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ABSTRACT

Thermal images reveal medically important physiologi-
cal information about human stress, signs of inflamma-
tion, and emotional mood that cannot be seen on visible
images. Providing a method to generate thermal faces
from visible images would be highly valuable for the
telemedicine community in order to show this medical
information. To the best of our knowledge, there are
limited works on visible-to-thermal (VT) face transla-
tion, and many current works go the opposite direction to
generate visible faces from thermal surveillance images
(TV) for law enforcement applications. As a result, we
introduce favtGAN, a VT GAN which uses the pix2pix
image translation model with an auxiliary sensor label
prediction network for generating thermal faces from vis-
ible images. Since most TV methods are trained on only
one data source drawn from one thermal sensor, we com-
bine datasets from faces and cityscapes. These combined
data are captured from similar sensors in order to boot-
strap the training and transfer learning task, especially
valuable because visible-thermal face datasets are lim-
ited. Experiments on these combined datasets show that
favtGAN demonstrates an increase in SSIM and PSNR
scores of generated thermal faces, compared to training
on a single face dataset alone.

Index Terms— generative adversarial networks,
thermal images, image translation

1. INTRODUCTION

Thermal imaging can support medical AI as a diag-
nostic tool since decades of physiological research have
shown that temperatures in facial thermograms are highly
correlated to vital measures and reveal signs of stress
and inflammation, otherwise hidden on visible images
[1, 2, 3, 4, 5, 6, 7]. However, due to time-consuming data
collection for human subjects using thermal cameras,
there is usually insufficient thermal medical data to train
any AI system for thermal imaging. To the best of our
knowledge, we introduce the first visible → thermal
(VT) facial translation method, which can be used to

bootstrap or augment thermal training data. The abil-
ity to generate a thermal face image from a visible face
may be challenging due to the fact that there are lim-
ited, paired thermal-visible face datasets [8]. Therefore,
the ability to bootstrap the image-to-image translation
task with additional training data from similar thermal
sensors that share the same optical properties would
improve training, even if the data are from different do-
mains (e.g. faces and cityscapes). We train on combined
visible-thermal datasets in our method, called favtGAN
(facial-visible-thermal-GAN or “favorite GAN”). favt-
GAN is a simple Generative Adversarial Network (GAN)
architecture built on the popular pix2pix framework [9].
Unlike pix2pix, favtGAN uses a multi-task discriminator
network to perform two prediction tasks: an auxiliary
network for predicting the thermal sensor label, and an
adversarial network for predicting whether the generated
thermal image is real or fake. We focus on the thermal
sensor class prediction as an auxiliary task in an attempt
to gain information about optical differences in images
resulting from various thermal sensors such as sensitiv-
ity and resolution (e.g. uncooled microbolometer VOx
sensor and BST ferroelectric sensor). favtGAN shows
markedly better image quality results over pix2pix when
combining data from face and cityscapes captured from
the same thermal sensor. Our contributions are:
• The first work to study VT translation of human faces,

by developing a pix2pix-based favtGAN model.
• We study the image quality of generated thermal face

images which is important for medical applications.
• We bootstrap training of image translation with addi-

tional data from different domains but similar thermal
sensors to improve thermal image generation.

1.1. Related Work

Several TV image-to-image translation GANs operate
in the thermal → visible (TV) direction. These are
not used for medical applications, but rather law en-
forcement and person re-identification focused on re-
constructing the visible identity of persons from thermal
surveillance images and thermal face recognition [10,
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Fig. 1: favtGAN and Three Variations for Using the Thermal Side Labels as Noise and/or Real Inputs to the Discriminator.
(a) favtGAN Baseline model where G is conditioned on “noisy labels”,cf , in the form of discrete integers (0, 1, 2), and D is
conditioned on real true sensor labels, cr in the same set of integers; (b) “No Noise” variation conditions G and D only on cr; (c)
“Noisy Labels” variation conditions G, only, on cf ; (d) “‘Gaussian” variation conditions G, only, on both Gaussian noise, z, and
cr . Green, red, and yellow lines indicate three adversarial losses and three auxiliary losses - one for the G (green), realD (red), and
fake D (yellow). PI refers to the predicted image (1, 16, 16) tensor (fake or real) and PL refers to the predicted sensor label. Full
symbol notation is in the Approach.

11, 12, 13, 14, 15, 16]. Further, the TV GAN approaches
we identified are trained on one single dataset collected
by a single thermal sensor [1, 2, 3, 4, 5, 6, 7, 11, 12].
ThermalGAN [17] is a pipeline where the first generator
is BicycleGAN [18] with some slight modifications to
U-NET [19], that outputs multi-modal images of seg-
mented masks, followed by a second generator using
pix2pix [9]. ThermalGAN is trained and tested on a
single dataset from one sensor, and is focused not on
faces but the entire body for surveillance applications.
“TV-GAN” [10] also uses pix2pix without modification,
and implements a closed set recognition identity task
using log loss. Side information has been used in TV
GANs to explicitly regularize networks, where Zhang
et al. [10] uses one-hot encoding of subject identifiers,
Kniaz et al. [17] uses temperature vectors, and Chen and
Ross [15] use facial labels (i.e left eye, right eye, right
brow, etc.). In another approach, Zhang et al [11] explic-
itly feature-engineer their design for polarimetric facial
TV translation. Their approach involves preservation of
texture and geometric features by leveraging multiple
thermal polarimetric modalities, through feature-level
fusion of Stokes images. Li et al. generates thermal
pedestrian landscapes from visible images as a data aug-
mentation tool for a downstream object detection task
[20]. They apply CycleGAN [21] for the landscape gen-
eration followed by an intensity inversion transformation
[20]. The TV methods are different from our approach as
they customize their networks with perceptual loss to im-
prove the resolution quality, specific for data generated
from one thermal sensor type. Their primary goals are
to guarantee the identity from synthesized visible faces.
Whereas, in our approach we seek to combine data from
multiple thermal sensors in order to reconstruct thermal
facial features. While the work by Li, et al. is similar,
their focus is on the entire body and pedestrian land-
scapes versus close-up thermal face translation which
makes our approach different.

2. APPROACH

Our approach, favtGAN, modifies the pix2pix image-to-
image translation framework by conditioning the gener-
ator and discriminator on thermal sensor labels shown
in Fig.1a. We refer to the favtGAN model as the “favt-
GAN Baseline” for the rest of the paper. The discrim-
inator is a multi-task network that outputs fake or real
thermal patch probabilities used to calculate an adversar-
ial loss, and probabilities to calculate an auxiliary loss
that predicts the thermal sensor label. We design three
variations of favtGAN shown in Fig.1b-d, to test the im-
pact of using fake sensor labels, cf , or cr, real sensor
labels to condition the network. Notation for Fig. 1
and formulas that follow are: G is the generator, D is
the discriminator, cf are noisy labels which are random
discrete integers in the set of thermal sensor labels (i.e.
0, 1, 2), cr are the real thermal sensor labels, A is the
real visible image, B is the real thermal image, and B̂
is the generated thermal image. Our code is available at
https://github.com/umbc-sanjaylab/favtGAN.

2.1. Generator
We use U-NET [19] as a single generator for favtGAN.
The generator uses both the noisy class label cf and visi-
ble image A to generate images B̂ = G(A, cf ).The total
generator loss in Eq.4 is a composition of the adversarial
loss in Eq.1., auxiliary (cross entropy) loss Eq.2, and the
Limage
1 pixel reconstruction loss shown in Eq.3. Note

that in Eq.1, we adopt the least-squares GAN approach
(LSGAN) [22] as the generator adversarial loss between
the discriminator output of D(A, B̂, cf ) and 1, the real
adversarial label. We applied one-sided label smoothing
where 1 is replaced with 0.9 per [23].

LAdv (G) =
1

2
E

A∼pvis ,cf∼U{0,1},B̂∼pG

[(D(A, B̂, cf )− 1)2]

(1)
Laux (G) = E

A∼pvis ,cf∼U{0,1},B̂∼pG

[logC(A, B̂, cf )] (2)
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Limage
1 (G) = E

B∼pthr ,B̂∼pG

‖B − B̂)‖1 (3)

LG = LAdv (G) + Laux (G) + λLimage
1 (G) (4)

2.2. Discriminator
We use the same architecture as the pix2pix PatchGAN
discriminator but modify it by adding a second layer that
performs sensor class label prediction using softmax ac-
tivation. As a result, the discriminator takes as input the
visible image, thermal image, and the sensor label. Us-
ing this input, our discriminator conducts the adversarial
task of predicting real versus fake on a 16 x 16 patch
across a 256 x 256 input and second, a classification task
to predict the sensor class labels c for the input. The ad-
versarial real and fake discriminator losses are shown in
Eq.5 and Eq.6, respectively, using the LSGAN approach
[22]. Auxiliary losses are shown in Eqs. 7 and 8. The
total discriminator loss is shown in Eq.9. The full objec-
tive function for favtGAN is given by Eq.10, and solved
using the Adam optimizer.

LAdvDreal
=

1

2
E

A∼pvis,B∼pthr ,cr∼pl
thr

[
(D(A,B, cr)− 1)2

]
(5)

LAdvDfake
=

1

2
E

A∼pvis ,cf∼U{0,1},B̂∼pG

[
(D(A, B̂, cf )− 0)2

]
(6)

LauxDreal
= E

A∼pvis,B∼pthr,cr∼pl
thr

[logC(A,B, cr)] (7)

LauxDfake
= E

A∼pvis ,cf∼U{0,1},B̂∼pG

[
logC(A, B̂, cf )

]
(8)

LD =
1

2

[
(LAdvDreal

+ LauxDreal
) + (LAdvDfake

+ LauxDfake
)
]

(9)
G∗ = min

G
LG +min

D
LD (10)

3. EXPERIMENTS

3.1. Datasets
We use four paired thermal-visible image datasets: Eu-
recom [24], FLIR ADAS [25], Iris [26], and Oklahoma
State University (OSU) Color-Thermal [27]. From 2100
images, the Eurecom dataset was converted into a paired
dataset of 1050 images (945 train images and 45 train
subjects, 105 test images and 5 test subjects). The Iris
dataset consists of faces with expressions (mouth open,
smiling, mouth closed), and five illumination rotations.
We only use expressions leading to 944 paired images
(846 train images and 26 train subjects, 98 test images
and 3 test subjects). We used the Advanced Driver As-
sistance Systems (ADAS) made by Flir [25] and ran-
domly sampled images to make 940 pairs (842 train im-
ages, 98 test images) to balance against Iris and Eure-
com. We also used the OSU dataset [27] consisting of
1054 pairs (843 train images, 211 test images) taken from

“Sequence 1”. Eurecom and ADAS thermal images are
captured by Flir cameras which use microbolometer sen-
sors. Iris and OSU used a Raytheon Palm-IR-Pro and
Raytheon 300D thermal camera, respectively, which are
BST ferroelectric sensors.

3.2. Experimental Design
There are no VT GAN translation architectures designed
for thermal face translation, to our knowledge. As a
result, we compared our approach to pix2pix, which has
been used in both “TV GAN” [10] and ThermalGAN
[17], in addition to three variations of the favtGAN ar-
chitecture shown in Fig.2. Prior to selecting pix2pix as a
comparative model, we also trained our datasets on Cy-
cleGAN [21] and StarGAN [28] which resulted in poor
generated thermal images. We implement seven total
experiments to generate Eurecom and Iris thermal faces.
First, we train pix2pix without modification on only the
single face dataset of either Eurecom or Iris to establish
baseline SSIM and PSNR scores. We then train five
experiments on the combined face datasets of Eurecom
+ Iris (EI) using favtGAN and pix2pix unmodified. The
seventh experiment, indicated in bold in Table 1, trains
the best performing favtGAN on different cityscape and
human faces: ADAS + Eurecom (EA), and OSU + Iris
(IO). We modified the implementation of the pix2pix
GAN developed by Erik Lindernoren [29]. Models were
trained using PyTorch on a RTX 8000 GPU, trained to
2000 epochs. Each experiment is set to a batch size of 12,
Adam optimizer with a learning rate of 0.00002, b1 of
0.5, b2 of 0.999, decay of 100, 3 channels, and a lambda
hyperparameter for the pixel reconstruction loss of 100.
We use SSIM and PSNR to evaluate the image quality of
the generated thermal faces since these metrics have been
used to judge the quality of multispectral and near IR im-
ages from remote sensing, polarimetric face recognition,
and biomedical applications [11, 30, 31, 32, 33].

4. RESULTS

4.1. Quantitative Results
Results are shown in Table 1. We obtain the best re-
sults when training the favtGAN Noisy Labels variation
on faces and cityscapes with similar thermal properties.
The ADAS + Eurecom experiment trained on favtGAN
Noisy Labels show 2.69% increase of SSIM and 3.29%
increase of PSNR, over pix2pix on Eurecom alone. The
same domain transfer effect occurs with Iris. Training
the favtGAN Noisy Label implementation on OSU + Iris
led to a 0.72% increase of SSIM and 2.58% increase of
PSNR scores, over pix2pix trained on Iris, alone. But,
we observe that training favtGAN Baseline on combined
faces (Eurecom + Iris), even from different sensors, im-
proves scores over training on Eurecom, alone, with a
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Fig. 2: Generated Thermal Images Translated from the Visible Test Set. Samples are shown from the best performing favtGAN
experiment trained on combined face and cityscape datasets, compared to training pix2pix on a single dataset. Average SSIM and
PSNR scores are provided. Red boxes show regions of interest, which are magnified in the second row. “NL”: Fig.1c Noisy Labels
variation.

2.09% improvement in SSIM and 0.98% improvement
in PSNR. However, best results are seen when combin-
ing data from similar thermal sensors. Even if the do-
mains are different, this may be a practical way to boot-
strap training and transfer learning for VT face transla-
tion. These results are significant because improved im-
age quality represents physiological accuracy of temper-
ature patterns. The favtGAN variations that do not condi-
tion the generator on noise, but instead use the true sensor
labels, cr, show the lowest scores.

4.2. Qualitative Results
In Fig.2 we show samples comparing pix2pix trained on
a single dataset and the best performing favtGAN ar-
chitecture trained on the combined face and cityscape
dataset. Pix2pix images trained on a single dataset
alone, generate coarser textures and darker pixels than
favtGAN. The red box shows the nose region which
we observed had the greatest variability when quali-
tatively inspected. These are magnified in the bottom
row. Pix2pix trained only on Eurecom shows structural
deformities and smudging with less articulation than
favtGAN. Iris images are more challenging where the
differences are nuanced. The thermal image generated
from pix2pix has slightly coarser texture on the right
cheek compared to the favtGAN image. The nose re-
gions are different where pix2pix generates lighter pixels
and irregular structure than favtGAN. The placement of
pixels, their contrast, hue, and distribution is important
for thermal physiology because they are representative
of facial temperatures. These temperatures are linked
to different physiological responses and conditions [1].
Therefore, failed reconstruction can lead to poor medical
interpretation.

5. CONCLUSION

We have demonstrated the ability to implement visible-
to-thermal image translation of human faces using favt-
GAN, a modified pix2pix network conditioned on ther-

Table 1: Image Quality Metrics using Mean SSIM and
Mean PSNR for Generated Thermal Images, Translated
from the Visible Test Set. SSIM % and PSNR % show the
relative change compared to pix2pix trained only a single face
dataset. FG: favtGAN

Eurecom

Dataset Experiment SSIM PSNR SSIM % PSNR %
Eurecom pix2pix 0.906 32.048 - -
EI pix2pix 0.924 32.133 1.98% 0.26%
EI FG-Baseline 0.925 32.366 2.09% 0.98%
EI FG-No Noise 0.914 29.230 0.85% -9.64%
EI FG-Noisy Labels 0.925 31.835 2.02% -0.67%
EI FG-Gauss. Noise 0.909 28.242 0.36% -13.48%
EA FG-Baseline 0.931 33.104 2.69% 3.19%
EA FG-Noisy Labels 0.931 33.139 2.69% 3.29%

Iris

Dataset Experiment SSIM PSNR SSIM % PSNR %

Iris pix2pix 0.685 24.158 - -
EI pix2pix 0.681 23.946 -0.54% -0.89%
EI FG-Baseline 0.682 24.060 -0.37% -0.41%
EI FG-No Noise 0.653 22.000 -4.91% -9.81%
EI FG-Noisy Labels 0.682 23.990 -0.42% -0.70%
EI FG-Gauss. Noise 0.652 22.083 -5.07% -9.40%
IO FG-Baseline 0.686 24.474 0.15% 1.29%
IO FG-Noisy Labels 0.690 24.797 0.72% 2.58%

mal sensor class labels. Empirical results show that train-
ing favtGAN on combined faces and cityscapes data im-
proves image quality if they share similar thermal sensor
types. These results are preliminary and open up many
new research questions to include explicit application of
domain adaptation of various thermal domains, and mod-
eling optical long-wave infrared properties.
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