∂ 2 ln | �| 
∂ �qr ∂ �st 

= 

∂[ �−1 
] ts 

∂�qr 
= −[ �−1 

] tq [ �
−1 

] rs , (B.12) 

∂ 2 ln | �∗| 
∂ �∗

qr ∂ �
∗
st 

= − [ �−∗
] tq [ �

−∗
] rs , (B.13) 

∂ 2 ln | �| 
∂ �qr ∂ �∗

st 

= 

∂ 2 ln | �| 
∂ �∗

qr ∂ �st 
= 

∂ 2 ln | �∗| 
∂ �qr ∂ �∗

st 

= 

∂ 2 ln | �∗| 
∂ �∗

qr ∂ �st 
= 0 . (B.14) 
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m 11 k 
Using the above partial derivatives in the first derivative terms 

n the Taylor series, we have 

 

s,t 

(
∂c 

∂�0 st 

�st + 

∂c 

∂�∗
0 st 

�∗
st 

)

= 

∑ 

s,t 

(
[ �−1 

0 ] ts �st + [ �−∗
0 ] ts �

∗
st 

)
= tr ( �−1 

0 � + �−∗
0 �

∗) . (B.15) 

he quadratic terms in the Taylor series yield 

 

q,r 

∑ 

s,t 

[�qr �∗
qr ] D 0 qrst 

[
�st 

�∗
st 

]

= 

∑ 

q,r 

∑ 

s,t 

[�qr 
∂ 2 c( �, �∗) 
∂ �0 qr ∂ �0 st 

�st + �∗
qr 

∂ 2 c( �, �∗) 
∂ �∗

0 qr 
∂ �∗

0 st 

�∗
st ] 

= −
∑ 

q,r 

∑ 

s,t 

[ 
�qr [ �

−1 
0 ] tq [ �

−1 
0 ] rs �st 

+ �∗
qr [ �

−∗
0 ] tq [ �

−∗
0 ] rs �

∗
st 

] 
= −

∑ 

q,s 

[(∑ 

r 

�qr [ �
−1 
0 ] rs 

)
+ 

(∑ 

t 

�st [ �
−1 
0 ] tq 

)]

−
∑ 

q,s 

[(∑ 

r 

�∗
qr [ �

−∗
0 ] rs 

)
+ 

(∑ 

t 

�∗
st [ �

−∗
0 ] tq 

)]

= −
∑ 

q,s 

[
[ ��−1 

0 ] qs [ ��−1 
0 ] sq + [ �∗�−∗

0 ] qs [ �
∗�−∗

0 ] sq 
]

= −tr 
(
��−1 

0 ��−1 
0 + �∗�−∗

0 �
∗�−∗

0 

)
. (B.16) 

Given matrices A and B for which product A B is defined, and 

dditionally given matrix Y such that product A Y B is defined, we 

ave vec ( A Y B ) = ( B � � A ) vec ( Y ) and tr ( A B ) = ( vec ( A )) � vec ( B ) .
sing these results we have 

 vec ( A )) � ( D � B ) vec ( C ) = ( vec ( A )) � vec ( B C D 
� ) 

= tr 
(
A 

� B C D 
� )

. (B.17) 

sing (B.17) , we rewrite terms in (B.16) as 

r 
(
��−1 

0 ��−1 
0 

)
= ( vec ( �� )) � 

(
�−� 

0 � �−1 
0 

)
vec ( �) 

= ( vec ( �)) H 
(
�−∗

0 � �−1 
0 

)
vec ( �) , (B.18) 

r 
(
�∗�−∗

0 �
∗�−∗

0 

)
= ( vec ( �H )) � 

(
�−H 

0 � �−∗
0 

)
vec ( �∗) . (B.19) 

n (B.18) , we have used ( vec ( �� )) � = ( vec ( �∗)) � = ( vec ( �)) H 

nd �−� 
0 = ( �� 

0 ) 
−1 = �−∗

0 , since � = �H and �0 = �H 
0 . In (B.19) ,

e have used ( vec ( �H )) � = ( vec ( �)) � = ( vec ( �∗)) H and �−H 
0 =

 �H 
0 ) 

−1 = �−1 
0 . Using (B.15), (B.16), (B.18) and (B.19) in (B.5) , we

btain the desired result (B.4) . �
Lemma 4 regarding Taylor series expansion immediately leads 

o Lemma 5 regarding Taylor series with integral remainder, 

eeded to follow the proof of [22] pertaining to the real-valued 

ase. 

Lemma 5 . With c( �k , �
∗
k ) and �k = �0 k + �k as in Lemma 4,

he Taylor series expansion of c( �k , �
∗
k ) in integral remainder 

orm is given by ( v is real) 

( �k , �
∗
k ) = c( �0 k , �

∗
0 k ) + tr ( �−1 

0 k �k + �−∗
0 k �

∗
k ) 

− g H ( �k ) 

(∫ 1 
0 

(1 − v ) H ( �0 k , �k , v ) dv 
)
g ( �k ) 

(B.20) 

here 

 ( �k ) = 

[
vec ( �k ) 
vec ( �∗

k ) 

]
, H ( �0 k , �k , v ) = 

[
H 11 k 0 
0 H 22 k 

]
(B.21) 
15 
 11 k = ( �0 k + v �k ) 
−∗

� ( �0 k + v �k ) 
−1 (B.22) 

nd 

 22 k = ( �0 k + v �k ) 
−1 

� ( �0 k + v �k ) 
−∗ • (B.23) 

We now turn to the proof of Theorem 1. 

roof of Theorem 1.. Let � = �0 + � where 

= [ �1 �2 · · · �M n ] (B.24) 

k = �k − �0 k , k = 1 , 2 , . . . , M n , (B.25) 

nd �k , �0 k are both Hermitian positive-definite, implying �k = 

H 
k . Let 

( �) := L SGL ( �) − L SGL ( �0 ) . (B.26) 

he estimate ˆ �λ, denoted by 
ˆ � hereafter suppressing dependence 

pon λ, minimizes Q( �) , or equivalently, ˆ � = 
ˆ � − �0 minimizes 

 ( �) := Q( �0 + �) . We will follow the method of proof of [22,

heorem 1] pertaining to real-valued i.i.d. time series. Consider the 

et 

n (R ) := 

{
� : �k = �H 

k ∀ k, ‖ �‖ F = Rr n 
}

(B.27) 

here R and r n are as in (65) and (66) , respectively. Observe that 

 ( �) is a convex function of �, and 

 ( ̂  �) = Q( �0 + 
ˆ �) ≤ G ( 0 ) = 0 . (B.28)

herefore, if we can show that 

nf 
�

{ G ( �) : � ∈ �n (R ) } > 0 , (B.29) 

he minimizer ˆ � must be inside the sphere defined by �n (R ) , and 

ence 

 ̂
 �‖ F ≤ Rr n . (B.30) 

Using Lemma 5 we rewrite G ( �) as 

 ( �) = 

M n ∑ 

k =1 

( 
1 

2 
A 1 k + 

1 

2 
A 2 k + A 3 k ) + A 4 , (B.31)

here, noting that �−1 
0 k = S 0 k , 

 1 k = g H ( �k ) 

(∫ 1 
0 

(1 − v ) H ( �0 k , �k , v ) dv 
)
g ( �k ) , (B.32) 

 2 k = tr 
(
( ̂ S k − S 0 k ) �k + ( ̂ S k − S 0 k ) 

∗�∗
k 

)
, (B.33) 

 3 k = αλn (‖ �−
0 k + �−

k ‖ 1 − ‖ �−
0 k ‖ 1 ) , (B.34) 

 4 = (1 − α) λn 

p n ∑ 

i � = j 
(‖ �(i j) 

0 + �(i j) ‖ F − ‖ �(i j) 
0 ‖ F ) , (B.35) 

(i j) 
0 := [[ �01 ] i j · · · [ �0 M n 

] i j ] 
� ∈ C 

M n , (B.36) 

(i j) 
:= [[ �1 ] i j · · · [ �M n 

] i j ] 
� ∈ C 

M n . (B.37) 

Define 

 1 n := 

√ 

ln (p n ) 

K n 
, d 2 n := d 1 n 

√ 

(p n + s n 0 ) . (B.38) 

e first bound A 1 k ’s and A 1 . Note that H ( �0 k , �k , v ) is a Hermitian

atrix and its eigenvalues consist of the eigenvalues of H and 
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 22 k . Since the eigenvalues of A � B are the product of the eigen- 

alues of A and eigenvalues of B for Hermitian A and B , the eigen- 

alues of H 11 k are the product of the eigenvalues of ( �0 k + v �k ) 
−∗

nd that of ( �0 k + v �k ) 
−1 . But these two matrices have the same

et of eigenvalues since one matrix is the complex conjugate of 

he other, and both have real eigenvalues since they are Hermitian. 

ince H 11 k = H 
∗
22 k , it follows that the eigenvalues of H 11 k are the 

ame as the eigenvalues of H 22 k . Thus 

min ( H ( �0 k , �k , v )) = φmin ( H 11 k ) = φmin ( H 22 k ) 

= φ2 
min (( �0 k + v �k ) 

−1 ) = φ−2 
max ( �0 k + v �k ) . (B.39) 

ince x H A x ≥ φmin ( A ) ‖ x ‖ 2 , we have 

 1 k ≥ ‖ g ( �k ) ‖ 
2 φmin 

(∫ 1 
0 

(1 − v ) H ( �0 k , �k , v ) dv 
)

≥ 2 ‖ vec ( �k ) ‖ 
2 

∫ 1 
0 

(1 − v ) dv min 
0 ≤v ≤1 

φmin ( H ( �0 k , �k , v )) 

= ‖ �k ‖ 
2 
F min 
0 ≤v ≤1 

φ−2 
max ( �0 k + v �k ) , (B.40) 

here we have used the facts that 
∫ 1 
0 (1 − v ) dv = 1 / 2 . Since 

max ( �0 k + v �k ) ≤ ‖ �0 k + v �k ‖ ≤ ‖ �0 k ‖ + v ‖ �k ‖ , (B.41)

e have 

−2 
max ( �0 k + v �k ) ≥ (‖ �0 k ‖ + v ‖ �k ‖ ) −2 

≥ (‖ �0 k ‖ + ‖ �k ‖ ) −2 for 0 ≤ v ≤ 1 . (B.42) 

hus, 

 1 k ≥
‖ �k ‖ 

2 
F 

(‖ �0 k ‖ + ‖ �k ‖ ) 2 
≥ ‖ �k ‖ 

2 
F 

(
β−1 
min 

+ Rr n 
)−2 

(B.43) 

here we have used the fact that ‖ �0 k ‖ = ‖ S −1 
0 k 

‖ = φmax ( S 
−1 
0 k 

) =
φmin ( S 0 k )) 

−1 ≤ β−1 
min 

and ‖ �k ‖ ≤ ‖ �k ‖ F ≤ ‖ �‖ F = Rr n = O(r n ) . 

herefore, 

 A 1 := 

M n ∑ 

k =1 

A 1 k ≥
∑ M n 

k =1 
‖ �k ‖ 

2 
F (

β−1 
min 

+ Rr n 
)2 = 

‖ �‖ 
2 
F (

β−1 
min 

+ Rr n 
)2 (B.44) 

Turning to A 2 k , we have 

 A 2 k | ≤ 2 L 21 k + 2 L 22 k (B.45) 

here 

 21 k = 

∣∣∑ 

i, j 
i � = j 

[ ̂ S k − S 0 k ] i j �k ji 

∣∣ = 

∣∣∑ 

i, j 
i � = j 

[ ̂ S k − S 0 k ] 
∗
i j �

∗
k ji 

∣∣, (B.46) 

 22 k = 

∣∣∑ 

i 

[ ̂ S k − S 0 k ] ii �kii 

∣∣ = 

∣∣∑ 

i 

[ ̂ S k − S 0 k ] 
∗
ii �

∗
kii 

∣∣. (B.47) 

o bound L 21 k , using Lemma 3, with probability > 1 − 1 /p τ−2 
n , 

 21 k ≤ ‖ �−
k ‖ 1 max 

i, j 

∣∣[ ̂ S k − ˆ S 0 k ] i j 
∣∣ ≤ ‖ �−

k ‖ 1 C 0 d 1 n . (B.48) 

sing Cauchy-Schwartz inequality and Lemma 3, with probability 

 1 − 1 /p τ−2 
n , 

 22 k ≤ ‖ �+ 
k ‖ F 

√ 

p n ∑ 

i =1 

∣∣[ ̂ S k − ˆ S 0 k ] ii 
∣∣2 

≤ ‖ �+ 
k ‖ F 

√ 

p n max 
1 ≤i ≤p n 

∣∣[ ̂ S k − ˆ S 0 k ] ii 
∣∣

≤ ‖ �+ 
k ‖ F 

√ 

p n C 0 d 1 n 

≤ ‖ �+ 
k ‖ F C 0 d 2 n (B.49) 

here s n 0 is the cardinality of the true edge set E 0 (see Assumption 

A1)). Thus, with probability > 1 − 1 /p τ−2 
n , 

 A 2 k | ≤ 2 C 0 
(‖ �−

k ‖ 1 d 1 n + ‖ �+ 
k ‖ F d 2 n 

)
. (B.50) 
16 
ence with A 2 = 

∑ M n 

k =1 
(1 / 2) A 2 k , 

 A 2 | ≤
M n ∑ 

k =1 

(1 / 2) | A 2 k | ≤ C 0 

M n ∑ 

k =1 

(
d 1 n ‖ �−

k ‖ 1 + d 2 n ‖ �+ 
k ‖ F 

)
. (B.51) 

e now derive an alternative bound on A 2 . We have w.h.p. 

 A 2 | ≤
p n ∑ 

i, j=1 

M n ∑ 

k =1 

∣∣[( ̂ S − S 0 k ] i j 
∣∣ ·
∣∣[ �k ] i j 

∣∣ (B.52) 

C 0 d 1 n 

p n ∑ 

i, j=1 

M n ∑ 

k =1 

∣∣[ �k ] i j 
∣∣ (B.53) 

C 0 d 1 n 

p n ∑ 

i, j=1 

(√ 

M n ‖ �(i j) ‖ F 

)
(B.54) 

 

√ 

M n C 0 d 1 n 
(‖ ̃

 �
−‖ 1 + ‖ ̃

 �
+ ‖ 1 

)
(B.55) 

here ˜ � ∈ R 
p n ×p n has its (i, j) th element ˜ �i j = ‖ �(i j) ‖ F . 

We now bound A 3 k . Let E c 0 denote the complement of E 0 , given
y E c 

0 
= {{ i, j} : [ S −1 

0 ( f )] i j ≡ 0 , i � = j, 0 ≤ f ≤ 0 . 5 } . For an in-
ex set B and a matrix C ∈ C 

p×p , we write C B to denote a ma- 

rix in C 
p×p such that [ C B ] i j = C i j if (i, j) ∈ B , and [ C B ] i j = 0 if

i, j) �∈ B . Then �−
k = �−

k E 0 
+ �−

k E c 
0 
, and ‖ �−

k ‖ 1 = ‖ �−
k E 0 

‖ 1 + ‖ �−
k E c 

0 
‖ 1 .

e have 

 3 k = αλn (‖ �−
0 k + �−

k ‖ 1 − ‖ �−
0 k ‖ 1 ) 

= αλn (‖ �−
0 k + �−

k E 0 ‖ 1 + ‖ �−
k E c 

0 
‖ 1 − ‖ �−

0 k ‖ 1 ) 

≥ αλn (‖ �−
k E c 

0 
‖ 1 − ‖ �−

k E 0 ‖ 1 ) (B.56) 

eading to ( A 3 = 

∑ M n 

k =1 
A 3 k ) 

 3 ≥ αλn 

M n ∑ 

k =1 

(‖ �−
k E c 

0 
‖ 1 − ‖ �−

k E 0 ‖ 1 ) . (B.57) 

imilarly, 

 4 ≥ (1 − α) λn (‖ ̃
 �
−
E c 
0 
‖ 1 − ‖ ̃

 �
−
E 0 ‖ 1 ) . (B.58) 

By Cauchy-Schwartz inequality, ‖ �−
k E 0 

‖ 1 ≤ √ 

s n 0 ‖ �−
k E 0 

‖ F ≤
 

s n 0 ‖ �k ‖ F , hence 
M n 

 

k =1 

‖ �−
k E 0 ‖ 1 ≤

√ 

M n s n 0 ‖ �‖ F . (B.59) 

et ‖ �−
k ‖ 1 = ‖ �−

k E 0 
‖ 1 + ‖ �−

k E c 
0 
‖ 1 in A 2 of (B.51) to deduce that

.h.p. 

A 2 + A 3 ≥ −α| A 2 | + A 3 

≥ α(λn −C 0 d 1 n ) 
M n ∑ 

k =1 

‖ �−
k E c 

0 
‖ 1 

− α(C 0 d 1 n + λn ) 
M n ∑ 

k =1 

‖ �−
k E 0 ‖ 1 − αC 0 d 2 n 

M n ∑ 

k =1 

‖ �+ 
k ‖ F 

≥ −α
(
(C 0 d 1 n + λn ) 

√ 

s n 0 + C 0 d 2 n 

)√ 

M n ‖ �‖ F (B.60) 

here we have used the fact that λn ≥ C 0 
√ 

M n d 1 n ≥ C 0 d 1 n and 
 M n 

k =1 
‖ �+ 

k ‖ F ≤
√ 

M n ‖ �‖ F . Now use A 2 of (B.55) to deduce that 

.h.p. 

1 − α) A 2 + A 4 ≥ (1 − α) 
(
(λn −C 0 

√ 

M n d 1 n ) ‖ ̃
 �
−
E c 
0 
‖ 1 

− (C 0 
√ 

M n d 1 n + λn ) ‖ ̃
 �
−
E 0 ‖ 1 −C 0 

√ 

M n p n d 1 n ‖ �‖ F 

)



J.K. Tugnait Signal Processing 197 (2022) 108539 

w
√

A

w

λ
a

G

F

δ

i  

s

 

s  

b  

a

t

1  

O

R

 

 

 

 

 

 

[  

 

[  

[

[

[  

[  

[

[

[

[

[

[  

[  

[  

[  

[

[

[

[

[

[

[

[

[
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[

≥ −(1 − α) ‖ �‖ F 

(
λn 

√ 

s n 0 + C 0 
√ 

M n d 1 n 
(√ 

s n 0 + 

√ 

p n 
))

(B.61) 

here we have used the facts that λn ≥ C 0 
√ 

M n d 1 n , and ‖ ̃  �
−
E 0 ‖ 1 ≤

 

s n 0 ‖ ̃  �
−
E 0 ‖ F ≤

√ 

s n 0 ‖ �‖ F (by Cauchy-Schwartz inequality). 

Since r n = 

√ 

M n d 2 n > 

√ 

M n s n 0 d 1 n , w.h.p. we have 

 2 + A 3 + A 4 ≥ −‖ �‖ F 

(
α
(
2 C 0 r n + λn 

√ 

M n s n 0 
)

+ (1 − α) 
(
λn 

√ 

s n 0 + 2 C 0 r n 
))

≥ −‖ �‖ F 

(
2 C 0 r n + λn 

√ 

s n 0 (α
√ 

M n + (1 − α)) 
)

≥ −‖ �‖ F 

(
(2 + C 1 ) C 0 r n 

)
(B.62) 

here we have used the fact that, by (66) and (69) , 

n 
√ 

s n 0 (α
√ 

M n + (1 − α)) ≤ C 1 C 0 r n . Using (B.31), (B.44) and (B.62) , 

nd ‖ �‖ F = Rr n , we have w.h.p. 

 ( �) ≥‖ �‖ 
2 
F 

[ 
1 

2 

(
β−1 
min 

+ Rr n 
)−2 − (2 + C 1 ) C 0 

R 

] 
. (B.63) 

or n ≥ N 2 , if we pick R as specified in (65) , we obtain Rr n ≤ Rr N 2 ≤
1 /βmin . Then 

1 

( β−1 
min 

+ Rr n ) 2 
≥ β2 

min 

( 1+ δ1 ) 2 
= 

2 ( 2+ C 1 + δ2 ) C 0 
R 

> 2 ( 2+ C 1 ) C 0 
R 

, 

mplying G ( �) > 0 w.h.p. This proves (B.30) , hence the desired re-

ult (70) . 

Given any ε > , pick τ > 2 such that p 2 −τ
n ≤ ε for n ≥ N 4 for

ome N 4 , where N 4 exists since p n is non-decreasing in n . Then

y (70) , ‖ ̂  �λ − �0 ‖ F = O P ( Rr n ) = O P ( C 0 C 1 r n ) . It is easy to see that

 sufficient condition for the lower bound in (69) to be less 

han the upper bound for every α ∈ [0 , 1] is C 1 = 2(1 + α( 
√ 

M n −
)) = O( 

√ 

M n ) . By (63) , C 0 = O( ln (M n )) . Therefore, ‖ ̂  �λ − �0 ‖ F =
 P 

(
ln (M n ) 

√ 

M n r n 

)
. This completes the proof of Theorem 1. �
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