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Abstract

Physics-informed neural networks (PINNs) are increasingly employed to replace/augment traditional numerical methods in
solving partial differential equations (PDEs). While state-of-the-art PINNs have many attractive features, they approximate a
specific realization of a PDE system and hence are problem-specific. That is, the model needs to be re-trained each time the
boundary conditions (BCs) and domain shape/size change. This limitation prohibits the application of PINNs to realistic or
large-scale engineering problems especially since the costs and efforts associated with their training are considerable.

We introduce a transferable framework for solving boundary value problems (BVPs) via deep neural networks which can
be trained once and used forever for various unseen domains and BCs. We first introduce genomic flow network (GFNet), a
neural network that can infer the solution of a BVP across arbitrary BCs on a small square domain called genome. Then,
we propose mosaic flow (MF) predictor, a novel iterative algorithm that assembles the GFNet’s inferences for BVPs on large
domains with unseen sizes/shapes and BCs while preserving the spatial regularity of the solution. We demonstrate that our
framework can estimate the solution of Laplace and Navier—Stokes equations in domains of unseen shapes and BCs that are,
respectively, 1200 and 12 times larger than the training domains. Since our framework eliminates the need to re-train models
for unseen domains and BCs, it demonstrates up to 3 orders-of-magnitude speedups compared to the state-of-the-art.
©2021 Elsevier B.V. All rights reserved.
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1. Introduction

Partial differential equations (PDEs) are ubiquitously used in sciences and engineering to model physical
phenomena. Two notable PDEs that have far-reaching applications are the Navier—Stokes (NS) equations which
model the motion of viscous fluids [1] and Laplace equation which extensively appears in fluid dynamics,
electrostatics, and steady-state heat transfer [2]. Solving such PDEs on large domains with arbitrary initial and
boundary conditions (ICs and BCs) relies on numerical methods such as finite element (FE) [3] and finite difference
(FD) [4]. While these methods are extremely powerful, they are computationally expensive. Because of these high
costs, researchers face the challenge of drawing conclusions using a limited number of time-consuming studies. For
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instance, NASA’s CFD vision 2030 [5] estimates that achieving a 24-hour turnaround time on a wall-modeled large
eddy simulation of a full-wing at Reynolds Re = 107 requires 180 PFlops/s which is only achievable on the most
powerful supercomputer today. Such high costs make it infeasible to conduct compute-intensive studies such as
uncertainty quantification (UQ) or airfoil shape optimization. To address this challenge, particularly in large-scale
and inverse problems, simulations are augmented with inexpensive surrogates.

Although a wide range of surrogates such as Gaussian processes (GPs) [6—8] and trees [9,10] are available, most
recent applications of surrogate modeling employ deep neural networks (DNNs) [11-21]. The increasing use of
DNNs in emulation is largely because they have extremely high learning capacity which enables them to distill
highly nonlinear and hidden features and relations from a training dataset without explicit instructions. In addition,
DNNs are highly scalable and versatile. For instance, while DNNs can naturally build regressors/interpolators from
large and high-dimensional data, GPs rely on numerical methods such as low-rank matrix approximation [8] to
handle datasets with more than ~ 5000 samples [22,23]. Or, unlike trees, DNNs can easily handle both classification
and regression/interpolation problems with high accuracy [13].

A major driver in using DNNs for surrogating PDE-governed systems is automatic differentiation (AD) [24]
which allows the easy, systematic embedding of a system’s governing equations in a network’s training stage to
build physics informed neural networks (PINNs) [25]. This inductive bias not only reduces the reliance on training
data obtained from traditional solvers, but also increases the adherence of the DNN to the physics of the problem
and dispenses with discretization errors (since AD is exact [26]). To demonstrate such a physics-informed training
process, consider the 2D boundary value problem (BVP):

VZu(x) =0, xefn

(1)
ux)=gkx), xe€df?

where x = [x, y], V2 is the Laplacian operator (32/3x>+ 3%/9y?), {2 denotes the domain, and g(x) is the boundary
value function. When training a DNN that approximates u(x), the loss function can be designed as:

L) = Li0)+ aL>@®)+ BL3(6),
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where 6 are the parameters of the network (weights and biases), N is the DNN approximation, L(8) is the network’s
error in predicting the available data on the solution (these data can be on 92 or in §2), L,(0) is the residual error
which enforces A to satisfy the Laplace equation on some randomly selected points (aka collocation points) in
2, L3(0) denotes Tikhonov regularization that prevents overfitting, and o and S are constants that control the
contributions of, respectively, L,(@) and L3(0) to L(@). L,(@) in Eq. (2) involves partial derivatives which can be
analytically calculated via AD.

Training a DNN that surrogates the solution of PDEs can be a time-consuming and challenging task primarily
because (1) obtaining training data via high-fidelity simulations is expensive, (2) designing an efficient network
architecture is an iterative process, (3) optimizing the network’s parameters (such as weights and biases) is
demanding, (4) calculating the residual loss is computationally costly because each time a differential operator is
applied to the network, it almost doubles the number of computations associated with backpropagation [13,27], and
(5) choosing the optimizer’s parameters (such as batch size and learning rate) as well as balancing the contributions
of different loss components to the overall loss (e.g., « and § in Eq. (2)) are iterative processes. These challenges
are exacerbated when training DNNs that need many parameters to accurately approximate the solution of complex
PDEs (such as the NS equations) in large domains.

We argue that the benefits of DNNs that approximate PDE-governed systems outweigh the high costs and
challenges associated with their training if the DNNs are transferable. Unfortunately, existing methods [28-32]
fail in this regard, i.e., there is currently no mechanism for estimating the solution of PDEs with a pre-trained
DNN. For example, a PINN that approximates u(x) in Eq. (1) would be largely useless if {2 and g(x) change.
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Fig. 1. (Color Online) Transferable learning of a PDE: We train our network in a small domain of size 1 x 1 for a wide range of boundary
conditions. We then use the network to solve the Laplace equation in a domain that is 1200x larger. Prediction time is almost 3 hours on
a single NVIDIA V100 GPU.

To bridge this gap, we develop a novel framework that builds a transferable DNN surrogate that solves
PDEs in unseen domains with arbitrary BCs (see Fig. 1). We present our idea in the context of flow prediction
(i.e., surrogating the solution of the NS equations) but note that the framework is readily applicable to other PDE
types such as the Laplace and Poisson equations. The source codes and pre-trained models of our framework can
be downloaded at https://gitlab.com/UCI--CFD/mosaicflow.git.

For on-the-fly prediction of the flow in an unseen large domain with unseen BCs, we first decompose the domain
into small subdomains called genomes. Then, we predict the flow in each genome with a pre-trained DNN, called
genomic flow network (GFNet), such that the iterative assembly of these genome-wise predictions approximates
the flow in the large domain. We denote this assembled flow as a mosaic. More specifically, this paper makes the
following contributions:

e We introduce GFNet which can solve a BVP with arbitrary BCs on a small square domain called genome. We
design GFNet’s architecture based on the characteristics of the PDE and show that such a design significantly
improves accuracy. For instance, our GFNet is twice more accurate than the conventional fully connected (FC)
architecture for solving the Laplace equation (Section 4.1). For learning the NS equations, we further enforce
the input BC in GFNet and reduce the generalization error by nearly 70% compared to DeepONet [33] and
Fourier Neural Operator (FNO) [31] (Section 4.3).

e We develop mosaic flow (MF) predictor, a novel iterative algorithm based on the continuous Schwarz
alternating algorithm [34] that iteratively assembles GFNet’s inferences to predict the solution of the PDE
system for unseen domains spanned by genomes with unseen BCs. We show that MF predictor can scale up
GFNet’s inferences to domains ~1200x and 12x larger in the case of, respectively, Laplace and NS equations
(Section 4). Moreover, MF predictor is independent of the neural network model used as GFNet. We compare
our model with DeepONet [33] and FNO [31] and demonstrate that it reduces the error by nearly 6 times
when employed by MF predictor to predict unseen flow features.

e With GFNet and MF predictor, we eliminate the need to re-train a DNN for unseen domains or BCs. This
transferability delivers 1-3 orders of magnitude speedup compared to the start-of-the-art PINN for solving the
Laplace and NS equations while achieving comparable or better accuracy (Section 4).

e Our GFNets are not tailored to specific applications and hence can be used by others. This reusability saves
energy and benefits researchers with limited access to GPUs.

2. Related work

Existing approaches for building DNNs that solve PDEs employ a wide range of training mechanisms and
network architectures. These choices largely depend on the application and the characteristics of the PDEs. The
architectures are typically built with fully connected (FC), convolutional, or recurrent [35-37] layers. In many
works a combination of these layers, with or without residual connections [38], are employed as well. For instance,
networks similar to Resnet [38] and UNet [39], whose building blocks are convolutional neural networks (CNNs),
are generally the backbone of super-resolution frameworks that aim to reconstruct a high-resolution solution from a
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coarse solution [29,40]. Such networks have also been trained in the Fourier space to learn a PDE operator using the
modal space [31,41]. CNNs, which may also include FC layers, are extensively used as surrogates for predicting
steady laminar flows around 2D and 3D objects [42], estimating 2D flows around specific airfoils [43,44], flow
visualization [45], and many other applications [46—49].

Solving PDEs via CNN-based networks is data-efficient (due to parameter sharing and learning spatially invariant
kernels [11,50-52]), but it requires developing a mechanism for interpolating the solution (and its gradients) on
non-grid points [53]. One strategy to avoid such interpolation errors is to only employ FC layers. This strategy
has been used for inverse estimation of PDE coefficients [25], inverse estimation of flow fields given observations
on a passive scalar [27], predicting the Reynolds stress in Reynolds-averaged NS simulations [54,55], and solving
Poisson equation and eigenvalue problems [56]. Networks based on FC layers have also been reformulated for
variational learning (to improve predictions on the boundaries) [30,57], surrogating fractional PDEs (where AD
cannot calculate residual errors) [58], emulating long time-dependent PDEs (where long temporal features render
the training very difficult) [32], and learning operators that map functions to functions [33,59,60].

Regardless of the architecture, existing works lack transferability, i.e., they build models that are largely useless
if the domain and BCs associated with the PDE system are modified. This important issue has been rarely addressed.
DNNss that learn a PDE operator [33,61], can in theory handle varying BCs but they are not domain-agnostic and
their applications thus far have been limited to simple PDEs over small, fixed domains. In [62], CNNs are used to
solve the 2D Poisson equation on rectangular domains with different aspect ratios. In [63], the DNN is trained to
solve the NS equations over backward-facing steps with varying heights. In [64], the DL model infers the lift and
drag of various elliptic objects with different aspect ratios. In all these works, the geometry type (e.g., rectangle or
ellipse) is fixed and only varies within a very limited range with one parameter. A few studies [43—-45,49,65] have
proposed more general techniques to embed geometry information into the training stage of a DNN such that it can
predict the quantities of interests in unseen domains. However, the overall domain size is still fixed, grid data are
required, and the variability of the objects is limited to specific applications.

Since the training costs of a PDE-solving DNN are generally high, parallel and distributed computations have
been explored in their training [28]. However, the overall training costs are still high given the iterative and
combinatorial process of tuning the architecture, optimization parameters, and loss components. To justify these
high training costs, a DNN is expected to be transferable across multiple applications.

3. Transferable learning of PDEs

Our goal is to approximate the solution of the following homogeneous BVP in an arbitrary domain (2 for a wide
range of g(x):

Hux)) =0, xe€l/{2,

(3)
ulx)=gkx), xedf,

where H(-) denotes a partial differential operator composed of spatial derivatives. Henceforth, we drop the
dependence of u to x for notational convenience. We highlight that while Eq. (3) is scalar, our approach is directly
applicable to PDE systems such as the NS equations, see Section 4.2.

Building a single DNN that solves the BVP of Eq. (3) in any domain and under any BC is an extremely
difficult (if not infeasible) learning task because considering arbitrarily large variations in domains and BCs in
training drastically amplifies the challenges described in Section 1. In our framework, we solve this difficult task
by decomposing it into two simpler (but highly coupled) tasks that correspond to (1) training a GFNet that solves
the BVP in a genome (i.e., a small square) given any g(x), and (2) building MF predictor that approximates the
solution in any unseen large domain that can be spanned with genomes by stitching the genome-wise predictions
made by the pre-trained GFNet. The advantage of our approach is that predicting the solution of the BVP in an
unseen domain only relies on task 2, i.e., there is no need to train or re-train a DNN anymore.

Our task decomposition strategy is motivated by curriculum learning [66] which was originally developed for
animal training [67] where difficult tasks are divided into simpler tasks which are easier to learn and collectively
make up the original task. In Section 3.1 we demonstrate that this approach is also applicable to solving BVPs.
Then, we elaborate on how to build a GFNet and an MF predictor in Sections 3.2 and 3.3, respectively.
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Fig. 2. (Color Online) Decomposition of a BVP: The Laplace equation is solved in {2 = [0, 2] x [0, 1] with three methods: a direct and
two iterative approaches. The iterative approach that leverages an auxiliary genome converges to the direct solution 12x faster.

3.1. BVP decomposition: Why Mosaic works?

The BVP in Eq. (3) is well-posed if the solution, u, is unique. For such a BVP, u on any arbitrary sub-domain
inside {2 also forms a well-posed BVP. Fig. 2(a) illustrates this relation for the Laplace equation where the domain
{2 is split into two genomes, namely, {2, and (2. The boundaries of these genomes are denoted by 92, and 9(2,
which share the border 9{2; N 9(2, in the middle of {2 (marked blue in the figure). Once the Laplace equation is
solved in {2, u will be available on 3{2; N d(2%. We can now solve two BVPs: one in (2; and the other in (2, to get
the solutions u; and u,, respectively. The above well-posedness relation indicates u; = u|p, and u; = u|p,.

Conversely, if we can find u; and u, while ensuring that the PDE is satisfied on the shared border, i.e., VZu = 0
on 4{2, N df, then we will have u since u = u; U u,. Indeed, to find u; and u, we need to solve two BVPs (one
in {2; and the other in (2) both of which require u on 3{2; N 3. Since u is unknown, we propose an iterative
strategy to find it on the shared border: we first randomly assign values to u on 92, N 32 and solve two BVPs
in 2y and (2 to find u; and u,, respectively. Then, we use u; and u, to update our initial guess and repeat this
process until a convergence criterion is met (e.g., until values on 92, N d(2, negligibly change across consecutive
iterations). As illustrated below, we can dramatically accelerate the convergence speed of this simple iterative
approach via the continuous Schwarz alternating algorithm (aka Schwarz method) [34] which greatly increases
the pace of information propagation from 942 to {2 using an auxiliary genome that overlaps with (2; and (2 (see
Fig. 2(c)).

We illustrate the Schwarz method by solving the BVP in Eq. (1) in a domain of size 2 x 1 (i.e., {2 = [0, 2] %[0, 1])
subject to the boundary condition g(x) = x> — y? +xy. As illustrated in Fig. 2(b), we first use algebraic multi-grid
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(AMG) [68] to directly find the ground truth, i.e., u in {2. Then, we use AMG within both iterative approaches and
show that while both the simple iterative approach and Schwarz method converge to the ground truth, the latter is
significantly faster.

Since (2 is of size 2 x 1, we decompose the domain into two basic genomes of size 1 x 1 that share a single
border, see Fig. 2(c). In the first iterative strategy, we initialize the shared border with zero values for u, solve for
u; and u, using AMG, and exchange data across the border. This iterative process converges in 300 iterations when
the mean absolute error (MAE) compared to the direct solution drops below le-14.

In the Schwarz method, after finding #; and u,, we update u# on the shared border by solving the Laplace equation
in an auxiliary genome whose BCs on its two vertical borders are inside {2, and (2%, see Fig. 2(c). This approach
introduces a stronger and more effective coupling across the basic genomes which, in turn, accelerates the rate of
information propagation from {2 to the shared border. The higher rate of information propagation increases the
convergence rate by almost 12 times compared to the first iterative strategy, see Fig. 2(d).

For the general elliptic PDE,

Hux)=V-(@Vu)— f=0, xell,

4
ulx) =gkx), xeaf,

where «(x) is a variable coefficient in space and f(x) denotes the source term, the iterative solution by Schwarz
method converges to the PDE’s exact solution [69,70]. To illustrate this, we formulate the approximate solution
after solving BVP in the ith genome ({2;) as follows [71]

W ) = i )+ Pt — i (), xe 0 ©

where N, denotes the total number of basic and auxiliary genomes, u™* is the exact solution for the given BC, and

uk+"’17 is the solution after solving BVP in the ith genome at the kth iteration. We define one iteration as updating
all genomes exactly once. In Eq. (5), P; is a projection operator mapping the error u* —u**@=D/N¢ to a function that
has zero values outside (2. We refer readers to [71] for more details about P;’s proof of existence and properties.
Applying Eq. (5) to all the genomes in one iteration yields the error propagation map [71],

Né’
=t = ] = Pl = ubyl, ©

where the coefficient £ = |]_[;Vg(1 — P;)| prescribes how fast the error decays. It can be proved that £ < 1 for
general elliptic PDEs and this is independent of the numerical method (e.g., FE, FD, etc.) used for solving the
genome-wise BVPs [69,70].

Our framework is akin to the Schwarz method, except for the following two aspects. First, instead of using a
numerical method we always use a single pre-trained GFNet to predict the solution in either the basic genomes
or the auxiliary genomes. Following Eq. (6), if GFNet’s generalization error approaches 0 (see Section 4.3 for the
definition of different error types), the prediction of our framework converges to the elliptic BVP’s exact solution.
Second, there is no mechanism in the original Schwarz method to define the proper arrangement of the overlapping
sub-domains. In MF predictor, we distinguish between basic and auxiliary genomes and propose general guidance
for placing genomes and ordering their updates (see Section 3.3).

3.2. Genomic Flow Network (GFNet)

The iterative nature of MF predictor requires a GFNet to be able to estimate the solution anywhere inside a
genome for a wide range of BCs. Hence, the inputs of GFNet are:

GFNet inputs:  g(x%), g(x5), ---, g(x%,c), x
——
g of size Nyur X Np. Naim

where Np., Ny, and Ny, denote the number of points on the genome boundary, variables, and spatial dimensions,
respectively. We consider 2D problems in this work so Ny, = 2. In scalar PDEs such as the Laplace equation,
Nysr = 1 while Ny, = 3 for PDEs such as the incompressible NS equations studied in Section 4.2.
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In the above, g represents a discretized version of g(x) at the genome’s boundaries and x indicates the coordinates
of the point where GFNet predicts the solution, i.e., u(x) which has N,,, components. The loss function of GFNet is
adopted from Eq. (2) where the size of the training data (e.g., N1 and N;) and coefficients (e.g., « and 8) are chosen
based on the BVP. For instance, our studies indicate that while residual loss improves the accuracy of GFNet when
learning the Laplace equation, it reduces the accuracy in the case of the NS equations, see Section 4 for the details
and our reasoning. Additionally, when residual errors improve the accuracy of GFNet, we introduce a mechanism
to adaptively (instead of randomly) choose the location of collocation points in the genome.

We design the architecture of GFNet based on the PDE. In linear PDEs such as the Laplace equation, u(x)
is essentially a linear combination of the discretized boundary function values, g (note that the solution can still
be non-linear if g(x) is a linear function). To preserve the linearity, we propose a novel linearity-preserving fully
connected (LPFC) architecture shown in Fig. 3(b). In LPFC, we pass the coordinates of the input point x through
multiple fully connected hidden layers and set the last hidden layer’s outputs, h, to have the same size as g. The
output of GFNet is a linear combination of g with h, i.e., g - h. With this configuration, h leverages the spatial
correlations in {2 and g - h enforces it to conform to the linearity of the PDE. For non-linear PDEs such as the
NS equations, we adopt a fully connected (FC) architecture where g and x are concatenated into one input vector
and passed through all the FC hidden layers, see Fig. 3(b). A detailed evaluation of LPFC and FC architectures is
presented in Section 4.

Since a GFNet takes g as an input, a wide range of well-posed (and ideally negligibly correlated) BCs must
be used in training. For linear PDEs such as the Laplace equation, the BVP has a unique solution as long as
the boundary function g(x) is smooth, i.e., its derivatives in H(-) exist. Hence, we use GPs to generate a smooth
function in 1D and then wrap that function around the perimeter of the genome, see Fig. 3(a). GPs are stochastic
processes that place a prior distribution on functions. By judiciously selecting the hyperparameters of their kernel,
we can generate a wide range of smooth functions that are minimally correlated. For highly nonlinear PDEs such
as the NS equations, the BCs must satisfy mass, momentum, and energy conservation laws which makes it highly
challenging to create well-posed BCs via a GP. Hence, we first solve the PDEs with realistic BCs on a large domain
and then extract solutions for small genomes embedded in the domain. This strategy is demonstrated in Fig. 3(a)
where the flow in a lid-driven cavity is swept by a genome while recording the flow on the boundary as well as
inside the genome (the cavity’s domain spans [0, 1] x [0, 1] while the genome has a size of 0.5 x 0.5). As argued
in Section 3.1, this procedure generates valid data since the flow on each genome’s boundary constitutes the BCs
for the BVP on that genome.

Note that the genomes in training and prediction have the same shape because GFNet does not learn the effect
of the genome’s shape. We can address this limitation by including the boundary’s geometrical information as input
but this is beyond the scope of this work.

3.3. Mosaic flow predictor

As detailed in Section 3.1 we can (1) convert a BVP in a large domain to multiple BVPs in genomes that cover
that domain and then solve these BVPs iteratively, and (2) employ auxiliary genomes to significantly accelerate
the convergence. Based on the above two attributes, MF predictor decomposes an unseen domain into two sets of
genomes, see Fig. 3(c). The first set consists of basic genomes that cover the entire domain and can overlap with
each other. The BCs on the border of basic genomes are either known (if the borders lie on the large domain’s
boundary) or must be inferred via MF predictor. The second set consists of auxiliary genomes that overlap with
the basic genomes to accelerate the propagation of boundary information into the domain, i.e., to speed up the
iterative process of estimating the unknown BCs of the basic genomes. We distribute these two sets of genomes
based on the following general guidelines. First, we arrange the basic genomes to cover the entire domain with
as little overlap as possible (gl through g4 in Fig. 3(c)). Then, we place auxiliary genomes on the vertical and
horizontal shared borders of the basic genomes (g5 through g8 in Fig. 3(c)). Finally, we place an additional auxiliary
genome on every corner/region where four basic genomes connect/overlap (g9 in Fig. 3(c)). We have developed
this spatial genome distribution to balance the pace of information transfer (which directly affects convergence
speed) and implementation efforts. As we demonstrate in Section 4.2.3, for highly nonlinear PDEs such as the NS
equations, more auxiliary genomes are required to facilitate information propagation. In such cases, following the
above procedure, we place the additional auxiliary genomes on the shared borders of other auxiliary genomes. We
will explore more advanced techniques in our future works.
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(c) Step 3: Iterative nature of MF predictor

Fig. 3. (Color Online) Primary steps of our framework for transferable PDE learning: Steps 1 and 2 are done only once and their cost is
fully amortized in step 3 which can be applied to unseen domains. (a) Training data are generated by either solving a BVP whose BCs are
sampled from a GP, or by sweeping the solution of the BVP in a large domain with a genome (the plot in method 2 corresponds to the
velocity magnitude in a lid-driven cavity simulation). (b) A GFNet takes the discretized boundary function g and x as inputs and outputs
the solution at x. We use LPFC and FC architectures for linear and non-linear PDEs, respectively. (¢) Mosaic flow (MF) predictor estimates
the solution in an unseen domain by systematically coupling the predictions of a GFNet on basic and auxiliary genomes. Note that basic
genomes can overlap with each other and auxiliary genomes can be placed anywhere inside the domain (we have avoided these scenarios
to improve clarity).

MF predictor finds the solution in the genomes set by set using a pre-trained GFNet and iterates until convergence.
In one iteration, MF predictor updates all the genomes once in the order that the genomes are grouped and placed.
That is, it first predicts for all the basic genomes, then infers auxiliary genomes covering the basic genomes’
horizontal and vertical borders, and at last updates the genomes overlapping the basic genomes’ corners. The
rationale behind this order is that, updating genomes with more boundary information (adjacent or close to boundary)
before the ones with less information can maximize the pace at which the information is propagated to the domain’s
interior. For instance, the basic genomes are inferred first as they cover the entire domain boundary while the
auxiliary genomes overlapping the basic genomes’ corners are inferred at last because they are typically immersed
inside the domain without direct contact to the boundary. The basic genomes’ borders are initialized either with
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the domain’s BC if they lie on the domain’s boundary or with 0 if they lie between basic genomes . The predictions
in basic genomes provide the BCs for auxiliary genomes and then the predictions in auxiliary genomes update the
unknown BCs of the basic genomes. The iterations stop when the change in the inferred BCs of basic genomes is
smaller than the user-defined tolerance €.

Fig. 3(c) illustrates the spatial distribution of basic and auxiliary genomes and the iterative nature of MF predictor
for solving the Laplace equation in {2 = [0, 2] x [0, 2] with genomes of size 1 x 1. In this figure, there are 4 basic
genomes (g1-g4) that, without any overlap, cover (2. The BCs are only known on two sides of the basic genomes
and hence the MF predictor aims to predict the unknown BCs on the other two sides. There are also 5 auxiliary
genomes (g5-g9) that accelerate the pace of inferring the unknown BCs of the basic genomes. In one iteration, the
genomes are updated in the following order: g1-g4 — g5, g6 — g7, g8 — g9. (Within this order, non-overlapping
genomes can be updated concurrently, e.g., gl through g4 or g5 and g6. We plan to exploit this parallelism in our
future work.) In this example, MF predictor converges to the exact solution in 18 iterations.

In contrast to conventional numerical methods and PINN, MF predictor does not solve for all the grid/collocation
points in the entire domain. Instead, it only infers the solution on the borders of basic and auxiliary genomes. For
instance, for genome g7 in Fig. 3(c), MF predictor uses the pre-trained GFNet to predict the solution on its vertical
and horizontal center lines. These predictions are then used for inferring the solutions in genomes gy (in the current
iteration) as well as g; and g3 (in the next iteration).

4. Results and discussions

We evaluate GFNet and MF predictor by solving the linear Laplace equation and the non-linear incompressible
NS equations in Sections 4.1 and 4.2, respectively. In each section, we first present the details on data generation,
GFNet architecture, accuracy, and performance (the latter refers to computational costs). Then, we compare
GFNet and MF predictor against the state-of-the-art PINNs. In Section 4.3 we do an in-depth error analysis of
our framework and test its accuracy when the Fourier neural operator (FNO) [31] and deep operator networks
(DeepONet) [33] are used as GFNets and in Section 4.4 we demonstrate the advantage of enforcing the network
architecture to satisfy the applied BCs.

We use Tensorflow [72] and ADAM [73] optimizer. We implement GFNet with TensorFlow 2 (2.2.0) whereas the
PINN related sources [25,74] used for comparison are built with TensorFlow 1 (1.8.0). In Section 4.3, we implement
FNO with Pytorch 1.9.0 and DeepONet with Tensorflow 2 (2.4.0). For our models, we initialize the learning rate,
n, by 5e-4 and reduce it by 20% when the validation loss decreases by less than 0.01% across 200 consecutive
epochs. We use a 9 : 1 ratio for splitting the data into training and validation samples and terminate the training
when 1 = le-7. We measure accuracy via mean absolute error (MAE) and mean absolute residual (MAR) metrics
calculated as:

Ng Ng
MAE: ) " |N(g.x:10) — u(x))|/N,; MAR: > " |H (N(g.x10)) |/ N.
i=1 i=1

All the simulations are done on an NVIDIA Quadro RTX 8000 GPU.
4.1. Laplace equation

Laplace equation is an elliptic BVP that ubiquitously appears in fluid dynamics and heat transfer [2], see Eq. (1).
In this section, we learn the 2D Laplacian operator via a GFNet in a unit square domain, i.e., the genome covers
[0, 1] x [0, 1]. Then, we use MF predictor to solve the Laplace equation in domains that are up to 1200 times larger.
We compare the accuracy and performance of GFNet and MF predictor against PINN [25] and XPINN [28].

4.1.1. Training data

As described in Section 3.2, we use GPs to generate BCs. In particular, we use Sobol sequence [75] to sample
the hyperparameters of the infinitely differentiable Gaussian kernel of a 1D GP. Then, we draw a sample function
(i.e., a 1D curve) from each GP and wrap it around the genome, see Fig. 3a. Finally, for each BC, we numerically
solve the Laplace equation via PYAMG [68] which relies on FD to provide the solution on a uniform grid that
consists of 32 x 32 cells and 128 boundary points, see Fig. 4(a).
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Fig. 4. (Color Online) Distribution of training data in {2: 128 boundary points, 400 data points, and 400 collocation points. The locations
of boundary and data points are fixed during training while those of the collocation points adaptively change based on |[VAN.

4.1.2. Architecture and training of GFNet

As defined in Section 3.2, GFNet’s inputs include x and the discretized boundary value function g which in this
case has N,, = 128 points. Since Laplace equation has one scalar variable (i.e., N, = 1), GFNet has a total of
Npe X Nyar + Ngim = 130 inputs. The output of GFNet is a single value N (g, x|@) that approximates u(x).

We choose tanh as the activation function and evaluate both FC and LPFC architectures introduced in Section 3.2.
The loss function of GFNet is defined in Eq. (2) and uses § = 0 and o =1e-3. When minimizing this loss, three data
types are used in each epoch: boundary points, data points, and collocation points. While the location of boundary
and data points are determined by PyAMG (and hence fixed), we adaptively choose the location of collocation
points during training based on the spatial gradients that GFNet estimates inside the genome. These gradients are
estimated via AD and their magnitude, |VA/|, controls the spatial distribution of the collocation points by increasing
the point density in regions where [VN/| is large. Fig. 4(b) demonstrates the spatial distribution of these three data
types in one randomly selected epoch during training. In this figure, boundary and data points are on a grid (since
PyAGM generates them based on FD) while collocation points concentrate near the genome’s border where the
solution tends to change sharply.

4.1.3. Accuracy for unseen BCs

We train the FC and LPFC architectures using 2000 samples where each sample consists of 128 boundary, 100
data, and 400 collocation points. The FC architecture consists of 8 hidden layers of sizes 128 ® 96* ® 64% ® 322
which make a cone as shown in Fig. 3(b). The notation k' ®1/ denotes i FC layers of size k followed by j FC layers
of size . We invert the order of these hidden layers for LPFC so that both architectures have the same number of
neurons. The resulting GFNets are tested on 400 unseen samples generated by PYAMG where the MAE and MAR
are evaluated at all the 32 x 32 grid cells.

The first two rows in Table 1 compare the accuracy of the two architectures. We observe that LPFC learns the
Laplacian operator more accurately than FC by one order of magnitude. This superior accuracy is because FC
applies a non-linear activation function (tanh) to g which conflicts with the linearity of the Laplace equation. On
the contrary, LPFC applies the non-linear activation function only to x and retains the linearity of the Laplacian
operator. Therefore, we use the LPFC architecture in the remainder of this section.

We further improve GFNet’s accuracy by increasing its depth and the size of training data. (To reduce training
costs, we do not use all the 32 x 32 points where PYAMG provides the solution.) In particular, we use 14 layers of
size 32?2 ® 64> ® 967 ® 1283 and 8000 samples to reduce the MAE and MAR of LPFC by 1.3 and 1.8 times,
respectively. Moreover, LPFC consistently outperforms FC in every case and exhibits 2 times higher accuracy
with 8000 samples. Further increasing the number of samples or hidden layers did not noticeably affect accuracy.
Therefore, we select LPFC architecture and use the 14-layer GFNet trained with 18 000 samples as the final model
in MF predictor. We also test single and double-precision computations but no significant difference in accuracy is
observed for either GFNet (see Table 1) or MF predictor (see Fig. 5). Since the former is 17% faster, we choose
the model trained with single-precision.
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Table 1

Accuracy of GFNet on learning the Laplacian operator: LPFC architecture learns the Laplacian operator more accurately
than FC. The training column includes the number of layers, samples, data/collocation points, and the mean absolute error
(MAE). The test column reports the MAE and the mean absolute residual (MAR) which are calculated by evaluating GFNet’s
predictions against PyAMG [68].

Network Precision Training Test on unseen BCs
Layers Samples Points MAE MAE MAR

FC Single 8 2000 10000 1.33e—3 2.64e—3 1.72e—1
LPFC Single 8 2000 10000 3.88e—4 5.42e—4 2.33e—-2
FC Single 14 4000 400\00 5.57e—4 1.30e—3 7.12e—-2
LPFC Single 14 4000 400M00 2.55e—4 4.33e—4 2.05e—2
FC Single 14 8000 400\00 4.06e—4 8.79¢e—3 4.17e-2
LPFC Single 14 8000 400M00 2.37e—4 4.10e—4 1.30e—2
FC Double 14 8000 400\00 3.86e—4 8.12e—4 3.84e—-2
LPFC Double 14 8000 400M00 2.3%9e—4 4.07e—4 1.51e-2
LPFC Single 14 18000 400\00 1.59e—4 4.10e—4 1.46e—2
LPFC Double 14 18000 400M00 1.59e—4 4.10e—4 1.46e—2

4.1.4. Accuracy on unseen domains subject to unseen BCs

We first evaluate MF predictor on square domains of area A > 1 with two boundary functions g;(s) =
sin(2mw s /\/Z) and g»(s) = sin(2mws) where s parameterizes the boundary. We gradually increase A and execute
MF predictor in both single and double-precision. The accuracy of MF predictor is measured by the MAE between
the converged solution and the ground truth generated with PyYAMG. Fig. 5 summarizes the results.

At A = 1, the error is solely due to GFNet (i.e., inferring the solution for an unseen BC). For both g;(s) and
g2(s), the MAE spikes at A = 2 x 2 as it starts to include additional error accumulated during the iterative process in
MF predictor. However, as A increases, the influence of BC on the inner region of the domain reduces, and therefore
MF predictor can more accurately predict the solution. As a result, MAE decays and plateaus once A > 4 x 4.

The converged MAEs for g (s) and g»(s) are different. For g;(s), the boundary function oscillates less across
the domain boundary as A increases which simplifies the genome-wise BVP compared to A = 1. Therefore, at
A = 8 x 8§, even with the additional accumulated error due to MF predictor, the MAE is less than that at A = 1.
However, for g»(s) the oscillation frequency does not depend on A and hence the MAE at A = 8 x 8§ exceeds that
at A =1 and is also 4 times larger than the corresponding MAE for g;(s).

We also demonstrate the transferability and scalability of MF predictor by solving the Laplace equation in a
domain that resembles “Mosaic Flow” and is 1222.5x larger than the training domain (i.e., a genome), see Fig. 1.
The prescribed BC is g(x) = sin(2w(x /64 y/5)) and 2020 genomes (basic and auxiliary) are used in MF predictor
which converges in 9821 seconds with an MAE of 2.61e—3.

In this study, we only consider square genomes for GFNet. Accordingly, MF predictor can accurately assemble
GFNet’s inference for domains spanned by genomes, i.e., with rectilinear boundaries. However, for non-rectilinear
domains such as the above calligraphy shape, we need to adopt a mosaic representation of the domain by
decomposing the curved boundary to small squares, which results in the zigzag-shaped boundary in Fig. 1. We
will investigate how to accurately consider non-square genomes in our future work.

4.1.5. Comparison with PINN and XPINN

We compare the accuracy and computational costs of GFNet and MF predictor against a state-of-the-art PINN
which has the feed-forward architecture of 60 ® 60 ® 60 ® 60. To maximize the accuracy of this PINN, we train it
with a two-stage optimization process [76] that starts with 40 000 iterations using ADAM [73] and is followed by a
second-order optimization method based on L-BFGS [77]. We use 20000 x A collocation points and 32 x 4 x VA
boundary points to consider the effect of A. Contrary to PINN, L-BFGS is not used in fine-tuning GFNet.

The evaluation results are illustrated in Fig. 5. PINN and GFNet achieve a similar accuracy for a single genome.
For the simpler BC, g (s) = sin(2wx/ \/Z), PINN achieves smaller MAEs compared to MF predictor for A > 1.
This higher accuracy is because (1) the parameters of PINN are fine-tuned with L-BFGS while GFNet is trained via
Adam (GFNet cannot be trained via L-BFGS since it has too many parameters), and (2) PINN is specifically trained
on this BC (and cannot be used for any other BC) while MF predictor assembles the predictions from a GFNet that
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Fig. 5. (Color Online) Accuracy and performance of MF predictor and PINN for the Laplace equation with two different BCs: For
the boundary condition gj(s) = sin(2ws/+/A), PINN achieves better accuracy than MF predictor. However, for the more complex BC
g2(s) = sin(2ws), the accuracy of PINN drops, especially in larger domains. Note that while PINN is re-trained for every new BC, MF
predictor has never seen these BCs. In terms of computational costs (sum of training and inference times), PINN is several orders of
magnitude slower than MF predictor (we were unable to train PINN on the 8 x 8 domain due to very high costs). In addition, MF predictor
with single (SP) and double-precision (DP) yields near identical results.

Table 2
XPINN vs. MF predictor: Both methods approximate the
Laplace operator in a square domain of size 4 x 4.

Method MAE
MF predictor 5.82e—4
XPINN 2.12e-2

has never seen this BC. For the more complex BC, g,(s) = sin(2wx), PINN fails to scale up to large A; indicating
that its architecture is domain-specific and must be optimized anew. Unlike PINN, MF predictor scales up quite
robustly to large domains with unseen BCs without the need to re-train or fine-tune its GFNet. Remarkably, MF
predictor is between 1-3 orders-of-magnitude faster than PINN depending on the domain size, which underscores
its potential for scalable inference, especially on large and complex domains (for instance, we were unable to train
a PINN on an 8 x 8 domain due to the extremely high training costs).

Finally, we test MF predictor against XPINN [28] which is an extension of PINN that aims to address PINN’s
scalability issues. XPINN divides a domain into some sub-domains and trains a PINN on each one while ensuring
continuity across the sub-domains. In our comparison, we choose a square domain of size 4 x 4 subject to the BC:
gi(s) = sin(2wx /\/Z) and divide it into 4 square sub-domains of equal sizes. The 4 PINNs used in XPINN have
an architecture of 20 ®20®20® 20 and are trained using Adam for 5000 epochs with 16000 collocation points and
128 boundary points. Table 2 enumerates the accuracy of XPINN and MF predictor and shows that our approach
is two orders of magnitudes more accurate.

4.2. Navier-Stokes equations

The 2D steady incompressible NS equations are:
Hy:0u+9d,v =0,
Hy :udeu +voyu+0p/p — W2 =0, @)
H3 :udv+voyv+0,p/p — W2 =0,

where u(x), v(x), and p(x) denote velocity components and pressure, respectively. We solve Eq. (7) in a lid-driven
cavity problem where the top lid moves with an arbitrary horizontal velocity, i.e., u = g(x), v = 0, and the remaining
boundaries are treated as static viscous walls where u = v = 0. We fix p = 1.0 and v = 0.002 and aim to predict
u(x), v(x), and p(x) in unseen domains that have unseen BCs on the top lid and are larger than a genome. Our
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imposed lid velocity profiles can be highly nonlinear functions and collectively generate Reynolds numbers in the
(0, 500) range. The corresponding flow fields are also more complex than cases where the top lid moves with a
uniform velocity.

The convergence theory in Section 3.1 does not strictly apply to the NS equations since the non-linear terms in
H, and H; do not conform to the formulation of the elliptic systems in Eq. (4). Nonetheless, the incompressible
NS equations can still be approximately viewed as elliptic because the information propagates in the same way
as it does in elliptic systems where any fluctuation at one point affects the entire domain. Several studies have
successfully employed Schwarz method with other numerical methods in solving the NS equations and present
accurate numerical results [78—81]. In the following sections, we will demonstrate that MF predictor with GFNet
can also learn the NS equations quite accurately and infer flow features that have not been seen in training.

4.2.1. Training data

We sample the velocity profile of the top lid using GPs and solve the NS equations with OpenFOAM [82] on
a uniform grid of 129 x 129 vertices. Then, for each solution field obtained via OpenFOAM, we sweep it with a
genome of size 0.5 x 0.5 and record the values on the boundary and inside the genome, see Fig. 3(a). This procedure
results in highly correlated training samples that adversely affect GFNet’s training. Hence, we (1) discard a sample
if the Euclidean distance of its BC to another sample’s BC, i.e., |g; — g, is small, and (2) include cavities of size
1 x 2 and 2 x 1. Following this procedure, 2634 samples are generated.

4.2.2. Architecture and training of GFNet

For each sample, we uniformly extract 128 boundary points from the grid vertices located on the boundary.
GFNet’s inputs include the velocities (#, v) at boundary points and x, i.e., a total of Ny, X Npe+Nyiyy = 128%2+42 =
258 inputs. Following [76], we exclude the BC on p from the inputs and instead solve it as an internal variable.
The GFNet has three outputs N'(g, x|0) = (i1, 0, p) which approximate the solution (u, v, p) at x. The loss function
of GFNet is adopted from Eq. (2) as follows:

No
1 A A A
L®) = N Z (n@ — u)* + (0 — v)* + y3(p — p)*)
®)
N
1
+ > (e H} + e H; + a3 HZ) + BIOI*.

where the first summation minimizes the error on predictions, the second summation penalizes the residuals, and the
last term represents the Tikhonov regularization. y = [yy, ¥2, 3], @ = [«, @2, @3], and B balance the contributions
to the overall loss. When minimizing the PDE residuals, we cannot adapt the collocation points based on one
variable’s spatial gradients in the same way we do for learning the Laplace equation (see Section 4.1.2). This is
because the point distribution based on one variable’s gradient may not align with the distributions based on the
other two variables’ gradients. We could use the norm of the gradient vector but that will bias the training to favor
learning one variable better in expense of losing accuracy for the other variables. To avoid this issue, we increase
the number of collocation points by 3 times compared to solving the Laplace equations (1200 over 400, see Tables |
and 3) and randomly initialize their positions with a uniform spatial distribution. These collocation points are fixed
during training. We use the FC architecture due to the non-linear nature of NS equations and select the layer sizes
as 256° ® 128° ® 96° ® 64° ® 32> ® 3. All except the last hidden layer use tanh as the activation function. ~ The
depth and size of our GFNet are considerably larger than the networks in related works [25,74,76,83] because we
(1) use BCs (which are high-dimensional) as inputs, and (2) find that a deep network with Tikhonov regularization
generalizes better than shallow networks that exclude regularization. To find the optimal values of y, @, and B, we
set y; = y» and @ = op = a3 = « since u and v are equally important and the three equations are highly coupled,
i.e., no reason to penalize one equation’s residual more than the others. We alter 8 between le-13 and le-9 and
for each value of B, test a few combinations of y;, y3 and «. The most accurate results obtained are presented in
Table 3.

For data-only GFNet, i.e., « = 0, reducing pressure’s contribution to gradient descent improves the overall
accuracy. We use y3 = 0.5 since further decreasing it to y3 = 0.2 negligibly improves the predictions for velocities
while increasing the error on pressure by 27%. Next, we increase the number of samples and minimize PDE
residuals in GFNet’s training. Using collocation points and o« = le-3 reduces the accuracy by more than 50%
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Table 3

GFNet’s accuracy in learning the NS equations: The first and second values in column one indicate the number of data and collocation
points, respectively. y1, y3, @, and B are the coefficients in Eq. (8). The three validation error and loss values correspond to u(x), v(x), and
p(x) which denote the velocity components and pressure, respectively.

Points Y1, V3 o B Validation MAE Validation PDE loss

961/- 1.0 1.0 0 le—11 1.02e—03 1.01e—03 6.49e—04 - - -

961/- 1.0 0.5 0 le—10 6.81e—04 6.43e—04 5.51e—04 - - -

961/- 1.0 0.2 0 le—10 6.42e—04 6.30e—04 7.05e—04 - - -

576/1200 1.0 0.5 le-3 0 1.48e—03 1.24e—03 8.79¢e—04 8.30e—04 2.58e—03 4.51e—04

576/1200 1.0 0.5 le—2 le—10 1.88e—03 1.56e—03 9.84e—04 3.20e—04 4.57e—04 1.94e—04
10 10 10 10 10 10
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Fig. 6. (Color Online) Velocity magnitudes ~/u? + v2 for flow in a square lid-driven cavity with unseen BC: (a) The ground truth is
simulated by OpenFOAM [82]. (b) MF predictor with 9 genomes fails to accurately predict the velocities. (¢) MF predictor with 19 genomes
accurately predicts the unseen conditions and achieves an MAEs of 5.68e—3 and 4.96e—3 for velocities (u, v), respectively. (d) PINN fails
to resolve the flow and achieves MAEs 1.52e—1 and 1.39e—1 for velocities (u, v). (¢) In addition to the 9 genomes (g;—9) arranged as
shown in Fig. 3(c), we add 10 more auxiliary genomes (g10—19) to improve MF predictor’s accuracy in resolving the unseen flow.

and further increasing o exacerbates the inaccuracies. The reasons that minimizing PDE residuals reduces accuracy
are twofold. Firstly, as pointed out in [74,84,85], training physics-informed models is equivalent to solving a stiff
system of ordinary differential equations which requires more advanced training techniques such as adaptive weight
or adaptive activation functions. Leveraging these techniques can potentially increase the accuracy of our GFNet
and will be pursued in our future works. Secondly, Eq. (8) uses AD to compute the derivatives analytically and
regularizes the differential form of the NS equations while OpenFOAM solves the integral form of the NS equation.
Note that the velocity and pressure from OpenFOAM are accurate but their derivatives differ from the ones obtained
by analytical differentiation and dissatisfy the PDE residual in Eq. (8). For instance, OpenFOAM reports an average
residual of 9e-10 for H; using the velocities shown in Fig. 6(a). However, the same velocities result in an average
residual of 3e-4 if FD is used to calculate the derivatives in Eq. (7). As a result, the data loss and PDE residual
contradict each other during gradient descent and decrease the overall accuracy of GFNet.

For the lid-driven cavity problem, we are interested in inferring the velocity accurately across unseen BCs and
unseen domains. Therefore, we choose the model with the lowest MAE in velocity which is obtained with y3 = 0.5
and ¢ = 0.

4.2.3. Accuracy for unseen domains subject to unseen BCs and comparison with PINN
We evaluate the accuracy of MF predictor in a domain of size [0, 1] x [0, 1] which is four times larger than the
genome used in training the GFNet. The unseen BC is again generated via a GP and determines the velocity profile
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Fig. 7. (Color Online) Velocity magnitude ~/u% + v? and streamlines for the flow in a step-shaped lid-driven cavity: Compared to the ground
truth simulated by OpenFOAM [82], MF predictor achieves MAEs of 1.35e—2 and 1.24e—2 for velocity components u and v, respectively.
The streamline plots (colored by velocity magnitude) reveal that the step induces a complex flow pattern that consists of three inter-related
vortices and MF predictor successfully captures all these vortex structures while the GFNet has never seen such scenarios during training.

Training MAE ————— Test MAE —E ME j—> Final MAE
+ + Predictor
optimization  generalization accumulate
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Fig. 8. Error decomposition: Our framework has two primary error sources. The genomic error is introduced in GFNet’s prediction for unseen
BCs while the assembly error is accumulated from the iterative procedure in MF predictor. The genomic error is divided into optimization
error, generalization error, and approximation error [86—88]. The optimization error is estimated by the training MAE. The generalization
error is measured by subtracting test MAE and training MAE. Given the large size of our neural networks, we assume the approximation
error is negligible. The assembly error is evaluated by subtracting GFNet’s test MAE from the final MAE achieved by MF predictor.

of the top lid. We first use MF predictor with 9 genomes (4 basic and 5 auxiliary) arranged as shown in Fig. 3(c)
which is also used throughout Section 4.1. However, as illustrated in Fig. 6(b), using only 9 genomes does not
provide sufficient accuracy and the MAE for velocity components u# and v are 7.15e—2 and 6.82e—2, respectively.
This is due to the highly non-linear nature of the NS equations which complicates the propagation of the boundary
information. To address this issue, we include more auxiliary genomes (that overlap with the original 9 genomes) to
facilitate the information propagation, see Fig. 6(e). As shown in Fig. 6(c), using 19 genomes significantly improves
the accuracy and reduces the MAE of velocity components # and v to 5.68e—3 and 4.96e—3, respectively.

To compare accuracy and performance with the state-of-the-art, we construct the PINN designed in [74] to
solve the lid-driven cavity problem with u = 1, v = 0 on the top lid (we were able to reproduce the accurate results
reported in [74]). We re-train the model for 40 000 epochs with Adam using the architecture 50®50® 50® 50 ® 50,
4 x 129 boundary points, and 10000 collocation points. As shown in Fig. 6(d), PINN is unable to resolve the flow
field and the MAE for velocities (u, v) are as large as 1.52e—1 and 1.39e—1. This indicates that the architecture
of PINN only applies to the specific BC used in [74], i.e., changing the BC requires not only re-training the PINN
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but also re-designing its architecture. Regarding computational costs, MF predictor with 19 genomes converges to
an accurate solution in 117 seconds while the PINN’s training takes 8846 seconds.

We further evaluate MF predictor by predicting the flow in a step-shaped lid-driven cavity that has an unseen
velocity profile set to the top lid, see Fig. 7. This unseen cavity is 12 times larger than our genomes and is
decomposed into 12 basic and 21 auxiliary genomes. Fig. 7 compares the results from MF predictor and the ground
truth simulated by OpenFOAM [82] using the same grid resolution as in data generation. MF predictor converges
in 313 seconds which is almost 3 times more than the cost for the square cavity in 6(d). This increase in inference
time is consistent with the 3:1 area ratio between the two domains.

The MAE for velocities (u, v) are 1.35e—2 and 1.24e—2, respectively, which are larger than the MAE for the
square cavity by 1 order of magnitude. As shown in Figs. 7(c) and 7(d), the increased error primarily comes from
complex flow patterns that have never been seen by GFNet during its training: the flow over the step corner and
the large vortex interleaved with two neighboring vortices on its left and bottom. Nonetheless, MF predictor still
captures all three vortex structures in the cavity as shown by the streamlines in Fig. 7(e). We also observe some
unphysical flows in the near-wall regions where the streamlines should be parallel with the wall. This error is
caused by the inaccuracies of GFNet in predicting the flow on the boundaries, which will be further discussed in
Sections 4.3 and 4.4.

4.3. Detailed error analysis and comparison with DeepONet and Fourier Neural Operator (FNO)

We attribute the error of our framework to two sources: the genomic error which is introduced by GFNet’s
inference for a single genome with an unseen BC, and the assembly error which is accumulated during the iterative
procedure in MF predictor. The genomic error can be further divided into three parts [86—88],

V(g™ x16) —u*(x)| = IN(g", x10) — i(x) + i(x) — u™(x)|

N 9
< 18(8. %) + |8(8", x) — 8(8, x)| + |a(x) — u*(x)|, ®

where u*(x) is the exact solution to a BVP with an unseen BC (g*), #(x) represents the closest approximation to
u*(x) that a given neural network can achieve, g is a training sample that resembles g, and 8(g, x) = N(g, x|0)—u(x)
measures the difference between #(x) and the approximation achieved by training the neural network. In Eq. (9),
the first part represents the optimization error introduced during training [86,87] while the second part quantifies
the neural network’s generalization error [88] in predicting unseen inputs. The last part defines the approximation
error [86,87] which appears when the target function u*(x) is not covered by the neural network’s functional
space. According to the universal approximation theorem [89,90], the approximation error effectively diminishes
by increasing the size of the neural network.

In practice, it is hard to compute the above errors rigorously since #(x) is typically unknown. Nonetheless, we can
define approximate metrics to reflect the error’s magnitudes, see Fig. 8. Given the large size of our neural networks
which have up to 3x10° parameters, we assume that the approximation error is small compared to the optimization
and generalization errors which are estimated by, respectively, GFNet’s training MAE and the subtraction of training
MAE from test MAE. We compute the test MAE of GFNet by (1) decomposing an unseen domain into basic
genomes, (2) extracting the basic genomes’ BCs directly from the ground truth, and (3) inferring the solution in
all the basic genomes using the extracted BCs, and (4) evaluating the MAE against the ground truth across all the
genomes. Note that this test MAE is evaluated without using MF predictor and it solely reveals the genomic error
in predicting flows with unseen BCs. At last, we approximate the assembly error by subtracting the GFNet’s test
MAE from the final MAE achieved by MF predictor.

In what follows we present a detailed error analysis of our framework in solving the Laplace and the NS equations
with unseen domains and BCs. We note that the transferability feature of framework is independent of the specific
architecture used in GFNet. That is, other state-of-the-art DNN architectures such as DeepONet [33] and the Fourier
neural operator (FNO) [31] can also be used to learn the underlying PDE system in the genomic domain and, in
turn, used in MF predictor. With this important note in mind, in this section we compare our GFNet’s performance
against DeepONet and FNO at the genomic as well as large scales to obtain a deeper understanding of the error
sources.
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Table 4

Accuracy of different operator learners: The residual is computed with both FD (with a step of 1/256) and AD. AD-based
residual cannot be calculated for FNO due to its architecture and training are set up. Only LPFC best uses collocation points
in its training.

Operator learner Train MAE Validation MAE Residual with FD Residual with AD
DeepONet 2.19e—04 2.34e—04 5.6le+2 2.81e+1
FNO 6.95e—05 7.58e—05 8.48e+2 -
LPFC 1.67e—04 1.66e—04 1.85e+4 5.27e+3
LPFC Best 1.59e—4 4.10e—4 4.03e—-3 1.46e—2
Table 5

Effect of GFNet on the errors: The errors are defined in Section 4.3 (see also Fig. 8) and calculated for the
“Mosaic Flow” logo in Fig. 1.

GFNet model Optimization error Generalization error Assembly error Final MAE
DeepONet 2.19e—04 6.87e—04 1.97e—03 2.87e—03
FNO 6.95e—05 5.81e—04 4.74e—03 5.39e—03
LPFC 1.67e—04 4.80e—04 1.98e—03 2.79e—03
LPFC Best 1.59e—4 8.04e—04 1.80e—03 2.61e—03

4.3.1. Laplace equation

We train and compare LPFC against DeepONet and FNO where in both cases we test different architectures and
optimization hyper-parameters and select the optimum one. The optimized DeepONet is an unstacked DeepONet
with a branch network consisting of 6 fully connected hidden layers of sizes 100° and a trunk network consisting
of 6 fully connected hidden layers of sizes 100°, all using swish activation functions (see [33] for more details on
the architecture). The optimized FNO has an architecture with width 64 and 18 modes (see [91] for more details).
The training procedure used in these two operator learners includes a total of 10000 Laplace solutions from which
8000 are used in training while 2000 employed in validation. For each sample, we include 900 data points (placed
on a regular grid), 124 boundary condition points, and no collocation points. The reason that collocation points are
not used in training any of the models compared in this subsection is that FNO cannot be trained using AD because
it predicts on a pre-selected grid which is fixed during training. Hence, the output of FNO is not single-valued and
the AD-based residual of a single point is not properly defined. Thus, for fair comparison, we retrain the LPFC
architecture with the same setup explained above. The accuracy of these three models are also evaluated against
the best LPFC architecture of Section 4.1.4 (which uses AD-based residuals in training) to investigate the effect of
collocation points on the performance.

The training results are summarized in Table 4 and indicate that in this experiment FNO achieve the best MAE
results in both training and validation. We note that while our best LPFC architecture presents the worst validation
error, it outperforms the other models in terms of the PDE residual. This result is a direct consequence of training
it with collocation points but less labeled data points. Additionally, we attribute the better performance of LPFC
over DeepONet to two different reasons: (1) LPFC can be considered as a simplified version of DeepONet and
therefore is easier to train, and (2) LPFC preserves the linearity of the boundary conditions which is a key feature
of the Laplace equation.

Next, we evaluate the performance of these models when used in MF predictor . We perform this test on our
largest domain that represents the spelling of “Mosaic Flow”, see Fig. 1. The results are summarized in Table 5
and indicate interesting features about the error sources. We observe that the training and validation errors shown
in Table 4 slightly correlate with the generalization error, i.e., the model with lower training/validation error has
smaller generalization error compared to other models. However, this trend is not observed in the assembly error,
i.e., a lower generalization error does not result in a smaller assembly error. A closer look at Tables 4 and 5
indicates that the best assembly error is obtained for the model that achieves smallest residual error, i.e., the LPFC
architecture which employs collocation points in its training. In fact, the largest assembly error is obtained by the
FNO architecture whose FD-based residual diverges as the FD step size decreases. From these observations we
conclude that when MF predictor is used in large domains the PDE residuals at the genome scale greatly contribute
to the final MAE and hence the trained GFNet must achieve not only a small MAE in training/validation, but also
a small PDE residual.
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Table 6

Accuracy of different GFNets for learning the NS equations: We compare four different GFNet implementations that include
the fully connected (FC) network, DeepONet, fourier neural operator (FNO), and FC with the enforcement of the input BC
(FC+ BC). The generalization and assembly error are evaluated on the step-shaped cavity. Each error includes two entries
for the two velocity components which are u# and v, respectively. DeepONet and FNO achieve lower optimization errors
but comparable/worse generalization and assembly errors. Enforcing the exact BC not only improves GFNet’s training and
generalization errors but also reduces the assembly error in MF predictor.

GFNet model Optimization error Generalization error Assembly error Final MAE

u v u v u v u v
DeepONet 6.26e—4 5.20e—4 1.86e—3 2.00e—3 6.30e—2 6.98e—2 6.48e—2 7.19e—-2
FNO 4.0le—4 3.87e—4 2.39¢e—3 1.76e—3 5.02e—2 2.74e—-2 5.30e—2 3.31le—2
FC 6.74e—4 6.54e—4 1.87e—3 1.65e—3 1.10e—2 1.02e—2 1.35e-2 1.24e-2
FC+ BC 4.16e—4 3.55e—4 1.15e-3 1.20e—3 6.5le—3 8.44e—-3 8.07e—3 1.00e—2
Table 7

Residual comparison of different models for learning the NS equations: We compare the PDE residuals of three GFNets
where FC outperforms the other models by 1-2 orders of magnitudes. The calculations are performed on validation data from

the training.
GFNet model Residual with FD Residual with AD

H, H, H3 H; Hy H;
DeepONet 4.19e—02 6.65e+00 9.24e—02 1.79e—02 9.79e—02 2.29¢e—03
FNO 3.34e—01 5.73e—01 3.72e—01 - - -
FC 2.30e—03 5.96e—03 4.27e—04 7.62e—04 2.96e—04 1.37e—04
FC+BC 4.972e—01 1.179e—01 9.335e—03 1.049e—01 1.960e—03 2.820e—03

4.3.2. Navier—Stokes

We repeat the analyses of previous section for the NS equations. In particular, we build two GFNets using the
DeepONet and FNO architectures using the training data introduced in Section 4.2.2 (2634 samples with 961 data
points per sample and no collocation points). We test all GFNets within MF predictor to estimate the flow in the
step-shaped cavity.

Rows one through three in Table 6 enumerate the breakdown of errors where FNO achieves the lowest
optimization error while FC slightly outperforms the other two models in terms of the generalization error. Compared
to the results in Table 5, the ratio between generalization and optimization errors has increased because (1) compared
to the Laplace equation, the NS equations are much more complex and have higher dimensionality, and (2) the test
samples used for calculating the generalization error are extracted from the step-shaped cavity which not only
has unseen BCs but also contains very complex unseen flow features, i.e., the flow over the sharp corner and the
interleaved vortex structure (see Fig. 7(d)). These features adversely affect the performance of all models in this
experiment.

In terms of the assembly and final errors, the GFNet based on FC accumulates the least error. This observation
aligns with the results reported in the previous section for the Laplace equation: FC achieves smaller residuals
compared to DeepONet and FNO (see Table 7) and hence it provides smaller assembly error. While this observation
motivates the use of collocation points in training a GFNet, for the reasons argued in Section 4.2.2, we do not use
residuals in approximating the solution of the NS equations. We will research effective ways to incorporate PDE
residuals in learning the NS equations in our future work.

4.3.3. Assembly error and genome density

In the previous section we showed that the final MAE of the MF predictor depends on the generalization and
assembly errors where the latter error source is directly affected by the PDE residuals of the GFNet. In Section 4.2.3,
we demonstrated that the genome density also affects the assembly error where using more auxiliary genomes
improved the predicted flow in the single cavity domain, see Fig. 6. Following this observation, we examine the
effect of genome density on the assembly error in this section.

To consistently evaluate assembly error against genome density, we evaluate the effect of placing extra layers of
auxiliary genomes that overlap with the borders of the previously added auxiliary layers. Following the descriptions
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Fig. 9. (Color Online) MF predictor accuracy vs. genome density for the single cavity domain: The accuracy of MF predictor is evaluated
under different arrangements and numbers of auxiliary genomes. Here, green indicates that only a single layer of auxiliary genomes is used.
These genomes are placed over the borders of the basic genomes and can be centered on the vertical borders (e.g., genomes 5 and 6 in
Fig. 3(c)), horizontal borders (e.g., genomes 7 and 8 in Fig. 3(c)), corner of 4 genomes (e.g., genome 9 in Fig. 3(c)), or at any combination
of these three configurations. The color blue shows that an extra layer of overlapping auxiliary genomes is placed at the vertical, horizontal,
or central borders of the existing auxiliary genomes (e.g., Fig. 6(e)). The colors red and orange indicate, respectively, that two and three
extra layers of overlapping auxiliary genomes are used.

in Section 3.3, we divide each layer of these auxiliary genomes into three different categories based on the borders
of the existing auxiliary genomes: we distinguish between genomes that overlap with (i) the vertical borders
(e.g., genomes 5 and 6 in Fig. 3(c) or genomes 10, 11, 12 and 13 in Fig. 6(e)), (ii) the horizontal borders
(e.g., genomes 7 and 8 in Fig. 3(c) or genomes 14, 15, 16 and 17 in Fig. 6(e)), and (iii) the corners where 4
basic genomes reside (e.g., genome 9 in Fig. 3(c) or genomes 18 and 19 in Fig. 6(e)). As different combinations
of these additional layers leads to different overall genome arrangements (which, in turn affects the iterative update
procedure), we add each of these layers in several steps: adding only central overlapping genomes, adding only
vertical or only horizontal genomes, adding both vertical and horizontal, and adding all genomes (i.e., vertical,
horizontal and central) at once.

We conduct this experiment on the single cavity domain for the NS equation using an FC architecture as a
GFNet. The results are summarized in Fig. 9 and demonstrate two interesting trends. (1) There is a local minimum
in the MAE which appears as a result of balancing propagated errors and boundary information. That is, as we
increase the number of genomes the both the BCs and errors propagate to the interior of the domain and after the
local minimum the propagated errors dominate the transferred information. (2) The extra horizontal overlapping
genomes improve the accuracy of MF predictor for the single cavity domain more than the other genomes. We
attribute this observation to the fact that the flow is predominately affected by the applied lid-velocity at the top of
the domain which means that the information is mostly propagated downwards.

Locating the abovementioned optimum has two primary challenges. First, the optimum configuration is problem
dependent. For instance, adding extra layers for the step-shape cavity domain would add extra assembly errors
and increase final MAEs regardless of the employed arrangement. Second, computational costs increase as more
genomes are employed in MF Predictor. In our experiments, we have observed that the simple arrangement described
in Section 3.3 consistently outperforms other arrangements (either simpler or more complex) and therefore we
recommend it as the default technique. In our future work we will research automatic and adaptive techniques to
arrange the basic and auxiliary genomes.

4.4. Enforcing exact boundary conditions in GFNet

For the step-shaped cavity, GFNet yields inaccurate predictions near the walls where the streamline should be
parallel with the boundaries, see Figs. 7(d) and 7(e). This is because GFNet applies the BCs by penalizing the MSE
at the boundary points (see Fig. 4), i.e., the input BCs are not strictly enforced. The BC for stationary walls is
u = v = 0 where even very small errors greatly affect the velocity direction and cause unphysical streamlines. To
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reduce this error, which will improve the accuracy of both GFNet and MF predictor, we design the architecture of
GFNet to strictly reproduce the input BCs.

To design a GFNet that reproduces a BC exactly, we follow [92] and decompose the approximated solution into
three parts:

u(x) = G(x) + ¢(x) - N'(x16), (10)

where G(x) is a smooth function defined on (2 that satisfies the BC, i.e., G(x) = g(x),x € 3{2, ¢(x) is a smooth
function that is equal to zero on 842, and N'(x|0) denotes the neural network which can be implemented with any
of the models explored in Section 4.3. G(x) can be constructed by either extrapolating g(x) from 942 to {2 [93]
or training a neural network that interpolates the boundary points [92]. To avoid masking the network, ¢(x) is
recommended to be nonzero inside 2. The typical choice of ¢(x) is the signed distance function that measures the
distance from x € 2 to 042 [92-94].

Note that Eq. (10) only solves the PDE with a specific BC on one domain. We make the following adjustments
to enforce the input BC in GFNet and retain its transferability across unseen BCs. First, our model takes both g
and x as inputs. We follow [93] to extrapolate g by weighted averaging,

Npe b

X — x| %
Gg.x)=) ————, (1)
ok —xe?

where |x — xib"| represents the distance between x € {2 and the ith boundary point and g; = g(xfc). In practice,
we add a small constant € = 107'° to the distance to avoid division by zero. Second, given that GFNet only infers
flows in square genomes, we simply choose ¢(x) = x(I — x)y(I — y) where [ is the square genome’s edge length.
Finally, we apply the neural network defined in Section 3.2, N(g, x|0), to Eq. (10) to achieve transferability across
unseen BCs.

We now approximate the solution of the NS equations with a FC-based GFNet that enforces the input BC as
described above. We denote this GFNet as FC+4+ BC and use the training data and the hyperparameters’ tuning
strategies explained in Section 4.2. In our tests, the architecture 400° ® 3 delivers the best accuracy, improving
GFNet’s training MAE of u and v by 62% and 84%, respectively, see Table 6. It also shows that FC+BC not only
decreases the optimization and generalization errors but also reduces the assembly error by an order of magnitude.
To explain this improvement, we revisit the example in Fig. 2(c) where the two genomes (2; and (2 share the BC
at border 92, N3 (2. For FC-based GFNet, its predictions (#; and u, in Fig. 2(c)) based on BCs from (2 and 9(2,
can differ at the shared border. This discrepancy results in a discontinuous solution per iteration and contributes to
the assembly error accumulated in MF predictor. Enforcing the input BC in GFNet eliminates the discrepancy at the
shared border and therefore drastically reduces the assembly error. Similar to the FC-based GFNet, the assembly
error of MF predictor with FC4 BC mainly comes from the unseen flow features. Nonetheless, imposing the exact
BC drastically reduces the unphysical errors in streamlines, which become parallel with the boundaries in most of
the near-wall regions, see Fig. 10(c).

For elliptic PDEs with non-Dirichlet BCs, we note that FC4+ BC can be easily extended to enforce Neu-
mann/Robin BCs and when used in MF predictor the assembled inference converges to the PDE’s exact solution.
We refer the readers to Appendix B and [93] for more details.

5. Conclusions

We demonstrated that a well-designed and well-trained deep neural network that takes BCs as inputs (GFNet),
coupled with a novel iterative algorithm for assembling its predictions (MF predictor) can result in a transferable
deep learning framework for operator learning. To the best of our knowledge, such a framework is the first of its
kind. The main advantage of this framework is that the model, GFNet, needs to be trained only once and can then
be used forever without re-training to solve boundary value problems in larger and complex domains with unseen
sizes, shapes, and BCs.

Our framework demonstrates the capability to infer the solution of Laplace and Navier—Stokes equations on
domains that are 1200x and 12x larger that the training domains, respectively. Such scalable predictions are
achieved without any re-training. Compared with the state-of-the-art PINN for both PDEs, we demonstrate a
remarkable 1-3 orders of magnitude speedups while achieving comparable or better accuracy across a range of
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Fig. 10. (Color Online) Velocity magnitude ~/u% + v2 and streamlines for the step-shaped lid-driven cavity using the GFNet with exact BC
enforced. Compared to the GFNet using FC, enforcing the exact BC improves MAEs to 8.07e—3 and 1.00e—2 for velocity components
u and v, respectively. The error plot shows that the errors still primarily from the sharp corner and the interleaved vortex structures. The
streamline plot reveals that enforcing the exact BC significantly diminishes the unphysical errors in the near-wall regions, as the streamlines
are largely parallel with the boundaries.

BCs and domains unseen during training. Moreover, we present an in-depth error analysis of our framework, based
on which we compare our GFNet with DeepONet and FNO and demonstrate that our model can effectively reduce
the assembly error accumulated in MF predictor. At last but not least, we improve GFNet to exactly reproduce
the input BC, which further reduces all types of errors by up to 84%. We anticipate this research will open new
directions for physics-informed surrogate modeling in computational sciences and engineering.

More work remains to be done for GFNet to be widely used for a larger class of problems in engineering. For
instance, our studies employed square genomes which cannot accurately represent curved objects such as airfoils.
In addition, we only considered steady flows and boundary value problems whose right-hand-side function can be
either zero or a periodic function whose period in each direction equals the size of the genome. The latter choice
implies that the BVP solution on one genome is invariant to the genome’s position in a large domain which is
not a valid assumption for PDEs with space-dependent forcing terms. Moreover, the training of GFNet in this
paper is a compromise between accuracy and limited time and GPU resources we can access. We observed a 20%
improvement in the accuracy of GFNet for the Laplace equation when we trained the model using all the 32 x 32
data points. However, this will dramatically increase the training cost and prohibit us from fine-tuning the model
with 18 000 samples in a reasonable amount of time. To further improve MF predictor’s flexibility and successfully
apply our approach to complex geometries and unsteady processes, we can embed boundary coordinates, time, and
initial conditions as inputs. However, such a large input layer will require a GFNet with too many parameters which
will increase the training complexities and costs. To consider general non-homogeneous PDEs we anticipate using
multiple GFNets to learn the effect of forcing terms on the solution. Addressing these challenges and leveraging
distributed training/inference is an important future exploration.
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Appendix A. Non-smooth boundary conditions

In Section 4.3 we elaborated on the different error sources in our framework faces where the two most dominant
ones were the generalization and the assembly errors. In those analyses we employed smooth and differentiable BCs
since all our models were trained with such BCs. In this section we quantify the generalization error for non-smooth
BCs. We evaluate the accuracy of the models described in Section 4.3 by solving BVPs for the Laplace equation
subject to non-smooth BCs. We restrict this evaluation to domains of area 1 to prevent any bias that might arise
by the smoothing effect of the Laplacian. We consider 100 non-smooth BCs which are generated with a GP whose
kernel is a power exponential with randomly chosen power in the range [1, 2). Five sample BCs are demonstrated
in Fig. A.11.

The results are summarized in Table A.8 and indicate that the accuracy of all models has reduced compared to
Table 4. This accuracy reduction is due to the fact that all models have only seen smooth BCs during training. In
Table A.8 the FNO model has the best generalization error and it is followed by the LPFC and DeepONet models.
We believe this trend is because FNO predicts the solution for the entire genome at once (rather than a particular
spatial location in the genome) which makes it less sensitive to sharp changes in the BCs. In the case of residuals,
the LPFC model trained with the PDE loss outperforms the other operator learners. A better performance in these
cases can be achieved by models that enforce BCs which we have studied for the NS equation in Section 4.4.

Appendix B. Neumann and Robin boundary condition

In this paper we only present tests where the Laplace and NS equations are subject to Dirichlet BCs. Nonetheless,
our framework can also predict PDE solutions with Neumann and Robin BCs for the following two reasons. First,
the Schwarz method that our framework is based on can solve elliptic BVPs with Dirichlet, Neumann, and Robin
BCs [69-T71].

Second, in our framework we replace the numerical method used in the Schwarz method to solve genome-wise
BVPs with GFNet. The GFNet that enforces the input BC (Eq. (10)) can be extended to solve PDE with Neumann
and Robin BCs [93]. To strictly reproduce the Robin BC, we can follow [93] and decompose the approximated

1.0+

0.5 1

8 001

—0.51

—1.04

Fig. A.11. (Color Online) Sample non-smooth boundary conditions: To quantify the accuracy of the operator learners trained in Section 4.3,
a test dataset with 100 non-smooth BCs is created where the AMG solver is used to solve the Laplace equation.

Table A.8

Accuracy of different GFNets for non-smooth BCs: 100 random non-smooth BCs are created to
evaluate LPFC, LPFC best, FNO, and DeepONet models. We report the test MAE and the residual
computed with either FD with a step size of 1/32 or AD (training MAE and the validation MAE
based on smooth BCs are provided in Table 4).

Operator learner Test MAE Residual with FD Residual with AD
DeepONet 4.07e—2 8.38e+1 8.58e+1

FNO 7.57e—03 1.78e+1 -

LPFC 1.90e—02 4.88e+1 5.47e+1

LPFC Best 1.88e—02 1.70e—2 5.4e-3
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solution as:

ux)=[1+¢c+n-VIN(x|8) — ¢g (B.1)
where ¢(x) is the signed distance function measuring the distance between x € {2 to 92, the underlying Robin
BCisn-Vu+cu = g at 92, and n = —V¢ is outward unit normal vector. When ¢ = 0, the Robin BC

degrades to Neumann BC. We note that Eq. (B.1) simplifies the original formulation in [93] by omitting the second
approximation function (see Equation 25 in [93]). We prove that Eq. (B.1) satisfies the Robin BC as follows,

n-Vu+cu aQ=n-VJ\/'-l-c/\/'n-V(b+(n'V¢)n-V./\/—gn‘Vq&-i-c./\/
=n-VN—-cN —-n-VN+g+cN =g

In the above, the first line is based on ¢ = 0 at 92 and the second line is derived withn-V¢ = —n-n = —1. Despite
Eq. (B.1)’s complex form, it can be trivially implemented with a neural network. We refer the readers to [93] for
the details on constructing ¢(x).

(B.2)

References

[1] R.W. Fox, A.T. McDonald, J.W. Mitchell, Fox and McDonald’s Introduction To Fluid Mechanics, John Wiley & Sons, 2020.

[2] EP. Incropera, A.S. Lavine, T.L. Bergman, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, 2007.

[3] T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements for Continua and Structures, John wiley & sons, 2013.

[4] E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 2010.

[5] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, D. Mavriplis, CFD Vision 2030 Study: A Path To Revolutionary
Computational Aerosciences, Tech. Rep., 2014.

[6] M.C. Kennedy, A. O’Hagan, Predicting the output from a complex computer code when fast approximations are available, Biometrika
87 (1) (2000) 1-13, http://dx.doi.org/10.1093/biomet/87.1.1.

[7]1 R. Planas, N. Oune, R. Bostanabad, Evolutionary gaussian processes, J. Mech. Des. (2021).

[8] C.E. Rasmussen, Gaussian Processes for Machine Learning, 2006.

[9] E. Alpaydin, Introduction To Machine Learning, MIT Press, 2014.

[10] T. Therneau, B. Atkinson, B. Ripley, M.B. Ripley, Rpart: Recursive partitioning and regression trees, 2014.

[11] R. Bostanabad, Reconstruction of 3d microstructures from 2d images via transfer learning, Comput. Aided Des. 128 (2020) 102906,
http://www.sciencedirect.com/science/article/pii/S0010448520300993.

[12] Y.-C. Chan, F. Ahmed, L. Wang, W. Chen, Metaset: Exploring shape and property spaces for data-driven metamaterials design, J.
Mech. Des. 143 (3) (2021).

[13] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[14] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436-444, http://dx.doi.org/10.1038/nature14539, https:
/Iwww.ncbi.nlm.nih.gov/pubmed/26017442.

[15] M. Mozaffar, R. Bostanabad, W. Chen, K. Ehmann, J. Cao, M. Bessa, Deep learning predicts path-dependent plasticity, Proc. Natl. Acad.
Sci. U S A 116 (52) (2019) 26414-26420, http://dx.doi.org/10.1073/pnas. 1911815116, https://www.ncbi.nlm.nih.gov/pubmed/31843918.

[16] S. Rasp, M.S. Pritchard, P. Gentine, Deep learning to represent subgrid processes in climate models, Proc. Natl. Acad. Sci. 115 (39)
(2018) 9684-9689.

[17] S. Saha, Z. Gan, L. Cheng, J. Gao, O.L. Kafka, X. Xie, H. Li, M. Tajdari, H.A. Kim, W.K. Liu, Hierarchical deep learning
neural network (hidenn): An artificial intelligence (ai) framework for computational science and engineering, Comput. Methods
Appl. Mech. Engrg. 373 (2021) 113452, http://dx.doi.org/10.1016/j.cma.2020.113452, https://www.sciencedirect.com/science/article/pii/
S004578252030637X.

[18] Y. Suh, R. Bostanabad, Y. Won, Deep learning predicts boiling heat transfer, Sci. Rep. 11 (1) (2021) 5622, http://dx.doi.org/10.1038/
s41598-021-85150-4.

[19] L. Wang, Y.-C. Chan, F. Ahmed, Z. Liu, P. Zhu, W. Chen, Deep generative modeling for mechanistic-based learning and design of
metamaterial systems, Comput. Methods Appl. Mech. Engrg. 372 (2020) 113377.

[20] H. You, Y. Yu, N. Trask, M. Gulian, M. D’Elia, Data-driven learning of nonlocal physics from high-fidelity synthetic data, Comput.
Methods Appl. Mech. Engrg. 374 (2021) 113553, http://dx.doi.org/10.1016/j.cma.2020.113553, https://www.sciencedirect.com/science/
article/pii/S0045782520307386.

[21] F. Chollet, Deep Learning with Python, Manning Publications Co., 2017.

[22] R. Bostanabad, Y.C. Chan, L.W. Wang, P. Zhu, W. Chen, Globally approximate gaussian processes for big data with application to
data-driven metamaterials design, J. Mech. Des. 141 (11) (2019) http://dx.doi.org/10.1115/1.4044257.

[23] J.R. Gardner, G. Pleiss, D. Bindel, K.Q. Weinberger, A.G. Wilson, Gpytorch: Blackbox matrix-matrix gaussian process inference with
gpu acceleration, 2018, arXiv preprint arXiv:1809.11165.

[24] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, A. Lerer, Automatic Differentiation
in Pytorch, 2017.

[25] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686—707, http://dx.doi.org/10.1016/j.
jcp.2018.10.045.

23


http://refhub.elsevier.com/S0045-7825(21)00668-X/sb1
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb2
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb3
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb4
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb5
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb5
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb5
http://dx.doi.org/10.1093/biomet/87.1.1
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb7
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb8
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb9
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb10
http://www.sciencedirect.com/science/article/pii/S0010448520300993
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb12
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb12
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb12
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb13
http://dx.doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1073/pnas.1911815116
https://www.ncbi.nlm.nih.gov/pubmed/31843918
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb16
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb16
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb16
http://dx.doi.org/10.1016/j.cma.2020.113452
https://www.sciencedirect.com/science/article/pii/S004578252030637X
https://www.sciencedirect.com/science/article/pii/S004578252030637X
https://www.sciencedirect.com/science/article/pii/S004578252030637X
http://dx.doi.org/10.1038/s41598-021-85150-4
http://dx.doi.org/10.1038/s41598-021-85150-4
http://dx.doi.org/10.1038/s41598-021-85150-4
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb19
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb19
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb19
http://dx.doi.org/10.1016/j.cma.2020.113553
https://www.sciencedirect.com/science/article/pii/S0045782520307386
https://www.sciencedirect.com/science/article/pii/S0045782520307386
https://www.sciencedirect.com/science/article/pii/S0045782520307386
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb21
http://dx.doi.org/10.1115/1.4044257
http://arxiv.org/abs/1809.11165
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb24
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb24
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb24
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045

H. Wang, R. Planas, A. Chandramowlishwaran et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114424

[26]
[27]

[28]
[29]
(30]
(31]
[32]
[33]

[34]
[35]

[36]
[37]
[38]
(39]
[40]

[41]
[42]

[43]
[44]
[45]
[46]
[47]

(48]

[49]
[50]

(51]
[52]

[53]
(54
[55]
[56]
[57]

(58]

A. Griewank, On automatic differentiation, Math. Prog. Recent Dev. Appl. 6 (6) (1989) 83-107.

M. Raissi, P. Perdikaris, G.E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations,
Science 367 (6481) (2020) 1026-1030, http://dx.doi.org/10.1126/science.aaw4741, https://www.ncbi.nlm.nih.gov/pubmed/32001523.
A.D. Jagtap, G.E. Karniadakis, Extended physics-informed neural networks (xpinns): A generalized space—time domain decomposition
based deep learning framework for nonlinear partial differential equations, Commun. Comput. Phys. 28 (5) (2020) 2002-2041.

C.M. Jiang, S. Esmaeilzadeh, K. Azizzadenesheli, K. Kashinath, M. Mustafa, H.A. Tchelepi, P. Marcus, A. Anandkumar, et al.,
MeshfreeFlowNet: A Physics-Constrained Deep Continuous Space-Time Super-Resolution Framework, 2020.

E. Kharazmi, Z. Zhang, G.E. Karniadakis, Hp-vpinns: Variational physics-informed neural networks with domain decomposition, 2020,
arXiv preprint arXiv:.05385.

Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: Graph kernel network
for partial differential equations, 2020, arXiv preprint arXiv:2003.03485.

X. Meng, Z. Li, D. Zhang, G.E. Karniadakis, Ppinn: Parareal physics-informed neural network for time-dependent pdes, Comput.
Methods Appl. Mech. Eng. 370 (2020) 113250.

L. Lu, P. Jin, G. Pang, Z. Zhang, G.E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation
theorem of operators, Nat. Mach. Intell. 3 (3) (2021) 218-229.

H.A. Schwarz, Esammelte Mathematische Abhandlungen, Vol. 260, American Mathematical Soc., 1972.

K. Greff, R.K. Srivastava, J. Koutnik, B.R. Steunebrink, J. Schmidhuber, Lstm: A search space odyssey, IEEE Trans. Neural Netw. Learn.
Syst. 28 (10) (2017) 2222-2232, http://dx.doi.org/10.1109/TNNLS.2016.2582924, https://www.ncbi.nlm.nih.gov/pubmed/27411231.

J. Hochreiter, Seppassd schmidhuber, long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780, http://dx.doi.org/10.1162/neco.
1997.9.8.1735, https://www.ncbi.nlm.nih.gov/pubmed/9377276.

R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural networks, in: International Conference on Machine
Learning, pp. 1310-1318.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770-778.

O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image segmentation, in: International Conference
on Medical image computing and computer-assisted intervention, Springer, pp. 234-241.

C. Jiang, K. Kashinath, P. Marcus, Enforcing physical constraints in cnns through differentiable pde layer, in: ICLR 2020 Workshop
on Integration of Deep Neural Models and Differential Equations.

K. Wu, D. Xiu, Data-driven deep learning of partial differential equations in modal space, J. Comput. Phys. 408 (2020) 109307.

X. Guo, W. Li, F. Iorio, Convolutional neural networks for steady flow approximation, in: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp. 481-490.

S. Bhatnagar, Y. Afshar, S. Pan, K. Duraisamy, S. Kaushik, Prediction of aerodynamic flow fields using convolutional neural networks,
Comput. Mech. 64 (2) (2019) 525-545, http://dx.doi.org/10.1007/s00466-019-01740-0.

O. Obiols-Sales, A. Vishnu, N. Malaya, A. Chandramowlishwaran, Cfdnet: a deep learning-based accelerator for fluid simulations, in:
Proceedings of the International Conference on Supercomputing, 2020, http://dx.doi.org/10.1145/3392717.3392772, arXiv:2005.04485.
N. Wandel, M. Weinmann, R. Klein, Fast fluid simulations in 3D with physics-informed deep learning, 2020, pp. 1-10, arXiv,
arXiv:2012.11893.

N. Geneva, N. Zabaras, Modeling the dynamics of pde systems with physics-constrained deep auto-regressive networks, J. Comput.
Phys. 403 (2020) 109056, http://dx.doi.org/10.1016/j.jcp.2019.109056.

S. Mo, Y. Zhu, N. Zabaras, X. Shi, J. Wu, Deep convolutional encoder—decoder networks for uncertainty quantification of dynamic
multiphase flow in heterogeneous media, Water Resour. Res. 55 (1) (2019) 703-728.

Y. Zhu, N. Zabaras, Bayeslan deep convolutional encoder—decoder networks for surrogate modeling and uncertainty quantification,
J. Comput. Phys. 366 (2018) 415-447, http://dx.doi.org/10.1016/j.jcp.2018.04.018, http://www.sciencedirect.com/science/article/pii/
S0021999118302341.

W. Dong, J. Liu, Z. Xie, D. Li, Adaptive neural network-based approximation to accelerate eulerian fluid simulation, in: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2019, pp. 1-22.

F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 1251-1258.

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014, arXiv preprint arXiv:1409.1556.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 2818-2826.

N. Trask, R.G. Patel, B.J. Gross, PJ. Atzberger, Gmls-nets: A framework for learning from unstructured data, 2019, arXiv preprint
arXiv:1909.05371.

N. Geneva, N. Zabaras, Quantifying model form uncertainty in reynolds-averaged turbulence models with bayesian deep neural networks,
J. Comput. Phys. 383 (2019) 125-147, http://dx.doi.org/10.1016/j.jcp.2019.01.021.

J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance,
J. Fluid Mech. 807 (2016) 155-166, http://dx.doi.org/10.1017/jtm.2016.615.

E. Weinan, B. Yu, The deep ritz method: A deep learning-based numerical algorithm for solving variational problems, Commun. Math.
Stat. 6 (1) (2018) 1-12, http://dx.doi.org/10.1007/s40304-018-0127-z.

E. Kharazmi, Z. Zhang, G.E. Karniadakis, Variational physics-informed neural networks for solving partial differential equations, 2019,
arXiv preprint arXiv:.00873.

G. Pang, L. Lu, G.E. Karniadakis, Fpinns: Fractional physics-informed neural networks, SIAM J. Sci. Comput. 41 (4) (2019)
A2603-A2626, http://dx.doi.org/10.1137/18M1229845.

24


http://refhub.elsevier.com/S0045-7825(21)00668-X/sb26
http://dx.doi.org/10.1126/science.aaw4741
https://www.ncbi.nlm.nih.gov/pubmed/32001523
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb28
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb28
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb28
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb29
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb29
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb29
http://arxiv.org/abs/.05385
http://arxiv.org/abs/2003.03485
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb32
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb32
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb32
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb33
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb33
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb33
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb34
http://dx.doi.org/10.1109/TNNLS.2016.2582924
https://www.ncbi.nlm.nih.gov/pubmed/27411231
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb41
http://dx.doi.org/10.1007/s00466-019-01740-0
http://dx.doi.org/10.1145/3392717.3392772
http://arxiv.org/abs/2005.04485
http://arxiv.org/abs/2012.11893
http://dx.doi.org/10.1016/j.jcp.2019.109056
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb47
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb47
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb47
http://dx.doi.org/10.1016/j.jcp.2018.04.018
http://www.sciencedirect.com/science/article/pii/S0021999118302341
http://www.sciencedirect.com/science/article/pii/S0021999118302341
http://www.sciencedirect.com/science/article/pii/S0021999118302341
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1909.05371
http://dx.doi.org/10.1016/j.jcp.2019.01.021
http://dx.doi.org/10.1017/jfm.2016.615
http://dx.doi.org/10.1007/s40304-018-0127-z
http://arxiv.org/abs/.00873
http://dx.doi.org/10.1137/18M1229845

H. Wang, R. Planas, A. Chandramowlishwaran et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114424

[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]

(71]

[72]

[73]
[74]
[75]
[76]

(771
[78]

[79]
[80]
[81]
[82]
[83]
[84]
[85]
[86]
[87]
[88]

[89]
[90]

B. Deng, Y. Shin, L. Lu, Z. Zhang, G.E. Karniadakis, Convergence rate of deeponets for learning operators arising from
advection-diffusion equations, 2021, arXiv preprintarXiv:2102.10621.

S. Lanthaler, S. Mishra, G.E. Karniadakis, Error estimates for deeponets: A deep learning framework in infinite dimensions, 2021,
arXiv preprint arXiv:2102.09618.

T. Chen, H. Chen, Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its
application to dynamical systems, IEEE Trans. Neural Netw. 6 (4) (1995) 911-917.

A.G. (")zbay, S. Laizet, P. Tzirakis, G. Rizos, B. Schuller, Poisson CNN: Convolutional Neural Networks for the Solution of the Poisson
Equation with Varying Meshes and Dirichlet Boundary Conditions, 2019, pp. 1-36, arXiv:1910.08613.

R. Maulik, H. Sharma, S. Patel, B. Lusch, E. Jennings, Accelerating RANS turbulence modeling using potential flow and machine
learning, 2019, pp. 1-21, arXiv:1910.10878.

S. Shahane, P. Kumar, S.P. Vanka, Convolutional Neural Network for Flow over Single and Tandem Elliptic Cylinders of Arbitrary
Aspect Ratio and Angle of Attack, 2020, arXiv . arXiv:2012.10768.

J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, Accelerating eulerian fluid simulation with convolutional networks, in: 34th
International Conference on Machine Learning, 2017, (7) ICML, 2017, pp. 5258-5267, arXiv:1607.03597.

Y. Bengio, J. Louradour, R. Collobert, J. Weston, Curriculum learning, in: Proceedings of the 26th annual international conference on
machine learning, pp. 41-48.

K.A. Krueger, P. Dayan, Flexible shaping: How learning in small steps helps, Cognition 110 (3) (2009) 380-394, http://dx.doi.org/10.
1016/j.cognition.2008.11.014.

L.N. Olson, J.B. Schroder, PYAMG: Algebraic Multigrid Solvers in Python V4.0, 2018, https://github.com/pyamg/pyamg.

J. Xu, Iterative methods by space decomposition and subspace correction, SITAM Rev. 34 (4) (1992) 581-613.

A. Toselli, O. Widlund, Domain Decomposition Methods-Algorithms and Theory, Vol. 34, Springer Science & Business Media, 2004.
T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, Vol. 61, Springer Science
& Business Media, 2008.

E.B. Martin Abadi, Ashish. Agarwal, Paul. Barham, A.D. Zhifeng Chen, Craig. Citro, Greg S. Corrado, I.G. Jeffrey Dean, Matthieu.
Devin, Sanjay. Ghemawat, Y.J. Andrew Harp, Geoffrey. Irving, Michael. Isard, Rafal. Jozefowicz, M.S. Lukasz Kaiser, Manjunath.
Kudlur, Josh. Levenberg, Dan. Mané, J.S. Rajat Monga, Sherry. Moore, Derek. Murray, Chris. Olah, P.T. Benoit Steiner, Ilya. Sutskever,
Kunal. Talwar, F.V. Vincent Vanhoucke, Vijay. Vasudevan, M.W. Oriol Vinyals, Pete. Warden, Martin. Wattenberg, Yuan. Yu, X. Zheng,
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015, http://tensorflow.org/.

D.P. Kingma, J.L. Ba, Adam: A method for stochastic optimization, in: 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings, 2015, pp. 1-15, arXiv:1412.6980.

S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient pathologies in physics-informed neural networks, 2020, pp.
1-28, arXiv:2001.04536.

IM. Sobol, On quasi-monte carlo integrations, mathematics and computers in simulation, 47, (2-5) 1998, pp. 103-112, http:
//dx.doi.org/10.1016/S0378-4754(98)00096-2.

X. Jin, S. Cai, H. Li, G.E. Karniadakis, Nsfnets (Navier—Stokes flow nets): Physics-informed neural networks for the incompressible
Navier—Stokes equations, J. Comput. Phys. 426 (2021) 109951, http://dx.doi.org/10.1016/j.jcp.2020.109951, arXiv:2003.06496.

D.C. Liu, J. Nocedal, On the limited memory bfgs method for large scale optimization, Math. Program. 45 (1) (1989) 503-528.

PF. Fischer, An overlapping schwarz method for spectral element solution of the incompressible navier—stokes equations, J. Comput.
Phys. 133 (1) (1997) 84-101.

E. Brakkee, P. Wesseling, C. Kassels, Schwarz domain decomposition for the incompressible navier—stokes equations in general
co-ordinates, Internat. J. Numer. Methods Fluids 32 (2) (2000) 141-173.

P.F. Fischer, J.W. Lottes, Hybrid schwarz-multigrid methods for the spectral element method: Extensions to navier-stokes, in: Domain
Decomposition Methods in Science and Engineering, Springer, 2005, pp. 35-49.

E. Blayo, D. Cherel, A. Rousseau, Towards optimized schwarz methods for the navier—stokes equations, J. Sci. Comput. 66 (1) (2016)
275-295.

H. Jasak, A. Jemcov, Z. Tukovic, Others, OpenFOAM: A C++ Library for complex physics simulations, in: International Workshop
on Coupled Methods in Numerical Dynamics, Vol. 1000, IUC Dubrovnik Croatia, 2007, pp. 1-20.

S. Cai, Z. Wang, S. Wang, P. Paris, Physics-informed neural networks (PINNs) for heat transfer problems, J. Heat Transfer (2021)
http://dx.doi.org/10.1115/1.4050542.

A.D. Jagtap, K. Kawaguchi, G.E. Karniadakis, Adaptive activation functions accelerate convergence in deep and physics-informed
neural networks, J. Comput. Phys. 404 (2020) 109136.

S. Wang, X. Yu, P. Perdikaris, When and why pinns fail to train: A neural tangent kernel perspective, 2020, arXiv preprint
arXiv:2007.14527.

L. Bottou, O. Bousquet, The tradeoffs of large scale learning, in: Proceedings of the 20th International Conference on Neural Information
Processing Systems, 2007, pp. 161-168.

L. Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMPSTAT 2010, Springer, 2010, pp.
177-186.

P. Jin, L. Lu, Y. Tang, G.E. Karniadakis, Quantifying the generalization error in deep learning in terms of data distribution and neural
network smoothness, Neural Netw. 130 (2020) 85-99.

K. Hornik, Approximation capabilities of multilayer neural network, Neural Netw. 4 (1991) (1991) 251-257.

C. Debao, Degree of approximation by superpositions of a sigmoidal function, Approx. Theory Appl. 9 (3) (1993) 17-28, http:
//dx.doi.org/10.1007/BF02836480.

25


http://arxiv.org/abs/2102.10621
http://arxiv.org/abs/2102.09618
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb61
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb61
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb61
http://arxiv.org/abs/1910.08613
http://arxiv.org/abs/1910.10878
http://arxiv.org/abs/2012.10768
http://arxiv.org/abs/1607.03597
http://dx.doi.org/10.1016/j.cognition.2008.11.014
http://dx.doi.org/10.1016/j.cognition.2008.11.014
http://dx.doi.org/10.1016/j.cognition.2008.11.014
https://github.com/pyamg/pyamg
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb69
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb70
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb71
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb71
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb71
http://tensorflow.org/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2001.04536
http://dx.doi.org/10.1016/S0378-4754(98)00096-2
http://dx.doi.org/10.1016/S0378-4754(98)00096-2
http://dx.doi.org/10.1016/S0378-4754(98)00096-2
http://dx.doi.org/10.1016/j.jcp.2020.109951
http://arxiv.org/abs/2003.06496
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb77
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb78
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb78
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb78
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb79
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb79
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb79
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb80
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb80
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb80
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb81
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb81
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb81
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb82
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb82
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb82
http://dx.doi.org/10.1115/1.4050542
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb84
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb84
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb84
http://arxiv.org/abs/2007.14527
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb87
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb87
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb87
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb88
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb88
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb88
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb89
http://dx.doi.org/10.1007/BF02836480
http://dx.doi.org/10.1007/BF02836480
http://dx.doi.org/10.1007/BF02836480

H. Wang, R. Planas, A. Chandramowlishwaran et al. Computer Methods in Applied Mechanics and Engineering 389 (2022) 114424

[91] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric
partial differential equations, 2020, arXiv preprint arXiv:2010.08895.

[92] J. Berg, K. Nystrom, A unified deep artificial neural network approach to partial differential equations in complexch geometries,
Neurocomputing 317 (2018) 28-41.

[93] N. Sukumar, A. Srivastava, Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks,
2021, arXiv preprint arXiv:2104.08426.

[94] L. Sun, H. Gao, S. Pan, J.-X. Wang, Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation
data, Comput. Methods Appl. Mech. Engrg. 361 (2020) 112732.

26


http://arxiv.org/abs/2010.08895
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb92
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb92
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb92
http://arxiv.org/abs/2104.08426
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb94
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb94
http://refhub.elsevier.com/S0045-7825(21)00668-X/sb94

	Mosaic flows: A transferable deep learning framework for solving PDEs on unseen domains 
	Introduction
	Related work
	Transferable learning of PDEs 
	BVP decomposition: Why Mosaic works?
	Genomic Flow Network (GFNet)
	Mosaic flow predictor

	Results and discussions
	Laplace equation
	Training data 
	Architecture and training of GFNet 
	Accuracy for unseen BCs 
	Accuracy on unseen domains subject to unseen BCs 
	Comparison with PINN and XPINN 

	Navier–Stokes equations
	Training data 
	Architecture and training of GFNet 
	Accuracy for unseen domains subject to unseen BCs and comparison with PINN 

	Detailed error analysis and comparison with DeepONet and Fourier Neural Operator (FNO)
	Laplace equation
	Navier–Stokes
	Assembly error and genome density

	Enforcing exact boundary conditions in GFNet

	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Non-smooth Boundary Conditions
	Appendix B. Neumann and Robin Boundary condition
	References


