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Abstract— While there has been extensive work on modeling of
human decision-making both for individuals and groups from a
cognitive psychology point of view, research on this topic from a
signal processing and information fusion perspective is relatively
recent. In this work, we consider a distributed detection problem
consisting of a number of human local decision makers and a
fusion center (FC). Signal detection theory is exploited to answer
why promoting heterogeneity could improve the performance of
collaborative human decision-making. We consider the following
two scenarios: 1) the local decision makers are independent
and the level of heterogeneity is measured in terms of the
variability of human expertise and 2) humans make correlated
local decisions due to their perceptual and behavioral similarities
and heterogeneity is measured by the amount of correlation.
In both cases, we show that the detection performance of
the FC can be improved with the increase of heterogeneity.
In particular, in the second scenario, we develop a portfolio
theory-based framework to select participants from correlated
human agents so that heterogeneity is enhanced resulting in
improved decision-making performance. Simulations are pro-
vided for illustration and performance comparison.

Index Terms— Correlated local decisions, group decision-
making, heterogeneity, human decision-making, information
fusion, portfolio theory.

I. INTRODUCTION

N different workplaces and organizations, heterogeneity,

or variety, is a key factor that guides the recruitment and
hiring processes. It is widely acknowledged that heterogeneity
in workplace drives innovation and fosters creativity as the
team members bring a variety of backgrounds, experiences,
and perspectives to the table [1], [2]. Heterogeneity can be
promoted by having people from different ethnic groups,
genders, cultures, religions, languages, education, viewpoints,
and abilities. It is the collaborative effort from people who
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think differently and act differently that facilitates the solution
of complex problems in an efficient manner. In contrast to
the literature from psychology and sociology, the objective
of this article is to study the impact of heterogeneity of
human expertise, cognitive biases, and perceptual abilities on
collaborative human decision-making from a signal processing
and information fusion perspective.

In numerous applications such as national security, natural
disaster forecasting, and healthcare, modeling of autonomous
and semiautonomous decision-making systems that involve
human agents as participants is becoming an important
research area. The problem of distributed detection where
humans act as local decision makers has been studied in
different contexts. For example, the quantization of priors
in hypothesis testing was analyzed to model the fact that
humans make categorical observations [3]. Vempaty et al.
[4] developed a Bayesian hierarchical structure to characterize
human behavior of decision fusion at individual level, group
level, and population level. The performance of collaborative
human decision-making was analyzed when each individual
is assumed to make local decisions by comparing the obser-
vations to a random threshold [5], [6]. By utilizing crowd
wisdom, crowdsourcing has become an efficient paradigm to
solve problems that are easy for humans but hard for machines,
e.g., handwriting recognition, image labeling, and voice tran-
scription. Different methods were proposed for aggregation
of the local decisions by considering the unreliability and
uncertainty of the human crowd workers [7], [8]. Moreover,
since humans are selfish who request monetary rewards to
be motivated to perform the sensing tasks, Li et al. [9],
Cao et al. [10], and Geng et al. [11], [12] have incorporated
game theory into the design of efficient incentive mechanisms.

Another line of work on human decision-making is the
consideration of cognitive biases of human agents in the
decision-making process. It is well known in the psychol-
ogy literature that cognitive biases and uncertainties can be
found in the human judging and decision-making processes
at individual and group levels [13], [14]. The significance of
cognitive psychology has been demonstrated by its ability to
outperform machine learning methodologies when predicting
people’s choice behavior [15]. Among these biases are peo-
ple’s distorted representations of outcomes and probabilities,
which are accurately captured by the Nobel prize-winning
prospect theory (PT) [13]. There have been a few works
that incorporate PT into hypothesis testing to model human
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decision-making. In the Bayesian framework, Nadendla et al.
[16] exploited PT to analyze the behavior of optimists and
pessimists of different types. The optimality of the likelihood
ratio test (LRT) was investigated in PT-based hypothesis
testing in [17]. In this work, we showed that the LRT may
or may not be optimal for behavioral decision makers in
terms of Neyman—Pearson and/or Bayesian criterion. More-
over, Geng et al. [18] employed a utility-based approach to
investigate prospect theoretic human decision-making and
decision fusion in multiagent systems, where several decision
fusion scenarios that include humans were studied. As the
behavior of cognitively biased humans deviates from being
rational, Geng et al. [19] investigated several strategies to
ameliorate the biases and help humans make higher quality
decisions. Geng et al. [20] analyzed the prospect theoretic
behavioral differences of honest workers and spammers in
crowdsourcing systems. A weighted majority voting scheme
was proposed to assign an optimal weight for every worker to
maximize the system performance.

In the context of collaborative human decision-making
through crowdsourcing, responses (e.g., binary decisions)
of the humans have typically been assumed to be inde-
pendent of each other for analytical convenience by past
work [5]-[7], [20]-[22]. However, in real application scenar-
ios, human decisions may be correlated due to their common
characteristics and backgrounds. Moreover, the above litera-
ture has overlooked the problem of selecting human agents for
the task under consideration, which is an important problem
when there are restrictions on the number of humans that can
be selected. The few works that do consider the selection of
human agents in crowdsourcing simply rely on reputation,
where individuals who have been more accurate in the past
are chosen to ensure that reliable responses can be obtained
[23], [24]. However, this approach considers human decision
qualities only at an individual level, without considering the
group-level properties that arise from the existence of complex
correlation relationships among the behaviors of individuals.
The worker selection problem from a pool of correlated
decision makers for optimized decision-making performance,
to the best of our knowledge, has not been studied in the
previous literature. Such a problem is not only complicated
by the fact that there is a lack of concrete methods to
model the correlations among the workers’ decisions in real
decision-making scenarios but also by the fact that it is
challenging to develop a worker selection mechanism from
a pool of heterogeneous decision makers.

In this work, we aim to alleviate this problem by analyzing
how heterogeneity could affect the performance of collabo-
rative human decision-making under consideration of com-
plex correlation relationships among the behavior of humans
and design the human selection strategy at the population
level. The major technical contributions of our work are as
follows.

1) Development of Collaborative Human Decision-Making
Framework: We construct the model where humans are
assumed to provide binary decisions to a fusion center
(FC), and the FC makes a final decision regarding the
phenomenon of interest (Pol). We first assume that the
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humans make decisions independently of each other
and study the impact of human expertise variability,
i.e., the variance of the local decisions’ qualities, on the
decision-making performance at the FC.

2) PT-Based Approach to Model the Correlations Among
Human Agents: We employ the behavioral economics
concept of PT to model the fact that the quality of human
decisions is affected by individual cognitive biases.
Correlations among the decision-making behaviors of
agents are considered to stem from correlations among
their observations as well as correlations among their
prospect theoretic parameters. We provide an analytical
method to derive the mean vector and covariance matrix
of the humans’ average probabilities of error in binary
decision-making.

3) Selection of Correlated Human Agents for Optimized
Decision-Making Performance: We innovatively exploit
concepts from portfolio theory [25] to address the
problem of selecting cognitively biased human agents
for performing a distributed decision-making task while
carefully considering the complex correlation relation-
ships that may exist among their decision-making behav-
iors. In the optimization problem, we minimize the sum
of error probabilities of the selected humans while con-
straining the variability of the system performance to be
below a certain level. We show that an appropriate level
of heterogeneity measured by the amount of correlation
among the selected humans helps improve the final
decision-making performance.

The rest of this article is organized as follows. In Section II,
we study the performance of decision-making by groups
composed of independent local decision makers. In Section III,
we investigate human decision-making under cognitive biases
and study how the correlations among local decisions affect the
accuracy of the majority rule-based decision fusion. A portfo-
lio theory-based human selection scheme for decision-making
is proposed in Section IV. We provide simulation results in
Section V to demonstrate the effectiveness of our approach
and conclude our work in Section VI.

II. GROUP DECISION-MAKING WITH INDEPENDENT
LocAL DECISION MAKERS

Let us formulate the problem where a group of n human
decision makers needs to choose between two options denoted
by hypotheses Hp and H;. In this section, we consider a
structure where the humans make binary decisions indepen-
dently regarding the Pol. The decision of the ith human
g € {0,1} is modeled using a binary symmetric chan-
nel (BSC) shown in Fig. 1. The parameter ; represents the ith
human’s accuracy/expertise in making a decision, i.e., Pr(g; =
JIH; is true) = a; for j = 0,1. We assume that a; > 0.5
and the worst case a; = 0.5 simply corresponds to a random
guess. As noted, the local decisions g; for i = {1,2,...,n}
are assumed to be independent of each other.

An FC collects the local decisions G = [g; g>...g.]7 and
makes the final decision on which hypothesis is true. To decide
on one of the two hypotheses based on G, it was shown that
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Fig. 1. BSC model with accuracy a;.

the LRT is optimal as it minimizes the Bayesian risk [26]

Pr(GIH) %

Pr(GHo) 17, | W

where # represents the appropriate threshold. The derivation
of the exact error probability of the system is intractable as
the number of human participants is large. To evaluate system
performance and to guide the worker recruiting strategy,
we compute and employ the asymptotic detection performance
of the system via the Bhattacharyya distance! as follows:
T P
Nlinoo N
where P, is the average error probability and N is the number
of samples of the decision vector G such that the test statistic
GV is an N x n matrix. Pr(G|Hy) and Pr(G|H,) are
the likelihoods under H, and H;, respectively. Intuitively,
the probability of error decreases exponentially as the sample
size N increases and BD(Pr(G|Hy), Pr(G|H1)) upper bounds
the decay rate. It is desired to have a large value of BD(-) so
that the probability of error decreases faster [27], [28].

To characterize the decision-making behavior of the group
of human decision makers, we assume that «; is random
and follows a certain probability density function (PDF). The
mean and the variance of the random variable, denoted by
E(a;) = p, and Var(e;) = o2, are used to represent the
average and heterogeneity of the accuracy of the decisions
made by the group members, respectively. We may interpret
I 1o be the average level of expertise and 2 to be the level of
heterogeneity of the expertise in the group. A large value of o>
indicates that the humans in the group have diverse decision-
making/cognitive abilities resulting in a large variance in their
decision-making accuracy. The objective is to study the impact
of u, and o2 on the FC’s decision-making performance in
terms of the Bhattacharyya distance.

By assuming that the independent local decisions are mod-
eled via BSCs shown in Fig. 1, the probability mass func-
tions (pmfs) of the decision vector G under both hypotheses
are given by

< —BD(Pr(G|Ho), Pr(GIH1)) )

Pr(GHo) = [ [ (1 — ap)®

i=1
n

Pr(GIHy) = [[af (1—a)' 5.
i=1

!Bhattacharyya distance is a special case of Chernoff information when its
parameter is equal to 1/2.

The Bhattacharyya distance between the two discrete dis-
tributions can be expressed as

BD(Pr(G|Ho), Pr(G|H1))

=—1In Y VPr(GHo) Pr(GIH,) (3a)
Geg
= _mZ Hai(l —a;) (3b)
Geg i=1
=—mn{2" [[Je(l — ) (3e)
i=1
= z [ — %ln(ai(l —ai)) — 1n2] (3d)
i=1

where G in (3a) represents all possible combinations of the
decision vector G. The term 2" in (3c) comes from the fact
that G has the cardinality of 2".

The result in (3d) shows that because of the contribution of
the ith human’s decision g;, the Bhattacharyya distance at the
FC is incremented by ¢; = —1/21n(¢; (1 — a;)) — In2, which
is nonnegative for a; > 0.5. Note that ¢; = 0 when a; = 0.5,
indicating that a random guess does not contribute any useful
information. Moreover, from (3d), we know that the expected
Bhattacharyya distance can be expressed as

E(BD(Pr(G|Ho), Pr(GIH1)))

- IE|:Z ( — %ln(ai(l —a;)) — ln2):|

i=1
= nE[—% In(e; (1 — ai)):| —nln2. 4)

Next, we derive a lower bound on the expected
Bhattacharyya distance at the FC.

Proposition 1: In a group composed of n human decision
makers with average level of expertise ¢ and level of hetero-
geneity o2, the lower bound of the expected Bhattacharyya
distance at the FC increases as x, and o2 become larger.

Proof: Note that A(-) = —1/21In(-) in (4) is a convex
function. Applying Jensen’s inequality, we have

I I
E[—E In (o (1 — a,-)):| L (E[a: (1 - a0)])

= —%m (E(a;) — E(a}))
1

=—3In (o — 1y — o). (5

Since —1/21n(") in (5) is a decreasing function and z, — u2
is decreasing for u, € {0.5, 1}, it is clear that —(1/2) In(u, —
w2 — o?2) increases as p and o2 become larger. Hence, the
term E[ — (1/2) In (2; (1 — @;))] and, consequently, the lower
bound on the expected Bhattacharyya distance given in (4)
become larger as u, and o, increase. [ ]

Using the lower bound of the expected Bhattacharyya
distance as the surrogate judging criterion, it can be seen that
a group performs better with higher average accuracy u, as
expected. At the same time, it is interesting to observe that
for a fixed value of u,, a group that has a larger variance
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o2 achieves better performance. Essentially, a group performs
better in collaborative decision-making if the parameters yield
a larger value in the mean—variance tradeoff given in (5). Note
that the best system performance occurs when decision makers
are always correct, i.e., a; = 1 fori = 1,...,n. In this case,
the lower bound given in (5) becomes +oo.

Remark 1: In collaborative human decision-making, if the
average expertise . of the humans is kept the same, the group
with higher heterogeneity (quantified in terms of ¢2) yields
better decision-making performance.

In the last part of this section, we present the criterion of
human selection for collaborative decision-making under the
assumption of independence. Recall that in the above analysis,
a; fori € {1,...,n} is assumed to be a group-level parameter
that follows a PDF with mean u, and variance ¢2. In realistic
environments, another aspect of human decision uncertainty
comes from variability that exists at individual level. Individual
variability, a prominent feature in human behavior, is observed
in perception and decision-making even when the external con-
dition, such as sensory signal and the task environment, is kept
the same [29]. This is also known as trial-to-trial variability
in psychology experiments, i.e., differences of responses are
noticeable when the same experiment is repeated in the same
human subject. Hence, we assume that for the ith human, o;
is also a random variable at the individual level. Let u,, and
a(fi denote the mean and variance of the ith human’s decision
accuracy at the individual level, respectively. Following the
results in (5), a preferred candidate that contributes more in

collaborative decision-making should have a smaller value of
2

Ha, = Mo, = 0,
ITII. GROUP DECISION-MAKING WITH CORRELATED
LocAL DECISION MAKERS

In Section II, we analyzed the performance of collaborative
human decision-making by assuming that humans make inde-
pendent decisions. In real applications, we have to account for
humans’ cognitive biases and uncertainties in order to estimate
their decision accuracy in performing a particular task [13],
[18]. The accuracy of decision-making, namely, parameters
o, should be impacted by the human’s behavioral properties.
Moreover, there may be subgroups within the group whose
members have similar background so that their perceptions
of the environment and cognitive biases are close to each
other. Therefore, in contrast to the assumption that humans
make independent local decisions, the decisions made by
them for the same problem are correlated and the amount of
correlation depends on the degree of their similarities. In addi-
tion, the performance measure in terms of the Bhattacharyya
distance (presented in Section II) is effective only when the
FC employs the LRT to fuse the individual human decisions.
In most applications, instead of using the LRT as the decision
rule, the FC often uses the majority voting rule due to its
simplicity and efficiency even though it is not necessarily
optimal [30]. In the majority voting rule, a decision is made
in favor of a hypothesis if it gets more than half of the votes.
It is desirable to design appropriate strategies that maximize
the system performance under the criterion of majority voting.

IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS

In the following, we aim to tackle these challenges step by
step, starting with a discussion on how humans make decisions
in binary hypothesis testing under cognitive biases.

A. Impact of Behavioral Properties on the Accuracy of
Human Decisions

In realistic collaborative human decision-making scenarios,
it is often the case that decisions have to be made on a
problem that has not been seen before. It is shown in [18]
and [31] that one could characterize the inherent behavioral
properties and cognitive biases of human in decision-making
and use this information to infer the human’s decision quality.
In this section, we study human decision-making in binary
hypothesis testing problems that include the consideration of
human cognitive biases. According to psychology studies, one
prominent feature of human cognitive biases is their loss
attitude characterizing the asymmetric valuation toward gains
and losses [13], [31]. In the following, we show the impact of
loss aversion on the quality of human decision-making under
the framework of hypothesis testing.

The Nobel prize-winning PT is widely employed to model
human rationality when humans choose between probabilistic
alternatives that involve risks. According to PT, a prominent
feature of human cognitive biases is loss aversion that char-
acterizes the asymmetric valuation toward gains and losses.
PT suggests that humans are usually loss averse in the sense
that loss hurts more than the equivalent amount of gain feels
good. Under PT, humans distort the valuation of the actual
cost ¢ of an event through a value function

et c>0

v(c) = el

c<0 ©
where positive values of cost ¢ corresponds to losses and
negative values of ¢ correspond to gains. 4 is the loss aversion
coefficient and f is the parameter that characterizes the
phenomenon of diminishing marginal utility [13]. By varying
A, the value function reflects humans’ different loss aversion
attitudes. The value function shown in Fig. 2 illustrates that
positive costs weigh more than negative costs. According to
the experiment conducted on a group of human subjects [31],
the behavioral parameters 4 and f of each individual can be
estimated using a nonlinear regression method. The median
values of the parameters A and g are 2.25 and 0.88, respec-
tively. It has been demonstrated in the literature that the loss
aversion effect has a larger impact on human decision-making
compared to diminishing marginal utility phenomenon [18],
[32]. Hence, in this work, we adopt a similar approach by
fixing the value of f = 0.88 and focusing on analyzing how
the loss aversion parameter A affects the decision-making of
humans.

Consider that a human decision maker solves a binary
hypothesis testing problem. Let the set of the two hypotheses
be denoted by H = {Ho, H,}, and the priors are given by
w9y = Pr(Hp) and #; = Pr(H;). The human makes an
observation r € I' regarding the Pol, where I" represents the
observation space. Under Hy and H;, the observation r has
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Fig. 2. Value function v(c).
conditional PDFs
Ho:r~ for), Hi:r~ fi(r). (7

Let ¢;; denote the cost of deciding H; when H; is the true
hypothesis. In practical applications, the costs of failing to
decide the correct hypothesis, i.e., cjp and cg;, are positive
values, while the costs of successfully choosing the true
hypothesis, i.e., coo and cy;, are set to O or negative values
(which can be interpreted gains or something earned).

In solving binary hypothesis testing problems, psychologists
have shown that humans first calculate the expected cost of
declaring each hypothesis based on some observed evidence
and, then, choose the one that has lower expected cost [33],
[34]. However, unlike rational decision makers who are able
to perceive the expected cost accurately, humans’ subjective
perception of costs toward a risky event is distorted due to
cognitive biases. Given an observation r, we incorporate the
value function to calculate the human’s subjective perception
of costs of declaring Hy and H; [18], [19]

SC(Ho) = Pr(Holr)v(coo) + Pr(Hilr)v(cor)
SC(H1) = Pr(Holr)v(cio) + Pr(Hilr)v(cir) (8)

where Pr(H;|r) is the probability that H; is true when the
observation is r. Following the Bayesian rule, Pr(H;|r) =
(fi(ryz;/ f(r)) for i = {0, 1}, where f(-) and f;(-) denote
the appropriate PDFs. The human selects the hypothesis Hy
or H; that has a smaller subjective expected cost

H
SC(Ho) =
Ho

SC(H,). )

Substituting the expression of (8) into (9) and simplifying,
we have

fit) 2 (7’“0 - ”00)@ 2 . (10)

Vo1 — V11 /) 7T

O

where v;; represents the distorted valuation of the cost when
the value function is applied on ¢;;. Note that if f =1 =1,
np, reduces to 7 = ((wo(cio — coo))/(mi(cor — c11))), and
(10) is the classical LRT studied in the signal processing
literature [26].

With the decision rule given in (10), the human decides
Hiif r € R' £ {r € TI(fi(r)/(fo(r) = n,})) where R'
is known as the critical region and the human decides H if

reR 2 {r e TI(fi(r)/(fo(r) < n,})) where R is known
as the acceptance region. Note that R' and R are mutually
exclusive and R! URO I'. In this case, the human’s
probability of false alarm (i.e., declaring {; when Hj is true)
and probability of miss detection (i.e., declaring Hy when H;
is true) in solving the hypothesis testing problem are given
by ps = [z fo(r)dr and p, = [ fi(r)dr, respectively.
It follows that the average probability of error can be expressed
as pe =7y py+ T Pm.

For humans with different loss aversion attitudes, the vari-
ation of A causes the threshold of the LRT in (10) to be
different. As a result, the humans have different decision
regions R' and R°, which leads to different decision-making
performances in terms of p,.

B. Correlation Between Local Decision Makers

Humans from the same demographic subgroup often share
similar behavioral properties that include emotion state, loss
attitudes, and perception of the environment, while the vari-
ations of those behavioral properties are significant across
different ages, genders, and cultural backgrounds [35]. For
example, psychologists have studied the impact of cultural
differences on economic decision-making, where they showed
that cross-cultural differences such as experiences, individu-
alism, power distance, and masculinity are highly correlated
with the level of loss aversion and subjective perceptions
[36]. In experiments conducted in two countries (China and
Ethiopia), it was shown that the intercountry differences in
behavioral patterns are more significant than intracountry
differences. We in this work concluded that the intercoun-
try variations in risk attitudes can be ascribed to cultural
differences [37].

Inspired by the above evidence, we develop the correlation
structure of local decision makers in the following. Consider
that there are n humans participating in the collaborative
decision-making process regarding the hypothesis testing prob-
lem (7). Each human provides a local decision d; for i =
{1,...,n} by employing the decision rule (10). Let ' and A’
be the random variables that denote the ith human’s obser-
vation regarding the Pol and his/her loss aversion parameter,
respectively. Analogous to the models presented in the quan-
titative psychology literature [38], [39] that employ a physical
measure to quantify the distance between representations of
objects on a priori grounds, we establish a measure m;; to rep-
resent the cognitive profile difference between humans i and
j. To model the perceptual and behavioral similarity among
the local decision makers, we consider that the correlation
coefficient between human observations r; and r; follows an
exponential decay model [38]:

Pl = exp (= grlom) /o) o

and the correlation coefficient between human loss aversion
parameters A; and 4; is given by

p’ = exp (= ¢i(mij)/ o)

where ¢,(-) and ¢,(-) are appropriate distance functions
that project m;; to the correlation measures applicable to

(12)
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r and A, respectively. [y is a constant parameter. We hereby
assume that the ith human’s observation ' has PDF f!(r).
Since all the humans make observations regarding the same
Pol (7), we have f/(r) = fo(r) under Hy and f'(r) =
fi(r) under H; for i = {1,...,n}, with p;/ characterizing
their correlation structures. Moreover, let the loss aversion
parameter A’ follow PDF f} () with p;’ being the correlation
coefficient between A’ and A/.

Here, in contrast to Section II where the local decisions
were assumed to be independent, d; for i = 1,...,n have a
dependence structure due to the similarity in human decision
makers’ behavioral and perceptual properties. To characterize
the quality and correlation of local decisions, we define an
error indicator random variable J; that is equal to 1 if the
ith human’s local decision d; is wrong and is equal to O if
the decision is correct. Let § = [Jy, ..., J,] so that its mean
vector us = [us,--., ts,] represents the humans’ average
probabilities of error and the covariance matrix X5 shows the
dependence structure of J;.

Following the analysis and notation in Section II, we further
denote the acceptance region and the critical region of the
ith human as RY and R/, respectively. Given a particular
hypothesis testing problem, both R? and R} are determined
by the ith human’s loss aversion parameter /;. Note that J; is
equal to 1 if r; € R? under Hy or r; € R} under H,. Hence,
we have the expected value of J; given as

s, = Ep 4, 1 (5)

_ / - / Fi)dri + / Fi)dr Y fiGd
i Y R!

where the expectation is taken with respect to r;, 4;, and H.
Since o; takes its value from {0, 1}, its second moment is
E(6?7) = . Hence, the variance of J; is given by

var(6,) = E(0?) — EX(6) = s, — 12

To evaluate the covariance of J; and J;, we need to compute
the expected value of 6;J;. Note that 6;0; = 1 only when both
d; and J; are equal to 1. Hence, we have E(d;d;) given in
(13), as shown at the bottom of the page, where f,”’(r;r;) is
the joint PDF of observations r; and r;. f;’ is the joint PDF of
the loss aversion parameters A; and 4 j.2 Hence, the covariance
of 6; and J; is given by

cov(d;, 0;) = E(5;0;) — us 1o,

At this point, we have been able to compute the values of
us and X5, which will be used to perform human selection in
collaborative decision-making in Section IV.

2The derivation can be easily extended to incorporate the con-
sideration of diminishing marginal utility parameter S by calculat-
ing Er,-,rj,i,-,il,v,ﬂ,-,ﬂj,H(@éj) instead of ]E,i,,j,ii,gj,y(é,-éj) in (13) of the
manuscript, where in ]E,i,,j, Aish i BiBis 1 (0;0;) we compute the expectation by
averaging over r;, rj, Ai, Aj, Bi, B, H.
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IV. PORTFOLIO THEORY-BASED HUMAN SELECTION

The objective of this section is to develop a methodology
to select a subgroup from a pool of heterogeneous human
decision makers to participate in a binary decision-making
task. It should be noted that such a human selection problem is
not only complicated by the fact that it is difficult to evaluate
the performance of decision fusion in realistic multihuman
decision-making applications but also by the fact that there
exist correlations among the quality of local decisions.

The majority rule is widely adopted as the aggregation rule
in collaborative human decision-making due to its simplicity
and efficiency. Under the majority rule, the FC collects all the
local decisions D = [d; .. .d,] where d; € {0, 1} and compares
the statistic ' = D", d; to a threshold z = [n/2]. The FC
chooses H; if I' > z and chooses H, otherwise, i.e., whichever
hypothesis that has the majority votes is declared to be
true.

In past works on majority rule-based collaborative human
decision-making or crowdsourcing systems, e.g., [8], [23],
[24], and the references therein, it is always the practice
to select human agents whose error probabilities are small.
Note that this surrogate approach, although intuitive, yields
a guaranteed level of system performance when the humans
make local decisions independently of each other as we prove
in the following.

Proposition 2: In collaborative human decision-making
where the humans submit local decisions independently,
the majority rule-based decision rule at the FC has lower
probability of error when the average error probability of the
humans decreases.

Proof: In a group of workers with size n = 2k+1(k > 0),
suppose that each worker provides a binary answer O or 1
independently. The average probability of each worker making
an error in the local decision is p,. According to the majority
rule, the FC computes the sum of local decisions I and makes
the final decision by comparing I with z = k£ + 1. Without
loss of generality, we assume that the true answer is 1. In this
case, the FC decides O (makes an error) only when the number
of 1s submitted by the humans is less or equal to k. Note
that I" follows a binomial distribution with a total of n trials
and expected success probability 1 — p,. The probability of
error can be expressed using the regularized incomplete beta
function

Prx <k)=1,(k+1,k+1)

where 1, (a,b) = (B(po;a,b)/B(l;a,b)) with B(p,;a,
b) = [ w* ' (1 — w)’'dw. Since B(1,k + 1,k + 1) is
a constant given k and B(p,,k + 1,k + 1) is an increasing
function of p,, it is clear that the probability of error at the
FC decreases as p, becomes smaller. |

When there are correlations among the local decisions,
the probability that the majority rule makes an error, i.e., less

Ky, r.a00,,1(0:0}) =/ ﬂo/
ik RINR

1
i J

f(fj(rirj)drirj + 7T1/
| RO R!

0 W irpydrir; § 1 Gaidjd il (1)
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than z humans submit correct decisions, is expressed as

z

Po=>" D" Pr(0,)Pr(Q,)

y=0 AeS,

(14)

where S, is the set that contains all possible combinations of
y humans out of a total of » humans. O 4 represents the event
that all the humans in subset A make correct decisions and
0 , represents the event that all the humans in the complement
set of A make wrong decisions. Quantifying the value of P,
using (14) is difficult because the cardinality of S, is (;’)
which increases quite rapidly as n and y becomes large, and
both Pr(0 4) and Pr(Q 4) depend on the joint PDFs of local
decisions, which are hard to compute in general applications.

Markowitz’s portfolio theory (MPT) [25], [40] is the first to
analyze portfolio risk, diversification, and asset allocation in a
mathematically consistent framework. In portfolio selection,
each asset is an investment instrument that can be bought
and sold in the market, e.g., company stock. The return
value of each asset is modeled as a random value where
the mean value represents the expected value growth of the
asset and the variance represents the measure of risk. The
expected return of the portfolio is calculated as a weighted
sum of the individual assets’ returns. The portfolio’s risk is
a function of the variances of each asset and the correlations
of each pair of assets. MPT provides the solution of how to
construct a portfolio of multiple assets that the expected return
is maximized for a given level of risk.

We aim to solve the human selection problem by mapping it
to the portfolio selection problem under the MPT model. There
is an analogy between the two problems where we relate the
ith human’s average probability of making a correct decision
to the return of asset i. In such an analogy, 1 — J; corresponds
to the expected return (equivalently, J; corresponds to the
expected cost) and the covariance matrix Xs corresponds to
the uncertainty (or risk). Similar to assembling the portfolio
of assets under MPT, we select a subgroup of humans that
maximizes the sum of their probabilities of making correct
decisions (equivalently, minimizing the sum of their error
probabilities), while constraining the variability of the system
performance is below a certain level. Here, note that minimiz-
ing the sum of the humans’ error probabilities is consistent
with the objective of human selection where the humans make
decisions independently of each other.

A. Motivation for Portfolio Theory-Based Human Selection

Because of the correlation among the local decisions, vari-
ability (or variance) of the system performance is an important
criterion in determining the subgroup of human participants.
Selecting humans with a smaller average error probability does
not necessarily result in the highest accuracy at the FC. In the
following, we provide a toy example to illustrate our concern.

Motivating Toy Example: Consider that there is a pool of
six humans and we aim to select 3 of them to participate in
an inference task. Whether or not the humans make a mistake
in their local decisions are modeled as Bernoulli random vari-
ables b; for i =1, ..., 6 with the probabilities of error given
by p =1[p1 p2 p3 pa p5 pe]l =10.25 0.25 0.25 0.3 0.3 0.3].

We assume the case that the first three decision makers
are highly correlated such that they make correct or wrong
decisions at the same time. Hence, we have the correlation
coefficient of each pair among the first three decision makers
equal to 1, ie., p;; = 11if i,j € {1,2,3}. On the other
hand, we assume that each of the last three human agents
i = 4,5, and 6 makes the decisions independently of any
other decision maker in the pool. As a result, the correlation
coefficient p;; = 0 if i or j € {4,5,6} and i # j. Under
this model, the covariance matrix of the random variables b;,
denoted by X,, can be written as

0.1875 0.1875 0.1875 0 0 0
0.1875 0.1875 0.1875 0 0 0
s _|0.1875 0.1875 0.1875 0 0 0
b= 0 0 0 021 0 0
0 0 0 0 021 0
0 0 0 0 0 021

where the variance of a Bernoulli random variable is obtained
by var(h;) = p;(1 — p;) and the covariance is given by
cov(bi, bj) = pij(var(b;)var(b;))"/?. To select three out of
the six decision makers to perform the inference task with-
out considering their dependence structure, first, we choose
those that have low error probabilities. In the above problem,
the first three humans i = 1,2, and 3 have the lowest error
probabilities so that we choose the human selection vector
to be sy = [1 1 10 0 0], where 1 represents the selection
of the corresponding human and O represents no selection.
When the local decisions are aggregated via the majority rule,
the subgroup selected by s; has the probability p.; = 0.25
to make a mistake as the participants make wrong decisions
at the same time with a probability of 0.25. On the other
hand, if we set s = [0 0 O 1 1 1] and select the last
three humans whose error probabilities are larger, the majority
rule-based decision rule has the probability of error p,, =
G) (0.3)2(1 — 0.3) + (0.3)> = 0.216, where G) = 3 represents
the number of combinations of selecting two humans out of
three humans. We find that although the last three humans
have higher error probabilities, the selection of humans using
s> achieves a better system performance compared to the
selection using s;. Since the humans i = 4,5, and 6 act
independently of each other, it allows for more freedom in
terms of diversification, which reduces the probability that two
or more humans make mistakes together.

In the MPT model, an investor can reduce the risk by
holding a combination of assets that are not perfectly positively
correlated. In collaborative human decision-making, let Cy
denote the number of selected humans that make incorrect
decisions. When the recruited human decision makers are
less correlated with each other, the variance of Cy becomes
smaller. To provide an intuition, we continue with our toy
example and compute the variances of Cy when employing
the selection vector s; and s,

varc, (s1) = 51 Zps1" = 1.6875
vare, (s2) = s2Xps2" = 0.63

where the superscript ’ represents the transpose of the vector.
Compared to s;, the selection of independent decision makers
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using s, has a smaller value of Cy’s variance. When the
correlation among humans is low, it is unlikely that they make
mistakes at the same time. In such a case, Cy remains small
most of the time and the probability that Cy takes a large
value is negligible, which makes the variance of Cy small.
On the other hand, when the local decisions have a strong
correlation, there is a relatively large chance that they make
mistakes at the same time, causing the variance of Cy to be
large. It was also shown that along with the smaller variance
achieved by s,, the average probability of error p,, is smaller.
This motivates the application of MPT in our human selection
problem in the sense that a smaller variance of Cy corresponds
to diversification among human decision makers (i.e., the local
decisions are not highly correlated with each other), which
avoids the possibility of concurrent failures so that the system
performance can be improved.

B. MPT-Based Human Selection and Optimization Method

Following MPT, the risk-averse investors wish to design
portfolios that have the best expected return—risk tradeoff.
In our problem, the portfolio set corresponds to the pool
of human workers and we wish to select a subgroup to
participate in an inference task to ensure the quality of system
performance. The expected means and the covariance matrix
of the random variables that represent that the ith local
decision is incorrect are given by us and X5, which have
been derived in Section III. We seek to select the subgroup
to achieve two objectives, i.e., minimize the sum of expected
error probabilities® and reduce the variance of Cy.

Let s = [s1,...,58,...,5,] denote the human selection
vector, where s; represents whether or not the ith human is
selected. In the first formulation, we aim to minimize the sum
of the error probabilities of the selected humans while keeping
the variance of Cy below a target value o}

min p, = suj (15a)
S

st. ol =sXs8 <o}, (15b)

sl'!=mands; € {0,1} fori =1,...,n (15¢)

where 1 represents the all-one vector. In (15¢), we constrain
that a total number of m humans are selected and each s; has
to be a Boolean variable. In MPT, the problem of maximizing
the expected return at a given level of risk has an equivalent
dual representation where we minimize the variance of the
portfolio subject to a target value of expected return. Hence,
the dual formulation of the optimization problem (15a)—(15c)
is given by

mm a =s5Xss (16a)
sty =spuy < u, (16b)
sI'=mands; € {0,1} fori =1,...,n (16c)

where u; in (16b) denotes the threshold that upper bounds the
sum of selected humans’ error probabilities. The advantage of

3This objective coincides with the surrogate criterion for human selection
when they make local decisions independently, i.e., minimizing the average
error probability of the selected crowd workers as shown in Proposition 2.
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Algorithm 1 Solving the Optimization Problem (16a)-(16c)
1: PROCEDURE: Find the human selection vector s
2: Set the iteration count = 0 and the initial weights w(t
1,i =1,...,

3: Construct the weight
diag([w"w ... w"7).

4: Solve the minimization problem

)

matrix w! =

st = arg min SZBS,+¢HWts,Hf
s 1

st suy <, sl =m,

O0<s;<lfori=1,...,n

where ¢ is a properly designed parameter that is positive.
5: Update the weights fori =1,...,n
1
]s ] + €
where € > 0 is a parameter to provide stability to the
algorithm.
6: Repeat step 3-5 until a specified maximum iteration number
tmax 1S reached.
7: For the largest m entries from the final weight vector, set

the corresponding entries in s to be 1. Set the other entries
in s to be 0.

wlt+1

the second formulation given in (16a)—(16¢) compared to the
one given in (15a)—(15c) is that it is preferable to constrain
the value of u, rather than the target variance levels 2.
This is because typically it is hard for the project manager
to quantitatively relate the value of o2 to a specific level of
variability.

In contrast to MPT where the optimization variable is
continuous, we have s; € {0, 1} so that s is in a nonconvex set,
making the problem generally impossible to solve as the solu-
tion requires an intractable combinatorial search. We employ
the reweighted £ minimization approach [41] to solve this
binary constrained optimization problem by assigning the
weight w; to each element s;, where the algorithm iteratively
alternates between optimizing s and redefining the weights.
After a certain number of iterations, s converges to a steady
state and the entries that have large weights are set equal to
1, indicating that the corresponding humans will be selected.
To provide an example, we show the detailed procedures to
solve the problem (16a)—(16¢) in Algorithm 1.

In this section, we propose a collaborative human
decision-making mechanism while using PT to model the
correlations of the workers’ decisions and using concepts from
portfolio theory for worker selection. If the desired system
performance does not achieve a certain level of accuracy,
the FC may expand or reselect the worker pool to enhance
heterogeneity and improve system performance. The flowchart
of the system is presented in Fig. 3.

V. SIMULATION EXPERIMENTS

We conduct numerical experiments using MATLAB. First,
we evaluate the performance of collaborative decision-making
system that consists of independent local decision makers.
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task posted

I

FC selects a tentative
pool of workers

[ Decision making }

l Add more
Behavioral property analysis workers to
(PT parameters estimation) the pool or

l re-select the
pool of workers

Portfolio theory based
worker selection

I

Is the performance satisfactory?

No

Yes

FC recruits the selected
workers to perform the task

Fig. 3. Flowchart of the PT and portfolio theory-based collaborative human
decision-making system.
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Fig. 4. Bhattacharyya distance as the number of human experts increases
for different distributions of a.

As described in Section II, the Bhattacharyya distance is
used to measure the decision-making performance. In Fig. 4,
we plot the Bhattacharyya distance between the conditional
observation distributions under the two hypotheses as the
group size n increases from n = 1 to n = 100. In each of
the four curves, human decision-making accuracy a; follows
the following distribution: fixed at 0.7, uniform distribution
U (0.5,0.9) and Beta distribution within the interval [0.5, 0.9]
with parameters (2,2) and (5,5). The expected means of
the four distributions of a are the same u = 0.7, but
they have different variances. The variances of a in the
four curves (red, green, yellow, and blue) are 0.013, 0.008,
0.004, and 0, respectively. Results are obtained by averaging
over 5000 Monte Carlo simulations. It can be observed that
in these four distributions of o, the Bhattacharyya distance
increases linearly as more human experts collaborate on the

0.46

0.44

0.42
04
=038
036

0.34

0.32

0.3

Fig. 5. Threshold of LRT employed by a behavioral decision maker.

task. As the variance of the distribution from which o is
sampled becomes larger, the Bhattacharyya distance has a
higher increment rate. This motivates us to select those groups
that are composed of humans of diverse backgrounds to
achieve better decision-making performance.

Next, we provide some simulation results for the scenario
where local decision makers are correlated as described in
Section III. For illustration, we consider that a human deci-
sion maker solves a hypothesis testing problem, where under
‘Ho and H;, the conditional PDFs of the observation r are

Gaussian with means my = 0 and m; = 3, respectively,
and the same variance o2 = 3. We assume that the priors
are 79 = m; = 0.5 and the costs are cy; = 80, cjo = 20,
and c¢;1 = coo = —20. In Fig. 5, the threshold 7, of the

LRT employed by the human is plotted as a function of the
human’s loss aversion parameter A. For comparison, the red
line provides the benchmark where the human is rational and
the threshold of LRT is a constant, i.e., 7. It is observed that
when f = 1, the LRT threshold of the human deviates from
n and keeps decreasing as A increases. That is because as 4
becomes larger, the subjective cost of misdetection c¢o; = 80
is more significant than the cost of false alarm c;p = 20.
Hence, the threshold of the LRT should be decreasing to avoid
the possibility of miss detection. Similarly, when f = 0.88,
the LRT threshold 7, decreases as A increases. At a particular
value of A*, however, the blue curve intersects the red line,
indicating that the loss aversion parameter A* counteracts the
diminishing marginal utility effect with f = 0.88. Hence,
a human with certain cognitive bias parameters £ and 1 could
achieve the same decision-making performance as rational
decision makers.

We further conduct experiments for the worker selection
problem from a 30-human pool where we use assign the
label i to each human: i = 1,2, ..., 30. For the correlation
coefficient equations (11) and (12), we assume that the human
i and j have cognitive profile difference given by m;; =
0.2|i — j| for i, j € 1,...,30. For simplicity, the projection
functions ¢, (-) and ¢, (-) are assumed to be identity functions
and the constant parameter [p = 1. In this case, we have
prl = pi! = p™ = exp(—m;;). Moreover, the loss aversion
parameter of the ith human /; is assumed to follow a Beta
distribution Beta(a;, b;) with support [0 3] and the parameters
ai = 2+ 1i,b; = 3. Meanwhile, the ith and jth humans’
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Fig. 6. FC’s probability of error as m increases.

observations r;, r; as well as their loss aversion parameters 4;
and 4; have a correlation structure with correlation coefficient
p/. In simulations using MATLAB, for example, we use
the movnrnd function to generate correlated Gaussian random
variables ry,...,r,. To generate correlated Beta distributed
random variables, we first exploit the copularnd function to
get a vector of random variables generated from a Gaussian
copula with a certain correlation structure and, then, employ
the betainv function to transform the output of copularnd
into random numbers that follow the beta distribution.

Without loss of generality, we assume that H; is true so
that the ith human makes a wrong decision (i.e., §; = 1)
when he/she submits d; = 0 and makes a correct decision
(i.e., 6; = 0) when he/she submits d; = 1. We obtain the
mean vector us and covariance matrix Xs that characterize
the quality and dependence structure of the humans’ local
decisions. We formulate the MPT-based optimization problem
for human selection as given in (16a)-(16¢), where we set
the target error probabilities x; = 0.3 m, indicating that the
selected humans should have their averaged error probability
below 0.3. Algorithm 1 is used to solve the optimization
problem where m out of 30 humans are selected to participate
in the inference problem.

As m takes its value from {3, 5, ..., 21}, we plot the error
probability of the majority rule-based decision fusion with
respect to m in Fig. 6. The blue curve represents the scenario
where humans are selected using our proposed approach based
on MPT optimization. The red curve corresponds to the case
in which humans with the lowest individual error probabilities
are selected without considering their correlation structure.
As m increases, the FC’s error probability decreases for both
of the scenarios and it is observed that our proposed method
performs better for every value of m. By minimizing the
variance of the number of humans that make mistakes, our
algorithm does not favor selecting highly correlated local
decision makers. The diversification (or independence) among
the selected humans ensures that they are not likely to make
mistakes at the same time. Therefore, the system performance
improves.

Finally, we vary the optimization parameter u, in (16b)
and see how it affects the system performance. It should be
noted that u, controls the tradeoff between the two conflicting
objectives: 1) minimizing the average error probability of the
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Fig. 7. FC’s detection performance as a function of optimization parameter 7.

selected humans and 2) reducing the variance of Cy. A small
value of u, gives more emphasis to the first objective and a
large value of x4, gives more emphasis to the second objective.
On the one hand, u; cannot be too small as it limits the human
selection pool to a small range, where heterogeneity might not
be promoted. On the other hand, u, cannot be too large, and
otherwise, we might select humans whose error probabilities
are quite large (such as spammers and Byzantines) where the
quality of the system performance is not guaranteed. In the
previous simulation, we fixed the value of u, to be u; = 0.3 m,
which might not necessarily be optimal. In Fig. 7, we set
i, = tm and let ¢ vary. We plot the FC’s probability of
error for different values of ¢ for m € {3,5}. We also fit
a 4° polynomial curve to the data samples and show that
how the system performance changes with respect to ¢. It is
observed that in each case, there is a certain value of ¢ that
achieves the best system performance. It should also be noted
that the optimal parameter + when m = 3 is larger than the
optimal value of + when m = 5, indicating that when the
number of selected humans is small, it is desirable to enhance
the emphasis on heterogeneity to improve the performance of
group decision-making.

VI. CONCLUSION

From a distributed detection and information fusion perspec-
tive, we showed that promoting heterogeneity enhances the
performance of collaborative human decision-making. First,
we assumed that the independent local decisions are modeled
via the BSC model and the final result is aggregated through
the LRT-based decision rule. We showed that when the average
level of human accuracy is kept the same, high variability of
the human expertise leads to better system performance as it
results in a larger lower bound of the Bhattacharyya distance
at the FC. Next, we considered the more practical scenario
where humans have similarities in their behavioral properties
so that they make correlated local decisions. When the FC
employs the majority rule-based decision fusion, we proposed
an MPT-based human selection scheme so as to promote het-
erogeneity and reduce the probability of error while decision-
making. Our results corroborate the widely recognized benefits
and advantages of encouraging heterogeneity by providing
justification using signal detection theory.
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In future work, the model developed in this work can
be applied to guide the recruitment and decision fusion of
committee members, human scouts, and so on in various
decision-making scenarios that have humans collaboratively
making a final decision. The analysis of human cognitive
biases and the correlations among their decisions modeled
and analyzed in this article can be exploited to study the
group role assignment problem in role-based collaboration
where different agents are needed to be assigned to different
roles [42], [43].
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