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Three-dimensional failure analyses of slopes are rather elaborate, and for rock slopes, where the rock strength is
defined by nonlinear failure envelopes, they are particularly intricate. This is why many earlier approaches used
a linear approximation of the strength envelope prior to carrying out the stability analysis. This approximation is
avoided in this paper, thanks to using the parametric form of the Hoek-Brown failure criterion. The kinematic
approach of limit analysis is used as the method of study. An argument is brought forward that even though rocks
tend to fracture at low confining stresses, the ductility of deformation prior to a brittle drop in stress during
failure may be sufficient for limit analysis theorems to be applicable. Two measures of rock slope stability are
evaluated: the stability number and the factor of safety. Numerical results are presented in the form of charts and
tables. Because the limit analysis used allows one to evaluate the rigorous bounds on true solutions, it was
possible to demonstrate that the method employed in the paper yields more accurate results than the approaches
used formerly in the subject literature. A new and efficient mechanism of failure was devised for very narrow

rock slopes.

1. Introduction

While two-dimensional (2D) stability analyses of slopes have been
extensively investigated for both soils and rocks, considerations of three-
dimensional (3D) failures have been less common, particularly for
geomaterials with strength governed by non-linear envelopes. When the
size of a slope failure mechanism is limited by physical constraints, such
as nearby structures, the use of 2D (or plane-strain) analyses will un-
derestimate the stability of a slope, so a 3D analysis is preferred. Ad-
missible failure mechanisms are explored in this paper for intact rocks
with strength governed by the Hoek-Brown failure criterion.”” A 3D
mechanism proposed earlier for soil slopes by Michalowski and
Drescher® has been adapted to accommodate the non-linearity of the
pressure dependency of rock strength. Special attention is paid to nar-
row rock slopes where a new type of ridge failure surface mechanism is
constructed.

Typical limit analyses of slopes in geomaterials with nonlinear de-
pendency of strength on pressure involve linearization of the failure
criterion in the first invariant of the stress tensor. Effectively, the
nonlinear failure envelope in this approach is replaced by a straight line,
and the stability problem is solved for a linear, or an equivalent Mohr-
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Coulomb criterion, which greatly simplifies calculations. The early ex-
amples of such an approach can be found in Drescher and Christopoulos”
and others.>® This is the most often encountered approach in consid-
erations of both 2D and 3D stability of rock slopes. The linear approxi-
mation was employed in many recent 3D slope stability studies.” !
Essentially, this approach ignores the nonlinearity of the strength en-
velope; consequently, it disregards a group of admissible failure mech-
anisms that can only be constructed for nonlinear failure criteria. This
shortcoming was overcome in a recent 2D stability analysis by Micha-
lowski and Park,'? for slopes with strength governed by the Hoek-Brown
failure criterion. Efficient application of limit analysis requires an
explicit form of the rock shear strength 7 as a function of normal stress o,
on failure surfaces. Because the original form of the Hoek-Brown crite-
rion is a function of principal stresses, the criterion is often approxi-
mated in the analysis with a best-fit function 7 = f(c,). This step was
avoided in this study by using the parametric form of the original cri-
terion, whereas the common linearization procedure was overcome by
allowing rock failure at varying rupture angles in a single collapse
mechanism. This analysis is now extended to 3D stability of rock slopes,
which introduces additional challenges, because of the complexity of the
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Fig. 1. Hoek-Brown strength envelope.
mechanism.

The limit analysis approach to rocks is briefly discussed next, fol-
lowed by a short description of the Hoek-Brown failure criterion. The
mechanisms of rock slope failure are presented in subsequent sections,
and the quantitative outcome of the analysis is presented in charts and
tables with stability numbers and factors of safety.

2. Application of limit analysis in rocks, and the Hoek-Brown
strength criterion

2.1. Limit analysis in rock applications

Limit Analysis is a method used extensively in structural engineering,
geotechnical engineering, and plastic forming of metals. The funda-
mental premise of the method is perfectly plastic behavior of the ma-
terial with the convex limit stress criterion and the normality flow rule.
However, the ductility of rock behavior can be questioned as rocks tend
to fracture at low confining stresses. This issue was discussed by Chen, '
who concluded that if the rock strain is small prior to an “appreciable”
(brittle) fall off of the stress, then the deformability “may be sufficient to
permit the consideration of limit theorems ...” Consequently, applica-
tions of limit analysis in rocks can be found throughout the literature (e.
g., Chen and Drucker,'* Michalowski, > Fraldi et al.'®).

2.2. Hoek-Brown failure criterion

The Hoek-Brown failure criterion dates back to 19807, with its
generalized form given in the following’»”
o d
0,=03+ 0| m—+s (€Y

where 0’1 and 0/3 are the major and minor effective principal stresses,
respectively, o.; is the compressive strength of the intact rock, and the
remaining strength parameters are defined as

GSI-100
28-T4D

m, =m;e (2)
1 1/ ez

a= 5 + 6 (e S —e ) (3)

and
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where GSI, m; and D are the Geological Strength Index, rock type-
dependent parameter, and the disturbance factor, respectively. The
failure envelope in Eq. (1) is illustrated in Fig. 1. The uniaxial
compressive strength o.; is an explicit part of the criterion in Eq. (1),
whereas the isotropic tensile strength o, (corresponding to point E in
Fig. 1), can be easily found from Eq. (1) after substituting 6, = 0, =

’

63 = — 0t

Y 6))
my

The Limit Analysis approach used in the paper requires that the
deformation of the rock at failure is governed by the normality flow rule,
and vectors [v], normal to the strength envelope in Fig. 1, are the ve-
locity discontinuity vectors inclined at rupture angle § to the failure
surfaces (kinematic discontinuities).

Direct calculations of the rate of work dissipation on failure surfaces
call for an explicit form of the shear strength as function of the normal
stress 7 = f(c,,). Such a form cannot easily be found directly from Eq. (1),
and in many previous analyses the nonlinear criterion was either
replaced with a linear approximation or with a ‘best fit’ function in a
desirable range of stresses. To avoid such approximations, a parametric
form of the strength criterion will be used. Following earlier de-
velopments,'®'° both the normal and the shear stresses are expressed as
functions of rupture angle &

1
oo (o S00) [muall —sin )T 5. ©
m, mya 2 sin & m,
_ cos 5[mya(1 — sin 5)]7
T*""’{ 2 { 2sin & )

Rupture angle § is illustrated in Fig. 1.
2.3. Measures of rock slope stability

Two measures of rock slope stability are considered in this paper:
stability number N and factor of safety F. The former is defined as a
dimensionless combination of the rock properties and the slope height,
at which the slope collapse becomes imminent, and it is adopted after
Collins et al.° This dimensionless group is defined as a critical
combination

O

where o, y and H and are the uniaxial compressive strength of intact
rock, its unit weight, and the slope height, respectively. This measure
was chosen so that the computational outcomes in this paper can be
compared with data available in the literature. Stability number N is a
reciprocal of the stability factor'®; both carry identical information, but,
historically, the stability number has been used more often, because of
the ease of presenting graphical data with a higher resolution.”” This is
despite the fact that of the two, the stability number is less intuitive, as it
increases with an increase in the angle of slope inclination. Safe slopes
have the dimensionless group o.;/yH higher than the stability number,
whereas the opposite is true for the stability factor. The concept was first
used in defining stability of soil slopes by Taylor,?’ and it was used for
rock slopes with the strength defined by the Hoek-Brown criterion by
Collins et al.”

The second stability measure, factor of safety F, is defined as the ratio
of the shear strength of intact rock 7 to the demand on the shear strength
74 needed for stability



D. Park and R.L. Michalowski

International Journal of Rock Mechanics and Mining Sciences 137 (2021) 104522

“ o
0
-1
4 d
L 2
@ ,"A/S\(Bo
1
R\ 4
o >B
i i 1 L
3 vE\/%
B 1
H i S
v B, r>r
5 [ S
2 v 3 4 r
s
P/ B.
vl| ¢ a 2 4
41 )5181 //’i’
= N
B=
4 rg ' r
1
R P

av

dp [

Fig. 2. Three-dimensional rotational multi-cone failure mechanism in intact rock: (a) central cross-section showing contours of multiple cones, and (b) contour of the

rotating block and radial plane cross-sections of the multi-cone failure surface.
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Factor of safety F is a common measure used in geotechnical engi-
neering, but its use is somewhat intricate in stability analyses with
strength envelopes that exhibit non-linear pressure dependency, such as
the Hoek-Brown criterion. This is why attempts were made in the past to
define the factor of safety for rock slopes using the uniaxial compressive
strength,”’ rather than the shear strength. While such an approach leads
to a simple explicit solution for the slope safety factor, it is not consistent
with the definition in Eq. (9), and it significantly overestimates factors of
safety produced by Eq. (9). This matter was discussed at a greater length
in an earlier paper.1 2

3. Three-dimensional multi-cone failure mechanism
3.1. Mechanism geometry

Collapse of slopes in rocks often follows the joints, which form weak
planes in the rock mass. However, slopes in intact rock with fairly
isotropic strength are susceptible to rotational failures. Failure surfaces
in such collapse mechanisms are likely to be curvilinear and their spe-
cific geometry in the analysis needs to be consistent with the restrictions
imposed by the normality of deformation enforced in limit analysis. A
rigid rotational collapse mechanism is considered, and the concept of a
curvilinear cone in Michalowski®? and Michalowski and Drescher® is
employed here. The curvilinear cone mechanism was adopted earlier in
analyses of slopes in geomaterials governed by the Mohr-Coulomb
strength envelope modified with a nonlinear tension cutoff,>>* but
the cut-off criterion is not universally accepted in rock engineering, and
a new multi-cone mechanism is developed here to specifically
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Fig. 3. Below toe failure mechanism: (a) central cross-section, and (b) insert
between two halves of the multi-cone failure mechanism.

accommodate the Hoek-Brown strength criterion in the analysis. An
important extension of the method is made to accommodate varying
rupture angle § allowed by the nonlinearity of the Hoek-Brown failure
envelope (Fig. 1). Rather than using one curvilinear cone surface with a
single value of rupture angle & (or internal friction angle in case of soils),
a series of cones is used here, each with a different rupture angle.

A schematic of the multi-cone mechanism is illustrated in Fig. 2. The
slope is homogeneous, with inclination angle . At failure, the rock mass
with cross-section CBoB1B;B,C rotates about an axis passing through
point O. The rotating rock block consists of n segments, each segment
limited by the contour of the slope and the failure surface, and the
segments are separated from one another by radial planes. For example,
segment j = 2 is separated from neighboring segments by planes OB; and
OBy, and is separated from the stationary rock by the failure surface
cross-section B1By. Rupture angle § is constant within an individual
segment, but it varies from segment to segment owed to nonlinearity of
the failure envelope, Fig. 1. All segments form one rotating rock block,
with no sliding between the segments, and failure surface BoB1B;B,
consists of log-spiral sections, each with different rupture angle 6.

The entire failure surface is constructed of n segments, each being a
part of a different curvilinear cone, as illustrated in Fig. 2(a). The lower
contour of the cone that comprises the jth segment is defined by the
following log-spiral
(0) =r et )ma g <p <, (10)
where rj.1 is the radius of the j-1st cone at angular coordinate 6;.1, Fig. 2
(b), and is determined from the following expression

-1

(0x =61 )tan &

i) =rpe (11

The upper contour of the jth log-spiral cone is defined by
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r(0)= ’fz/'flei(uiﬂ"l)mn ¥ 0.4<0<06 12)
where
j—1
' , =D (6k—6_p)tan &
rj71 = roe k=1 (13)

and ratio ry/ry is one of the independent variables in constructing the
mechanism. A radial cross-section of every cone has a circular cross-
section of radius R

r(6) —r'(6)

5 14

R(0) =
and the center of the circular cross-section is located at distance r. from
point O

_r(0) +7(0)

r.(0) = 2 (15)

A cross-section of a below-toe multi-cone failure mechanism is
illustrated in Fig. 3(a). To assure that the mechanism will tend to a 2D
mechanism if no limitation is imposed on its width, an insert of width b
is placed between two symmetric halves of the multi-cone mechanism as
shown in Fig. 3(b). Given limitation B on the total width of the entire
mechanism, width b of the insert can be determined as the smaller of the
following two values

b= B —2-max(R), re 275

16
b:372~max[ sz(rsfrr)z}, re <r 1o
where R and r, are given in Egs. (14) and (15), and r; is the slope contour
radius in Eq. (A3). For below-toe failure mechanisms, point B, with
coordinates ry, 0, is not located at the toe, and polar coordinate 6, de-
fines the location of toe A, with the radial coordinate

sin 6,
Yo =Tn—
sin 6,

a7

3.2. Rates of work dissipation and gravity work

The kinematic approach of limit analysis is based on the theorem
stating that the rate of plastic work (dissipated) in an incipient failure
process is not less than the rate of work of external forces in any kine-
matically admissible mechanism. For slopes failing along failure surface
L and loaded with gravity forces, the theorem entails only two terms

/ T;[v),dL > / XvidV (18)
L Vv

where the term on the left side represents the rate of work dissipation
and the term on the right-hand side is the work rate of gravity forces X;
acting in the mechanism with volume V. Stress vector T; on failure
surfaces and the velocity discontinuity vector [v]; are illustrated in
Fig. 1. Rigorous bounds to specific stability measures are calculated from
the balance equation, which assumes that the two terms in theorem (18),
dissipation D and gravity work rate W, are equal to one another

D=W, (19)

Rate of work dissipation d per unit area of the failure surface is found
as

d=|(z cosd — 6, sind) (20)

where [v] is the magnitude of the velocity discontinuity vector [v] on
the rupture surface; 7 and o, are the components of the stress vector T on
the failure surface (Fig. 1). Total rate of work dissipation D is calculated
by integrating the rate per unit area in Eq. (20) over entire rupture
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= /[v] (7 cosé — 6, sind)dS @1

Infinitesimal surface element dS is illustrated on the bottom right in
Fig. 2(b)

dS=dlda = R

dpd@ (22)

cosb; [pa _ (0 —r.)>

With [v] = wp (w - angular velocity about axis through point O), the
rate of work dissipation over the entire 3D rupture surface is determined

by
— Oy tamS / /

Op-1 15

—————dpa (23)

D:Zwi(
Jj=1

7”[

where p is the radial polar coordinate (Fig. 2(b)), and ry is the radial
coordinate of the slope contour expressed in Eq. (A3). When a plane
insert of width b is included in the mechanism, as in Fig. 3(b), the work
dissipation takes the form

— 0, 1ans;) dp+br*|do (24)

0 ,
n 2R
po$ls ) [ | [

& P VR=p-n)

where r is expressed in Eq. (10).
Rate of work of gravity forces W, in the mechanism can be expressed
as

w,= /yvcos 0dv (25)
v

where y is the unit weight of rock, and dV is the infinitesimal volume
shown in the bottom left of Fig. 2(b)
dV =1/R> = (p — r.)*p dpd6 (26)

Summing up the work rate in all n segments of the rotating block, the
total gravity work rate becomes

4
W, =2wy Z / //)zy/R2 — (p — re)*cos Odpdo 27)
=1 01 s

and, with the inclusion of the insert, it takes the form

W,:wylZ// 24/R? —
j=1

where b stands for the width of the insert.

Negative width b of the insert following from Eq. (16) indicates that
the mechanism constructed cannot be contained within width B. In such
a case, a face failure mechanism or a ridge failure surface mechanism is
likely, as described in the following section.

- rf) + b} cos Odpdo (28)

4. Multi-cone face failure and ridge mechanisms
4.1. Face failure mechanism

The size of a 3D slope failure mechanism is limited by constraint B, as
illustrated in Fig. 3(b). Such a constraint may be owed, for example, to
an outcrop of a stronger rock. For a very stringent constraint B/H, a
rotational mechanism that reaches the toe of the slope may violate this
width restriction. There is a lower limit on ratio B/H for a given slope
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(b)

Vertical
Constraints

Fig. 4. Face failure multi-cone mechanism: (a) central cross-section, and (b)
view of the failure surface.

inclination, for which an admissible toe rotational collapse mechanism
can be constructed. If this limit is (B/H)*, then for B/H < (B/H)* one can
construct an admissible mechanism, but this mechanism will not reach
the toe, as illustrated in Fig. 4(a). If the stability number (Eq. (8)) for the
limit case (B/H)* is denoted as N*, then stability number N for cases
where B/H < (B/H)* can be calculated as

N=N"—_ (29)

The mechanisms associated with B/H < (B/H)* are then face failure
mechanisms as illustrated in Fig. 4. Because (B/H)* and N* are both
constant for a given slope inclination, the stability number for narrow
slopes becomes a linear function of ratio B/H, as in Eq. (29). This was
discussed earlier in Park and Michalowski.?”

4.2. Multi-cone ridge surface failure mechanism

The second option in constructing a failure mechanism in a narrow
space is considered below. This is also a face failure mechanism, but it is
constructed by removing a central portion of width b* from the rotating
rock block shown in Fig. 2, in order to make the mechanism fit into the
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Fig. 5. Multi-cone ridge failure surface mechanism: (a) central cross-section, and (b) radial cross-sections of the failure surface.

narrow space. In other words, if the mechanism width is too large to fit
into a constrained failure space, an “excess” width is removed from the
middle portion of the mechanism (as opposed to adding an insert for
wider slopes). The concept of such a mechanism is illustrated in Fig. 5.
Excess width b* is the larger of the two expressions

b" =2-max(R) — B , e 27y

(30)
b= 2max[ R* — (r, — rc)z} —B, r.<ry

where R, r. and ry are all functions of 6, and are expressed in Egs. (14),
(15) and (A3), respectively. The trace of original failure surface
BoB1B,B;B,on the symmetry plane consists of log-spiral sections, as the
one in Fig. 5 (or Fig. 2) does. Once the mid-portion of width b* is
removed from the mechanism, the remaining symmetric halves are
moved together to form a distinct ridge, as illustrated on radial cross-
sections in Fig. 5(b). Originally smooth circular cross-sections of the
curvilinear cones become oval, with clear discontinuities in the deriv-
ative. However, the newly formed ridge BSB;B;B;B:1 is not formed of
sections of log-spirals, and its radius r* is given in the following
expression

r*(G):r(,»(9)+1/R2(0)—(%) , 6,<0<0, 31)

where 6 and 6, are the angular coordinates of point B, on the top
surface and point B}, on the inclined surface of the slope just above the
toe. Both ¢ and 6, can be found from an implicit equation (iteratively
solved) that makes use of the condition that both By, and B, are located
on the slope surface defined by radius s, Eq. (A3)

r(67) + (| R0 — (%) = 1(0) (32)

4.3. Rates of work in the ridge mechanism

The rate of work dissipation over a 3D rupture surface is determined
by

”

0

- R
D:2w2(1j — 0, tan &) / /p27
7= [ V R* — (p - rf)z

The difference from Eq. (23) is in the limits of integration: the upper

dpdo 33)
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limit on the radius now is r*, the lower limit on the angular coordinate in
the first sector is 6,, and the upper limit in the last sector is 8, both
evaluated from Eq. (32). With the exclusion of the slice of width b* from
the mechanism, Fig. 5, the infinitesimal volume element is modified

B

av = ( R —(p—r) —%) p dpd6 (34)

and the work rate of rock weight during infinitesimal failure becomes

wyi:// 24/ R? —

5. Stability measures

- rc) b'] cosfdpd (35)

5.1. Stability number

Substituting the work rate expressions in Egs. (24) and (28) into Eq.
(19), the following expression is derived for dimensionless group o.i/ yYH
for a failure mechanism with an insert

§ /cos@/ 2 R —(p—r.) +b]dpd0
Oci - Y-
vH

(36)

1N (7; — o, 1ans;) dp+br

1 /1/ J_f_:f

The maximized value of the expression in Eq. (36) is the stability number
as defined in Eq. (8). Slope height H is related to the geometry of the
mechanism through Eq. (A2). Without an insert, the stability number
can be calculated from Eq. (36), after substituting b = 0. For a ridge
mechanism, the stability number is found considering work rates in Egs.
(33) and (35)
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J=1

=z Z( — 0, tand;) / /
= 01 s \/ (p - r(

i/cosa/ 2R = (- r)? fb”}dpde
6CI .’

JH 37)

——————dpd0

5.2. Factor of safety

Considering Egs. (6) and (7), the demand on the components of the
traction vector on the failure surface follows from the Hoek-Brown
failure envelope reduced by factor of safety F, as illustrated in Fig. 6

1
1 sing)\ [mpa(l — sing))]™
oo — o d (L sin8 [mea(l = sing) e s 38)
m, mpa 2 sind; my

and

Tg=

:ﬁ{ﬂ{mba(l - szné)] ,‘,} 39)

T
F F| 2 2 siné;

where rupture angle §; must now be expressed as a function of the de-
mand on § (Fig. 6)

&; = arctan(F tan &) (40)

In computations, angles 65 will be independent variables in an
optimization process leading to evaluation of the minimum factor of
safety F. The respective work rate terms take the form

dp+br*|do  (41)

] r
u ' 2R
D=w Z (r,,j — Opdj tané,,,-) / //)272
= i L R = p=r)

and
0 ,
W,=ary / cos0 /p2 [2\/R2 —(p-r) +b}dpd0 (42)
=
i1 Ty

where radius r is expressed in Eq. (10), but now needs to be calculated
considering Eq. (40). Replacing the traction components in Eq. (41) with
those in Egs. (38) and (39), and substituting expressions in Egs. (41) and
(42) into Eq. (19), the following implicit equation was derived from
which the factor of safety can be calculated

a L

6o < [ cosd;[mpa (1 —sing;) ™ L sing;\ [mya(l = sind;)| ™
cosoj |mpall —sing;) |- —) | =L  tandy
vH ;{ 2F { 2sind; i o

m, mpa 2 sind;

+itan5d, [ / dp +br :|
ny,
\RP—(p—r.)

0; r
|

—— -9/22 R —(p—r.)* +b|dpdo
H,-Ezl wsr\ﬂ[\/ (p—re) ]p

(43)

where §; is expressed in Eq. (40) and o.;/yH is the dimensionless group
for the slope under consideration. Factors of safety for the ridge failure
surface mechanism follow from Eq. (43) after making appropriate ad-
justments (r — r*, 6p—6,,0,—6,, and modification of b), and the
following implicit equation with respect to F can be used for ridge failure
mechanisms
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(b) 10°
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Fig. 7. Stability number for rock slopes as a function of Geological Strength Index: (a) slope inclination angles g = 15°, 45°, and 75°, and (b) = 30°, 60°, and 90°.

a ‘
Gt X [ cosS; mba(l—sinéj) = 1 sind; mbu(l—sinéj) o
vH 7| I\t || tandy
yH Z{ 2F { 2 sind; mb+ mya 2 5ind, andy;

=T

P
+r%btan§dj} / |:/p2R22R2dp do
0 Lr, VBT (p—re)
W Y ”
:%H cost) /p2 {2\/R2—(p—r(.)2 —b*}dpde
0 s

(44)
6. Results and discussion

The kinematic approach of limit analysis provides rigorous bounds to
the measures of slope safety: the lower bound to the stability number
and the upper bound to the factor of safety. Therefore, a maximum value
of o.;/yH will be sought from Eq. (36) and a minimum of the factor of
safety from Eq. (43) will be searched for. In general, the optimization
process for both the stability number and the factor of safety contains 2n
+ 3 independent variables (2n + 2 for toe failures): 6, 6,, r£) / 1o, nangles
8, and n angles 5, where n is the number of segments in the mechanism
(angles 7 are illustrated in Fig. 2(a)). Number of segments n in all cal-
culations was chosen to be 10, as further increase in n did not improve
the results.

A custom-designed optimization routine was developed in a Matlab
environment, in which all independent variables were varied in order to
arrive at the maximum of the stability number or a minimum of the
factor of safety. The first set of independent variables was generated
automatically, assuring the admissibility of the mechanism. Next, the
variables were subjected to a change, one by one in consecutive loops in
search for a more accurate bound to the exact solution. All angle vari-
ables were modified by an initial increment of 0.1°, and ratio ry/ ro by
0.01. In final calculations, these increments were reduced to 0.001° and
0.0001, respectively. The process continued until the difference between
two consecutive outcomes (whether stability number or factor of safety)
was less than 10~°. The time of calculations is very much dependent on
the initial set (guess) of independent variables. With a random first guess
for a problem with 10 segments (23 variables), the computation time
was typically less than 10 min for the stability number and less than 30
min for a single calculation of a factor of safety, for which governing Eq.

Table 1
Stability number o.;/yH for slopes in intact rock (m; = 15, D = 0).
pC) B/H GSI
20 40 60 80 100

30 0.5 0.129 0.057 0.028 0.014 0.007
0.6 0.155 0.069 0.034 0.017 0.008
0.8 0.206 0.091 0.044 0.022 0.011
1 0.245 0.108 0.053 0.026 0.013
2 0.342 0.150 0.074 0.036 0.018
2D 0.449 0.198 0.097 0.048 0.023

45 0.5 0.458 0.178 0.084 0.041 0.020
0.6 0.549 0.213 0.101 0.049 0.023
0.8 0.702 0.272 0.129 0.062 0.030
1 0.813 0.315 0.149 0.072 0.035
2 1.041 0.405 0.191 0.093 0.044
2D 1.266 0.493 0.233 0.113 0.054

60 0.5 1.627 0.544 0.243 0.111 0.050
0.6 1.924 0.644 0.287 0.132 0.059
0.8 2.413 0.810 0.363 0.165 0.074
1 2.745 0.921 0.411 0.188 0.083
2 3.382 1.139 0.509 0.233 0.104
2D 3.982 1.344 0.602 0.276 0.123

75 0.5 7.089 1.950 0.738 0.287 0.109
0.6 8.337 2.292 0.868 0.337 0.128
0.8 10.415 2.867 1.085 0.422 0.160
1 11.804 3.253 1.234 0.480 0.182
2 14.435 3.996 1.523 0.595 0.227
2D 16.873 4.692 1.796 0.705 0.270

20 0.5 24.812 5.944 1.842 0.602 0.199
0.6 29.147 6.974 2.162 0.709 0.233
0.8 36.809 8.850 2.733 0.894 0.294
1 42.823 10.331 3.193 1.038 0.341
2 55.972 13.527 4.178 1.356 0.444
2D 69.220 16.799 5.192 1.686 0.552

All results for H/B < 0.8 are based on multi-cone ridge failure surface mecha-
nism (n = 10); otherwise, multi-cone mechanism with or without insert (no

ridge).

(43) is implicit (single CPU running at 1.8 GHz). These computation
times were reduced about ten-fold in the successive (systematic) com-
putations when the first guess was made based on the previous calcu-
lations with similar slope geometry and rock properties.

Stability numbers for slopes with inclination varied from 15° to 90°
are presented in Fig. 7, in semi-log plots, as functions of Geological
Strength Index GSI, all for m; = 15 and disturbance index D = 0. The
results are given for the failure mechanism constraint B/H from 0.5 to 2
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Table 2
Comparison of stability number o.;/yH for slopes in intact rock (m; = 7, D = 0, = 60°).
B/H Reference GSI
10 20 30 40 50 60 70 80
0.8 This study” 16.428 5.455 2.749 1.633 1.029 0.663 0.432 0.280
Yang and Long (2015)" 14.946 5.060 2.577 1.541 0.978 0.629 0.411 0.268
1 This study” 18.419 6.148 3.097 1.836 1.168 0.760 0.495 0.320
Yang and Long (2015)h 17.522 5.889 3.001 1.793 1.138 0.733 0.474 0.310
2 This study” 22.831 7.617 3.842 2.290 1.457 0.947 0.617 0.399
Yang and Long (2015)" 21.293 7.216 3.676 2.197 1.395 0.898 0.592 0.386
5 This study” 25.304 8.441 4.267 2.547 1.622 1.055 0.687 0.445
Yang and Long (2015)" 23.520 7.951 4.051 2.421 1.536 0.989 0.654 0.427
10 This study” 26.089 8.706 4.404 2.630 1.674 1.089 0.710 0.460
Yang and Long (2015)" 24.251 8.180 4.169 2.492 1.581 1.019 0.674 0.440

2 Calculations with Hoek-Brown strength criterion and multi-cone mechanism (n = 10); ridge mechanism for B/H = 0.8, otherwise multi-cone mechanism with or
without insert (no ridge).

b Linear approximation of Hoek-Brown criterion; to make the comparison, a reciprocal of results in Yang and Long (2015) was taken, multiplied by s~

0.5

Table 3
Comparison of stability number o.;/yH for slopes in intact rock (m; = 15, D = 0, f = 60°).
B/H Reference GSI
10 20 30 40 50 60 70 80
0.8 This study” 6.567 2.413 1.290 0.810 0.537 0.363 0.246 0.165
Yang and Long (2015)" 6.085 2.213 1.194 0.753 0.501 0.340 0.231 0.156
1 This study” 7.530 2.745 1.477 0.921 0.609 0.411 0.279 0.188
Yang and Long (2015)" 7.184 2.613 1.392 0.877 0.583 0.396 0.269 0.182
2 This study” 9.230 3.382 1.824 1.139 0.754 0.509 0.345 0.233
Yang and Long (2015)" 8.669 3.155 1.703 1.073 0.714 0.484 0.330 0.223
5 This study” 10.228 3.753 2.026 1.266 0.838 0.566 0.384 0.260
Yang and Long (2015)" 9.637 3.507 1.876 1.183 0.787 0.534 0.363 0.246
10 This study” 10.548 3.872 2.091 1.307 0.865 0.584 0.397 0.268
Yang and Long (2015)" 9.941 3.616 1.930 1.217 0.809 0.549 0.374 0.253

# Calculations with Hoek-Brown strength criterion and multi-cone mechanism (n = 10); ridge mechanism for B/H = 0.8, otherwise multi-cone mechanism with or

without insert (no ridge).

b Linear approximation of Hoek-Brown criterion; to make the comparison, a reciprocal of results in Yang and Long (2015) was taken, multiplied by s~

and for a 2D analysis. Not surprisingly, the stability number is strongly
influenced by GSI and the slope inclination. The strong dependence on
GSI is consistent with stability analyses of tunnel roofs in intact
rock.?%?” For comparative purposes, numerical values are given in
Table 1. The difference in the stability number from a 3D analysis with
B/H = 0.5 and the 2D analysis is roughly three-fold: a significant un-
derestimation of rock slope stability if 2D analyses are used for narrow
slopes.

The authors are not aware of any other results from 3D analyses of

0.5

rock slopes that would be obtained without some approximation of the
Hoek-Brown envelope. The results obtained here are compared to those
by Yang and Long,® who presented their results for a wide range of
parameters albeit with linear approximation of the H-B envelope. The
comparisons are presented in Tables 2 and 3 for 60° slopes in rocks with
GSI varied from 10 to 80 and index m; of 7 and 15. In all cases, the
method of calculations offered in this paper yields a higher stability
number N, thus more accurate, since the kinematic analysis provides a
lower bound to N. The difference in the tables does not exceed 10%, but

Table 4
Comparison of stability number o.;/yH for vertical narrow slopes, calculated for three failure mechanisms (m; = 15, D = 0, = 90°).
B/H Face failure GSI
10 20 30 40 50 60 70 80 90 100
0.3 Ridge” 42.735 15.434 7.148 3.719 2.046 1.151 0.654 0.375 0.214 0.123
Multi-cone” 36.834 13.158 6.051 3.180 1.760 0.997 0.570 0.328 0.188 0.108
Linear" 36.475 13.058 6.003 3.144 1.747 0.990 0.564 0.323 0.186 0.107
0.4 Ridge” 56.033 20.234 9.372 4.849 2.611 1.503 0.857 0.491 0.281 0.162
Multi-cone” 49.112 17.543 8.068 4.240 2.347 1.329 0.761 0.437 0.251 0.145
Linear" 48.616 17.404 8.003 4.205 2.330 1.320 0.752 0.431 0.248 0.142
0.5 Ridge” 68.728 24.812 11.498 5.944 3.188 1.842 1.050 0.602 0.344 0.199
Multi-cone” 61.390 21.929 10.085 5.300 2.934 1.663 0.951 0.546 0.314 0.181
Linear" 60.995 21.724 10.021 5.262 2.914 1.649 0.940 0.539 0.309 0.178
0.6 Ridge” 80.718 29.147 13.508 6.974 3.863 2.162 1.233 0.709 0.405 0.233
Multi-cone” 73.644 26.329 12,132 6.365 3.543 1.993 1.141 0.655 0.376 0.217
Linear" 72.945 26.126 12.034 6.326 3.512 1.979 1.128 0.646 0.371 0.214
0.8 Ridge” 101.922 36.809 17.056 8.850 4.877 2.733 1.561 0.894 0.511 0.294
Multi-cone” 99.098 35.609 16.476 8.587 4.733 2.668 1.522 0.874 0.502 0.289
Linear® 98.191 35.308 16.339 8.518 4.683 2.639 1.504 0.860 0.493 0.283

@ Multi-cone ridge failure surface mechanism (n = 10).
> Multi-cone failure surface mechanism (n = 10, no ridge).
¢ Calculated with linear approximation of the Hoek-Brown strength criterion.
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Fig. 8. Stability number for rock slopes as a function of mechanism width constrain B/H: (a) the influence of slope inclination angle g, (b) rock type m;, (c)

disturbance factor D, and (d) Geological Strength Index (GSI).

the largest difference occurs for very stringent constraints on the
mechanism width (B/H < 0.8), for which no solutions were shown by
Yang and Long.®

The study indicated that for very narrow slopes the improvement in
N obtained using the proposed ridge failure surface mechanism can be
greater than 10%. Very narrow vertical slopes, with constraint B/H in
the range from 0.3 to 0.8, were analyzed using the ridge failure surface
mechanism in Fig. 5, multi-cone face failure mechanism in Fig. 4, and
the mechanism with a linearized Hoek-Brown strength envelope. In the
former two cases, the parametric form of the Hoek-Brown failure cri-
terion was used, and both analyses were carried out without compro-
mising the rock’s nonlinear dependency of the shear strength on
pressure. The outcome of this study is presented in Table 4. By using the
ridge failure mechanism illustrated in Fig. 5, the improvement in sta-
bility number N can exceed 15%, compared to a more traditional face
failure mechanism in Fig. 4. The difference in the stability number from
analyses based on the multi-cone face failure mechanism and that based
on linearization of the Hoek-Brown strength envelope is very small for
vertical slopes (Table 4), but it is larger for gentler slopes.

The effects of the slope inclination angle and the Hoek-Brown model
parameters on the stability number for rock slopes are illustrated in
Fig. 8. Of course, the stability number increases with an increase in slope

10

inclination. The influence of the rock properties is as expected: the
weaker the rock type (m;), and the lower the Geological Strength Index
(GSD), the higher the stability number. The majority of calculations in
the paper were carried out for slopes in an intact, minimally disturbed
rock (D = 0), with the exception of the results in Fig. 8(c). In rock ex-
cavations by blasting, the disturbance is not uniform through all of the
rock, and it would be inappropriate to assume uniform disturbance
factor D throughout the rock, as pointed out by Hoek and Brown.” The
chart in Fig. 8(c), with each curve found for one value of D, is presented
solely for the purpose of indicating that the tendency of the numerical
outcome is consistent with expectations (increase in the stability number
with an increase in disturbance factor D). One should expect, however,
that the results in this chart, particularly for larger factors D, are
over-conservative. Assessing the quantitative influence of the distur-
bance factor requires an analysis with non-uniform distribution of factor
D, but this was beyond the scope of this study.

The influence of the rock properties is as expected: the more
disturbed the rock (D), the weaker the rock type (m;), and the lower the
Geological Strength Index (GSI), the higher the stability number.

The factor of safety is a more intuitive measure of stability than the
stability number, and it is presented in Fig. 9 as a function of dimen-
sionless group o.i/yH. The safety factors for slope width constraint B/H
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Fig. 9. Factor of safety for rock slopes with inclination angles in the range from g = 15° through g = 90°.
Table 5 Table 6
Factors of safety for slopes in intact rock with o.,/yH = 10 (m; = 15, D = 0). Factors of safety for slopes in intact rock with o./yH =1 (m; = 15, D = 0).
GSI () B/H GSI AC) B/H
0.5 0.6 0.8 1 2 2D 0.5 0.6 0.8 1 2 2D
20 15 10.970 7.082 6.555 6.184 5.293 4.576 20 15 3.911 3.681 3.369 3.122 2.618 2.185
30 3.734 3.547 3.285 3.126 2.848 2.649 30 1.954 1.844 1.692 1.608 1.444 1.317
45 2.410 2.289 2.135 2.048 1.915 1.816 45 1.267 1.201 1.115 1.066 0.988 0.929
40 30 5.376 5.047 4.613 4.378 3.949 3.654 40 30 2.656 2.505 2.298 2.184 1.961 1.789
45 3.523 3.313 3.052 2.914 2.695 2.542 45 1.738 1.644 1.521 1.450 1.342 1.264
60 2.545 2.390 2.193 2.097 1.947 1.845 60 1.200 1.142 1.067 1.025 0.961 0.914
60 45 5.497 5.052 4.516 4.241 3.820 3.534 60 45 2.245 2.117 1.956 1.863 1.722 1.617
60 4.087 3.762 3.373 3.179 2.883 2.675 60 1.577 1.491 1.384 1.328 1.239 1.176
75 3.202 2.937 2.618 2.455 2.201 2.024 75 1.118 1.052 0.972 0.928 0.862 0.815
80 60 8.026 7.260 6.385 5.929 5.182 4.642 80 60 2.292 2.131 1.930 1.830 1.679 1.574
75 6.663 6.010 5.258 4.862 4.215 3.741 75 1.730 1.604 1.445 1.364 1.240 1.152
920 5.710 5.113 4.401 4.018 3.391 2.932 90 1.321 1.209 1.063 0.980 0.848 0.754
100 75 17.499 15.760 13.713 12.577 10.566 8.966 100 75 3.185 2.893 2.551 2.373 2.093 1.892
90 15.472 13.817 11.854 10.770 8.864 7.354 90 2.737 2.393 2.074 1.900 1.622 1.421

All results for B/H < 0.8 based on multi-cone ridge failure surface mechanism (n
= 10); otherwise, multi-cone mechanism with or without insert (no ridge).

up to 0.8 are all based on the multi-cone ridge failure surface mechanism
(Fig. 5); all remaining factors of safety are from the analysis with the
multi-cone mechanism (Fig. 2 or Fig. 3). Charts (a) through (f) show
factors of safety for slopes of inclination angle  ranging from 15° to 90°.
When F = 1, the value of the dimensionless group o;/yH becomes equal
to the stability number. The results are shown for rock disturbance factor
D =0, m; =15, and slope width constraint B/H from 0.5 to 2.0, and for a
2D analysis. To preserve clarity in the charts, results are presented only
for selected values of GSI. Numerical values of the factors of safety are
presented in Tables 5 and 6.

11

All results for B/H < 0.8 based on multi-cone ridge failure surface mechanism (n
= 10); otherwise, multi-cone mechanism with or without insert (no ridge).

7. Conclusions

Stability of rock slopes has been a popular topic of research in rock
engineering, yet the authors were not able to identify three-dimensional
analyses in the literature that would focus on the quantitative measures
of slope stability in intact rock, while being faithful to the nonlinear
pressure dependency of the rock shear strength. The most commonly
used failure criterion for rocks is that introduced by Hoek and Brown'”
in 1980; the latest version of this criterion’? was used in this paper. This
limit state criterion is a function of the major and minor principal
effective stresses. Stability analyses involving geomaterials often call for
the strength criterion expressed as the Mohr hypothesis with the shear
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strength as an explicit function of the normal effective stress 7 = f(c},). from the central portion of the multi-cone rotating block. The failure
The Hoek-Brown criterion cannot be easily transformed into the surface formed by the two remaining halves joined together has a
Mohr-type hypothesis, but the authors used its parametric form to pre- distinct ridge at the symmetry plane, and it was referred to as the ridge
serve its nonlinearity in the analysis, whereas in the majority of other failure surface. This mechanism was found to be quite efficient, yielding
approaches the nonlinear criterion was substituted by a linear approx- stability numbers increased by as much as 17% compared to the
imation before the analysis was carried through. commonly used face failure mechanism for narrow slopes.

Computational stability numbers obtained in this study using the
new approach are more accurate than those available in the literature. Declaration of competing interest
This assessment is possible, because the method used in the paper yields
a rigorous lower bound to the true stability numbers, while the numbers The authors declare that they have no known competing financial
calculated are larger than those found in available literature. The new interests or personal relationships that could have appeared to influence
approach also made it possible to arrive at upper bound factors of safety the work reported in this paper.
for rock slopes, which previously was done in 3D analyses only after the
nonlinear strength envelope was substituted with a linear Acknowledgements
approximation.

A new mechanism of failure was found for slopes subjected to a The work presented in this paper was carried out while the authors
stringent restriction on its width (B/H < 0.8). For very wide slopes, a were supported by the National Science Foundation, Grant No. CMMI-
mechanism with a 2D insert was developed earlier,® whereas for very 1901582 and the Horace Rackham School of Graduate Studies at the
narrow slopes, a mechanism was now constructed by removing a slice University of Michigan. This support is greatly appreciated.

Appendix

Angle 0. was calculated from geometric relationships in Fig. 2, and it can be expressed as

r, sind, — H
6. =arctan — Al
arctan r, cos6, + H cotf (AD
The height of slope H is uniquely related to radius ry as

z": 00,1 )tans;
H=rye! sind, — ry sinfy (A2)

where angle 0; — 0;_1 is equal to 7;, as marked in Fig. 2(a). Radial coordinate rs of the slope contour is determined in three distinct regions: BoC, CA
(Fig. 2) and ABy, (for below-toe failures, Fig. 3)

ind
0 ByC: Gy < 0 < 0,
sin
sinf, + cosf, tan
(@)= n—y——7—~ , CA:0.<60Z6, A3
() sin @ + tan S cos @ (A3)
sinf,
: < —
b AB, : 0, <6 <0, (below — toe only)

with angles 6. (Eq. (A1)) and 6, (independent variable) illustrated in Figs. 2 and 3, and rq is found in Eq. (17).
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