SURFNet: Super-resolution of Turbulent Flows with
Transfer Learning using Small Datasets

Octavi Obiols-Sales
University of California, Irvine
Irvine, California
oobiols@uci.edu

Nicholas P. Malaya
Advanced Micro Devices, Inc.
Austin, Texas
nicholas.malaya@amd.com

Abstract—Deep Learning (DL) algorithms are emerging as a
key alternative to computationally expensive CFD simulations.
However, state-of-the-art DL approaches require large and high-
resolution training data to learn accurate models. The size and
availability of such datasets are a major limitation for the
development of next-generation data-driven surrogate models
for turbulent flows. This paper introduces SURFNet, a transfer
learning-based super-resolution flow network. SURFNet primar-
ily trains the DL model on low-resolution datasets and transfer
learns the model on a handful of high-resolution flow problems —
accelerating the traditional numerical solver independent of the
input size. We propose two approaches to transfer learning for
the task of super-resolution, namely one-shot and incremental
learning. Both approaches entail transfer learning on only one
geometry to account for fine-grid flow fields requiring 15x less
training data on high-resolution inputs compared to the tiny
resolution (64 x 256) of the coarse model significantly, reducing
the time for both data collection and training.

We empirically evaluate SURFNet’s performance by solving
the Navier-Stokes equations in the turbulent regime on input
resolutions up to 256x larger than the coarse model. On four
test geometries and eight flow configurations unseen during
training, we observe a consistent 2 — 2.1x speedup over the
OpenFOAM physics solver independent of the test geometry
and the resolution size (up to 2048 x 2048), demonstrating both
resolution-invariance and generalization capabilities. Moreover,
compared to the baseline model (aka oracle) that collects large
training data at 256 x 256 and 512 x 512 grid resolutions,
SURFNet achieves the same performance gain while reducing
the combined data collection and training time by 3.6x and
10.2x, respectively. Our approach addresses the challenge of
reconstructing high-resolution solutions from coarse grid models
trained using low-resolution inputs (i.e., super-resolution) without
loss of accuracy and requiring limited computational resources.

Index Terms—ML for science, computational fluid dynamics,
deep learning, super-resolution, transfer learning, turbulent flows

I. INTRODUCTION

Computational Fluid Dynamics (CFD) simulations that
solve the complex Navier-Stokes equations are ubiquitous
in both laminar and turbulent flows [1, 2, 3, 4, 5, 6, 7].
Engineering systems of interest such as aerospace design
exploration (e.g., designing airfoils for aircraft wings) require
resolving fine-scale physics in the turbulent regime to produce

Abhinav Vishnu
Advanced Micro Devices, Inc.
Austin, Texas
abhinav.vishnu@amd.com

Aparna Chandramowlishwaran

University of California, Irvine
Irvine, California
amowli @uci.edu

high-fidelity solutions. To account for more aspects of the
physical phenomena being modeled necessitates an increase in
the resolution of the system, resulting in high computational
costs. Figure 1 shows the time-to-solution with increasing grid
size for a turbulent flow simulation around a National Advisory
Committee for Aeronautics (NACA) airfoil. A dual-socket, 40-
core system requires ten seconds at a resolution of 64 x 256,
and 100 minutes at 2048 x 2048 for a single airfoil shape in
one flow configuration (one test case). In aircraft design, there
are typically many airfoil shapes [8], each of which requires
simulations performed across a range of parameters such as
Reynolds (Re) numbers, various angles of pitch, yaw, and roll
to account for rotation as well as different angles of attack,
resulting in thousands of test cases. To address this challenge,
super-resolution is an approach to reconstruct fine-scale flow
physics from coarse-grid solutions.

102 4

10 4

10° 4

Time to Convergence (min)

T T T T T
64x256 256x256 512x512 1024x1024 2048x2048

Spatial resolution
Figure 1: Time to convergence for flow around a NACA4415 airfoil
at different spatial resolutions on a dual-socket Intel Xeon Gold 6148
CPU (total 40 cores).

Although mathematical models such as Large Eddy Sim-
ulations (LES) [9] and Reynolds-Averaged Navier-Stokes
(RANS) [5] that relate coarse-scale physical effects with fine-
scale solutions are common place, most recent applications of
super-resolution employ deep learning (DL) [10, 11, 12, 13,
14, 15, 16, 17]. This popularity of DL is due to its tremendous
success in natural language processing [18] and computer
vision [19, 20].

Table I summarizes the state-of-the-art approaches for accel-

Table I: Comparing state-of-the-art approaches in DL for 2D CFD simulations on nine different features. SURFNet is a novel network-
based transfer learning (TL) framework that (1) generates accurate solutions up to 2048 x 2048 spatial resolutions for turbulent flows
from low-resolution models, (2) generalizes to unseen-in-training geometries, (3) meets the original convergence constraints of traditional
CFD solvers, and (4) collects data at low-resolution on coarse grids for training — whereas prior works target non-turbulent or non-viscous
flows [16, 17, 22, 24], only test on geometry domains that were part of the training phase [13, 14, 21], replace partly [24] (left yellow dot)
or entirely [13, 14, 21, 22] traditional solvers with a neural network surrogate not meeting convergence constraints, and most importantly,
train with data downsampled from high-resolution simulations or are unsupervised (right yellow dot) [13, 14, 16, 17, 24]. NO stands for

Neural Operator and CNN for Convolutional Neural Network.

Training

Test Highest
Meets . data Error
Target Geometry Resolution Test Error .
Related Work convergence . collected . . value Technique
Flow (PDE) Unseen H Invariant Spatial metric
. . constraints on . (best)
in Training . Resolution
coarse-grids
Fourier Neural Operator [14] Darcy ° ° ° 421 x 421 RE 1x 1072 NO
Fourier Neural Operator [14] Navier-Stokes) ° ° 256 x 256 RE 8.6 x 1073 NO
Graph Kernel Network [16] Darcy ° ° ° 241 x 241 Relative L> 3.7 x 1072 NO
Bhattacharya et al. [17] Darcy) ° ° 421 x 421 RE 2x 1073 NO
MeshFreeFlowNet [13] Rayleigh-Bénard) ° ° 4 x 512 NMAE 3.3x 1072 CNN
Gao et al. [15] Laminar ® ® ° 200 x 200 RE 0.025 CNN
TFNet [21] Rayleigh-Bénard) ° °) 1792 x 256 RMSE 200 CNN
Guo et al. [22] Laminar ® [128 x 256 RME 1.76% CNN
CFDNet [23] Navier-Stokes ° 64 x 256 RME 0% CNN
Smart-fluidnet [24] Eulerian 1024 x 1024 MAE 9x 1073 CNN
SURFNet (this paper) Navier-Stokes 2048 x 2048 RME 0% TL

erating CFD simulations using DL and categorizes them across
several features. First, the majority of Convolutional Neural
Network (CNN) based approaches are finite-dimensional maps
and hence lack resolution-invariance [21, 22, 23, 25, 26].
Mesh-free, resolution-invariant DL methods are a potential
alternative to query fine-scale flow physics [14, 16, 17]. How-
ever, these approaches use low-resolution data downsampled
from high-resolution solutions to train the network. As a result,
current mesh-free methods suffer from the same limitation as
classical CNN-based approaches that require a large number of
computationally expensive simulations to collect training data
at high resolutions. Practical CFD simulations require high
spatial resolutions (such as 1024 x 1024) according to NASA’s
FUN3D and CFL3D solvers [27] making current DL ap-
proaches computationally prohibitive (see Figure 1). Second,
most approaches [13, 14, 15, 16, 17, 21] lack generalization
to unseen geometries where the test geometry is a subset of
the training data — a key limitation for CFD researchers/prac-
titioners. Third, only a limited number of approaches support
super-resolution of turbulent flows that are significantly more
challenging than laminar flows [15] and ubiquitous with a wide
range of applications in aerodynamics, atmospheric science,
turbomachinery, and propulsion [13, 23, 25, 26]. Lastly, it’s
common to use DL algorithms as a pure surrogate model
that entirely replaces the CFD solver, thereby not providing
the same convergence guarantees as the latter. There is a
pressing need to design DL based models for super-resolution
of turbulent flows that (a) eliminates the need for extensive
data collection at high resolutions, (b) provides discretization
and resolution-independent acceleration, and (c) can generalize
to unseen geometries and flow configurations while meeting
the convergence guarantees of the traditional physics solvers.

To address the above need, we develop SURFNet (SUper-
Resolution Flow Network), a novel approach to reconstruct
fine-scale flow physics from coarse grid data by primarily

training the DL model on low-resolution inputs. Using this
coarse-model (CM), SURFNet transfer learns the model on
high-resolution turbulent flow solutions, significantly reducing
the overall data collection time and the total size of the
training set. More specifically, this paper makes the following
contributions:

o First, we present an 8-layer CNN that is adequately
expressive to capture different geometries and flow con-
figurations. The CNN is trained on low-resolution inputs
(64 x 256 grid size) using ten geometries and nine
variations of each geometry to produce a coarse-model
(CM) (Section III-B).

« Then, to enable efficient super-resolution, we propose two
variations of transfer learning — 1) one-shot transfer learn-
ing (OSTL): learning is conducted from CM to the target
resolution in a single shot, and 2) incremental transfer
learning (ITL): learning is done step-by-step incremen-
tally on the training set of intermediate discretizations
up to the target resolution (Section III-D). We show
that one-shot learning is inadequate for reaching oracle
(i.e., a full model trained at high resolutions) accuracy,
and incremental learning where the model is fine-tuned
with data from intermediate discretizations is critical for
reaching best-case speedups, especially at higher target
discretizations (Section V-A).

« We empirically evaluate SURFNet by solving the RANS
equations in the turbulent regime on four geometries
and eight flow configurations unseen during training.
SURFENet achieves a consistent speedup of 2 - 2.1x with
ITL at up to 2048 x 2048 spatial resolutions over the
OpenFOAM physics solver independent of the resolution
size and test geometry, demonstrating both resolution-
invariance and generalization capabilities (Section V-B).

« SURFNet eliminates the need to collect exhaustive train-
ing datasets at high resolutions to account for fine-

scale physical phenomena. This computational efficiency
enables SURFNet to achieve oracle accuracies while
significantly reducing the size of the training dataset by
15x, consequently reducing the combined data collection
and training time by 3.6x and 10.2x, respectively at
256 x 256 and 512 x 512 grid sizes (Section V-C).

II. BACKGROUND

We use the steady incompressible RANS equations to solve
turbulent flows. The RANS governing equations describe the
fluid motion as follows:

ou;

- oU; 0 B ou;, 90U,

Ujazj = a—xj —(p) 0i5 + (v+ 1) (&’Cj + 89;)] 2)

where U is the mean velocity, p is the kinematic mean
pressure, v is the fluid viscosity, and 14 is the eddy viscosity.

The RANS equations provide a time-averaged solution to
the incompressible Navier-Stokes equations at the expense of
yielding a non-closed equation. Closing the equation is usually
done through Boussinesq’s approximation [28], which yields
the eddy viscosity. The eddy viscosity is found through tur-
bulence modeling. The Spalart-Allmaras one-equation model
shown below provides a transport equation to compute the

modified eddy viscosity, .
Cu e
o) (5

1] 0 . Op ov ov

LA CEF AR A

Then, we can compute the eddy viscosity from o as

vy = Ufy1. These equations represent the most popular

implementation of the Spalart-Allmaras model. The terms f,1,

S, and fto are specific to the model. They contain, for example,

first order flow features (magnitude of the vorticity). Cp1, Cy1,

Cy2, K, and o are constants also specific to the model, found

experimentally. d is the closest distance to a solid surface. The

first original reference of the model details the equations and
the values of these constants [29].

(D

- OV

UZGTQ = Cy1 (1 — fr2) SU — |:Cw1fw -

III. SURFNET: TRANSFER LEARNING FOR
SUPER-RESOLUTION FLOW SIMULATIONS

Our objective is to accelerate the convergence of high-
resolution turbulent flow simulations. We achieve this by
reconstructing fine-grid flow solutions from coarse grid models
referred to as super-resolution with minimum data collection
at higher resolutions.

In this section, we first describe the strategy used to accel-
erate the convergence of the equations described in Section II
with DL. Then, we describe the design of the CNN archi-
tecture to train the coarse model (CM) with low-resolution
data. Finally, we present SURFNet, a novel transfer learning-
based super-resolution approach that relaxes the demand for
generating expensive and time-consuming training data to train
accurate models for discretizations at higher resolutions.

A. Accelerating the convergence of fluid simulations

To accelerate the numerical convergence of the equations in
Section II, we define a finite-dimensional parametric map G
such that 2V = G (2';6,,) where 2V, 2! € R™*"** repre-
sent the tensors of z flow variables on a m x n grid domain
at convergence and any intermediate iteration respectively, N
is the number of iterations required for convergence with the
physics solver, and I (0 < I < N — 1) is any intermediate
iteration of the solver.

At each [, the physics solver computes four flow fields in
the 2D grid domain of the simulation (i.e., z = 4): the x-
velocity component (U), the y-velocity component (1), the
pressure (P), and the modified eddy viscosity (v). If the grid
resolution is m X n, each field is of size m xn. We concatenate
the four flow variables together, generating an input tensor, 2’
of size m x n x 4. The output tensor has the same shape as the
input tensor. The difference between the input and the output
is that the latter has the flow field values at steady-state, N,
As aresult, G parameterizes the solution operator that takes an
intermediate flow field and maps it to its steady-state solution.

A popular candidate for learning G is CNNs. However, as
seen from Table I, the majority of the CNN-based approaches
present a solution that does not satisfy the conservation
laws [22, 25, 30, 31], which is sub-optimal for CFD practi-
tioners. There have been recent attempts to provide physically
consistent solutions. However, these methods either severely
restrict the generalization capacity of the network to specific
flow configurations [13, 24] or present boundary-constrained
loss functions that require training a new model for every new
instance of the same fluid problem [32, 33, 34, 35].

To circumvent these limitations, other works [23, 36] train
a domain-agnostic DL. model and subsequently augment the
model’s inference with a refinement stage, where the physics
solver constrains the model’s prediction to reach accelerated
convergence. Refinement consists of (a) feeding the CNN’s
prediction back into the physics solver, (b) imposing the
boundary conditions, and (¢) running the solver to conver-
gence. We adhere to the latter approach because it allows
us to retain the advantages of domain-agnostic training while
simultaneously meeting the original convergence constraints of
the physics solver. The solution, therefore, has a 0% relative
mean error.

B. Coarse Grid Network

We aim to learn a generalizable model that can predict
flow around rotated geometries (i.e., varying pitch angle,)
and changing flow fields (i.e., angle of attack, «) as they are
critical features in design exploration and shape optimization.
For instance, it is common practice to simulate the flow field
by varying the angle of the incoming flow and rotating the
airfoil geometry [31].

To capture such complex flow phenomena, we design an
eight-layer, convolutional-deconvolutional neural network (4
convolution layers followed by 4 deconvolution layers). The
number of filters are, in order: 16, 32, 128, 256, and 256, 128,
32, 16. An illustration can be seen in Figure 2. The choice

64 64

16 32 128 256

(5x5) (5x5) (5x5) Conv2D (5x5) Conv2D

LAY Conv2D Conv2D

4-channel
Input

256 128 32 16

5x5) Conv2DTr 5x5) Conv2DTr (5x5) (5x5)
(6x5) Conv (8x5) Conv Conv2DTr Conv2DTr

Vss Pos Vos Usgs

4-channel
Output

Figure 2: CNN and its input-output representation. The CNN is a symmetric, fully convolutional-deconvolutional neural network. The input
and the output are a 4-channel tensor image: each channel represents one flow variable (x-velocity U, y-velocity V, pressure P and modified
eddy viscosity 7). The difference between the input and the output tensors is that the former has the flow values of an intermediate iteration

(1), while the latter is the flow field at steady-state (ss).

of the architcture is motivated by two reasons. First, recent
works have successfully leveraged similar designs for physical
system emulation [22, 23]. Second, the convolution operator
is an optimal candidate to extract existing spatial correlations
in and among the fluid variables. We use a deeper network
compared to other approaches [22, 23] (8- vs 6-layer CNN)
because the training dataset is larger and has more features
to learn (e.g., rotation). All layers have a filter size of 5 x 5
and a stride of 1. This overlap captures both the short and
long (spatial) range dependencies between the flow variables
while covering all regions of the flow field present in the
input image. We use the LeakyReLU activation function for all
layers because the output image contains real-valued variables.

C. Why Transfer Learning?

The CNN in Figure 2 relies on intermediate and final
solutions of flow simulations to train the solution operator, G.
The ideal scenario in machine learning is the availability of
vast amounts of labeled training data for supervised models.
However, both collection of large-scale high-resolution data
and training with large input sizes are prohibitively expen-
sive (see Figure 1). An alternate approach is to use the
convolutional operator calibrated with low-resolution data to
predict high-resolution solutions. Although this is feasible,
the accuracy reduces dramatically, especially for turbulent
flows as we show empirically in Section V. Therefore, CNN-
based approaches demand end-to-end re-training for different
resolutions and discretizations to achieve constant error.

The above limitations motivate the use of transfer learning
(TL) to both solve the problem of insufficient training data at
higher resolutions and to achieve resolution-invariance across
discretizations. TL is a popular technique that relies on trans-
ferring a trained model across different learning tasks or from
one model to another [37, 38]. It has been successfully applied
to different applications such as drug discovery [39], disease
detection [40], natural language processing [41], and machine
fault diagnosis [42].

We propose another novel application of TL that leverages
the correlations inherent between low- and high-resolution
inputs of turbulent flows. Low-resolution solutions of fluid
simulations contain critical information that can be effectively

extracted for high-resolution flow prediction: low-resolution
solutions capture all present flow structures [2], even complex
ones (for instance, the wake region behind solid bodies after
flow separation). However, they do not resolve them, as high-
resolution grids do. Therefore, given a pre-trained CNN model
on large datasets at low-resolution (i.e., coarse model), our
objective is to transfer the trained model to the target fine-
grid discretization to append the unresolved flow informa-
tion. An advantage of our super-resolution TL methodology
is that the input is truly from coarse-grid simulations, not
downsampled from high-resolution data as in the state-of-
the-art [14, 16, 17]'. This eliminates the requirement for
generating computationally demanding (and in some cases
intractable) data to build a high-resolution model. In the rest
of this section, we describe the transfer learning pipeline and
how we account for fine-scale physics and dynamics.

D. Super-Resolution with Transfer Learning

Given r. : x. X y. where r. is the coarse-grid resolution
corresponding to the discretization . X y., the super-resolution
task of SURFNet is to recover solutions at fine-scales ry : xy X
yrl f=1,...,t where xy X yy is a fine-grid discretization and
r§ > re, Vf. We implement network-based transfer learning
as illustrated in Figure 3 and propose two variations for super-
resolution as described below.

One-Shot Transfer Learning (OSTL). In this approach,
model weights are transferred from the CM trained with 7.
to the target resolution, r; in a single training step. For
example, if we desire to recover high-resolution flow fields at
2048 x 2048, we transfer learn from 64 x 256 to 2048 x 2048
in a single shot. This approach is illustrated in Figure 3 with
a red, dashed line.

Incremental Transfer Learning (ITL). An alternative ap-
proach to OSTL is to train the CNN with the large-scale low-
resolution dataset and perform TL in a step-wise manner. That
is, instead of transfer learning from r. to the target resolution
directly, ¢, we pass through intermediate resolutions step-
by-step from the low resolution to the target high resolution

'Data downsampled from higher resolutions is not the same as data gener-
ated from coarse-grid solutions. Low-resolution data downsampled from high-
resolution solutions contain information of resolved complex flow structures,
whereas this information is inexistent in coarse-grid solutions.

SURFNet

Transfer Learning:

weights weights

¥
P
Vy

CNN training
\/
\/

it

Train the CNN with low-resolution data

Small dataset of
input-output samples

@

Large dataset of
input-output samples

@

Incremental

H
transfer learning
..... »

Fine-tuning

—0— —0—

Training

One-shot
transfer learning V

Figure 3: SURFNet (left) and its inductive transfer learning (right) for super-resolution of turbulent flows. A large dataset is collected at
low resolutions to train the CNN and obtain the coarse model. Small data is collected at higher resolutions and SURFNet transfers the model
weights from the coarse model to train the fine-scale model using either one-shot (red) or incremental transfer learning (black).

(i.e., rc->r1->ry...->r;). For example, if we desire to recover
high-resolution flow fields at 512 x 512, we transfer learn
from 64 x 256 to 256 x 256, and finally from 256 x 256 to
512x512. A step size of 1 allows the model to incorporate new
information from each intermediate discretization. We further
discuss the impact of step size on the predictive accuracy
in Section V. The black dashed line in Figure 3 shows this
variation of TL. In ITL, the model learns from more data than
OSTL without overfitting while still reducing the overall data
collection since we avoid heavy data collection at any specific
high resolution.

To recover the solution at the desired target discretization,
we perform the steps outlined below for both transfer learning
approaches (i.e., OSTL and ITL).

1. Coarse-grid data collection. The training dataset is cre-
ated by performing large-scale simulations at low-resolution
discretizations, z. X y. using the physics solver detailed in
Section IV-C.

2. Training. After generating low-resolution training data,
the CNN in Figure 2 is trained with this large dataset. By
carefully controlling for under- and over-fitting of the network
with a validation dataset, we obtain the coarse model.

3. Fine-grid data collection. Due to the challenge of data
acquisition at fine-scale discretizations, xy x yy, we limit the
number of simulations at high resolutions to the bare minimum
to create the transfer dataset. In Section V, we show that a
single geometry is sufficient to transfer the coarse-grid features
and recover the fine-scale physics.

4. Transfer learning. In this paper, we choose to imple-
ment inductive transfer learning, where we reuse the network
(including its structure and parameters) that was pre-trained
to learn the source model (i.e., CM) [43]. Since the source
and target domains are the same, we intuitively expect this
technique to preserve the common features extracted between
the two learning tasks. We treat the coarse model as a feature
extractor of high-resolution flow fields. All layers of the CNN

use a stride of 1 to not reduce the dimensionality of the
input-to-output map during the low-resolution training phase.
However, for high-resolution input-output pairs, this model is a
low-dimensional representation — an extractor of the prevalent
flow features across discretizations (e.g., flow effects due to
the boundary conditions, fields’ shape in the free stream, and
flow variations due to the change in « and). Since coarse
discretizations do not have enough domain points to define
accurate flow field solutions in areas of strong gradients, the
features extracted need to be fine-tuned but not re-learned. The
transferred network is updated by fine-tuning the weights as
follows (see Figure 3).

a. Re-initialize the transferred network with the weights
obtained from the CM for OSTL. For ITL, the transferred
network is initialized with the weights from the largest
model pre-trained at resolution 77 such that ry < ;.
Start training the transferred network with the transfer
dataset. At this stage, it is critical to append the fine-
grid flow features. Since we start with a good initial
calibration of the weights from a pre-trained model of
the same domain, only fine-tuning is required to update
the weights of the transferred network. Fine-tuning of
network parameters is done with a low learning rate (i.e.,
small updates to the weights) and for very few epochs
(1 or 2 at most) to avoid overfitting to the geometry (or
geometries) of the small transfer dataset while preserving

the generalization capacity of the model.
In summary, SURFNet is a TL-based super-resolution flow

network that learns three distinct CNN models to reconstruct
high-resolution turbulent flow fields — (1) the low-resolution
CM, (2) the OSTL model, and (3) the ITL model.

IV. EXPERIMENT SETUP

In this section, we first describe the case study to evaluate
SURFNet’s potential for super-resolution. Then, we describe
the low- and high-resolution datasets for training, transfer

learning, validation, and testing and outline the training pro-
cess of the CM.

A. Case Study

We consider external aerodynamics as the paradigm for
aerospace design space exploration. Understanding flow
around solid bodies is an important research topic for industrial
aerospace applications, and airfoils are the core geometries
in aerodynamics studies. In real scenarios, the exploration
involves different geometries (for instance, airfoil shapes)
simulated under various flow configurations such as rotation
of the solid body and wind angle. Therefore, to apply to a
large class of CFD problems, challenges in generalizing to
unseen geometries need to be addressed. In this paper, we aim
to evaluate SURFNet’s ability to accelerate the flow around
solid bodies such as airfoils and cylinder. Accordingly, these
geometries are excluded from the training and transfer learning
datasets. We resolve turbulent flow around solid bodies at a
Reynolds number of 6 x 10° using the equations presented
in Section II. This setup - the flow regime (turbulent flow),
the geometries (extrapolating to NACA airfoils), and the grid
resolutions - is representative of real NASA case studies [27].

B. Dataset Creation

We create a total of 15 distinct datasets and perform the
simulations of all flow configurations with the solver described
in Section IV-C. Table II summarizes the datasets, including
the composition, resolution, and scope of each dataset.

Table II: Summary of datasets. The training dataset is from low-
resolution simulations. At all high resolutions we collect identical
transfer, validation, and test datasets. NoG is for the number of dif-
ferent geometries, and NoFC is for the number of flow configurations
(i.e., total number of simulations).

Datasets Low resolution Higher resolutions
NoG 10
Training NoFC 90 °
Type ellipses
NoG 1
Transfer NoFC ° 6
Type ellipse AR =0.1
NoG 3
Validation =~ NoFC 9
Type NACA0012, ellipse AR = 0.22, cylinder
NoG 4
Test NoFC 8
T NACA1412, NACAO0015,
ype ellipse AR = 0.3, cylinder

Training dataset. First, we collect a large-scale, low-
resolution dataset to train the coarse model (CM), at a 64 x 256
resolution (a common resolution for low-resolution solutions
of similar case studies [27]). The core of this dataset is formed
by simulations of flow around 10 different ellipses obtained
by changing the aspect ratio AR that is defined as the ratio
of the vertical to the horizontal semiaxis length, as shown in
Figure 4. The AR’s considered for the training dataset are:
0.05, 0.07, 0.09, 0.1, 0.15, 0.2, 0.25, 0.35, 0.55, and 0.75.

For each ellipse, we consider 9 flow variations: five different
angles of attack, «, and four different pitch angles, 6, chosen
randomly for each ellipse in the range between —2 — 6° for
a total of 90 flow configurations. We choose from thin to
thick ellipses and angles of attack to cover a wide spectrum of
physical phenomena that is commonplace in aerospace design
exploration. For instance, the angle of attack is an important
variable in determining the magnitude of the force of lift.
The « angles are obtained by changing the direction of the
flow while maintaining the angle between the chord of the
solid body and the cartesian x-direction at 0°. The € angles
are obtained by pitching the nose of the solid body up or
down and maintaining a flow direction at a 0-degree angle
with its longitudinal axis. These configurations are illustrated
in Figure 4.

® . (i) (iid)

Figure 4: Geometry configurations used in training. The dotted arrow
shows the direction of the incoming flow and the dashed line shows
the chord of the solid body. Sketch of the (i) ellipse aspect ratio, (ii)
angle of attack «, and (iii) pitch angle 6.

Transfer dataset. Next, we collect a small-scale, high-
resolution dataset. The transfer dataset consists of flow around
one unique geometry, ellipse AR = 0.1. For this geometry, we
consider 6 flow variants: three o angles and three 6 angles,
chosen randomly as in the training dataset. Note that we
collect a transfer dataset at each target resolution: 256 x 256,
512 x 512, 1024 x 1024, and 2048 x 2048. Each of the four
transfer datasets consists of the same flow configurations —
the only difference between them is the grid resolution. This
choice is notable for two reasons. First, it stresses the extreme
case of whether a single and identical geometry is sufficient
to recover high-resolution flow fields at any target resolution,
both with OSTL and ITL. Second, each transfer dataset has
6 flow configurations, compared to 90 in the training dataset.
Therefore, the former has 15x fewer flow configurations than
the latter, dramatically reducing the overall data collection at
fine-scale discretizations.

Validation dataset. We collect validation datasets to control
the under- and over-fitting of the network during both the pre-
training and fine-tuning phases. The validation dataset consists
of flow around three different unseen-in-training geometries:
an ellipse AR = 0.22, a symmetric NACAQ0O012 airfoil, and
a cylinder. For each geometry, we consider 3 flow variations
— two « angles and one 6 angle, chosen randomly as in the
training dataset for a total of nine flow configurations. Note
that we collect the same validation dataset at all resolutions,
from 64 x 256 to 2048 x 2048.

Test dataset. We collect a new dataset to evaluate
SURFNet’s performance in accelerating high-resolution tur-
bulent flow simulations. The test datasets consist of flow
around four geometries: a non-symmetric NACA1412 airfoil,
a symmetric NACAO015 airfoil, an ellipse AR = 0.3, and

a cylinder. The airfoil and cylinder geometries are shown in
Figure 5. The test dataset contains geometries unseen during
the pre-training or transfer learning phases. Nonetheless, some
geometries are, a priori, more challenging than others. For
example, the non-symmetric NACA1412 airfoil has three
unique features distinct from the training dataset: the flat
trailing edge, the non-symmetry, and the chamber thickness
(12% of the chord of the airfoil). Comparing the airfoil to
the ellipse in the test set, the only feature unseen during the
training phase is its chamber thickness (AR = 0.3). Moreover,
even though a cylinder is a special case of an ellipse from a
geometrical perspective, the physics in the rear of the cylinder
has a large recirculation area not present in the training flows.
For each geometry, we consider 2 flow variants: one « angle
and one 6 angle. Table III summarizes the different test cases.

The test dataset is collected at all resolutions.

Figure 5: Non-symmetric NACA1412 airfoil (left), symmetric
NACAO0O015 airfoil (center), and cylinder (right) as test geometries.
The last two digits in the 4-digit NACA denomination represent the
maximum thickness percentage of the chamber of the airfoil with
respect to the airfoil’s chord (dashed line).

C. Physics Solver

The training, transfer, validation, and test datasets are gener-
ated by solving the RANS equations with the Spalart-Allmaras
one-equation model [29]. We use the incompressible solver
simpleFoam from OpenFOAM v8 as the physics solver that
implements the semi-implicit method for pressure-linked equa-
tions (SIMPLE) algorithm. A residual value below 1 x 10~4
is the criteria to consider the training simulations converged.
We adhere to tolerances that are extended practice in CFD
simulations [44]. We use the GAMG solver for computing the
pressure at every iteration, with a tolerance of 1 x 10~8. The
smoothSolver and the GaussSeidel smoother compute
both the velocity and modified eddy viscosity.

Architecture and Libraries. All the OpenFOAM simula-
tions are run in parallel on a dual-socket Intel Xeon Gold
6148 using double precision. Each socket has 20 cores, for a
total of 40 cores. We use the OpenMPI implementation of MPI
integrated with OpenFOAM v8 that is optimized for shared-
memory communication. The grid domain is decomposed into
40 partitions using the integrated Scotch partitioner and each
partition is assigned to 1 MPI process that is pinned to a single
core. We set the numactl -localalloc flag to bind each
MPI process to its local memory.

D. Coarse Model Training

We train the CNN in Figure 22 using the training dataset de-
scribed in Section IV-B using double precision. We implement
the CNN using Keras [45] and perform distributed training
on four Tesla V100 GPUs connected with PCle, using the

2We also considered a 10- and 12-layer CNN. However, adding additional
layers did not improve performance.

TensorFlow 2.4 backend. No specific initialization is used in
training. The batch size is 64, the optimizer is Adam, and the
loss function is mean squared error (MSE). The learning rate
is set to 1 x 10~* with no decay for all training. The training
is stopped using the EarlyStopping Keras callback [46] by
monitoring the validation loss with patience of 6 epochs. After
41 epochs, the training loss reaches 7 x 10~* and validation
loss reaches a value of 8 x 1074,

V. RESULTS AND DISCUSSION

After pre-training and validating the CM, we perform fine-
tuning using both transfer learning approaches (i.e., OSTL
and ITL) and evaluate SURFNet’s ability for super-resolution
at various target high-resolution discretizations. We start by
empirically demonstrating the inefficiency of CM without fine-
tuning to recover high-resolution turbulent flows, especially
at fine-scale discretizations. Then, we evaluate SURFNet’s
TL and its ability to generalize to geometries unseen during
the pre-training and fine-tuning phases. Finally, we evaluate
its performance in reconstructing high-resolution turbulent
flows with respect to the OpenFOAM physics solver. Besides,
we also compare SURFNet against the baseline model (aka
oracle), which performs full training with a large training
dataset collected at higher resolutions.

A. Validation Loss

One of our objectives is to maintain prediction accuracy
across discretizations to build a resolution-invariant DL al-
gorithm. Figure 6 shows the validation loss of the different
models with increasing resolution size.

CM loss. We observe that the validation loss of CM
increases significantly with increasing resolution size from
1.5 x 1073 at 256 x 256 to 2.1 x 10~! at 2048 x 2048. These
results indicate that CM trained with low-resolution data is
unable to recover high-resolution flow fields. This lack of
fidelity is because coarse discretizations learned with CM
are incapable of capturing sharp gradients and resolving flow
instabilities prevalent at fine discretizations. Hence, CM alone
is inadequate for super-resolution.

2 e T
S 10714 -a- osTL e
- e
§ A- BM s
S e p— A
b=} e A
S .1 - | | |
‘r—_“ 10 7 A==: _________________ A
>
. I i .
256x256 512x512 1024x1024 2048x2048

Figure 6: Coarse model (CM),R6€!4H8R transfer learning (OSTL),
incremental transfer learning (ITL), and baseline model (BM) losses
on the validation dataset at every target resolution.

OSTL loss. To augment the prediction capabilities of CM,
we perform one-shot TL from CM to the target high-resolution
using the transfer dataset as discussed in Section III. We set the
learning rate to one order of magnitude lower than the training
learning rate for CM (from 1 x 10~ to 1 x 107°), and train

for only one or two epochs. The loss of the fine-tuned OSTL
model on the validation dataset significantly reduces at all
target resolutions compared to CM as seen from Figure 6. At
256 x 256, OSTL reduces the validation loss from 1.5 x 10~2
for CM to 9 x 1073, resulting in 60% overall reduction. We
observe a similar trend with subtle improvements at larger
resolutions. At 2048 x 2048 the validation loss reduces from
2 x 107t for CM to 3 x 10~2 for OSTL — almost one order
of magnitude.

We make two main observations from the OSTL results.
First, the gap in the validation losses between OSTL and
CM increases with the grid size. Coarse discretizations do not
contribute sufficient points in the domain to obtain accurate
solutions. In areas of strong gradients, fine discretizations
shape the flow field very differently from coarse discretiza-
tions as seen from Figures 7 and 8 for the NACA airfoils.
The finer the discretization, the more distinct the resulting
flow field is from the baseline low resolutions. Therefore,
when we transfer from CM to very high resolutions (e.g.,
2048 x 2048), the new flow field seen during the transfer
phase produces sizable changes to the weights of the network
compared to transferring to "mid-resolutions" (e.g., 256 x 256).
Second, this divergence of the flow features between low- and
high-resolution discretizations also explains why the OSTL
validation loss increases with the grid size. Although OSTL
substantially improves the accuracy of super-resolution, it still
does not achieve resolution-invariance.

To alleviate these limitations, we consider three alternatives.
First, to train for more epochs during fine-tuning. However,
this comes with the risk of overfitting to the unique geometry
in the transfer dataset, which is undesirable. Second, to include
more geometries in the transfer dataset. This approach is
also detrimental because it would require substantial data
collection at high resolutions. Third, use incremental transfer
learning (ITL). This approach is promising as the model is
further fine-tuned with data at intermediate resolutions until
the target discretization. We choose a step size of 1 to avoid the
drawbacks of OSTL described above and improve the accuracy
of the network at very high resolutions while still reducing the
overall data collection.

ITL loss. SURFNet does incremental transfer learning using
the same approach as in OSTL. Figure 6 plots the error of
SURFNet after ITL on the validation dataset at each target
resolution. SURFNet’s OSTL and ITL approaches produce
different validation loss values at every target resolution except
256 x 256. ITL improves the generalizability of the network.
The validation loss drops by half at 512 x 512 and 3x at
2048 x 2048 compared to OSTL. ITL reaches a loss that is
invariant to the resolution: the validation loss remains constant
at around 1 x 102 for every target discretization. Because
the transfer dataset at each resolution is 15X smaller than
the training dataset, we still learn incrementally using far less
data. Most importantly, ITL achieves similar accuracy to the
baseline model or oracle trained using a dataset as large as
the pre-training dataset for CM at 256 x 256 and 512 x 512.
This result is particularly notable because ITL reaches oracle-

level accuracy without the need for exhaustive training with
large input sizes and large-scale high-resolution datasets. We
present a more detailed performance comparison against the
oracle in Section V-C.

B. Performance Analysis

We now study SURFNet’s performance in super-resolution
of turbulent flows. Recall that SURFNet’s pre-training consists
of training the base network with a large number of inputs
of low-resolution data. The transfer phase adds a minimum
amount of high-resolution data for fine-tuning the network.
Therefore, in addition to performance, we also evaluate the
ability of SURFNet in recovering the same high-resolution
turbulent flow solution as the physics solver.

We test SURFNet in simulations of turbulent flow around
4 unseen-in-training geometries at 2 flow configurations each,
for a total of 8 test cases at all target resolutions. Table III
presents the comparison against the OpenFOAM physics
solver. SURFNet creates three models — (i) low-resolution
coarse model, (ii) OSTL model, and (iii) ITL model. There-
fore, at every target resolution, we evaluate the time-to-
convergence (TTC) using each model, namely: C-SURFNet,
O-SURFNet, and I-SURFNet. We compare the TTC of each
one of these models with the TTC of the physics solver (PS)
and baseline model (BM)>.

The TTC of the PS is computed by using in tandem two
popular convergence criteria in the CFD literature [44]: (1)
the residual of each flow variable drops 4 to 6 orders of
magnitude and (2) by monitoring when physical quantities
reach steady-state. In contrast, SURFNet reaches convergence
in three stages. First there is warmup (W), where we start the
simulation with the PS and let the residual drop between one
and two orders of magnitude for each variable. This is suffi-
cient for the fluid parameters close to the physical boundaries
to capture the geometry of the new problem. Next there is
inference (1), where we use these intermediate flow variables
as input to the CNN, which infers the steady-state. Finally,
the CNN’s output is constrained with the PS in refinement to
reach the same convergence criteria as the PS [23]. The TTC
of SURFNet is the sum of the time spent in the three stages.
The three stages are run in parallel on the CPU described
in Section IV-C for a fair comparison against OpenFOAM’s
solver (which doesn’t support GPU acceleration). Table IV
presents the time spent at W and I and the number of iterations
in W. The refinement time can be found by adding W and I
and substracting this sum from the TTC of Table III.

C-SURFNet vs. physics solver. The first column in Table III
presents the eight cases in our test dataset. The results of C-
SURFNet at 64 x 256 indicate good generalization capacity
at the lowest resolution to unseen geometries. We observe
consistent speedups around 2 — 2.1x, independent of the
geometry or flow configuration. On the other hand, the first
row shows the results for the first test case, flow around a

3 A comparison is presented against the BM (or oracle) for only 256 x 256
and 512 x 512 due to the computational cost of collecting large datasets and
training at higher resolutions.

Table III: Summary of the performance results. TTC is the time-to-convergence and ITC is the number of iterations-to-convergence of
the physics solver (PS), C-SURFNet (C-SN), O-SURFNet (O-SN), I-SURFNet (I-SN) and the Baseline Model (BM). The speedup of all

SURFNet models is calculated with respect to the physics solver.

64 x 256 256 x 256 512 x 512 1024 x 1024 2048 x 2048

Test case PS C-SN| PS CSN O SN BM | PS C-SN O-SN I-SN BM | PS C-SN O-SN I-SN| PS C-SN O-SN I-SN
NACA 1412 TTC (min) | 0.16 0.08 | 04 022 02 0.2 2.4 1.7 1.3 1.2 12 | 172 143 101 8.6 95 95 59.4 475

9 = 5° ITC 1865 825 |3636 1874 1672 1669 | 7273 5018 3864 3460 3473 | 10118 8259 5779 488712338 12183 7556 6014
Speedup Ix 21Ix | Ix 18x 2x 2x Ix 14x 18x 2x 2X Ix 12x 1.7x 2x Ix 1x 1.6x 2X

NACA 1412 | TTC (min) | 0.19 0.09 | 0.53 0.29 027 025| 33 2.5 1.9 1.7 1.7 | 193 161 12,06 9.7 | 985 895 61.6 493
a = 6° ITC 2215 991 |4818 2531 2263 2199 | 10000 7516 5706 4823 4830 | 11353 9289 6506 5504 | 12792 11474 7840 6241
Speedup Ix 21x| 1x 18x 2x 21Ix| 1x 13x 17x 2x 2X Ix 12x 16x 2x Ix 1Ix 15x 2x

NACA 0015 | TTC (min) | 0.15 0.07 | 0.34 0.18 0.16 0.17 | 25 1.7 1.4 1.2 12 | 158 122 88 79 | 8.7 887 554 444
9 = 3° ITC 1748 769 |3091 1481 1326 1349 | 7576 4874 4032 3431 3424 | 9294 6977 4991 447511519 11365 7045 5605
Speedup Ix 21x | Ix 19x 21x 2Xx Ix 15x 1.8x 21x 21x| Ix 13x L7x 2x 1x 1x 1.6x 2x

NACA 0015 | TTC (min) | 0.13 0.06 | 032 0.18 0.16 0.16 | 23 1.6 1.3 12 12 | 145 104 85 73 | 824 824 515 412
9 = =0° |ITC 1515 626 |2909 1470 1308 1311 | 6970 4802 3696 3308 3300 | 8529 5920 4845 4093 | 10701 10546 6533 5196
Speedup Ix 22x | Ix 18x 2x 2x Ix 14x 18x 2x 2X Ix 12x 1.7x 2x Ix 1x 1.6x 2X

Ellipse TTC (min) | 022 0.1 |0.61 036 031 03 4.1 32 24 21 21 208 173 13.0 104 | 1072 975 670 53.6

AR :OO-3 ITC 2564 1158 | 5545 3116 2627 2615 | 12424 9381 7132 6036 6039 | 12235 10024 7475 594613922 12502 8546 6806
0=>5 Speedup Ix 21x| 1x 18x 2x 2X Ix 13x 17x 2x 2X I1x 12x 16x 2x 1x 1x 1.5x 2x
Ellipse TTC (min) | 0.25 0.13 | 0.64 036 032 033 | 4.6 33 26 23 23 | 223 172 131 1121147 1043 717 574
AR =0.3 |ITC 2914 1394 | 5818 3086 2763 2777 | 13939 9780 7568 6793 6790 | 13118 9918 7544 6387 | 14896 13387 9155 7293

o

a=1 Speedup Ix 2x Ix 18x 2Xx 2% Ix 14x 1.8x 2x 2Xx 1x 13x 17x 2x Ix 1LIx 16x 2X
Cylinder TTC (min) | 0.30 0.19 | 0.72 042 036 036 | 5.2 3.7 29 26 25 | 306 255 180 1531654 1654 1034 827

9 = 0° ITC 4663 2157 | 6545 3704 3127 3127 | 15758 11079 8578 7702 7691 | 18000 14828 10416 8828 | 21481 21326 13270 10585
Speedup Ix 21Ix | 1x 17x 2x 2x Ix 14x 18x 2x 21x| 1Ix 12x 17x 2% Ix 1x 1.6x 2x

Cylinder TTC (min) | 0.36 0.16 | 0.68 040 034 034 | 5.0 3.6 29 25 25 | 271 226 169 1361530 139.1 956 765

@ = 1° ITC 4196 1844 | 6182 3490 2945 2941 | 15152 10646 8736 7399 7400 | 15941 13112 9791 7799 | 19870 17909 12264 9780
Speedup Ix 22x | 1x 17x 2x 2X Ix 14x 17x 2x 2X I1x 12x 16x 2x Ix 1LIx 1.6x 2x

Table IV: Warmup (W) and inference (I) times (T) and number of
iterations (NI) for each test case at each spatial resolution. Times are
reported in minutes.

64 x 256 % 512x 1024x 2048x

256 256 512 1024 2048
Test case W 1 w I w I W 1 W 1
NACA 1412|T |2e-3 3e-3|3e-3 1.3e-2|1.5e-2 0.05| 0.11 0.25(0.77 1
0 =5° NI| 25 26 45 65 100
NACA 1412 |T |2e-3 3e-3|3e-3 1.3e-2|1.6e-2 0.05| 0.13 0.25(0.85 1
a =6° NI| 26 26 49 78 110
NACA 0015 | T |2e-3 3e-3|3e-3 1.3e-2|1.7e-2 0.05[0.122 0.25| 0.7 1
0 = 3° NI| 25 27 50 72 91
NACA 0015|T |3e-3 3e-3|4e-3 1.3e-2| 2e-2 0.05| 0.14 0.25(0.92 1
a=0° NI| 31 39 60 80 119
Ellipse T |3e-3 3e-3|4e-3 1.3e-2| 2e-2 0.05| 0.14 0.25(0.85 1
0 =5° NI| 35 38 69 80 110
Ellipse T [2e-3 3e-3|4e-3 1.3e-2|1.8e-2 0.05| 0.12 0.25]0.76 1
a=1° NI| 28 32 55 73 99
Cylinder T |3e-3 3e-3|6e-3 1.3e-2(2.5e-2 0.05| 0.14 0.25|1.05 1
0 =0° NI| 40 50 75 84 140
Cylinder T |3e-3 3e-3|6e-3 1.3e-2|2.5e-2 0.05| 0.14 0.25|1.05 1
a=1° NI| 42 50 76 83 142

NACA1412 at § = 5° at different spatial resolutions. Although
we observe significant speedups at low resolutions and C-
SURFNet exhibits improved TTC compared to the PS, its
performance gain also degrades consistently with increasing
discretizations. The speedup drops from 2.1x at 64 x 256
to 1x at 2048 x 2048, where it’s no better than the PS. We
observe a similar trend across all the test cases. These results
are in accordance with the observations in Section V-A, where

the CM that has learned from only low-resolution inputs is
incapable of predicting accurate high-resolution solutions.

O-SURFNet vs. physics solver. In Table III, all high
resolutions have an O-SURFNet (O-SN) column, and we make
three main observations from the results. First, O-SURFNet
outperforms C-SURFNet for all test cases and resolutions.
For instance, for the symmetric NACAOO15 at 6 3°
at 2048 x 2048, the TTC of the PS is 88.7 minutes. O-
SURFNet reduces this time to 55.4 minutes resulting in a
1.6x speedup (C-SURFNet achieved no performance gain).
Figure 7 shows the corresponding qualitative results of O-
SURFNet in the task of super-resolution. It resolves the fields
of all fluid variables - velocity, pressure, and the modified eddy
viscosity - at 2048 x 2048 faster than the PS while being pre-
trained with low-resolution data with only fine-tuning at the
highest spatial resolution. Second, O-SURFNet’s performance
is better at lower resolutions than higher resolutions. For
the same NACAOQO15 test case, at 1024 x 1024, 512 x 512,
and 256 x 256, the performance gains are 1.7x, 1.8x, and
2.1x respectively. We observe a similar trend of decaying
performance with increasing resolutions across all test cases
similar to the coarse model, albeit not to the same extent.
This is in line with the results presented in Section V-A
where OSTL losses increase the more dissimilar the target
flow field is from the low-resolution flow. OSTL at 256 x 256
discretization achieves a 2x speedup irrespective of the test
case, demonstrating its potential to generalize to higher resolu-
tions provided the target flow features have sufficient overlap

with the tiny resolution used for pre-training the CM from
which it fine-tunes. However, this is also an indication that
OSTL is incapable of achieving resolution-invariance. Third,
the speedups achieved by O-SURFNet remain constant and
stable among test cases (for instance, we observe speedups
around 1.8 at 512 x 512), indicating that fine-tuning the
model did not result in overfitting to the transfer geometry.
Neither CM nor OSTL yield overfitted models and exhibit
stable generalization capacities.

Low-Res Training Data 0O-SURFNet Super-Res Ground Truth
U: 0 0.94

k1

Pressure: -0.21 0.13

nuTilda:

5E-06 7.5E-05

Figure 7: Velocity in ms™" (top), kinematic pressure in m?/s?
(middle), and modified eddy viscosity in m? /s (bottom) around the
NACA 0015 airfoil at 6 = 3°, Re = 6 x 10°. Comparison between
the low-resolution (64 x 256) training data to train the CM (left); O-
SURFNet’s output after the refinement phase at 2048 x 2048 (middle),
and the ground truth OpenFOAM’s solution at 2048 x 2048 (right).

I-SURFNet vs. physics solver. O-SURFNet’s accuracy
decreases as the resolution increases. An ideal solution is
one that maintains accuracy (i.e., resolution-invariant) while
simultaneously requiring limited computational resources. In
Table III, we observe that across the board (i.e., all test
geometries and flow configurations unseen during pre-training
and TL), I-SURFNet achieves a 2 — 2.1 x speedup against the
PS. Not only does I-SURFNet maintain the performance gain
over PS across the different test cases but also across all target
resolutions demonstrating both generalization and resolution-
invariance. Since ITL incrementally fine-tunes the model, it
requires more data than OSTL. However, fine-tuning is done
on the same geometry across resolutions with 15x lesser
data, thereby significantly reducing the overall data collection
at high spatial discretizations (compared to prior approaches
that require considerably more high-resolution data). Figure 8
shows the qualitative results of I-SURFNet’s flow solution
around the nose of the non-symmetric NACA1412 airfoil
at & = 5°. I-SURFNet successfully recovers high-resolution
turbulent flow simulations on a geometry with at least three
distinct features (i.e., flat trailing edge, non-symmetry, and
different chamber thickness) not present in the training or

transfer datasets. This validates that SURFNet pre-trained with
low-resolution data with only fine-tuning can generalize to
unseen geometries. The largest target resolution studied (i.e.,
2048 x 2048) is 256 x the size of the tiny discretization (i.e.,
64 x 256) used in pre-training the CM to stress SURFNet’s
ability in super-resolution. It is guaranteed to converge to a
unique solution as long as the problem is well-posed [47].

I-SURFNet

Low-Res Training Data Super-Res Ground Truth

nuTilda: 2E-06 7E-05

Figure 8: Detail of the velocity in ms™" (top), kinematic pressure
in m?/s? (middle), and modified eddy viscosity in m?/s (bottom)
at the nose of the nonsymmetric NACA 1412 airfoil at 6 = 5°,
Re = 6 x 10°. Comparison between the low-resolution (64 x 256)
training data to train the coarse model (left), -SURFNet’s output
after the refinement phase at 2048 x 2048 (middle), and the ground
truth OpenFOAM’s solution at 2048 x 2048 (right).

We additionally explored the effect of the required size of
the spatial step size to maintain accuracy for ITL. By incre-
mentally fine-tuning with a step size of 1 up to 2048 x 2048,
the performance gain is consistently 2x. This gain is the best
possible achievable as observed by the results of the oracle
or BM that is fully trained at 256 x 256 and 512 x 512
resolutions. By incrementally transferring with a step size of 2
up to 2048 x 2048, the performance gain drops to 1.7 — 1.8 x.
So, we conclude that to achieve oracle-level accuracy and
performance, the ideal step size for ITL is 1.

C. SURFNet vs. Oracle

We now compare SURFNet with the oracle or baseline
model (BM) at 256 x 256 and 512 x 512 target discretizations.
We define BM as conducting full-scale data collection and
training at the higher resolutions. Specifically, a dataset as
large as the training dataset outlined in Table II collected at the
tiny resolution (64 x 256) for pre-training the CM is collected
for training the CNN at the two target discretizations. The
CNN is trained using a learning rate of 1 x 10~* and a batch
size of 32 and 16, respectively. Figure 6 and Table III show
that the loss on the validation dataset and speedup compared
to the OpenFOAM physics solver achieved by ITL is similar
to that of the BM. To understand how much time SURFNet

saves with respect to the oracle, Table V compares the data
collection and the training time of SURFNet with that of BM.
SURFNet’s data collection time is the sum of the time spent
collecting low-resolution training data and the transfer datasets
at higher resolutions. Similarly, the total training time includes
pre-training the CM and the time spent fine-tuning at the target
higher resolution.

In terms of data collection time, SURFNet takes 0.4 hrs
(0.33 + 0.06) vs. 1 hr for BM at 256 x 256. At 512 x 512,
SURFNet’s data collection time is 0.8 hrs (0.33 + 0.06 + 0.41)
vs. 3.86 hrs for BM. Training at 256 x 256 and 512 x 512
takes 2.56 hrs and 3 hrs for SURFNet vs. 9.25 hrs and 38 hrs
for BM, respectively. Overall, SURFNet reduces the combined
data collection and training time by 3.6x and 10.2Xx, respec-
tively, while achieving similar performance gain and accuracy
as BM. Note that the computational advantage of SURFNet
increases with increasing resolution size. Moreover, these
results highlight the impracticability of performing exhaustive
data collection and training at 1024 x 1024 and beyond,
underscoring the impact and potential of TL (specifically ITL)
in enabling super-resolution of complex turbulent flows.

Table V: Comparison with the baseline model (BM) on data
collection and training for reaching similar accuracy at 256 X 256
and 512 x 512 spatial resolutions.

SURFNet BM

256 x 256 512 x 512 | 256 X 256 512 x 512
Data collection 0.33 0.33 1 3.86
time for training
Data collection
time for TL 0.06 041
Training time 2.5 2.5 9.25 38
TL time 0.06 0.5

VI. RELATED WORK

DL for CFD. Several recent approaches aim to find DL-
based accelerators for turbulent flows with promising results.
Maulik et al. predict the eddy viscosity field, but not other
flow properties such as the velocity [36]. Thuerey et al.
use an encoder-decoder type of network but their approach
does not account for the eddy viscosity field [25]. Although
they present real-time solutions, the geometry in the training
and prediction stages are same (i.e., airfoils) making the
solution less generalizable. Alternatively, Obiols-Sales et al.
feed the network’s prediction back into the physics solver to
enable generalization with the same model without relaxing
the convergence constraints. These efforts are not resolution-
invariant unless the network is trained with large-scale data
from a variety of high-resolution simulations. Tompson et al.
accelerate Eulerian fluid simulations by minimizing the diver-
gence of the velocity field using an unsupervised method. This
approach [24] maintains accuracy up to 1024 x 1024 resolution.
However, Eulerian fluid simulations ignore the viscous effects
that are critical for most engineering systems of interest.
SURFNet predicts all relevant fluid variables in the entire
domain of turbulent flows to accelerate CFD simulations.

Mesh-independent DL approaches. Raissi et al. introduced
physics-informed neural networks (PINNs) - networks trained

to respect any physics laws. These methods substitute tra-
ditional solvers [32, 33, 34]. However, this approach has
several constraints. First, for complex turbulent flow problems,
including the conservation laws in the loss function may
lead to stiffer optimizations [49]. Second, training a new
model is required for every new instance of a distinct flow
configuration (unless the initial/boundary conditions are an
input to the network [50]), instead of a simple forward pass of
the network, severely restricting its generalization capabilities.
Lu et al. introduced an infinite-dimensional operator with
neural networks, known as neural operators (NO), that learns
the nonlinear operation from partial differential equations
without knowledge of the underlying PDE — only with data.
NO provides a single set of network parameters that are
compatible with different discretizations. Hence, they are
resolution-invariant. However, these approaches [14, 16, 17]
train the network with data downsampled from high-resolution
simulations — which is impractical for many practitioners and
suffers from the same computational constraints of traditional
solvers. Jiang et al. introduced a CNN-based resolution-
invariant approach that satisfies the underlying PDE. However,
it also suffers from the same data-collection limitation as the
former approaches. SURFNet overcomes the above limitations
by training the CNN models primarily from data gathered
at low-resolutions while enabling super-resolution by only
minimal fine-tuning.

VII. CONCLUSIONS

This paper presented SURFNet, a super-resolution flow
network that accelerates high-resolution turbulent CFD simu-
lations. SURFNet is primarily trained on low-resolution simu-
lation data and applies this information (via transfer learning)
to high-resolution inputs. We proposed two variations, one-
shot transfer learning (OSTL) and incremental transfer learn-
ing (ITL). Both approaches yield consistent speedups across
test geometries unseen during the training or transfer stages
and exhibit good generalization capacities. We demonstrated
resolution-invariance with ITL on domains up to 256 larger
than the tiny discretization used in training and a uniform
2—2.1x speedup across target resolutions and test geometries
compared to the OpenFOAM CFD solver. SURFNet is able
to recover high-resolution flow features with 15x less data at
high resolutions and reducing the combined data collection and
training time by 3.6x and 10.2x at 256 x 256 and 512 x 512
grid sizes, respectively.

Future work includes expanding SURFNet to a wide range
of flow and boundary conditions. As SURFNet is computa-
tionally inexpensive, and data from low-resolution CFD simu-
lations are widely available, further explorations of the gener-
alization capabilities are warranted. Since SURFNet’s under-
lying CNN architecture is unconstrained, SURFNet could be
beneficial for transfer learning across physical domains, such
as molecular dynamics or solid mechanics.

APPENDIX
A. Abstract

The artifact contains the source code for SURFNet. This
code provides dataset generation, model training, model trans-
fer, and model prediction, together with the OpenFOAM
physics solver setup and acceleration through SURFNet’s
inference. The artifact is well-documented and is designed
to be re-used and reproduced at any academic or industry
research level since it is amenable to any Computational Fluid
Dynamics (CFD) solver that targets steady simulations.

B. Artifact check-list (meta-information)

o Program: The open-source OpenFOAM physics solver is
required for speedup evaluation.

o Data set: training and validation data sets to obtain the
coarse model, and transfer and validation data sets for
transfer learning.

o Hardware: 4 Tesla V100 NVIDIA GPUs and a 40-core Intel
CPU with 4GB memory/core.

o Software required: tensorflow, conda, docker, python, and
OpenFOAM

« Runtime Environment: CentOS 7.0 with conda and docker
installed and available.

o How much disk space required (approximately)?: 50 GB

« How much time is needed to prepare workflow (approxi-
mately)?: 30 minutes

« How much time is needed to complete experiments (ap-
proximately)?: 4 hours if hardware available is the specified
before

« Publicly available? Yes, on Zenodo

C. Description

1) Source code: The source code of our work is hosted in
Zenodo and can be downloaded from:

https ://doi.org/10.5281/zenodo.5139858

2) Hardware dependencies: We developed and tested our code
on a dual-socket Intel Xeon Gold 6148, totalling 40 cores, and 4 V100
Tesla NVIDIA GPUs. We expect that our code will run on GPUs with
a compute capability no less than 5.0

3) Software dependencies: Our work requires both tensorflow
and the OpenFOAM physics solver. Tensorflow is required for model
training, model transfer, and model prediction (inference). The Open-
FOAM physics solver is required to evaluate the speedups provided
by inference. We use Python 3.8 for our python scripts, that require
numpy, glob, openfoamparser, h5py, and gdown. They
all can be installed through pip.

If using conda, run the following command to install and use
tensorflow:

conda create —n tf—gpu tensorflow —gpu
For OpenFOAM, we recommend using docker:
docker pull openfoam/openfoam6—paraview56

4) Data sets: We provide the command to download the data
sets to (1) train the coarse model as described in Section IV-D and
(2) perform transfer learning to a specific target discretization. Hence,
results from Figure 6 and Table V can be reproduced. Refer to the
READMEdatasets file inside the SURFNET directory to find a
detailed explanation of the composition of the datasets.

5) Models: Models are not given and will be generated through
the experimental workflow so the user can reproduce results from the
paper, or generate any desired model with their own data sets.

D. Installation

Download the source code in the zip file hosted on Zenodo and
cd to the main directory named SURFNET. Assuming conda and
docker are installed and available:

1) Install tensorflow with the command provided before:
conda create —n tf—gpu tensorflow —gpu

2) Download the OpenFOAM docker image as stated before:
docker pull openfoam/openfoam6—paraview56

3) Install all the python dependencies required for the project:

pip install —r requirements. txt

E. Experiment workflow

A step-by-step guide to carry an experiment workflow is found in
the READMEworkflow file in the main directory. We detail the steps
for the user to generate required data sets (train, validation, etc.), train
the coarse model, transfer learn to a desired discretization, do model
prediction, and accelerate the OpenFOAM physics solver.

F. Evaluation and expected results

Because the validation of the results requires interaction between
tensorflow and OpenFOAM, a dedicated README file can be
found in the directory. In the READMEresults file we provide
the experimental workflow executed to obtain results of this paper.
User can validate coarse model setup, training, and losses, model
transfer losses and OpenFOAM acceleration. To summarize, users
should observe:

e A 2.5 hours long training of the coarse model (resolution
64x256) leading to training and validation MSE losses as
described in IV-D

o A 4-minute long model transfer to a higher discretization.

e A 2x speedup over the OpenFOAM physics solver for the
NACA 1412 airfoil simulation when using SURFNet’s inference
as initial condition to OpenFOAM.

REFERENCES

[1] M. Lee, N. Malaya, and R. D. Moser, “Petascale direct numer-
ical simulation of turbulent channel flow on up to 786k cores,”
pp. 1-11, 2013.

[2] J. Casacuberta, K. Groot, Q. Ye, and S. Hickel, “Transitional
flow dynamics behind a micro-ramp,” Flow, Turbulence and
Combustion, vol. 104, no. 2, pp. 533-552, 2020.

[3] J. Blazek, Computational fluid dynamics: principles and appli-
cations. Butterworth-Heinemann, 2015.

[4] H. Jasak, A. Jemcov, Z. Tukovic et al., “Openfoam: A c++
library for complex physics simulations,” in International work-
shop on coupled methods in numerical dynamics, vol. 1000.
IUC Dubrovnik Croatia, 2007, pp. 1-20.

[5] O. Reynolds, “Iv. on the dynamical theory of incompressible
viscous fluids and the determination of the criterion,” Philo-
sophical transactions of the royal society of london.(a.), no.
186, pp. 123-164, 1895.

[6] B. Mostafazadeh Davani, F. Marti, B. Pourghassemi, F. Liu,
and A. Chandramowlishwaran, “Unsteady navier-stokes com-
putations on gpu architectures,” in 23rd AIAA Computational
Fluid Dynamics Conference, 2017, p. 4508.

[7] B. Mostafazadeh, F. Marti, F. Liu, and A. Chandramowlish-
waran, “Roofline guided design and analysis of a multi-stencil
CFD solver for multicore performance,” in Proc. 32nd IEEE
Int’l. Parallel and Distributed Processing Symp. (IPDPS), Van-
couver, British Columbia, Canada, May 2018, pp. 753-762.

[8] National Advisory Committee for Aeronautics airfoils,
“NACA Family of Airfoils,” https://www.nasa.gov/image-
feature/langley/100/naca-airfoils, 1929.

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

S. T. Bose and G. L. Park, “Wall-modeled large-eddy simulation
for complex turbulent flows,” Annual review of fluid mechanics,
vol. 50, pp. 535-561, 2018.

E. Nehme, L. E. Weiss, T. Michaeli, and Y. Shechtman, “Deep-
storm: super-resolution single-molecule microscopy by deep
learning,” Optica, vol. 5, no. 4, pp. 458-464, 2018.

W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao,
“Deep learning for single image super-resolution: A brief re-
view,” IEEE Transactions on Multimedia, vol. 21, no. 12, pp.
3106-3121, 2019.

Z. Wang, J. Chen, and S. C. Hoi, “Deep learning for image
super-resolution: A survey,” IEEE transactions on pattern anal-
ysis and machine intelligence, 2020.

C. M. lJiang, S. Esmaeilzadeh, K. Azizzadenesheli,
K. Kashinath, M. Mustafa, H. A. Tchelepi, P. Marcus,
A. Anandkumar et al., “Meshfreeflownet: A physics-constrained
deep continuous space-time super-resolution framework,” arXiv
preprint arXiv:2005.01463, 2020.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhat-
tacharya, A. Stuart, and A. Anandkumar, “Fourier neural opera-
tor for parametric partial differential equations,” arXiv preprint
arXiv:2010.08895, 2020.

H. Gao, L. Sun, and J.-X. Wang, “Super-resolution and de-
noising of fluid flow using physics-informed convolutional
neural networks without high-resolution labels,” arXiv preprint
arXiv:2011.02364, 2020.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhat-
tacharya, A. Stuart, and A. Anandkumar, “Neural operator:
Graph kernel network for partial differential equations,” arXiv
preprint arXiv:2003.03485, 2020.

K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart,
“Model reduction and neural networks for parametric pdes,”
arXiv preprint arXiv:2005.03180, 2020.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue,
A. Moi, P. Cistac, T. Rault, R. Louf, M. Funtowicz et al.,
“Huggingface’s transformers: State-of-the-art natural language
processing,” arXiv preprint arXiv:1910.03771, 2019.

Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer,
“Imagenet training in minutes,” in Proceedings of the 47th
International Conference on Parallel Processing, 2018, pp. 1-
10.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper
with convolutions,” in CVPR 2015, 2015. [Online]. Available:
http://arxiv.org/abs/1409.4842

R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu,
“Towards physics-informed deep learning for turbulent flow pre-
diction,” in Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020, pp.
1457-1466.

X. Guo, W. Li, and F. Iorio, “Convolutional neural networks for
steady flow approximation,” pp. 481-490, 2016.

O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chan-
dramowlishwaran, “Cfdnet: a deep learning-based accelerator
for fluid simulations,” arXiv preprint arXiv:2005.04485, 2020.
W. Dong, J. Liu, Z. Xie, and D. Li, “Adaptive neural network-
based approximation to accelerate eulerian fluid simulation,” in
Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2019, pp.
1-22.

N. Thuerey, K. Weilenow, L. Prantl, and X. Hu, “Deep learning
methods for reynolds-averaged navier—stokes simulations of
airfoil flows,” AIAA Journal, pp. 1-12, 2019.

L. Zhu, W. Zhang, J. Kou, and Y. Liu, “Machine learning
methods for turbulence modeling in subsonic flows around
airfoils,” Physics of Fluids, vol. 31, no. 1, p. 015105, 2019.
“NACA0012 grids,” https://turbmodels.larc.nasa.gov/

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

[42]

[43]

[44]

(45]

[46]

(47]

(48]

[49]

naca0012numerics_grids.html.

J. Boussinesq, Essai sur la théorie des eaux courantes.
nationale, 1877.

P. Spalart and S. Allmaras, “A one-equation turbulence model
for aerodynamic flows,” in 30th aerospace sciences meeting and
exhibit, 1992, p. 439.

C. Duru, H. Alemdar, and O. U. Baran, “Cnnfoil: convolutional
encoder decoder modeling for pressure fields around airfoils,”
Neural Computing and Applications, pp. 1-15, 2020.

W. Peng, Y. Zhang, and M. Desmarais, “Spatial convolution
neural network for efficient prediction of aerodynamic coeffi-
cients,” in AIAA Scitech 2021 Forum, 2021, p. 0277.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-
informed neural networks: A deep learning framework for solv-
ing forward and inverse problems involving nonlinear partial
differential equations,” Journal of Computational Physics, vol.
378, pp. 686-707, 2019.

L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde: A
deep learning library for solving differential equations,” arXiv
preprint arXiv:1907.04502, 2019.

E. Haghighat and R. Juanes, “Sciann: A keras wrapper for sci-
entific computations and physics-informed deep learning using
artificial neural networks,” arXiv preprint arXiv:2005.08803,
2020.

X. Jin, S. Cai, H. Li, and G. E. Karniadakis, “Nsfnets (navier-
stokes flow nets): Physics-informed neural networks for the
incompressible navier-stokes equations,” Journal of Computa-
tional Physics, vol. 426, p. 109951, 2021.

R. Maulik, H. Sharma, S. Patel, B. Lusch, and E. Jennings,
“Accelerating rans turbulence modeling using potential flow and
machine learning,” arXiv preprint arXiv:1910.10878, 2019.

C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A
survey on deep transfer learning,” in International conference
on artificial neural networks. Springer, 2018, pp. 270-279.
F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong,
and Q. He, “A comprehensive survey on transfer learning,”
Proceedings of the IEEE, vol. 109, no. 1, pp. 43-76, 2020.

C. Cai, S. Wang, Y. Xu, W. Zhang, K. Tang, Q. Ouyang, L. Lai,
and J. Pei, “Transfer learning for drug discovery,” Journal of
Medicinal Chemistry, vol. 63, no. 16, pp. 8683-8694, 2020.

Y. Pathak, P. K. Shukla, A. Tiwari, S. Stalin, and S. Singh,
“Deep transfer learning based classification model for covid-19
disease,” Irbm, 2020.

S. Ruder, “Neural transfer learning for natural language pro-
cessing,” Ph.D. dissertation, NUI Galway, 2019.

S. Shao, S. McAleer, R. Yan, and P. Baldi, “Highly accurate
machine fault diagnosis using deep transfer learning,” IEEE
Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2446—
2455, 2018.

M. Long, H. Zhu, J. Wang, and M. 1. Jordan, “Deep transfer
learning with joint adaptation networks,” in International con-
ference on machine learning. PMLR, 2017, pp. 2208-2217.
J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged
turbulence modelling using deep neural networks with embed-
ded invariance,” Journal of Fluid Mechanics, vol. 807, pp. 155—
166, 2016.

A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing
Ltd, 2017.

“EarlyStopping keras callback,” https://keras.io/api/callbacks/
early_stopping/.

E. Ott, Chaos in dynamical systems.
press, 2002.

J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin,
“Accelerating eulerian fluid simulation with convolutional net-
works,” pp. 3424-3433, 2017.

S. Wang, Y. Teng, and P. Perdikaris, “Understanding and
mitigating gradient pathologies in physics-informed neural net-

Impr.

Cambridge university

(50]

(51]

works,” arXiv preprint arXiv:2001.04536, 2020.

H. Wang, R. Planas, A. Chandramowlishwaran, and R. Bostan-
abad, “Train once and use forever: Solving boundary value
problems in unseen domains with pre-trained deep learning
models,” arXiv preprint arXiv:2104.10873, 2021.

L. Lu, P. Jin, and G. E. Karniadakis, “Deeponet: Learning
nonlinear operators for identifying differential equations based
on the universal approximation theorem of operators,” arXiv
preprint arXiv:1910.03193, 2019.

