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ABSTRACT

Selecting appropriate inputs for systems described by complex networks is an important but difficult prob-
lem that largely remains open in the field of control of networks. Recent work has proposed two methods
for energy efficient input selection; a gradient-based heuristic and a greedy approximation algorithm. We
propose here an alternative method for input selection based on the analytic solution of the controlla-
bility Gramian of the ‘balloon graph’, a special model graph that captures the role of both distance and
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redundant paths between a driver node and a target node. The method presented is especially applica-
ble for large networks where one is interested in controlling only a small number of outputs, or target
nodes, for which current methods may not be practical because they require computing a typically very
ill-conditioned matrix, called the controllability Gramian. Our method produces comparable results to the

previous methods while being more computational efficient.

1. Introduction

Many of the systems we interact with every day are described by
complex networks such as social media (Bovet & Makse, 2019),
the power grid (Arianos et al., 2009; Pagani & Aiello, 2013), the
world wide web (Barabasi et al., 2000) and our own biology
(Sporns, 2013). As our ability to describe these complex net-
worked systems improves, attention has increasingly turned to
our ability to influence, or control, these systems with external
signals. For example, targeted media campaigns (both bene-
ficial and malicious) on social media platforms have proven
to be incredibly effective (Grinberg et al., 2019), or as our
knowledge of human pharmacology grows, multi-drug multi-
target therapies become viable for drug developers (Y. H. Li
et al., 2016). While the dynamics of each of these systems are
significantly different, the first step toward influencing any of
them requires a choice of where one should apply the exter-
nal control signal to the system. In terms of malicious social
media campaigns, this means to choose which members of the
social network should be targeted by counter measures to pro-
vide correct information. In terms of multi-drug therapies, this
means to choose which drug targets to activate or inhibit by
the therapy cocktail. For power grid networks, this could mean
selecting which lines should receive high voltage direct cur-
rent links to improve the networks stability (Summers et al.,
2016).

Here, we focus on linear systems as, at least over short time
scales, continuous nonlinear systems can be approximated as
linear (Klickstein et al., 2017b; Liu & Barabasi, 2016). Rigor-
ous conditions for the controllability of unweighted graphs have
been presented in Qu et al. (2020), Ji et al. (2020) and Guo
et al. (2021). The problem of selecting the smallest number of
control signals to ensure a complex network is controllable has

been addressed in many different frameworks such as structural
controllability (Liu et al., 2011), exact controllability (Yuan
etal,, 2013) and output controllability (Commault et al., 2017; J.
Gao et al., 2014; [udice et al,, 2019; Lo Iudice et al., 2015; Zhang
et al., 2017; Klickstein et al., 2017a). While the minimum num-
ber of inputs is sufficient to ensure controllability, applying this
minimum control may lead to extremely ill-conditioned sys-
tems of equations (Klickstein et al., 2017; Sun & Motter, 2013;
Yan et al,, 2012, 2015). Instead, more recently, efficient control
problems have garnered interest which look to minimise a con-
trol energy metric while constraining the number of control
inputs (Summers et al., 2016). The selection of the number of
control inputs and their distribution throughout the complex
network are vitally important to the feasibility and efficiency of
a control action.

Efficient controllability problems, unlike minimum control-
lability problems, minimise a metric on the control energy
while constraining the number of control inputs (Summers
et al., 2016). Efficient control problems have previously been
shown to be NP hard (Tzoumas et al., 2015, 2016) by mapping
them to the hitting set problem following (Olshevsky, 2014).
This result removes the possibility of any polynomial time
algorithm to find the optimal solution. Instead, heuristic meth-
ods and approximation algorithms must be used to find ‘good’,
but sub-optimal, solutions. Two such methods are described
briefly here.

The projected gradient method (G. Li, Deng, et al.,, 2018;
G. Li, Ding, et al., 2018; G. Li, Hu, et al., 2016) finds a locally
optimal solution to a continuous relaxation of the original dis-
crete input selection problem. A rounding procedure, called key
component analysis, is used to create a solution to the original
discrete problem. Here, we compare our method to a version of
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the above heuristic which uses probabilistic projection (L. Gao
et al., 2018) to replace the rounding procedure.

A number of control energy metrics have been shown to
be submodular set functions (Summers et al., 2016; Summers
& Lygeros, 2014). Greedy algorithms have a well-known approx-
imation guarantee when used to minimise submodular set func-
tions (Fisher et al., 1978). Currently, greedy algorithms have
not been explicitly used to solve the input selection problem
for target control problems, except for the case that the target
set coincides with the entire node set (Summers et al., 2016).
Nonetheless, the submodularity property holds for the general
case of any target control problem (see corollary 2 in Sum-
mers et al., 2016) so we also compare our method to a greedy
algorithm.

Both of these existing methods are iterative and require com-
puting controllability Gramian matrices at each iteration which
can be extremely ill-conditioned. In this paper, we present a
novel method for energy efficient selection of driver nodes in
general graphs. As opposed to the methods described above, the
method we describe here uses structural properties of the graph
explicitly. Recent work has derived analytic expressions for the
control energy of lattice networks (Klickstein et al., 2018; Klick-
stein & Sorrentino, 2018a, 2018b; Zhao & Pasqualetti, 2018) and
has shown that the control energy in these structurally sim-
ple networks can often well approximate the control energy
in complex networks. We first analytically compute the output
controllability Gramian of the ‘balloon graph’ which consists
of a number of disjoint directed paths from a driver node to
a target node. This calculation is aided by the particular sym-
metric structure of this graph. Second, we solve the facility
location problem (Mirchandani & Francis, 1990) with a cost
matrix derived from the pair-wise costs computed using the
model graph to select an energy efficient set of driver nodes.

In Section 2 we introduce necessary background about
graphs, the controllability Gramian, and the facility location
problem. In Section 3, we present our first results, deriving
the controllability Gramian for a model network. The result
is used to construct a cost matrix that describes the ability of
each potential input to influence each target node. In Section 4,
we review two of the main alternative methods to select driver
nodes from the literature. In Section 5, we present a com-
parison of the three methods where we show no method out
performs any other in terms of the cost of the returned solution,
but that our method is more computationally efficient. Finally,
conclusion is given in Section 6.

2. Background
2.1 Graph symmetries

Graphs are denoted G = (V, £) which consist of |V| = n nodes
and edges (vj,v) € £ which may be read ‘from node v; to
node vi’. Unless otherwise stated, all graphs considered here
are assumed to be directed. The set of neighbours of a node vj,
denoted NV}, is defined as the set of nodes vy such that (v, vj) €
&. We do not include any loops, that is an edge (vj> vj), in the set
of edges, as loops are treated separately. A graph may be repre-
sented as an adjacency matrix, A € R"*”, which has elements
Ajk > 0if (v, vj) € € and Ajx = 0 otherwise. The diagonal of

the matrix A, Aj; < 0,j = 1,..., n, represents the loops present
at each node. In this paper, we assume uniform edge weights and
uniform loop weights, that is, edge weights are equal, Ajx = Aj
forall (vj, vi), (v, vi) € €and (vy, vp) € € and allloop weights
are equal, Aj; = Ak, for all j,k = 1,..., n. The edge weight is
denoted y > 0 and the loop weight is denoted —v < 0.

Definition 2.1 (Graph Symmetries and the Automorphism
Group (Lauri & Scapellato, 2016)): Let G = (V, ) be a graph
andlet 7 : V — V be a bijection on the set of nodes of a graph.
After applying a permutation to the nodes of a graph, define the
new set of edges as " where if (vj, vx) € € then (7 (v)), w(vk)) €
ET. A permutation 7 is a symmetry if £ = £7. The set of all
such symmetries along with function composition form the
automorphism group of a graph, Aut(G).

Let D C Vbeasubset of the nodes in the graph. The reduced
automorphism group Aut”(G) consists of all symmetries in
Aut(G) that do not permute any node in D (this concept is also
known as the automorphism group of a coloured graph (McKay
& Piperno, 2014) where each driver node is a unique color and
all non-driver nodes are the same colour).

AutP(G) = (w € Aut(@) |m(vj) = vj, ¥vj e D} (1)

The automorphism group (and any reduced automorphism
group) induces a partition of the nodes, defined as the orbits
of the graph, O = {O;,...,Og4}, where two nodes vj, vy € Oy
if and only if there exists a symmetry 7 that maps 7 (vj) = v.
This partition is equitable, that is, every node in orbit O has the
same number of neighbours in each other orbit. As an example,
ifnode vj is in orbit Ok and it has m neighbours in orbit Oy, then
if node vy is also in orbit Oy it must also have m neighbours in
orbit Oy.

Definition 2.2 (Quotient Graph): Given a graph G and its
orbits O, the graph can be compressed to its quotient graph,
Q = (O, F), where each orbit is a node in the quotient graph,
and the edges (O}, Ox) € F represent those pairs of orbits for
which there exists edges passing from the nodes in O; to the
nodes in O.

A permutation of a set of n elements, 77, can also be expressed
as a matrix, P € {0, 1}"*", with elements P;x = 1 if 7 (v;) =
vk and Pjx = 0 otherwise. Applying the permutation to the
adjacency matrix yields the permuted adjacency matrix A" =
PAPT . If 7 is a symmetry then A™ = A (assuming uniform edge
weights and loop weights as specified above).

The orbit indicator matrix, E € {0, 1}"*4, has elements Ej x =
lif node v; € Ok and Ejx = 0 otherwise. The adjacency matrix
of the quotient graph, A? € R7*4, can be found by applying the
orbit indicator matrix,

AR = E'AE (2)

where the superscript T denotes the Moore—Penrose pseudoin-

verse, defined as Ef = (ETE)1E”. The elements of the quotient
graph adjacency matrix, A?k, are equal to the number of neigh-
bours of a node v¢ € O; that are in O (multiplied by the
uniform edge weight y).



2.2 Minimum energy control

Each node is assigned a time-varying state, denoted x;(t), j =
1,2,...,n, whose behaviour is governed by its neighbours. We
are able to influence the dynamics through a subset of the nodes,
D C V, defined as the |D| = m driver nodes. The driver node
set can be represented as a matrix, B € {0, 1}"*™, where each
column of B has a single nonzero element corresponding to a
driver node. An independent, external, control input, denoted
ue(t),£ =1,...,m,isassigned to each driver node vy € D. The
states evolve in time according to a system of linear differential
equations where the state matrix A is the adjacency matrix of a
graph.

x(t) = Ax(t) + Bu(t) (3)

An initial condition is assigned to each node at time ¢t = 0,
xj(0) = xjp. The set of p target nodes, denoted 7 C V, are those
whose states we would like to drive to a particular value at some
final time ¢ = t;. The set of target nodes can also be represented
as a matrix, C € {0, 1}7*", where each row has a single nonzero
element corresponding to a target node.

y(8) = Cx(¥) (4)

Definition 2.3 (Controllability Gramian): Given matrices
A e R™" and B e R™"™, the time-varying controllability
Gramian is the symmetric n-by-»n matrix W(t) that satisfies the
differential Lyapunov equation (DLE),

W(t) = AW(t) + WHAT + BBT, W(©0)=0,, (5)

where O, is the n-by-n matrix of all zeroes. If A is Hurwitz (all
of its eigenvalues are in the left-hand side of the complex plane),
then there is a unique stable fixed point of the DLE that satisfies
the algebraic Lyapunov equation (ALE),

AW + WAT = —BBT (6)
which we call the steady state controllability Gramian.

If the matrix A is Hurwitz and ¢/ is chosen large enough, then
it may be appropriate to use W instead of W (ty).

Lemma 2.4 (Output Controllability (Kailath, 1980)): Define
the matrices A € R"™", B e R"™", and C € RP*" and define
W (t) to be the solution to the DLE using A and B. The triplet
(A, B, C) is output controllable if, for every vector xg € R", vec-
toryr € RP and positive value t; > 0, there exists a time-varying
signalu : [0, tf] > R™ such that,

tr
Y= Cetlixy + C/ A =D Bu(t) dt. (7)
0

An equivalent statement is that the triplet (A, B, C) is output
controllable if the output controllability Gramian,

W) = CW()CT (8)
is nonsingular.

The output controllability Gramian appears in the solution
to the following optimal control problem.
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Lemma 2.5 (Minimum Energy Output Control (Klickstein
et al.,, 2017)): Define the matrices A € R"™", B € R™™ and
C € RP*" along with the vectors xo € R" andyy € RP. Then the
minimum energy output control problem is

) 1 (¥ 5
min J = —/ lu(®)5 dt
2 Jo

st &(t) = Ax(t) + Bu(t) ©)

x(0) = xo, Cx(ty) = yy

and, if (A, B, C) are output controllable, its unique solution is
T* = 30 — Ce* x0) (CW (1) CT) ! (yp — Ce*xo)

= 3BTWT B (10)
where B = (yf — Cexy) is called the control manoeuvre,
which is the difference between the desired final output and what
the final output would be in the absence of a control input. Note
that the control manoeuvre B depends on the choice of the target

outputyf.

Lemma 2.6 (Symmetries in the Gramian (Klickstein & Sor-
rentino, 2018b)): Symmetries in the graph from which the adja-
cency matrix A was constructed appear as repeated values in the
controllability Gramian. If two nodes v;, vy € Oy and another two
nodes v, v € Oy, then the elements of the Gramian W;(t) =
Wi (0).

In the following, define the driver node reduced automor-
phism group, Aut? (G) (that is, every driver node is in an orbit of
cardinality one). All mentions of orbit indicator matrix or quo-
tient graph refer to those matrices and graphs induced by the
driver node reduced automorphism group.

The controllability Gramian for the quotient graph satisfies
Equation (5) with A replaced by AQ (as defined in Equation (2))
and B¢ = E'B.

W) = AWt + wR(HaQ + BB (11)
If v; € Oy and v € O then Wik (t) = WJS{k,(t) so if WQ(t) is
known, we can ‘expand’ the result to determine W (¢).

2.3 Input selection

Given matrices A, B and C, from Lemma 2.5, the minimum
energy optimal control problem can be solved for u : [0, tf]
R™ with associated cost J*. In this paper, we are interested
instead in the scenario where A and C are provided but we may
choose the set of driver nodes D C V (equivalently the matrix
B with the restrictions described previously) such that we min-
imise the control energy subject to a cardinality constraint on
the set of driver nodes. For a graph with #n nodes, there are (::1)
potential sets of m driver nodes so a brute force search for even a
moderate sized network is impossible. In addition, the solution
to the minimum energy output control problem depends on the
choice of control manoeuvre. To be more general, instead of
minimising the optimal cost J* in Equation (10) which depends
on B directly, an energy metric that is independent of the partic-
ular control manoeuvre, M (D), is defined such that our choice
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of driver nodes is good in some average over the possible choices
of control manoeuvre.

min M(D)
st. |Dl=m

It has previously been shown (Olshevsky, 2014) that minimis-
ing energy metrics are at least NP-hard problems, so rather
than attempting to derive an algorithm to find the optimal solu-
tion to Equation (12), heuristics and approximation algorithms
must be used to return ‘good’ solutions (better than could be
expected to be found during an extensive random search). The
two choices of energy metric, M (D), investigated here are the
control volume and the expectation of the control energy.
The set of all control manoeuvres capable of being performed
with E units of energy forms a p-dimensional ellipsoid.
S=1{BeR|B W (tpB = E} (13)
The volume of the ellipsoid in Equation (13) is known to be
related to the determinant of the matrix W(tf).

P 11 det(W 14
m)-ﬁ-l—) og det( (tf)) (14)

log V(S) = log (
The logarithm is taken of the volume as the determinant of the
controllability Gramian can fall below the accuracy of double
precision floating points values (Sun & Motter, 2013). In Sum-
mers et al. (2016), the energy metric in Equation (14) is shown
to be a submodular set function. The submodular property of
Equation (14) has not been directly applied to the target control
problem (only the subproblem when p = 1). Nonetheless, when
p <n, the submodularity of the log-volume holds (Summers
etal., 2016) so we may use a greedy algorithm which retains the
same approximation guarantee. For the metric to be minimised,
we use the following inverse volume function.
Vol(D) = —logdet Wp. (15)
Decreasing —Vol(D) means the set of reachable states, or control
manoeuvres, is larger.

The second energy metric, the expectation of the control
energy over initial conditions, assumes that y; = 0, and xo is a
vector of n independent random variables with mean zero and
variance one so that E[xoxOT ] = I,,. The covariance matrix of the
control manoeuvre can be written as (G. Li, Hu, et al., 2016)

Xr = E[e* xox] Al = eAlr ATl (16)
The expectation of the control energy over the control manoeu-
vres is the metric to be minimised.
E(D) = Te(CTW5' (1) CXyp) (17)
The following sections describe heuristics to _solve Equation (12)
when M(D) = Vol(D) and when M(D) = E(D).

2.4 Illustrative example

A directed graph is shown in Figure 1(A) with n = 20 nodes and
p = 10 target nodes highlighted in pink. The goal is to select
m = 5 driver nodes such that Equation (12) is minimised for
either of the two energy metrics considered. This problem is
small enough so that a brute force search can be employed. In
Figures 1(B) and 1(C), all sets of five nodes are selected as the
driver node set successively and both energy metrics are com-
puted. In both cases, the determinant of the output Gramian and
the expectation of the control energy span multiple orders of
magnitude so choosing an energy efficient set of driver nodes
is important. In the following section, we present our heuristic
method to find a set of driver nodes that is energy efficient which
uses only structural properties of the graph.

3. Graph structure based input selection

It has previously been shown (Klickstein & Sorrentino, 2018a,
2018b) that the optimal cost for the single driver node and
single target node problem (m = 1 and p = 1) is intimately
related to the structure of a graph. Two properties were shown
to be important, the distance between the driver node and target
node, dj7k, and the number of nodes that lie along the shortest
paths.

Definition 3.1 (Distance): A path of length d is a sequence of
d edges, (ve,0, ve,)> (Vey> vey)s - - > (Vo> ve,)- The distance from
node v;j to node vy is the length of the shortest path such j = ¢,
and k = £,.

Definition 3.2 (Redundancy): Let V;x be the number of nodes
that lie along a shortest path from node v; to node v.

Vik ={ve € V|dj¢ +dex = djk}

The redundancy between a pair of nodes, vj, vx € V, whose
distance apart is djx > 2, is,

_ Ml -2

18
d— 1 (18)

T’j,k
so that if a single path exists between two nodes, then 7, =1
or if b disjoint paths exist between two nodes then r;x = b.

As mentioned in Introduction, our proposed method to
select driver nodes is based on two steps. First, in Section 3.1,
we analytically compute the output controllability Gramian for
the directed balloon graph, from which we obtain information
on the cost to control a target node at distance d from a driver
node with b redundant paths. Then, in Section 3.2, we present
a method to choose the driver nodes from the solution of the
facility location problem with a cost matrix derived from the
pair-wise costs found for the directed balloon graph (Figure 2).

3.1 Balloon graph

A model that captures these two properties is the directed bal-
loon graph that consists of two end nodes, labelled 0 and d,
and b disjoint directed paths from node 0 to node d (Klickstein
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Figure 1. Asmall example of the input selection problem. (A)an = 20 node directed graph with p = 10 target nodes highlighted. (B) The volume cost from Equation (15)
binned for all sets of m = 5 sets of nodes set as driver nodes. As the determinant of the output controllability Gramian spans over a dozen overs of magnitude, it is clear
that choosing a set of driver nodes at random could lead to relatively much worse performance than the optimal solution. (C) The expectation of the control energy in

Equation (17) computed for all possible sets of m = 5 driver nodes.

(A)

q sopuRIg

Distance d

Figure 2. (A) Adiagram of the directed balloon graph. There is a single driver node,
labelled v, then b parallel, disjoint paths of length d to the terminal node, labelled
vg4. All edges have uniform weight y and loop weight —v. A directed balloon graph
can be completely defined by the two integers, d and b. (B) A diagram of the quo-
tient graph of the balloon graph. This graph is a directed path graph of uniform
edge weight y and uniform loop weight —v, except for the right-most edge which
has weight by .

et al., 2018; Klickstein & Sorrentino, 2018b). A single control
input is attached to node 0 while d is the single target node.
Each edge is assumed to have uniform weight y > 0 and each
loop has uniform weight —v < 0. The driver node 0 and tar-
get node d are separated by distance dy4 = d and, from the
definition of redundancy in Equation (18), 94 = b. The quo-
tient graph of the balloon graph is a directed path graph with
uniform edge weights y and loop weights —v except for the last
edge, (d — 1, d), which has edge weight by .

The output controllability Gramian when there is a single
target node, say 7 = {d}, is only the corresponding diago-
nal element W 4(¢). To determine the effect that distance and
redundancy have on the control energy, this element of the con-
trollability Gramian of the balloon graph’s quotient graph is
derived analytically.

Theorem 3.3 (Controllability Gramian of the Balloon Graph):

The diagonal element of the controllability Gramian of the balloon

graph corresponding to the node v, is

2 2d
L (l)z‘i 2d\ |, =53
2v \2v d

k=0
Forv > 0, it can be shown that the steady state Gramian’s corre-
sponding element is

| b2 2d (2d
Wi = tl—l>rgo Waa(t) = 2v (%> <d>

Proof: Let Wjk(t) be the elements of the controllability
Gramian of the quotient graph of the balloon graph (where
the superscript Q has been dropped). The elements W (t) for
jk=0,1,...,d — 1 satisty the following system of differential
equations:

k
Waa(t) = @vy) } (19)

k!

(20)

Woo(t) = —20vWo(t) + 1

Wio(t) = —2vWjo(t) + y Wj—10(t), 1<j<d
Wor(t) = —20Wor(t) +y Wor—1(t), 1<k<d
Wik(t) = —20Wjk(t)

+yWisk(®) +yWik—1(), 1=<jk<d

(21)
From symmetry, Wjo(t) = Wy(t), so only one set of the
boundary elements in Equation (21) must be determined. As
every equation in Equation (21) is linear, the Laplace transform
is taken of the system where V(s) = L{W (¢)}.

1
SV(),()(S) = —ZUVO)Q(S) + ;
sVio(s) = =2vVjo(s) + ¥ Vi-1,0(5)
sVoi(s) = —2vVoi(s) + ¥ Vo—1(s)
sVik(s) = =2vVjk(s) + ¥y Vim14(8) + ¥ Vjk-1(s)

(22)

The origin element, Vo o(s), is determined by rearranging the
first line of Equation (22).

Voo(s) = (23)

s(s+2v)°

The remaining elements are determined using a generating
function, denoted,

Veoys)= Y Vi~
jk=0,1,...

(24)
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Along the k = 0 boundary, the elements are determined by
setting y = 0.

\A/(x,O;s) = Z Vj,o(s)xj

j=0,1,...

(25)

Multiplying the second line of Equation (22) by %/ and summing
over all non-negative j yields,

+20) Y Vipo@x =y Y Vie()¥

j=0,1,... j=0,1,...
2V A ~
T2 G0, 055) — Voo(s) = ¥ 7 0s9) (26)
X
\7( 0:5) s+ 2v Voo(s)
X088 = — S
s+2v—yx 0.0

Define p(s) = H_% so that the boundary elements can more
succinctly be written as

V(x,055) = ————V,
(%, 035) = —— o) 0,0(5)
= Voo(®) Y p/(s)¥, (27)
jz0
which implies the boundary elements are
1 y j

Vi = . 28
50() s(s+2v) <s~|—2v> (28)

In turn, from symmetry, the other boundary must have elements
Vox(s) = m (H%)k. The interior elements are found using
the two variable generating function.

N 1
V(x,yss) = mVO,O(S)
4
_ Y ¢
= Vo,o(S)g (S+2v> (x+y)
v\ e [t
— l—a_a
o2 () X (o
]+k y jt+k -
= Vo,0(s) Z ( > < ) Xyt (29)
e’ k s+2v

The interior elements of the controllability Gramian can be read
off as the j, K’th coefficient, 0 < j, k < d,

‘ . 1 y itk i+ k
V]’k(s)_s(s—i—ZU) (s+2v) < k )

With all elements now determined for j, k < d we turn to ele-
ments when one index is equal to d. First, the element V;(s)
is determined, then the elements V;(s) for 1 < j < d, and then
finally Vi 4(s).

(30)

Viao(s) = Vi—1,0(5)

14
s+ 2v

b d
= . (31)
s(s+2v) \s+2v
Furthermore, it is straightforward to show that
b vy \ (d+]
Viis) = 32
45(S) s(s+2v) <s+2v> < d ) (32)

Finally, the element of interest in the Laplace domain can be
computed,

by
+2v

_ 2by b y \ 2d -1
T s+ 2v \s(s+2v) s+2v d
P v \* (2d
T os(s+2v) \s+2v d)

The inverse Laplace transform of Vj;4(s) is found by using
identity 5.2.18 in (Bateman, 1954) which states

—1
L1 —1 = i 1— e_“tnz _(at)k .
s(s+a) a” k!
k=0
Applying Equations (34) to (33) yields the controllability
Gramian element,

b? 2d (2d
Waa(®) = 27 (%) (d) [1

_ b? ( y )201 2d)!
T2 \2v/ (N2
As there is a single target node, the minimum control energy in
Equation (10) can be written as

o
2 Waa®'

Via(s) = ; (Vi—1,d(8) + Viga—1(s)

(33)

(34)

2d

) vk
—e 2 tZ o i|
k=0

[1—r@®)].

(35)

(36)

Plugging Equation (35) into Equation (36) completes the proof.
|

From Equation (10), the minimum control energy for the
balloon graph is J* Wd_; (tp), or if t is large enough, then J* o
Wd_; Using Stirling’s approximation for the binomial coeffi-
cient, the control energy is approximately

1 \/—21) v d
Wy~ ndﬁ -] . (37)
4
Our structure based metric that approximates the control
energy uses this pair-wise energy cost. Given a set of m driver
nodes D and a set of p target nodes 7, and pairwise distances
d; x and redundancies r;x from each node to each target node,
we can construct the pair-wise cost matrix F € R"*? which has
elements
d:
2v v\
Fjx = log rrdj,kT (—) (38)
Tik Y

Each term, Fjx in Equation (38) can be thought of as the cost
of controlling the k’th target node with node v;. The structure



based metric then assigns target nodes to driver nodes by select-
ing which node v; € D can control the k'th target node the most
cheaply (that is, F; x is minimised over all other possible choices
of driver node).

p
FLP(D) = Z 1{;1611% Fi. (39)

k=1"

We propose that this structure based metric can be a surrogate
function to replace Equation (15) or Equation (17) when try-
ing to determine a set of driver nodes that minimises one of
the energy metrics. To test this proposal, we pick random sets
of nodes from graphs using a hill climbing procedure to sam-
ple the full range of FLP(D) and compute both FLP(D) and
Vol(D) (or E(D)). The relationship between the ellipsoid vol-
ume cost in Equation (15) and the FLP cost in Equation (39)
is shown for four example graphs in Figure 3. Each graph has
n = 300 nodes, p = 100 target nodes selected randomly, and a
driver node set of m = 33 nodes to be determined. The four
graphs’ method of construction is described in the captions of
Figure 3. The log volume cost in Equation (14) appears on the
vertical axis of each plot while the FLP cost appears on the hor-
izontal axis. From the trends in Figure 3, it is clear that if we
were to find a driver node set D that minimised FLP(D), that
set of driver nodes would also be a competitive solution for the
original optimisation problem minimising Vol(D).

—~

A)
500

450

Vol(D)

400

300 350 400
FLP(D)
(C)
500
450
8
o
= 400 - -
350
300 350 400 450
FLP(D)
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The pair-wise cost in Equation (39) is also shown to corre-
late with the expectation cost used by LPGM in Equation (17). A
demonstration of this relation is shown in Figure 4 for four types
of graphs described in the caption. The two costs, E(D) and
FLP(D), are positively correlated as shown by the linear fitted
line in red. Again, any driver node set D that minimises FLP(D)
would be a competitive solution for the E(D) minimisation
problem as well.

Next, we present a method based on the facility location
problem (Mirchandani & Francis, 1990) to minimise FLP(D)
so that we may compare the obtained solutions with those gen-
erated by published heuristics to optimise Equation (12) with
either M(D) = Vol(D) or M(D) = E(D).

3.2 Facility location problem

Facility location problems (FLP) originally arose to address
the problem of choosing distribution centres to accommodate
demands while minimising transportation costs (Mirchandani
& Francis, 1990). Let there be p locations that must be sup-
plied from m distribution centres selected from n > m possible
choices. The cost of supplying the j'th location from the k’th
distribution centre is denoted c;. Each location is assumed to
be supplied from a single distribution centre. Let the binary
variables Y; € {0,1}, j = 1,...,n, be the possible distribution
centres where Y; = 1 if it is chosen to be a distribution cen-
tre and Y; = 0 otherwise. Let the binary variables Z; € {0, 1},

(B) 550

f T
500
8 450
= n |
>
400
350 L \
300 350 400 450
FLP(D)
(D)
~ 500
8
©
>
400 | .
|
300 350 400 450
FLP(D)

Figure 3. Comparison of the volume based cost, Vol(D) in Equation (15), and the structure based metric FLP(D). The graphs used for the analysis are (A) a k-regular graph
with « = 10, (B) an Erd6s—Rényi graph with k4, = 10, (C) a Watts-Strogatz graph with average degree 4, = 8 and (D) a graph with a power law degree distribution with
exponent y = 3 and average degree k4, = 10 created using the configuration model. All graphs are directed with n = 300 nodes. The set of p = 100 targets are chosen
uniformly at random. The set of m = 33 driver nodes are determined using the hill climbing process to achieve a desired value of FLP(D). The four plots shown here are

typical of all graphs examined, directed and undirected.
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Figure 4. Comparison of the expectation energy cost in Equation (17) and the structure based metric in Equation (39). The graphs used for the analysis are (A) a k-reqular
graph with « = 10, (B) an Erd6s—Rényi graph with k4, = 10, (C) a Watts—Strogatz graph with average degree k4, = 8and (D) a graph with a power law degree distribution
with exponent y = 3 and average degree x4, = 10 created using the configuration model. Each graph has n = 300 nodes, p = 100 targets chosen uniformly at random,

and m = 33 driver nodes chosen the same way as in Figure 3.

j=1,...,n,k=1,...,p, denote assignments so that if distri-
bution centre j supplies location k then Z;x =1 and Zj; =0
otherwise.

The FLP can be posed as an integer linear programming
(ILP) with binary variables.

n P
min Z Z Yij,ij,k

4. Alternative methods
4.1 Greedy algorithm

A greedy algorithm that starts with an empty set and at each iter-
ation adds the single node to the driver node set that improves
the cost function the most has an approximation guarantee of
63% when the cost function is submodular (Fisher et al., 1978).

By the definition of the matrix B we impose, the matrix prod-

j=1 k=1 uct can be decomposed into the individual contributions of each
n driver node BBT = 3", p eke,{ where ey is the unit vector with
s.t. Z Yj =m the single non-zero element corresponding to each driver node.
=1 (40)  This decomposition can be used to split the differential Lya-
" punov equation in Equation (5) into the contribution of each
sz,k =1, k=1,...,p driver node as well.
j=1 Wi(t) = AWk(t) + WiAT + exel,  Wi(0) = O,
Zik <Y, j=1l...,mk=1...,p (41)

The first constraint ensures that precisely m locations are chosen
to be distribution centres. The second constraint ensures that
each location to be supplied is assigned to a single distribution
centre. The third constraint ensures locations to be supplied are
only assigned to distribution centres that are opened.

Even large instances (n &~ 1000) can be solved efficiently
with ILP solvers such as the GNU Linear Programming Kit
(Makhorin, 2018). For larger instances of Equation (40), one can
use recently developed specialised algorithms to approximately
solve the FLP with an approximation guarantee (Jain et al., 2002)
efficiently.

W) =) Wi(D)

keD

A greedy algorithm to minimise Vol(D) over the powerset of the
nodes could be applied directly assuming perfect arithmetic.
The difficulty of applying the greedy algorithm directly arises
in two ways. The first difficulty is that storing all potential con-
tributions of each driver node requires np?> double precision
variables which, if p is large, could be prohibitive. The second
difficulty is computing Vol(D) for the first few driver node sets
as the Gramian is known to have extremely small (below dou-
ble precision accuracy) eigenvalues when the number of target
nodes is large relative to the number of driver nodes (Klickstein



etal., 2017). A proposed method (Summers et al., 2016) to han-
dle the first few driver nodes replaces the evaluation of Vol(D)
with —rank,,,, (D) where the function ranky,,,, (-) computes the
numerical rank of the output Gramian Wp(tf) (Sun & Mot-
ter, 2013). This substitute is used until enough driver nodes
have been added by the greedy algorithm to ensure the output
controllability Gramian is of full numerical rank. Algorithm 1
in Appendix A.1 shows this modified version where a flag is
used to perform the switch from computing the rank to the
determinant.

4.2 Lg-constrained projected gradient method

To minimise the expected energy cost in Equation (17), a con-
tinuous relaxation step is introduced so that the previous restric-
tions on B are removed, that is, now B € R"*™. The main result
in L. Gao et al. (2018) that allows a gradient descent method to
be used is the derivative of Equation (17) with respect to B.

OE(B)

f _
5 = 2 /0 AT (1) CXy

x CTWy ! (ty)Ce diB. (42)

With information about the gradient, a projected gradient
method can be used such that at each iteration the next B matrix

(A)150
> 100 s
=
Q
=
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2
£ 50
0
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(C) 150
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=
Q
=
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moves in the steepest descent direction until a local minimum
is found. A probabilistic projection is used, P : R™"™ - 2V,
that finds a set of nodes of cardinality m from a dense matrix,
which is the solution returned for the original optimisation
problem. Details of the algorithm can be found in Algorithm 2
in Appendix A.2.

5. Comparison
5.1 Comparison with greedy algorithm

To compare the FLP formulation described above and the
greedy algorithm, we create 1000 graphs and compute the set of
driver nodes returned by the greedy algorithm in Algorithm 1
and by solving the FLP in Equation (40). In Figure 5, 1000
graphs of the following types are used to make the comparison;
5(A) a k-regular graph with « = 10, 5(B) an Erd6 s-Rényi graph
with k4, = 10, 5(C) a Watts—Strogatz graph with average degree
kqy = 8 and 5(D) a graph with a power law degree distribution
with exponent y = 3 and average degree k,, = 10 created using
the configuration model. Each graph is undirected and is con-
structed with n = 50 nodes and p = 20 nodes are chosen ran-
domly to be in the target node set 7. We look for a set of m = 10
driver nodes, D, such that the cost function in Equation (14)
is minimised. The set of driver nodes returned using the FLP

(B) 150
> 100 -
=
9]
=}
o
9}
-
£ 50
0
-0 -5 0 5 10
VOI('DFLP) — VOI(Dgreedy)
(D) 150
> 100
g
)
=}
o
[}
|1
£ 50

0
—20
VOI(DFLP) — VOl(DgT'eedy)

Figure 5. Comparison of the performance of the FLP formulation with the greedy algorithm. Each panel computes the difference between Vol(Dgip) and Vol(Dyreedy)
defined in Equation (15). The four types of graphs used are (A) Erd6s—Rényi graphs with k4, = 6, (B) k-regular graphs with « = 5, (C) Watts-Strogatz graphs (Watts
& Strogatz, 1998) with p = 5%, and (D) graphs with a power-law distribution with exponent y = 3 and x4, = 6. Each graph has n = 50 nodes, p = 20 targets and
m = 10 driver nodes are selected. All graphs are undirected. Each panel finds the set of driver nodes returned by the FLP formulation and the greedy algorithm and
compares the returned cost. The grey background represents cases when the FLP formulation performs better and the white background represents cases when the

greedy algorithm performs better.
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formulation, denoted Dgrp, and the set of driver nodes returned
by the modified greedy algorithm, denoted Direedy, are found
for each graph and their costs are computed. The difference of
their costs,

Dgreedy = log det(WF_LIP) — log det(W !

greedy)  (43)

is taken so that if Dgreeqy < 0, Drrp is more efficient while if
D > 0, Dyreedy is more efficient. In Figure 5, the cases when
Drrp is more energy efficient are shown with a gray background
while the cases when Dyrecdy is more energy efficient are shown
with a white background. We see that for some graph types
(panels 5(A) and 5(D)), the FLP method performs better than
the greedy algorithm more often, while for other graph types,
the greedy algorithm performs better more often. Also, espe-
cially for the graphs with a power-law degree distribution in
Figure 5(D), the FLP method may not perform well as seen
by the second peak in the section of the plot with a white
background.

Despite the mixed results in Figure 5, the main benefit is that
our approach avoids the difficulty of computing the determinant
of an ill-conditioned matrix. Also, in Appendix A.2, we discuss
how the greedy algorithm’s computational complexity scales as
O(nmp* + n*). To estimate the complexity of the FLP method,

(A) 150
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ot
en)

—1 0 1
E(BFLP) - E(Bgreedy)

(C) 150

100

Frequency

ot
en)

—1 0 1
E(Brrp) — E(Bgreedy)

we use the number of nonzero entries in the constraint matrix,
which is (n + 3np). This difference is seen in the computation
times for the two methods, with the FLP solved considerably
faster than the greedy algorithm. This means one can use both
the FLP method and the greedy algorithm and take whichever
solution returned has a smaller cost without increasing the
amount of computational time appreciably while preserving the
approximation guarantee of the greedy algorithm.

5.2 Comparison with LPGM

A comparison of the performance of the FLP method and the
LPGM heuristic for sets of four types of graphs is shown in
Figure 6. As in Figure 5, bars in front of the gray background
represent cases where the FLP algorithm returns more energy
efficient driver node sets than the LPGM algorithm and vice
versa for the bars with a white background. For the four types of
graphs examined, we see that neither the FLP method nor the
LPGM heuristic perform better than the other, with some slight
bias towards one or the other depending on the graph. The ben-
efit of the FLP method is that it scales to larger problems better
than the LPGM heuristic and it does not suffer from the same
overflow/underflow issues as discussed in Appendix 2.
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Figure 6. A comparison of the performance between LPGM and FLP methods for the expectation energy cost in Equation (17) for 1000 realisations of the following four
types of graphs. The four types of graphs used are (A) Erd6s—Rényi graphs with kg, = 6, (B) k-regular graphs with « = 5, (C) Watts-Strogatz graphs (Watts & Strogatz, 1998)
with p = 5%, and (D) graphs with a power-law distribution with exponent y = 3 and x4, = 6. All graphs have n = 50 nodes, p = 20 target nodes selected randomly,
and m = 10 driver nodes are selected.



6. Conclusion

The energy efficient driver node selection problem is addressed
in this paper in a novel way. As it has previously been shown
to be NP-hard, while P # NP, we cannot hope to find the opti-
mal solution but rather we must search for ‘good’ solutions,
defined to be a solution better than one which could be rea-
sonably expected to be found during a random search. While
previous heuristics developed to find good solutions to this dis-
crete optimisation problem required the repeated calculation of
the controllability Gramian, the method we have developed here
uses the well known facility location problem with a cost matrix
designed using values derived from a simple graph model. The
benefits of our method are twofold. The first is the fact that our
method can provide better solutions than the previously pub-
lished methods in some situations. The second is the fact that it
is efficient so it can be used in tandem with either of the previ-
ous methods without significantly increasing the computational
cost.

The method presented here also provides a proof of concept
that finding energy efficient sets of driver nodes can be done by
using graph structure alone, rather than using properties of the
controllability Gramian directly which has been shown to often
be ill-conditioned or singular. While the cost matrix we design
uses the single target single driver cost, this choice ignores the
scaling of the control energy for a single driver with multiple
targets. Future work will improve the method presented here by
including terms in the cost matrix associated with a single driver
assigned to multiple targets.
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Appendices
Appendix 1. Alternative methods

Here we discuss some of the implementation details of the two alternative
methods discussed in the text, namely, the greedy algorithm and the Lo-
constrained projected gradient method. In both methods, to compute the
controllability Gramian, we use the SLICOT routine SBO3TD which is an
implementation of the Bartels-Stewart algorithm.

A.1 Greedy algorithm

Let D™ be the set of driver nodes after the K'th greedy step. The first
few greedy steps correspond to the situation when only a few driver nodes
have been selected so far. If p is even of moderate size, the controllability
Gramian for these first few steps will be numerically singular (Summers
et al,, 2016), or actually singular. To handle this situation, the first few
steps make the greedy decision based on which node increases the rank
of Wk the most until at some step the new controllability Gramian is of
full numerical rank. Then the algorithm switches to choosing driver nodes
corresponding to which node increases Vol(D) the most.

To compute the rank of the matrix, a rank revealing QR factorisation
is performed using the SLICOT routine MBO3OD. The determinant of a
symmetric positive definite matrix is found from its Cholesky factor, W =
LLT. Then, the determinant of W is

p
det W = (detL)? = l_[ngJ (A1)
j=1

To avoid overflow or underflow issues when taking this product, the
logarithm of the determinant is computed instead.

)4

logdet W = 2 Z logLj;
j=1

(A2)

We use the LAPACK routine DPOTRF to compute the Cholesky factor.

We include a flag so that the first iterations use the rank of the out-
put controllability Gramian until at some iteration, the set of driver nodes
selected so far ensures the output controllability Gramian has full numerical
rank.

A.2 Lo-constrained projected gradient method

A published algorithm proposed to solve the input selection problem to
which we compare the FLP method is the Lo-constrained projected gra-
dient method (LPGM) (L. Gao et al., 2018). The method combines the
projected gradient method (PGM) (G. Li, Ding, et al., 2016; G. Li, Hu,
et al,, 2016) which assumes all values in the B matrix with a probabilis-
tic projection. The probabilistic projection in Algorithm 2 appears as a
step, denote BX? < P(B) in the following gradient descent algorithm in
Algorithm 3.

Appendix 2. Computational cost comparison

In the paper, namely Figures 3 and 4, we show that the FLP cost in
Equation (39) used in the ILP formulation in Equation (40) can find com-
petitive solutions to both the greedy algorithm with the volumetric cost
in Equation (15) and the LPGM heuristic with the expected energy cost
in Equation (17). While the FLP formulation does not clearly out-perform
either of the other methods in all cases, it does avoid a numerical difficulty
faced by both the greedy algorithm and the LPGM heuristic. In the greedy
algorithm, we must first compute the output controllability Gramian for
each potential driver nodes’” contribution, which if every node is a viable
candidate, using the Bartels—Stewart algorithm (Bartels & Stewart, 1972,
September), requires O(n*) work. At each step, k, for k =1,2,...,m, we
must compute either the determinant (using a Cholesky decomposition) or
the rank (using a rank revealing QR decomposition) for (n —k+1) p x p
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Algorithm 1 Greedy Minimisation of a Set Function

Algorithm 3 Projected Gradient Descent (L. Gao et al., 2018)

Require: A desired set cardinality m, a state matrix A, a set of
target nodes 7, a final time ¢ (possibly co).
fork=1,...,ndo

Compute and store CWjy (tf)CT
end for
Initialise D < @, W <« Op, k < 0.
flag < 1
while k < m do

fbest <= 00, Apest < —1

forj € V\D do

if flag then

f < —rank(W + CW;(t)CT)
else

f <« —logdet(W + CW;(ty)CT)
end if

if f < fpesr then
S < foest> Abest < j
end if
end for
D < DU {apex}
W <« W+ CW,,,, (t)CT
if flag && —Cpet == p then
flag «<— 0
end if
k<~k+1
end while
return D

Algorithm 2 Probabilistic Projection (L. Gao et al., 2018)

Require: B € R"*™
Require: my > 0
1< > ey IBiklj=1,...,n
T andidate < {j | 7j is one of the m + my largest values }
Zselected <~
while | Zsjpcted] < m do
pi < 7 jE T candidate
/ 0, ]¢ Icandidate ’
Choose j according to the probabilities in p.
Lelected < Lselected Y {j}

Leandidate < Icandidate\{j}
end while

L0
B*Y < Ouxm

=1,...,n

foer()e Lselected (k =1,...,m) do
Bj,k <« mrj
end for
L0 L0 )
B < B / ZjEIselected r]
return B0

output controllability Gramians which both require O(p®) work as we per-
form the comparison between each potential node to add to the set of driver
nodes. Thus, the computational complexity of the whole greedy algorithm
is O(nmp® + n*).

The computational complexity of the LPGM heuristic, on its face, is less
than the greedy algorithm, but the use of finite precision instead is the main

Require: Graph G(V, £) with adj. matrix A € R"™*"
Require: By € R"*™
Require: 7 C V (and corresponding C € {0, 1}/*")
Require: 1 > 0, tr > 0,K>1
Epest < 00 ;
Xf <« eAlred’tr
fork=0,...,Kdo
BLY « P(By)
W < Lyap(A, BLBLY', 1)
W « cwcT
Ex < Tr(CTW™ICXp)
R« CTw-lcx,cTw-!c
W « Lyap(AT,R, tf)
VE(BL®) < —2WBL°
if E < Ep,s then
Epest < E
Biew < By
By1 < B® — nVE(BL)
else
Bjy1 < B — nVE(B)
end if
end for
return D <« Tj.q

barrier to applicability. To compute the descent direction, we must solve the
following Lyapunov equation:

0=ATY+YA+R (A3)

for the square matrix Y where

R=CTwy'cx,cTwy'c (A4)
can have extremely large values due to the inverse of the output controllabil-
ity Gramian appearing twice. As Equation (A3) is a linear equation, it can
also be written as A - vec(Y) = —vec(R) where vec(-) stacks the columns
of a matrix into a vector and A = AT @ I, + I, ® A. Let || - || be a vector
norm, then we know that

A - vec(V)I| = [[vec(R)|| < |A] - lvec(V)]| (A5)

where ||A|| is on the order of the maximum degree in the graph so that
the norm of Y will be on the order of the norm of R, potentially very
large and outside the ability of the finite precision used. Handling over-
flow issues requires care and accuracy is lost. The number of times this
must be repeated is difficult to predict as the decay of Ep, that appears
in Algorithm 3 may plateau for many iterations before decreasing (L. Gao
et al., 2018).

The FLP formulation as an ILP does not lend itself to an evaluation
of the computational complexity directly as it depends strongly on the
particular underlying algorithm and its implementation. An alternative
metric that often correlates with the computational complexity of solv-
ing an ILP is the number of nonzero entries that appear in the constraint
matrix. The constraint matrix that appears in our ILP contains (n + 3np)
nonzeros, which grows at worst quadratically in # if the number of tar-
gets p grows linearly with n, thus it grows more slowly than the greedy
algorithm. Our implementation which uses the GNU Linear Program-
ming Kit (Makhorin, 2018) to solve the ILP returns a set of driver nodes
faster than the greedy algorithm every time it was compared. As for the
LPGM, the FLP formulation does not suffer from overflow or under-
flow issues during the solution of the Lyapunov equation that appears in
Algorithm 3 to which the LPGM heuristic is prone. The FLP method also
performed considerably faster than the LPGM heuristic for all comparisons
made.
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