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A B S T R A C T   

Three-dimensional failure analyses of slopes are rather elaborate, and for rock slopes, where the rock strength is 
defined by nonlinear failure envelopes, they are particularly intricate. This is why many earlier approaches used 
a linear approximation of the strength envelope prior to carrying out the stability analysis. This approximation is 
avoided in this paper, thanks to using the parametric form of the Hoek-Brown failure criterion. The kinematic 
approach of limit analysis is used as the method of study. An argument is brought forward that even though rocks 
tend to fracture at low confining stresses, the ductility of deformation prior to a brittle drop in stress during 
failure may be sufficient for limit analysis theorems to be applicable. Two measures of rock slope stability are 
evaluated: the stability number and the factor of safety. Numerical results are presented in the form of charts and 
tables. Because the limit analysis used allows one to evaluate the rigorous bounds on true solutions, it was 
possible to demonstrate that the method employed in the paper yields more accurate results than the approaches 
used formerly in the subject literature. A new and efficient mechanism of failure was devised for very narrow 
rock slopes.   

1. Introduction 

While two-dimensional (2D) stability analyses of slopes have been 
extensively investigated for both soils and rocks, considerations of three- 
dimensional (3D) failures have been less common, particularly for 
geomaterials with strength governed by non-linear envelopes. When the 
size of a slope failure mechanism is limited by physical constraints, such 
as nearby structures, the use of 2D (or plane-strain) analyses will un
derestimate the stability of a slope, so a 3D analysis is preferred. Ad
missible failure mechanisms are explored in this paper for intact rocks 
with strength governed by the Hoek-Brown failure criterion.1,2 A 3D 
mechanism proposed earlier for soil slopes by Michalowski and 
Drescher3 has been adapted to accommodate the non-linearity of the 
pressure dependency of rock strength. Special attention is paid to nar
row rock slopes where a new type of ridge failure surface mechanism is 
constructed. 

Typical limit analyses of slopes in geomaterials with nonlinear de
pendency of strength on pressure involve linearization of the failure 
criterion in the first invariant of the stress tensor. Effectively, the 
nonlinear failure envelope in this approach is replaced by a straight line, 
and the stability problem is solved for a linear, or an equivalent Mohr- 

Coulomb criterion, which greatly simplifies calculations. The early ex
amples of such an approach can be found in Drescher and Christopoulos4 

and others.5,6 This is the most often encountered approach in consid
erations of both 2D and 3D stability of rock slopes. The linear approxi
mation was employed in many recent 3D slope stability studies.7–11 

Essentially, this approach ignores the nonlinearity of the strength en
velope; consequently, it disregards a group of admissible failure mech
anisms that can only be constructed for nonlinear failure criteria. This 
shortcoming was overcome in a recent 2D stability analysis by Micha
lowski and Park,12 for slopes with strength governed by the Hoek-Brown 
failure criterion. Efficient application of limit analysis requires an 
explicit form of the rock shear strength τ as a function of normal stress σ′

n 
on failure surfaces. Because the original form of the Hoek-Brown crite
rion is a function of principal stresses, the criterion is often approxi
mated in the analysis with a best-fit function τ = f(σ′

n). This step was 
avoided in this study by using the parametric form of the original cri
terion, whereas the common linearization procedure was overcome by 
allowing rock failure at varying rupture angles in a single collapse 
mechanism. This analysis is now extended to 3D stability of rock slopes, 
which introduces additional challenges, because of the complexity of the 
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mechanism. 
The limit analysis approach to rocks is briefly discussed next, fol

lowed by a short description of the Hoek-Brown failure criterion. The 
mechanisms of rock slope failure are presented in subsequent sections, 
and the quantitative outcome of the analysis is presented in charts and 
tables with stability numbers and factors of safety. 

2. Application of limit analysis in rocks, and the Hoek-Brown 
strength criterion 

2.1. Limit analysis in rock applications 

Limit Analysis is a method used extensively in structural engineering, 
geotechnical engineering, and plastic forming of metals. The funda
mental premise of the method is perfectly plastic behavior of the ma
terial with the convex limit stress criterion and the normality flow rule. 
However, the ductility of rock behavior can be questioned as rocks tend 
to fracture at low confining stresses. This issue was discussed by Chen,13 

who concluded that if the rock strain is small prior to an “appreciable” 
(brittle) fall off of the stress, then the deformability “may be sufficient to 
permit the consideration of limit theorems …” Consequently, applica
tions of limit analysis in rocks can be found throughout the literature (e. 
g., Chen and Drucker,14 Michalowski,15 Fraldi et al.16). 

2.2. Hoek-Brown failure criterion 

The Hoek-Brown failure criterion dates back to 198017, with its 
generalized form given in the following1,2 

σ′

1 = σ′

3 + σci

(

mb
σ′

3

σci
+ s

)a

(1)  

where σ′

1 and σ′

3 are the major and minor effective principal stresses, 
respectively, σci is the compressive strength of the intact rock, and the 
remaining strength parameters are defined as 

mb = mie

(
GSI−100
28−14D

)

(2)  

a =
1
2

+
1
6

(
e−GSI

15 − e−20
3

)
(3)  

and 

s = e

(
GSI−100

9−3D

)

(4)  

where GSI, mi and D are the Geological Strength Index, rock type- 
dependent parameter, and the disturbance factor, respectively. The 
failure envelope in Eq. (1) is illustrated in Fig. 1. The uniaxial 
compressive strength σci is an explicit part of the criterion in Eq. (1), 
whereas the isotropic tensile strength σt (corresponding to point E in 
Fig. 1), can be easily found from Eq. (1) after substituting σ′

1 = σ′

2 =

σ′

3 = − σt 

σt = σci
s

mb
(5) 

The Limit Analysis approach used in the paper requires that the 
deformation of the rock at failure is governed by the normality flow rule, 
and vectors [v], normal to the strength envelope in Fig. 1, are the ve
locity discontinuity vectors inclined at rupture angle δ to the failure 
surfaces (kinematic discontinuities). 

Direct calculations of the rate of work dissipation on failure surfaces 
call for an explicit form of the shear strength as function of the normal 
stress τ = f(σ′

n). Such a form cannot easily be found directly from Eq. (1), 
and in many previous analyses the nonlinear criterion was either 
replaced with a linear approximation or with a ‘best fit’ function in a 
desirable range of stresses. To avoid such approximations, a parametric 
form of the strength criterion will be used. Following earlier de
velopments,18,19 both the normal and the shear stresses are expressed as 
functions of rupture angle δ 

σn = σci

{(
1

mb
+

sin δ
mba

)[
mba(1 − sin δ)

2 sin δ

] 1
1−a

−
s

mb

}

(6)  

τ = σci

{
cos δ

2

[
mba(1 − sin δ)

2 sin δ

] a
1−a

}

(7) 

Rupture angle δ is illustrated in Fig. 1. 

2.3. Measures of rock slope stability 

Two measures of rock slope stability are considered in this paper: 
stability number N and factor of safety F. The former is defined as a 
dimensionless combination of the rock properties and the slope height, 
at which the slope collapse becomes imminent, and it is adopted after 
Collins et al.5 This dimensionless group is defined as a critical 
combination 

N =
(σci

γH

)

crit
(8)  

where σci, γ and H and are the uniaxial compressive strength of intact 
rock, its unit weight, and the slope height, respectively. This measure 
was chosen so that the computational outcomes in this paper can be 
compared with data available in the literature. Stability number N is a 
reciprocal of the stability factor13; both carry identical information, but, 
historically, the stability number has been used more often, because of 
the ease of presenting graphical data with a higher resolution.20 This is 
despite the fact that of the two, the stability number is less intuitive, as it 
increases with an increase in the angle of slope inclination. Safe slopes 
have the dimensionless group σci/γH higher than the stability number, 
whereas the opposite is true for the stability factor. The concept was first 
used in defining stability of soil slopes by Taylor,20 and it was used for 
rock slopes with the strength defined by the Hoek-Brown criterion by 
Collins et al.5 

The second stability measure, factor of safety F, is defined as the ratio 
of the shear strength of intact rock τ to the demand on the shear strength 
τd needed for stability 

Fig. 1. Hoek-Brown strength envelope.  
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F =
τ
τd

(9) 

Factor of safety F is a common measure used in geotechnical engi
neering, but its use is somewhat intricate in stability analyses with 
strength envelopes that exhibit non-linear pressure dependency, such as 
the Hoek-Brown criterion. This is why attempts were made in the past to 
define the factor of safety for rock slopes using the uniaxial compressive 
strength,21 rather than the shear strength. While such an approach leads 
to a simple explicit solution for the slope safety factor, it is not consistent 
with the definition in Eq. (9), and it significantly overestimates factors of 
safety produced by Eq. (9). This matter was discussed at a greater length 
in an earlier paper.12 

3. Three-dimensional multi-cone failure mechanism 

3.1. Mechanism geometry 

Collapse of slopes in rocks often follows the joints, which form weak 
planes in the rock mass. However, slopes in intact rock with fairly 
isotropic strength are susceptible to rotational failures. Failure surfaces 
in such collapse mechanisms are likely to be curvilinear and their spe
cific geometry in the analysis needs to be consistent with the restrictions 
imposed by the normality of deformation enforced in limit analysis. A 
rigid rotational collapse mechanism is considered, and the concept of a 
curvilinear cone in Michalowski22 and Michalowski and Drescher3 is 
employed here. The curvilinear cone mechanism was adopted earlier in 
analyses of slopes in geomaterials governed by the Mohr-Coulomb 
strength envelope modified with a nonlinear tension cutoff,23,24 but 
the cut-off criterion is not universally accepted in rock engineering, and 
a new multi-cone mechanism is developed here to specifically 

Fig. 2. Three-dimensional rotational multi-cone failure mechanism in intact rock: (a) central cross-section showing contours of multiple cones, and (b) contour of the 
rotating block and radial plane cross-sections of the multi-cone failure surface. 
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accommodate the Hoek-Brown strength criterion in the analysis. An 
important extension of the method is made to accommodate varying 
rupture angle δ allowed by the nonlinearity of the Hoek-Brown failure 
envelope (Fig. 1). Rather than using one curvilinear cone surface with a 
single value of rupture angle δ (or internal friction angle in case of soils), 
a series of cones is used here, each with a different rupture angle. 

A schematic of the multi-cone mechanism is illustrated in Fig. 2. The 
slope is homogeneous, with inclination angle β. At failure, the rock mass 
with cross-section CB0B1BjBnC rotates about an axis passing through 
point O. The rotating rock block consists of n segments, each segment 
limited by the contour of the slope and the failure surface, and the 
segments are separated from one another by radial planes. For example, 
segment j = 2 is separated from neighboring segments by planes OB1 and 
OB2, and is separated from the stationary rock by the failure surface 
cross-section B1B2. Rupture angle δ is constant within an individual 
segment, but it varies from segment to segment owed to nonlinearity of 
the failure envelope, Fig. 1. All segments form one rotating rock block, 
with no sliding between the segments, and failure surface B0B1BjBn 
consists of log-spiral sections, each with different rupture angle δ. 

The entire failure surface is constructed of n segments, each being a 
part of a different curvilinear cone, as illustrated in Fig. 2(a). The lower 
contour of the cone that comprises the jth segment is defined by the 
following log-spiral 

r(θ) = rj−1e(θ−θj−1)tan δj , θj−1 ≤ θ ≤ θj (10)  

where rj-1 is the radius of the j-1st cone at angular coordinate θj-1, Fig. 2 
(b), and is determined from the following expression 

rj−1 = r0e
∑j−1

k=1
(θk−θk−1)tan δk

(11) 

The upper contour of the jth log-spiral cone is defined by 

r′

(θ) = r
′

j−1e−(θ−θj−1)tan δj , θj−1 ≤ θ ≤ θj (12)  

where 

r
′

j−1 = r
′

0e
−

∑j−1

k=1
(θk−θk−1)tan δk

(13)  

and ratio r′

0/r0 is one of the independent variables in constructing the 
mechanism. A radial cross-section of every cone has a circular cross- 
section of radius R 

R(θ) =
r(θ) − r′

(θ)

2
(14)  

and the center of the circular cross-section is located at distance rc from 
point O 

rc(θ) =
r(θ) + r′

(θ)

2
(15) 

A cross-section of a below-toe multi-cone failure mechanism is 
illustrated in Fig. 3(a). To assure that the mechanism will tend to a 2D 
mechanism if no limitation is imposed on its width, an insert of width b 
is placed between two symmetric halves of the multi-cone mechanism as 
shown in Fig. 3(b). Given limitation B on the total width of the entire 
mechanism, width b of the insert can be determined as the smaller of the 
following two values 

b = B − 2⋅max(R), rc ≥ rs

b = B − 2⋅max
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (rs − rc)
2

√ ]
, rc < r

(16)  

where R and rc are given in Eqs. (14) and (15), and rs is the slope contour 
radius in Eq. (A3). For below-toe failure mechanisms, point Bn with 
coordinates rn, θn is not located at the toe, and polar coordinate θa de
fines the location of toe A, with the radial coordinate 

ra = rn
sin θn

sin θa
(17)  

3.2. Rates of work dissipation and gravity work 

The kinematic approach of limit analysis is based on the theorem 
stating that the rate of plastic work (dissipated) in an incipient failure 
process is not less than the rate of work of external forces in any kine
matically admissible mechanism. For slopes failing along failure surface 
L and loaded with gravity forces, the theorem entails only two terms 
∫

L

Ti[v]idL ≥

∫

V

XividV (18)  

where the term on the left side represents the rate of work dissipation 
and the term on the right-hand side is the work rate of gravity forces Xi 
acting in the mechanism with volume V. Stress vector Ti on failure 
surfaces and the velocity discontinuity vector [v]i are illustrated in 
Fig. 1. Rigorous bounds to specific stability measures are calculated from 
the balance equation, which assumes that the two terms in theorem (18), 
dissipation D and gravity work rate Wγ are equal to one another 

D = Wγ (19) 

Rate of work dissipation d per unit area of the failure surface is found 
as 

d = [v](τ cosδ − σn sinδ) (20)  

where [v] is the magnitude of the velocity discontinuity vector [v] on 
the rupture surface; τ and σn are the components of the stress vector T on 
the failure surface (Fig. 1). Total rate of work dissipation D is calculated 
by integrating the rate per unit area in Eq. (20) over entire rupture 

Fig. 3. Below toe failure mechanism: (a) central cross-section, and (b) insert 
between two halves of the multi-cone failure mechanism. 
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surface S 

D =

∫

S

[v](τ cosδ − σn sinδ)dS (21) 

Infinitesimal surface element dS is illustrated on the bottom right in 
Fig. 2(b) 

dS = dl da =
ρ

cosδj

R
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√ dρdθ (22) 

With [v] = ωρ (ω - angular velocity about axis through point O), the 
rate of work dissipation over the entire 3D rupture surface is determined 
by 

D = 2ω
∑n

j=1

(
τj − σnj tanδj

)
∫θj

θj−1

∫r

rs

ρ2 R
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√ dρdθ (23)  

where ρ is the radial polar coordinate (Fig. 2(b)), and rs is the radial 
coordinate of the slope contour expressed in Eq. (A3). When a plane 
insert of width b is included in the mechanism, as in Fig. 3(b), the work 
dissipation takes the form 

D = ω
∑n

j=1

(
τj − σnj tanδj

)
∫θj

θj−1

⎡

⎣
∫r

rs

ρ2 2R
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√ dρ + b r2

⎤

⎦dθ (24)  

where r is expressed in Eq. (10). 
Rate of work of gravity forces Wγ in the mechanism can be expressed 

as 

Wγ =

∫

V

γvcos θdV (25)  

where γ is the unit weight of rock, and dV is the infinitesimal volume 
shown in the bottom left of Fig. 2(b) 

dV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√

ρ dρdθ (26) 

Summing up the work rate in all n segments of the rotating block, the 
total gravity work rate becomes 

Wγ = 2ωγ
∑n

j=1

∫θj

θj−1

∫r

rs

ρ2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√

cos θdρdθ (27)  

and, with the inclusion of the insert, it takes the form 

Wγ = ωγ
∑n

j=1

∫θj

θj−1

∫r

rs

ρ2
[
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√

+ b
]
cos θdρdθ (28)  

where b stands for the width of the insert. 
Negative width b of the insert following from Eq. (16) indicates that 

the mechanism constructed cannot be contained within width B. In such 
a case, a face failure mechanism or a ridge failure surface mechanism is 
likely, as described in the following section. 

4. Multi-cone face failure and ridge mechanisms 

4.1. Face failure mechanism 

The size of a 3D slope failure mechanism is limited by constraint B, as 
illustrated in Fig. 3(b). Such a constraint may be owed, for example, to 
an outcrop of a stronger rock. For a very stringent constraint B/H, a 
rotational mechanism that reaches the toe of the slope may violate this 
width restriction. There is a lower limit on ratio B/H for a given slope 

inclination, for which an admissible toe rotational collapse mechanism 
can be constructed. If this limit is (B/H)*, then for B/H < (B/H)* one can 
construct an admissible mechanism, but this mechanism will not reach 
the toe, as illustrated in Fig. 4(a). If the stability number (Eq. (8)) for the 
limit case (B/H)* is denoted as N*, then stability number N for cases 
where B/H < (B/H)* can be calculated as 

N = N∗
B
H

(
B
H

)* (29) 

The mechanisms associated with B/H < (B/H)* are then face failure 
mechanisms as illustrated in Fig. 4. Because (B/H)* and N* are both 
constant for a given slope inclination, the stability number for narrow 
slopes becomes a linear function of ratio B/H, as in Eq. (29). This was 
discussed earlier in Park and Michalowski.25 

4.2. Multi-cone ridge surface failure mechanism 

The second option in constructing a failure mechanism in a narrow 
space is considered below. This is also a face failure mechanism, but it is 
constructed by removing a central portion of width b* from the rotating 
rock block shown in Fig. 2, in order to make the mechanism fit into the 

Fig. 4. Face failure multi-cone mechanism: (a) central cross-section, and (b) 
view of the failure surface. 
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narrow space. In other words, if the mechanism width is too large to fit 
into a constrained failure space, an “excess” width is removed from the 
middle portion of the mechanism (as opposed to adding an insert for 
wider slopes). The concept of such a mechanism is illustrated in Fig. 5. 
Excess width b* is the larger of the two expressions 

b* = 2⋅max(R) − B , rc ≥ rs

b* = 2max
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (rs − rc)
2

√ ]
− B , rc < rs

(30)  

where R, rc and rs are all functions of θ, and are expressed in Eqs. (14), 
(15) and (A3), respectively. The trace of original failure surface 
B0B1B2BjBnon the symmetry plane consists of log-spiral sections, as the 
one in Fig. 5 (or Fig. 2) does. Once the mid-portion of width b* is 
removed from the mechanism, the remaining symmetric halves are 
moved together to form a distinct ridge, as illustrated on radial cross- 
sections in Fig. 5(b). Originally smooth circular cross-sections of the 
curvilinear cones become oval, with clear discontinuities in the deriv
ative. However, the newly formed ridge B*

0B*
1B*

2B*
j B

*
n is not formed of 

sections of log-spirals, and its radius r* is given in the following 
expression 

r*(θ) = rc(θ) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2(θ) −

(
b*

2

)2
√

, θ*
0 ≤ θ < θ*

n (31)  

where θ*
0 and θ*

n are the angular coordinates of point B*
0 on the top 

surface and point B*
n on the inclined surface of the slope just above the 

toe. Both θ*
0 and θ*

n can be found from an implicit equation (iteratively 
solved) that makes use of the condition that both B*

0 and B*
n are located 

on the slope surface defined by radius rs, Eq. (A3) 

rc(θ*) +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2(θ*) −

(
b*

2

)2
√

= rs(θ*) (32)  

4.3. Rates of work in the ridge mechanism 

The rate of work dissipation over a 3D rupture surface is determined 
by 

D = 2ω
∑n

j=1

(
τj − σn j tan δj

)
∫θj

θj−1

∫r*

rs

ρ2 R
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√ dρdθ (33) 

The difference from Eq. (23) is in the limits of integration: the upper 

Fig. 5. Multi-cone ridge failure surface mechanism: (a) central cross-section, and (b) radial cross-sections of the failure surface.  
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limit on the radius now is r*, the lower limit on the angular coordinate in 
the first sector is θ*

0, and the upper limit in the last sector is θ*
n, both 

evaluated from Eq. (32). With the exclusion of the slice of width b* from 
the mechanism, Fig. 5, the infinitesimal volume element is modified 

dV =

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√

−
b*

2

)

ρ dρdθ (34)  

and the work rate of rock weight during infinitesimal failure becomes 

Wγ = ωγ
∑n

j=1

∫θj

θj−1

∫r*

rs

ρ2
[
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√

− b*
]
cosθdρdθ (35)  

5. Stability measures 

5.1. Stability number 

Substituting the work rate expressions in Eqs. (24) and (28) into Eq. 
(19), the following expression is derived for dimensionless group σci/ γH 
for a failure mechanism with an insert 

σci

γH
=

∑n

j=1

∫θj

θj−1

cosθ
∫r

rs

ρ2
[
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√

+ b
]
dρdθ

H
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)
∫θj
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⎡
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R2 − (ρ − rc)
2

√ dρ + b r2

⎤

⎦dθ

(36)  

The maximized value of the expression in Eq. (36) is the stability number 
as defined in Eq. (8). Slope height H is related to the geometry of the 
mechanism through Eq. (A2). Without an insert, the stability number 
can be calculated from Eq. (36), after substituting b = 0. For a ridge 
mechanism, the stability number is found considering work rates in Eqs. 
(33) and (35) 

σci

γH
=

∑n

j=1

∫θj

θj−1

cosθ
∫r*

rs

ρ2
[
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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2

√
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dρdθ

H
σci

∑n

j=1

(
τj − σnj tanδj

)
∫θj
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∫r*
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R2 − (ρ − rc)
2

√ dρdθ

(37)  

5.2. Factor of safety 

Considering Eqs. (6) and (7), the demand on the components of the 
traction vector on the failure surface follows from the Hoek-Brown 
failure envelope reduced by factor of safety F, as illustrated in Fig. 6 

σnd = σn = σci

{(
1

mb
+

sinδj

mba

)[
mba

(
1 − sinδj

)

2 sinδj

] 1
1−a

−
s

mb

}

(38)  

and 

τd =
τ
F

=
σci

F

{
cosδj

2

[
mba

(
1 − sinδj

)

2 sinδj

] a
1−a

}

(39)  

where rupture angle δj must now be expressed as a function of the de
mand on δ (Fig. 6) 

δj = arctan
(
F tan δdj

)
(40) 

In computations, angles δdj will be independent variables in an 
optimization process leading to evaluation of the minimum factor of 
safety F. The respective work rate terms take the form 

D = ω
∑n

j=1

(
τdj − σndj tanδdj

)
∫θj

θj−1

⎡

⎣
∫r

rs

ρ2 2R
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R2 − (ρ − rc)
2

√ dρ + b r2

⎤

⎦dθ (41)  

and 

Wγ = ωγ
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j=1

∫θj
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cosθ
∫r

rs

ρ2
[
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√

+ b
]
dρdθ (42)  

where radius r is expressed in Eq. (10), but now needs to be calculated 
considering Eq. (40). Replacing the traction components in Eq. (41) with 
those in Eqs. (38) and (39), and substituting expressions in Eqs. (41) and 
(42) into Eq. (19), the following implicit equation was derived from 
which the factor of safety can be calculated 
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2 sinδj

] a
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1
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[
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

R2 − (ρ − rc)
2

√

+ b
]
dρdθ

(43)  

where δj is expressed in Eq. (40) and σci/γH is the dimensionless group 
for the slope under consideration. Factors of safety for the ridge failure 
surface mechanism follow from Eq. (43) after making appropriate ad
justments (r → r*, θ0→θ*

0,θn→θ*
n, and modification of b), and the 

following implicit equation with respect to F can be used for ridge failure 
mechanisms 

Fig. 6. Hoek-Brown strength envelope and the envelope reduced by factor of 
safety F. 
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2

√
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(44)  

6. Results and discussion 

The kinematic approach of limit analysis provides rigorous bounds to 
the measures of slope safety: the lower bound to the stability number 
and the upper bound to the factor of safety. Therefore, a maximum value 
of σci/γH will be sought from Eq. (36) and a minimum of the factor of 
safety from Eq. (43) will be searched for. In general, the optimization 
process for both the stability number and the factor of safety contains 2n 
+ 3 independent variables (2n + 2 for toe failures): θ0, θa, r

′

0/ r0, n angles 
δ, and n angles η, where n is the number of segments in the mechanism 
(angles η are illustrated in Fig. 2(a)). Number of segments n in all cal
culations was chosen to be 10, as further increase in n did not improve 
the results. 

A custom-designed optimization routine was developed in a Matlab 
environment, in which all independent variables were varied in order to 
arrive at the maximum of the stability number or a minimum of the 
factor of safety. The first set of independent variables was generated 
automatically, assuring the admissibility of the mechanism. Next, the 
variables were subjected to a change, one by one in consecutive loops in 
search for a more accurate bound to the exact solution. All angle vari
ables were modified by an initial increment of 0.1◦, and ratio r′

0/ r0 by 
0.01. In final calculations, these increments were reduced to 0.001◦ and 
0.0001, respectively. The process continued until the difference between 
two consecutive outcomes (whether stability number or factor of safety) 
was less than 10−6. The time of calculations is very much dependent on 
the initial set (guess) of independent variables. With a random first guess 
for a problem with 10 segments (23 variables), the computation time 
was typically less than 10 min for the stability number and less than 30 
min for a single calculation of a factor of safety, for which governing Eq. 

(43) is implicit (single CPU running at 1.8 GHz). These computation 
times were reduced about ten-fold in the successive (systematic) com
putations when the first guess was made based on the previous calcu
lations with similar slope geometry and rock properties. 

Stability numbers for slopes with inclination varied from 15◦ to 90◦

are presented in Fig. 7, in semi-log plots, as functions of Geological 
Strength Index GSI, all for mi = 15 and disturbance index D = 0. The 
results are given for the failure mechanism constraint B/H from 0.5 to 2 

Fig. 7. Stability number for rock slopes as a function of Geological Strength Index: (a) slope inclination angles β = 15◦, 45◦, and 75◦, and (b) β = 30◦, 60◦, and 90◦.  

Table 1 
Stability number σci/γH for slopes in intact rock (mi = 15, D = 0).  

β (◦) B/H GSI 

20 40 60 80 100 

30 0.5 0.129 0.057 0.028 0.014 0.007  
0.6 0.155 0.069 0.034 0.017 0.008  
0.8 0.206 0.091 0.044 0.022 0.011  
1 0.245 0.108 0.053 0.026 0.013  
2 0.342 0.150 0.074 0.036 0.018  
2D 0.449 0.198 0.097 0.048 0.023 

45 0.5 0.458 0.178 0.084 0.041 0.020  
0.6 0.549 0.213 0.101 0.049 0.023  
0.8 0.702 0.272 0.129 0.062 0.030  
1 0.813 0.315 0.149 0.072 0.035  
2 1.041 0.405 0.191 0.093 0.044  
2D 1.266 0.493 0.233 0.113 0.054 

60 0.5 1.627 0.544 0.243 0.111 0.050  
0.6 1.924 0.644 0.287 0.132 0.059  
0.8 2.413 0.810 0.363 0.165 0.074  
1 2.745 0.921 0.411 0.188 0.083  
2 3.382 1.139 0.509 0.233 0.104  
2D 3.982 1.344 0.602 0.276 0.123 

75 0.5 7.089 1.950 0.738 0.287 0.109  
0.6 8.337 2.292 0.868 0.337 0.128  
0.8 10.415 2.867 1.085 0.422 0.160  
1 11.804 3.253 1.234 0.480 0.182  
2 14.435 3.996 1.523 0.595 0.227  
2D 16.873 4.692 1.796 0.705 0.270 

90 0.5 24.812 5.944 1.842 0.602 0.199  
0.6 29.147 6.974 2.162 0.709 0.233  
0.8 36.809 8.850 2.733 0.894 0.294  
1 42.823 10.331 3.193 1.038 0.341  
2 55.972 13.527 4.178 1.356 0.444  
2D 69.220 16.799 5.192 1.686 0.552 

All results for H/B ≤ 0.8 are based on multi-cone ridge failure surface mecha
nism (n = 10); otherwise, multi-cone mechanism with or without insert (no 
ridge). 
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and for a 2D analysis. Not surprisingly, the stability number is strongly 
influenced by GSI and the slope inclination. The strong dependence on 
GSI is consistent with stability analyses of tunnel roofs in intact 
rock.26,27 For comparative purposes, numerical values are given in 
Table 1. The difference in the stability number from a 3D analysis with 
B/H = 0.5 and the 2D analysis is roughly three-fold: a significant un
derestimation of rock slope stability if 2D analyses are used for narrow 
slopes. 

The authors are not aware of any other results from 3D analyses of 

rock slopes that would be obtained without some approximation of the 
Hoek-Brown envelope. The results obtained here are compared to those 
by Yang and Long,8 who presented their results for a wide range of 
parameters albeit with linear approximation of the H–B envelope. The 
comparisons are presented in Tables 2 and 3 for 60◦ slopes in rocks with 
GSI varied from 10 to 80 and index mi of 7 and 15. In all cases, the 
method of calculations offered in this paper yields a higher stability 
number N, thus more accurate, since the kinematic analysis provides a 
lower bound to N. The difference in the tables does not exceed 10%, but 

Table 2 
Comparison of stability number σci/γH for slopes in intact rock (mi = 7, D = 0, β = 60◦).  

B/H Reference GSI 

10 20 30 40 50 60 70 80 

0.8 This studya 16.428 5.455 2.749 1.633 1.029 0.663 0.432 0.280 
Yang and Long (2015)b 14.946 5.060 2.577 1.541 0.978 0.629 0.411 0.268 

1 This studya 18.419 6.148 3.097 1.836 1.168 0.760 0.495 0.320 
Yang and Long (2015)b 17.522 5.889 3.001 1.793 1.138 0.733 0.474 0.310 

2 This studya 22.831 7.617 3.842 2.290 1.457 0.947 0.617 0.399 
Yang and Long (2015)b 21.293 7.216 3.676 2.197 1.395 0.898 0.592 0.386 

5 This studya 25.304 8.441 4.267 2.547 1.622 1.055 0.687 0.445 
Yang and Long (2015)b 23.520 7.951 4.051 2.421 1.536 0.989 0.654 0.427 

10 This studya 26.089 8.706 4.404 2.630 1.674 1.089 0.710 0.460 
Yang and Long (2015)b 24.251 8.180 4.169 2.492 1.581 1.019 0.674 0.440  

a Calculations with Hoek-Brown strength criterion and multi-cone mechanism (n = 10); ridge mechanism for B/H = 0.8, otherwise multi-cone mechanism with or 
without insert (no ridge). 

b Linear approximation of Hoek-Brown criterion; to make the comparison, a reciprocal of results in Yang and Long (2015) was taken, multiplied by s−0.5. 

Table 3 
Comparison of stability number σci/γH for slopes in intact rock (mi = 15, D = 0, β = 60◦).  

B/H Reference GSI 

10 20 30 40 50 60 70 80 

0.8 This studya 6.567 2.413 1.290 0.810 0.537 0.363 0.246 0.165 
Yang and Long (2015)b 6.085 2.213 1.194 0.753 0.501 0.340 0.231 0.156 

1 This studya 7.530 2.745 1.477 0.921 0.609 0.411 0.279 0.188 
Yang and Long (2015)b 7.184 2.613 1.392 0.877 0.583 0.396 0.269 0.182 

2 This studya 9.230 3.382 1.824 1.139 0.754 0.509 0.345 0.233 
Yang and Long (2015)b 8.669 3.155 1.703 1.073 0.714 0.484 0.330 0.223 

5 This studya 10.228 3.753 2.026 1.266 0.838 0.566 0.384 0.260 
Yang and Long (2015)b 9.637 3.507 1.876 1.183 0.787 0.534 0.363 0.246 

10 This studya 10.548 3.872 2.091 1.307 0.865 0.584 0.397 0.268 
Yang and Long (2015)b 9.941 3.616 1.930 1.217 0.809 0.549 0.374 0.253  

a Calculations with Hoek-Brown strength criterion and multi-cone mechanism (n = 10); ridge mechanism for B/H = 0.8, otherwise multi-cone mechanism with or 
without insert (no ridge). 

b Linear approximation of Hoek-Brown criterion; to make the comparison, a reciprocal of results in Yang and Long (2015) was taken, multiplied by s−0.5. 

Table 4 
Comparison of stability number σci/γH for vertical narrow slopes, calculated for three failure mechanisms (mi = 15, D = 0, β = 90◦).  

B/H Face failure GSI 

10 20 30 40 50 60 70 80 90 100 

0.3 Ridgea 42.735 15.434 7.148 3.719 2.046 1.151 0.654 0.375 0.214 0.123 
Multi-coneb 36.834 13.158 6.051 3.180 1.760 0.997 0.570 0.328 0.188 0.108  
Linearc 36.475 13.058 6.003 3.144 1.747 0.990 0.564 0.323 0.186 0.107 

0.4 Ridgea 56.033 20.234 9.372 4.849 2.611 1.503 0.857 0.491 0.281 0.162 
Multi-coneb 49.112 17.543 8.068 4.240 2.347 1.329 0.761 0.437 0.251 0.145  
Linearc 48.616 17.404 8.003 4.205 2.330 1.320 0.752 0.431 0.248 0.142 

0.5 Ridgea 68.728 24.812 11.498 5.944 3.188 1.842 1.050 0.602 0.344 0.199 
Multi-coneb 61.390 21.929 10.085 5.300 2.934 1.663 0.951 0.546 0.314 0.181  
Linearc 60.995 21.724 10.021 5.262 2.914 1.649 0.940 0.539 0.309 0.178 

0.6 Ridgea 80.718 29.147 13.508 6.974 3.863 2.162 1.233 0.709 0.405 0.233 
Multi-coneb 73.644 26.329 12.132 6.365 3.543 1.993 1.141 0.655 0.376 0.217  
Linearc 72.945 26.126 12.034 6.326 3.512 1.979 1.128 0.646 0.371 0.214 

0.8 Ridgea 101.922 36.809 17.056 8.850 4.877 2.733 1.561 0.894 0.511 0.294 
Multi-coneb 99.098 35.609 16.476 8.587 4.733 2.668 1.522 0.874 0.502 0.289  
Linearc 98.191 35.308 16.339 8.518 4.683 2.639 1.504 0.860 0.493 0.283  

a Multi-cone ridge failure surface mechanism (n = 10). 
b Multi-cone failure surface mechanism (n = 10, no ridge). 
c Calculated with linear approximation of the Hoek-Brown strength criterion. 
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the largest difference occurs for very stringent constraints on the 
mechanism width (B/H < 0.8), for which no solutions were shown by 
Yang and Long.8 

The study indicated that for very narrow slopes the improvement in 
N obtained using the proposed ridge failure surface mechanism can be 
greater than 10%. Very narrow vertical slopes, with constraint B/H in 
the range from 0.3 to 0.8, were analyzed using the ridge failure surface 
mechanism in Fig. 5, multi-cone face failure mechanism in Fig. 4, and 
the mechanism with a linearized Hoek-Brown strength envelope. In the 
former two cases, the parametric form of the Hoek-Brown failure cri
terion was used, and both analyses were carried out without compro
mising the rock’s nonlinear dependency of the shear strength on 
pressure. The outcome of this study is presented in Table 4. By using the 
ridge failure mechanism illustrated in Fig. 5, the improvement in sta
bility number N can exceed 15%, compared to a more traditional face 
failure mechanism in Fig. 4. The difference in the stability number from 
analyses based on the multi-cone face failure mechanism and that based 
on linearization of the Hoek-Brown strength envelope is very small for 
vertical slopes (Table 4), but it is larger for gentler slopes. 

The effects of the slope inclination angle and the Hoek-Brown model 
parameters on the stability number for rock slopes are illustrated in 
Fig. 8. Of course, the stability number increases with an increase in slope 

inclination. The influence of the rock properties is as expected: the 
weaker the rock type (mi), and the lower the Geological Strength Index 
(GSI), the higher the stability number. The majority of calculations in 
the paper were carried out for slopes in an intact, minimally disturbed 
rock (D = 0), with the exception of the results in Fig. 8(c). In rock ex
cavations by blasting, the disturbance is not uniform through all of the 
rock, and it would be inappropriate to assume uniform disturbance 
factor D throughout the rock, as pointed out by Hoek and Brown.2 The 
chart in Fig. 8(c), with each curve found for one value of D, is presented 
solely for the purpose of indicating that the tendency of the numerical 
outcome is consistent with expectations (increase in the stability number 
with an increase in disturbance factor D). One should expect, however, 
that the results in this chart, particularly for larger factors D, are 
over-conservative. Assessing the quantitative influence of the distur
bance factor requires an analysis with non-uniform distribution of factor 
D, but this was beyond the scope of this study. 

The influence of the rock properties is as expected: the more 
disturbed the rock (D), the weaker the rock type (mi), and the lower the 
Geological Strength Index (GSI), the higher the stability number. 

The factor of safety is a more intuitive measure of stability than the 
stability number, and it is presented in Fig. 9 as a function of dimen
sionless group σci/γH. The safety factors for slope width constraint B/H 

Fig. 8. Stability number for rock slopes as a function of mechanism width constrain B/H: (a) the influence of slope inclination angle β, (b) rock type mi, (c) 
disturbance factor D, and (d) Geological Strength Index (GSI). 
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up to 0.8 are all based on the multi-cone ridge failure surface mechanism 
(Fig. 5); all remaining factors of safety are from the analysis with the 
multi-cone mechanism (Fig. 2 or Fig. 3). Charts (a) through (f) show 
factors of safety for slopes of inclination angle β ranging from 15◦ to 90◦. 
When F = 1, the value of the dimensionless group σci/γH becomes equal 
to the stability number. The results are shown for rock disturbance factor 
D = 0, mi = 15, and slope width constraint B/H from 0.5 to 2.0, and for a 
2D analysis. To preserve clarity in the charts, results are presented only 
for selected values of GSI. Numerical values of the factors of safety are 
presented in Tables 5 and 6. 

7. Conclusions 

Stability of rock slopes has been a popular topic of research in rock 
engineering, yet the authors were not able to identify three-dimensional 
analyses in the literature that would focus on the quantitative measures 
of slope stability in intact rock, while being faithful to the nonlinear 
pressure dependency of the rock shear strength. The most commonly 
used failure criterion for rocks is that introduced by Hoek and Brown17 

in 1980; the latest version of this criterion1,2 was used in this paper. This 
limit state criterion is a function of the major and minor principal 
effective stresses. Stability analyses involving geomaterials often call for 
the strength criterion expressed as the Mohr hypothesis with the shear 

Fig. 9. Factor of safety for rock slopes with inclination angles in the range from β = 15◦ through β = 90◦.  

Table 5 
Factors of safety for slopes in intact rock with σci/γH = 10 (mi = 15, D = 0).  

GSI β (◦) B/H 

0.5 0.6 0.8 1 2 2D 

20 15 10.970 7.082 6.555 6.184 5.293 4.576  
30 3.734 3.547 3.285 3.126 2.848 2.649  
45 2.410 2.289 2.135 2.048 1.915 1.816 

40 30 5.376 5.047 4.613 4.378 3.949 3.654  
45 3.523 3.313 3.052 2.914 2.695 2.542  
60 2.545 2.390 2.193 2.097 1.947 1.845 

60 45 5.497 5.052 4.516 4.241 3.820 3.534  
60 4.087 3.762 3.373 3.179 2.883 2.675  
75 3.202 2.937 2.618 2.455 2.201 2.024 

80 60 8.026 7.260 6.385 5.929 5.182 4.642  
75 6.663 6.010 5.258 4.862 4.215 3.741  
90 5.710 5.113 4.401 4.018 3.391 2.932 

100 75 17.499 15.760 13.713 12.577 10.566 8.966  
90 15.472 13.817 11.854 10.770 8.864 7.354 

All results for B/H ≤ 0.8 based on multi-cone ridge failure surface mechanism (n 
= 10); otherwise, multi-cone mechanism with or without insert (no ridge). 

Table 6 
Factors of safety for slopes in intact rock with σci/γH = 1 (mi = 15, D = 0).  

GSI β (◦) B/H 

0.5 0.6 0.8 1 2 2D 

20 15 3.911 3.681 3.369 3.122 2.618 2.185  
30 1.954 1.844 1.692 1.608 1.444 1.317  
45 1.267 1.201 1.115 1.066 0.988 0.929 

40 30 2.656 2.505 2.298 2.184 1.961 1.789  
45 1.738 1.644 1.521 1.450 1.342 1.264  
60 1.200 1.142 1.067 1.025 0.961 0.914 

60 45 2.245 2.117 1.956 1.863 1.722 1.617  
60 1.577 1.491 1.384 1.328 1.239 1.176  
75 1.118 1.052 0.972 0.928 0.862 0.815 

80 60 2.292 2.131 1.930 1.830 1.679 1.574  
75 1.730 1.604 1.445 1.364 1.240 1.152  
90 1.321 1.209 1.063 0.980 0.848 0.754 

100 75 3.185 2.893 2.551 2.373 2.093 1.892  
90 2.737 2.393 2.074 1.900 1.622 1.421 

All results for B/H ≤ 0.8 based on multi-cone ridge failure surface mechanism (n 
= 10); otherwise, multi-cone mechanism with or without insert (no ridge). 
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strength as an explicit function of the normal effective stress τ = f(σ′

n).

The Hoek-Brown criterion cannot be easily transformed into the 
Mohr-type hypothesis, but the authors used its parametric form to pre
serve its nonlinearity in the analysis, whereas in the majority of other 
approaches the nonlinear criterion was substituted by a linear approx
imation before the analysis was carried through. 

Computational stability numbers obtained in this study using the 
new approach are more accurate than those available in the literature. 
This assessment is possible, because the method used in the paper yields 
a rigorous lower bound to the true stability numbers, while the numbers 
calculated are larger than those found in available literature. The new 
approach also made it possible to arrive at upper bound factors of safety 
for rock slopes, which previously was done in 3D analyses only after the 
nonlinear strength envelope was substituted with a linear 
approximation. 

A new mechanism of failure was found for slopes subjected to a 
stringent restriction on its width (B/H ≤ 0.8). For very wide slopes, a 
mechanism with a 2D insert was developed earlier,3 whereas for very 
narrow slopes, a mechanism was now constructed by removing a slice 

from the central portion of the multi-cone rotating block. The failure 
surface formed by the two remaining halves joined together has a 
distinct ridge at the symmetry plane, and it was referred to as the ridge 
failure surface. This mechanism was found to be quite efficient, yielding 
stability numbers increased by as much as 17% compared to the 
commonly used face failure mechanism for narrow slopes. 
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Appendix 

Angle θc was calculated from geometric relationships in Fig. 2, and it can be expressed as 

θc = arctan
rn sinθn − H

rn cosθn + H cotβ
(A1) 

The height of slope H is uniquely related to radius r0 as 

H = r0e

∑n

j=1
(θj−θj−1)tanδj

sinθn − r0 sinθ0 (A2)  

where angle θj − θj−1 is equal to ηj, as marked in Fig. 2(a). Radial coordinate rs of the slope contour is determined in three distinct regions: B0C, CA 
(Fig. 2) and ABn (for below-toe failures, Fig. 3) 

rs(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

r0
sinθ0

sinθ
, B0C : θ0 < θ ≤ θc

rn
sinθa + cosθa tan β
sin θ + tan β cos θ

, CA : θc < θ ≤ θa

ra
sinθa

sinθ
, ABn : θa < θ ≤ θn (below − toe only)

(A3)  

with angles θc (Eq. (A1)) and θa (independent variable) illustrated in Figs. 2 and 3, and ra is found in Eq. (17). 
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