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Abstract—MANA-2.0 is a scalable, future-proof design for
transparent checkpointing of MPI-based computations. Its net-
work transparency (“network-agnostic”) feature ensures that
MANA-2.0 will provide a viable, efficient mechanism for trans-
parently checkpointing MPI applications on current and future
supercomputers. MANA-2.0 is an enhancement of previous work,
the original MANA, which interposes MPI calls, and is a
work in progress intended for production deployment. MANA-
2.0 implements a series of new algorithms and features that
improve MANA’s scalability and reliability, enabling transparent
checkpoint-restart over thousands of MPI processes. MANA-
2.0 is being tested on today’s Cori supercomputer at NERSC
using Cray MPICH library over the Cray GNI network, but
it is designed to work over any standard MPI running over
an arbitrary network. Two widely-used HPC applications were
selected to demonstrate the enhanced features of MANA-2.0:
GROMACS, a molecular dynamics simulation code with frequent
point-to-point communication, and VASP, a materials science
code with frequent MPI collective communication. Perhaps the
most important lesson to be learned from MANA-2.0 is a series of
algorithms and data structures for library-based transformations
that enable MPI-based computations over MANA-2.0 to reliably
survive the checkpoint-restart transition.

Index Terms—transparent checkpointing, MANA-2.0, split-
process, MPI, supercomputing

I. INTRODUCTION

MANA (MPI-Agnostic Network-Agnostic transparent

checkpointing tool) is a previously developed package for

checkpointing MPI applications [1]. Among its unique

features, MANA supports checkpoint-restart for MPI

applications, while being transparent to (a) the MPI

application; (b) the MPI library itself; and (c) the network

libraries underlying the MPI library. These features are

based on a novel split-process architecture (see II-A). Unlike

∗This work was supported by the Office of Advanced Scientific Computing
Research in the Department of Energy Office of Science under contract
number DE-AC02- 05CH11231.

†This work was partially supported by National Science Foundation Grant
OAC-1740218 and a grant from Intel Corporation.

previous approaches, MANA directly and transparently

interposes the MPI calls themselves, taking advantage of the

standardized API for MPI.

Transparent checkpointing is a prerequisite for system-level

checkpointing, a vital tool for the operational needs of com-

puting centers. System-level checkpointing is used to manage

jobs in a real-world environment, which includes outage and

maintenance events, and workloads with differing priorities

and turnaround-time expectations. For example, experimental

and observational facilities supported by the U.S. Department

of Energy’s Office of Science (DOE-SC) often require high-

priority, real-time access to computing resources to generate

immediate feedback for follow-up experiments.

While many scientific applications employ some level of

internal checkpoint-restart (C/R) support, they lack a standard

API for checkpoint and restart. And they usually require

waiting for a particular computation phase (e.g., after an

iteration completes). For example, when chaining together

allocation slots for a long-running execution, the inability

to guarantee a checkpoint within the last half hour of an

allocation makes its use inflexible [2].

In addition, application-level checkpoint-restart may sup-

port some application features and not others, especially for

applications with a large code base. As an example, VASP [3]

has internal C/R support for atomic relaxation and MD sim-

ulations, but not for Random Phase Approximations. VASP

has tens of thousands of users, and it consumes about 20%

of computing cycles at the NERSC supercomputing center1.

Transparent checkpointing helps VASP users to chain long-

running jobs, while allowing NERSC to shift this 20% of

its computing resources upon arrival of a large, real-time

workloads as described above.

1NERSC (National Energy Research Scientific Computing) is the primary
computing facility for the U.S. Department of Energy’s Office of Science
(https://www.nersc.gov/).
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MANA-2.0 is intended as a scalable, future-proof design for

transparent checkpointing of MPI-based computations. While

MANA is being tested on NERSC’s Cori supercomputer using

the Cray GNI network, its network transparency (“network-

agnostic”) ensures that MANA will provide a viable, effi-

cient mechanism for transparently checkpointing computa-

tional workloads on both current and future supercomputers.

MANA’s unique feature of MPI and network transparency

is a good fit for NERSC, which employs supercomputing

resources with a proprietary Cray GNI network. The devel-

opment of MANA is the basis for a long-term collaboration

between NERSC and the MANA team. Note that previous

approaches to checkpointing MPI [4]–[8] supported TCP and

InfiniBand, but did not support the Cray GNI network. The

original MANA was the first package that could support Cray

GNI, through a new split-process architecture [1].

This initial promise led to a goal of supporting production-

level deployment of MANA on NERSC’s Cori supercom-

puter [9]; and following that, to support Perlmutter (the #5

supercomputer in the world as of this writing [10]). But history

has shown achieving the goal of production-level transparent

checkpointing to be more difficult than anticipated. In personal

communications, the authors of the original MANA [1] and

of an updated version [11] have both expressed concerns

about the fragility of the software architecture and its key

components.

In general, the challenge of developing robust checkpointing

algorithms for MPI can be understood by analogy to develop-

ing a new optimizing compiler. Both endeavors are concerned

with translating high-level code representations into lower-

level executions. Both endeavors require subtle algorithms to

preserve the high-level semantics when translated to a lower

level (compilers), or across the checkpoint-restart boundary

(MANA).

This work demonstrates a robust version of MANA

(MANA-2.0) that can scale to a high level. This work provides

two novel elements:

1) While still a work in progress, MANA-2.0 is al-

ready shown to scale well on two very different types

of computations (see Section IV). GROMACS [12]

highlights intensive MPI point-to-point communication.

VASP [3] highlights intensive MPI collective communi-

cation. VASP is responsible for more than 20% of the

machine time on Cori [9].

2) Perhaps even more important, MANA-2.0 is the fruit of

a series of enhancements that serve as lessons learned for

related research projects. MANA-2.0 applies a wrapper-

function based strategy to efficiently translate each MPI

call of the original MPI application into one or more

direct MPI calls. The algorithms of MANA-2.0 include

data structures that enable MANA-based computations

to survive a checkpoint and full restart. In this respect,

MANA-2.0 bears as much resemblance to a compiler

(translating into lower level MPI calls), as it does to a

simple library utility.

The two novel elements mentioned above represent a quali-

tative difference of the current work over the original MANA.

For the first time, MANA-2.0 demonstrates the ability to

reliably checkpoint GROMACS, even at 2048 MPI processes.

In comparison, the original MANA work [1] was intended as

a proof-of-concept, thus it was not able to reliably checkpoint-

restart at this scale.

MANA-2.0 is an example of a larger class of projects

that rely on source-level transformations of MPI calls while

maintaining correctness and performance. See the begin-

ning of Section III for a list of issues in MPI source

transformations that were found to be important for cor-

rectness and performance. A short list of the relevant is-

sues (expanded on in Section III) includes: (i) decompo-

sition of blocking MPI calls into asynchronous calls (e.g.,

MPI_Send to MPI_Isend/MPI_Test); (ii) insertion of

blocking MPI calls while avoiding deadlock (e.g., is insert-

ing MPI_Barrier before MPI_Bcast valid?); (iii) deter-

mining whether an MPI call can be satisfied locally (e.g.,

MPI_Translate_group_ranks); and (iv) when can it be

proved that a (virtualized) MPI request object can no longer

be accessed by the MPI application in the future.

This work is organized into the following sections. Sec-

tion II briefly describes the underlying split-process design

of the original MANA, then provides further details of how

checkpointing is supported for key components of MPI. Sec-

tion III describes the algorithmic innovations of this work in

fixing many of the deficiencies in key components of MANA.

Section IV presents an experimental evaluation of the modified

version of MANA. Section V presents related work. Finally,

Section VI is the conclusion.

II. BACKGROUND

A. Split-processes

In brief, the key idea of a split-process approach is to load

two independent programs into the virtual memory of a single

process. Because they are contained within the same virtual

memory, a function from one program (typically the “upper-

half” program) may call a function of the other program

(typically the “lower-half” program) — so long as the address

of the lower-half function is known to the upper-half function.

In practice, the upper-half program will be the MPI appli-

cation program, dynamically linked with a “stub” MPI library.

The “stub” MPI library consists of wrapper functions around

each MPI call. The wrapper calls a lower-half function in the

actual MPI library. Finally, the lower-half program consists of

a small MPI application linked to the actual MPI library, which

links to the necessary libraries. Figure 1 shows an example of

the MPI_Barrier wrapper.

The advantage of this scheme is that only the upper-half

program is checkpointed. (Only its memory is saved in a

checkpoint image file.) This sidesteps the key issue of other

checkpointing approaches: There is no need to disconnect

and re-connect the network (the Cray GNI network in our

case). At the time of restart, the lower-half program is started,

and it loads the upper-half program into memory at the
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Fig. 1. Code snippet of the MPI Barrier wrapper.

original address, from the checkpoint image file. For a deeper

description of split processes, see the original paper of Garg

et al. [1].

B. Overview of Semantic Components of MANA

We standardize here on MPI-3.1 [13]. There are primarily

four categories for which MANA must save state at the time

of checkpoint:

1) the state of all memory in the upper half;

2) a consistent snapshot associated with any MPI collective

communication calls in progress (e.g., MPI_Barrier

or MPI_Bcast;

3) a consistent snapshot associated with any MPI point-

to-point calls in progress (e.g., MPI_Send and

MPI_Recv;

4) any MPI one-sided communication calls (the

MPI_Win_XXX family of calls).

MPI’s one-sided communication calls are not yet supported,

but support for the MPI_Win_ family is on the roadmap

of MANA. Details on the remaining three categories are

described in the next section.

C. Virtualized MPI objects

MPI calls may create new objects of types such as

MPI_Comm and MPI_Request. In the MANA wrapper

functions around these calls, a new virtual object (virtualized

communicator or virtualized request in our example) is cre-

ated and returned to the user’s MPI application. An internal

mapping from the virtual object to the “real” object returned

by the lower-half MPI library is maintained. Thus, when the

user’s MPI application makes a later call, using one of these

virtualized objects, the MANA wrapper function automatically

replaces the virtualized object by the real object stored in its

mapping.

This is important, since an MPI application may make

copies of its objects, to be stored at arbitrary addresses. At

restart time, MANA simply updates its virtual-to-real mapping

with new, real objects, instead of trying to directly patch the

memory of the MPI application with updated real objects.

III. NOVEL ALGORITHMS FOR KEY COMPONENTS OF

MANA

We begin this section by enumerating the challenges faced

in bringing the original MANA proof-of-principle closer to a

production standard, capable of supporting C/R in production.

The subsections following this discussion describe individual,

novel algorithms that were introduced with MANA-2.0 to

improve its reliability and performance.

The challenges in supporting MANA robustly can be at-

tributed to several factors.

1) MANA is unusual in interposing directly at the level

of the MPI API. A checkpoint can be taken only if no

MPI process is in the middle of the MPI library. Hence,

MANA uses wrapper functions to interpose between

some MPI calls to MPI_Send and MPI_Recv, and

then redirects to asynchronous calls like MPI_Isend

and MPI_Irecv. As another example, MANA in-

terposes calls to MPI_Wait and redirects to a loop

around MPI_Test. These asynchronous calls are non-

blocking, and so MANA can guarantee not to checkpoint

a send/receive in the middle of a checkpoint. Extensions

to MPI_THREAD_MULTIPLE are not considered here.

Subsections III-A and III-B discuss how to handle

the conversion of MPI point-to-point communications

correctly.

2) The conversion to semantically equivalent MPI calls

can result in higher runtime overhead. Subsec-

tion III-D shows an example of this type of run-

time overhead. Nevertheless, semantic conversions are

required for multiple reasons. The previous item

gave an example, transforming MPI_Send/MPI_Recv

to MPI_Isend/MPI_Irecv. In a similar exam-

ple, MPI_Wait is converted to multiple calls to

MPI_Test. And in some cases, an MPI call is con-

verted to a POSIX system call, as in the conversion of

MPI_Alloc_mem/MPI_Free_mem to malloc/free.

3) A conversion to semantically equivalent MPI calls,

while valid for most MPI implementations, cannot be

guaranteed for all MPI implementations. In particular,

see [14], the MPI-4.0 addendum for semantics. This

helps resolve questions such as: when it is valid to add

an MPI_Barrier in front of a non-blocking MPI col-

lective communication (e.g., the root in MPI_Bcast);

whether the insertion of an MPI_Barrier will slow

down or accelerate an MPI application (see [15, page 41:

MPICH COLL SYNC]); and which MPI calls may be

resolved solely using local information. MPI_Barrier

before MPI_Bcast also can create deadlock. Details

are discussed in Section III-E of how MPI_Bcast is

supported, while avoiding potential deadlock.
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4) While MANA can use its centralized coordinator as a

side channel to communicate among the processes, this

is inefficient. Hence, MANA-2.0 instead makes direct

use of MPI calls as being more maintainable and more

efficient, while making sure semantically to be non-

intrusive. Subsections III-B and III-K are examples of

this practice.

For example, the original MANA needed to “drain” any

point-to-point messages (MPI_Send and MPI_Recv).

Previously, the DMTCP coordinator tracked the total

number of bytes sent and received. In MANA-2.0,

at the time of checkpoint, MPI_Alltoall is used

to directly communicate among the MPI processes to

determine if the number of bytes sent equals the number

of bytes received (implying that there are no pending

bytes in the network). While Subsection III-B discusses

draining messages, this last point is covered at the end

of Subsection III-M.

5) As part of the draining of point-to-point messages dis-

cussed in the last item, all MPI Processes need a way to

unambiguously identify a unique MPI process. This can

be done by using MPI_Translate_group_ranks

to translate the MPI rank within the current communi-

cator to the MPI rank within the world communicator.

MANA-2.0 takes care to internally use MPI calls that

solely access local information, where possible, for

the sake of efficiency. However, the overhead can be

still sensitive to the particular MPI implementation. An

implementation may choose to implement these MPI

calls as “local” calls, or else it may choose a simpler

implementation that invokes communication with a cen-

tral MPI resource manager. Subsections III-B and III-K

show how MPI calls are used internally in MANA-2.0.

6) MANA-2.0 improves on the original implementation

that virtualizes MPI objects. For example, the original

MANA virtualizes MPI communicators, and MANA-2.0

additionally virtualizes MPI requests. Virtualization of

objects or IDs is a technique from process virtualiza-

tion [16]. A given communicator, request or other object

is associated both with a real ID (known within the MPI

library) and with a virtual ID (stored within the MPI

application memory). MANA does the translation when

it interposes on any calls from the MPI application to the

MPI library. Thus, if a checkpoint-restart occurs between

the creation of the object and a second use, then the

virtualized object can later be bound to a newly created

real object on restart.

However, when a real object is no longer referenced

within the MPI library, this may be unknown to MANA,

and MANA can be left with a growing list of stale

virtualized objects. The size of that list continues to grow

if it cannot be garbage-collected — resulting both in a

growing memory footprint, and in higher overhead to

access an object. Subsection III-A discusses details of

virtualizing MPI requests.

7) The original MANA has a large runtime overhead,

especially when used with applications with intensive

collective communications. Subsections III-G, III-H,

III-I, III-J, III-K and III-L focus on addressing the

performance issues of the original MANA.

8) The original MANA supports Fortran MPI programs

with a series of wrappers that translate MPI’s Fortran

bindings to MPI’s C bindings. However, some corner

cases are not handled correctly due to differences be-

tween the Fortran and C languages. III-F shows one

example of such differences.

The following subsections discuss these and other issues

that arose.

A. Virtualized requests

Resources like MPI_Comm and MPI_Group are allocated

by MPI libraries. The resources must be virtualized to sur-

vive the checkpoint-restart barrier. But the MPI_Request

resource was not virtualized in the original MANA. This issue

was not seen in the original implementation [1] because non-

blocking collective communications were not supported.

Compared to other virtualized resources, virtual MPI re-

quests are generated so frequently that one must aggressively

prune completed virtual MPI requests to avoid large perfor-

mance and memory overhead. New virtual MPI requests are

created in non-blocking MPI function wrappers, and retired in

MPI_Test and MPI_Wait wrappers. Recall that the MPI

library sets a request to MPI_REQUEST_NULL when the

request has been satisfied. Similarly in MANA-2.0, when

MANA wishes to “retire” or garbage-collect the virtualized

form of an MPI request, it deallocates its request from its

internal table, and sets the MPI request value in application

memory to MPI_REQUEST_NULL.

An alternative implementation was suggested by one re-

viewer and is to be investigated. MANA-2.0 could internally

use MPI_Request_get_status to non-destructively in-

terrogate the MPI library. As a result, the application’s MPI

request status will be in a known (non-null) state, and so it will

be safe to later internally call MPI_Test instead of directly

setting an MPI request value to MPI_REQUEST_NULL in

application memory.

MPI requests are used in two different cases: non-blocking

collective communication and point-to-point communication.

Because these two cases require different algorithm and data

structures to support checkpoint/restart, virtualized MPI re-

quest retirements need to be supported differently for each

case.

In the case of non-blocking collective communication, a

log-and-replay algorithm is used to support checkpoint/restart.

Upon a successful MPI_Test or MPI_Wait, virtualized

MPI requests can be removed immediately from MANA’s

internal table without interfering with replaying on restart.

Since the addresses of the tested MPI request is known in

wrapper functions of MPI_Test and MPI_Wait, the MPI

requests values in application’s memory can simply be set to

MPI_REQUEST_NULL directly.
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The second use of MPI requests is to handle non-blocking

point-to-point communication. In this case, values of virtual

requests are saved in a list of active non-blocking calls, and

addresses of MPI requests in the application’s memory are

unknown. Therefore, we cannot update the user application’s

memory to update the request to MPI_REQUEST_NULL di-

rectly.

Since we cannot directly update the user’s memory in this

case, a two-step retirement algorithm was developed to safely

delete completed requests without requiring knowledge of

the addresses where the user application may have stored

the request. When a request is complete, we update the

virtual ID table so that the completed virtual request points

to a special value MPI_REQUEST_NULL. The next time

MPI_Test and MPI_Wait are called, we know the virtual

request is ready to be removed, since the real request is

MPI_REQUEST_NULL. We can then safely remove the virtual

request from the table and set the user application’s request

variable to MPI_REQUEST_NULL.

B. Drain send-receive for point-to-point communication

In the previous work [1], MANA translated blocking point-

to-point communications to comparable non-blocking ver-

sions, and used a variation of an all-to-all exchange algo-

rithm to perform bookkeeping when draining point-to-point

messages in the network during checkpoint. Point-to-point

communication wrappers accumulated the count of the number

of messages at runtime. When checkpointing, each process

sent the counted number of messages to the coordinator,

and the coordinator sent the total number of messages to

each process. If the total send and receive counts did not

match, MANA used MPI_Iprobe to detect messages still

in the network and tried to receive them with MPI_Recv.

Finally, MANA updated the new send and receive counts to

the coordinator and repeated the process.

This design has some drawbacks, however: Frequent com-

munication with the coordinator can be expensive when run-

ning at large scale, and sharing only the total number of

sends and receives makes it impossible to do any debugging

to determine to which MPI rank a missing message might

belong.

Therefore, MANA-2.0 improves the algorithm by using a

smaller-grain message counter for each pair of process and

sharing only essential information with MPI_Alltoall. Af-

ter calling MPI_Alltoall at checkpoint time, all processes

know, without further communication, how many bytes they

were expected to receive and how many bytes they actually

received. Locally, each process is able to use MPI_Recv to

drain missing bytes from peers.

Another issue addressed in MANA-2.0 is that if MPI_Recv

or MPI_Irecv has already been called, then the message

may have already been received, in which case MPI_Iprobe

can no longer detect the message in the network. Therefore,

if some process found no messages in the network by using

MPI_Iprobe, and if the send-receive count is still unbal-

anced, then there must be an unfinished MPI_Irecv for

which the corresponding request has not yet been satisfied.

In this case, instead of using an extra MPI_Recv to drain

the message, we call MPI_Test on existing MPI_Irecv

records to discover pending MPI requests associated with

MPI_Irecv records, and to then drain the missing messages.

C. Keep a list of only the active communicators for the sake

of restart

In the original design, when restoring MPI communicators

during restart, all functions used to create communicators

were recorded and replayed. Therefore, many communicators

no longer being used would be recreated during restart. In

addition, MPI communicators could not be retired, in case they

had been used to create other communicators. As a result, time

was wasted on replaying unnecessary functions. The virtual

ID table (mapping) for communicators also occupied more

memory and slowed down the lookup performance.

The new design in MANA-2.0 instead keeps a list of active

communicators and groups, and reconstructs only communica-

tors and groups in the active list during restart. A knowledge of

the underlying MPI group and its members suffices to recreate

a semantically identical communicator. So, it is no longer

necessary to replay MPI calls that build new communicators

from old communicators.

D. Not all collective communications are barriers: perfor-

mance issues

In the MPI standard [13], there is no requirement in a

collective function that all participating MPI processes must

enter the function before any process can return. (For example,

the “root” in MPI_Bcast can broadcast its message and

return before other processes receive the message.) However,

because of the two-phase-commit algorithm of the original

MANA (see [1]), a barrier was added before each collective

communication call. This was done to avoid checkpointing in

the middle of collective calls, such as MPI_Bcast. However,

this changes the semantics by making MPI_Bcast a blocking

call. (See the next subsection for how MANA-2.0 restores the

semantics of MPI_Bcast as a non-blocking call.)

The modified semantics incurs a major performance impact

for collective communications. For example, adding a barrier

before an MPI_Bcast forces the “root” process to wait

until all other processes arrives. Generally the barrier makes

the MPI_Bcast run two to three times slower. (See the

next subsection for the solution in MANA-2.0.) Nevertheless,

in the case of MPI_Allreduce, where all processes need

to send and receive data from other processes, the barrier

slightly improved the performance in our tests. Hence, note

the recommendation of Cray for optionally adding a barrier to

end-user code, and then testing with CRAYPAT to see if the

performance improves [15, page 41].

E. Not all collective communications are barriers: correctness

issues

In addition to the impact on performance, in some rare

cases the added barrier can lead to a deadlock that did not
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exist in the native MPI application. Assume a scenario where

two MPI processes (rank 0 and rank 1) communicate with

each other. Let rank 0 call MPI_Bcast as the “root” rank.

In this scenario, rank 0 first calls MPI_Send and then calls

MPI_Bcast. And rank 1 calls MPI_Recv and then calls

MPI_Bcast. There is no deadlock when running natively,

since rank 0 (the root rank) will not block on MPI_Bcast.

However, if MANA adds a barrier before the MPI_Bcast,

then rank 0 will wait for rank 1 to join the barrier, and rank 1

can only join the barrier after receiving in MPI_Recv. Yet,

rank 0 has not yet called MPI_Send. Therefore, we have a

deadlock.

This deadlock occurred in the original MANA because it

converted the semantics of MPI_Bcast to a blocking call. To

avoid the deadlock, MANA-2.0 must restore the non-blocking

(but synchronizing) semantics of the MPI standard (see MPI-4,

semantics appendix [14]). So, MANA-2.0 provides alternative

wrapper implementations for MPI_Bcast and similar MPI

calls, which use point-to-point communication (MPI_Send

and MPI_Recv) instead of the real MPI_Bcast function in

the lower half. (Note that the new persistent collectives that

are part of the MPI-4 standard are outside the scope of this

discussion.)

Normally, this will cause a performance degradation. Typi-

cally, the use of point-to-point communication compared to the

standard MPI_Bcast implementation. However, a new hybrid

two-phase-commit algorithm is currently being developed. The

new algorithm only inserts the trivial barrier at checkpoint

time. Similarly, the MANA wrapper function for MPI_Bcast

in the new algorithm will use the standard MPI_Bcast before

checkpoint. At checkpoint time, all calls to MPI_Bcast will

use the alternative point-to-point implementation.

F. Handling MPI named constants in Fortran

Because of the nature of Fortran, some MPI

named constants, such as MPI_IN_PLACE and

MPI_STATUS_IGNORE, are set at link time instead of

compile time [17]. This is because Fortran uses common

blocks, instead of true global constants. So, named constants

in Fortran are addresses of unique storage locations in the

underlying MPI library. Therefore, when using MANA with

Fortran-based MPI applications, the named constants passed

into MANA’s Fortran wrappers are addresses, instead of the

actual constant values as in the C interface. See [17] for

details. (Note that Fortran 2018 has recently introduced a more

direct way for Fortran and the C language to communicate

Fortran constants.)

To identify these link-time named constants correctly in

MANA’s wrappers, we linked a small Fortran routine into

MANA that discovers the value/address of the Fortran named

constants dynamically. If a parameter passed in from a user’s

application matches a Fortran named constant, then MANA-

2.0 replaces the value with the equivalent C constant when

calling the real MPI function in the lower half.

G. The FS register

A major source of runtime overhead is due to the use of the

“FS” register. The split-process model of MANA [1] requires

an upper-half program to do a context switch to a lower-

half program. This requires MANA to modify the FS register.

Unfortunately, that operation has been inordinately expensive

(microseconds or more) due to the need to make a kernel

call to the Linux kernel. Only recently, the unprivileged use

of the FS register was enabled in Linux 5.9 [18]. Most HPC

sites conservatively use older Linux kernels. For systems that

cannot use the FSGSBASE Linux kernel patch, MANA-2.0

added a workaround to reduce the cost of using the ”FS”

register. For details, see [19].

H. C++ lambda functions

C++ lambda functions were used in many MPI function

wrappers in MANA to increase the readability of codes, but

they come at the cost of performance. The C++ compiler had

compiled the lambda function of the source code into three

or four additional call frames in the binary. For frequent MPI

calls, this can add significant runtime overhead. To remove

lambda functions in MANA, functions that take lambda func-

tions as callbacks are decomposed into dedicated “prepare”

and “finish” functions.

I. Other sources of runtime overhead

Additional sources of runtime overhead are described in

the public documentation of internals provided by MANA-

2.0 [20]. These smaller factors also contribute to MANA’s

runtime overhead. A brief list of these factors follows.

1) Translating virtual ID to real ID depends on map oper-

ations of C++ std::map. Typically C++ std::map

requires O(log n) to look up an entry in the map. In

some cases, the original MANA also uses a linear search

in the map. This can be reduced by employing a C++

map based on hash arrays.

2) Calls to disable and enable DMTCP checkpoint are

used widely in MPI function wrappers. The cost of

lock operations are too expensive because of their high

frequency of use.

3) An internal helper method that translates the local rank

of a communicator to a global rank makes multiple calls

to the lower half. Calls to the lower half adjust the FS

register, which is expensive (see Subsection III-G). This

can be rewritten to make fewer calls.

4) We currently replay all non-blocking collective commu-

nications, like MPI_Ibarrier, MPI_Ireduce and

MPI_Ibcast, in order to re-create virtualized requests.

Not only is time wasted by creating completed requests,

but this also increases the size of the virtual request

table and slows the translation between real requests and

virtual requests.

J. Stragglers

A straggler is an MPI process participating in a col-

lective communication that may take minutes to hours to
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join the collective communication, because it is finishing a

CPU-intensive operation. As a result, the completion of the

collective communication is delayed. Even worse, from the

viewpoint of checkpointing, no checkpoint can take place

while some processes are still in the middle of a collective

call in the lower-half MPI library.

The original algorithm used a two-phase commit algorithm

for collective communication, in order to be able to trans-

parently checkpoint without significant waits (see [1]). That

algorithm inserted a barrier operation before every collective

communication call, and was found to result in runtime

slowdowns. A modified algorithm was introduced in a revised

implementation. The modified algorithm assumed that there

were no stragglers, but that modified algorithm was found

to have some flaws. The current MANA-2.0 now includes a

hybrid algorithm that adds a barrier operation before collective

communication calls only after the DMTCP coordinator has

requested a checkpoint. Additional details outside the scope of

this paper are included in the MANA-2.0 documentation [20].

K. Globally unique IDs: MPI_Translate_group_ranks

A challenge in the previous implementation of the two-

phase-commit algorithm is that the MANA centralized co-

ordinator does not know which MPI processes participate

in a given active communicator. This limits the ability of

the MANA centralized coordinator to determine which MPI

processes must stop and await the final checkpoint command,

and which MPI processes must continue to execute in order

to “unblock” later collective communication calls.

In order to get around this issue in MANA-2.0, each

MPI process reports to the centralized coordinator whether

it is currently executing within a collective communica-

tion call — and if so, provides a globally unique ID

for that collective communicator. For performance reasons,

the process must compute this globally unique ID without

the overhead of additional communication with its peers.

This is done using MPI_Translate_group_ranks. This

function enables the MPI process to translate the ranks

of the current communicator to the corresponding rank in

MPI_COMM_WORLD. The ranks in the current communicator

are all known as 0, 1, . . ., MPI_Comm_size()-1, where we

have taken liberties with the syntax of MPI_Comm_size().

MPI_Translate_group_ranks then produces the set

of corresponding ranks in MPI_COMM_WORLD, and a hash

function is used to produce an integer that is globally unique

with high probability.

L. Hybrid two-phase-commit algorithm (out of scope for this

article)

To further improve the performance of the two-phase-

commit algorithm, we have designed a hybrid version of the

algorithm that removes the barrier before each collective com-

munication. Additional details of this improved two-phase-

commit algorithm are outside the scope of this paper; they

are available in the MANA-2.0 documentation [20].

M. Lessons learned

There are some lessons learned from building the algorithms

discussed above. First, additional communication by MANA

should be minimized to optimize performance and correctness.

When possible, MANA-2.0 uses MPI calls for internally

sharing information among processes, instead of relying on

MANA’s centralized coordinator. Also when possible, MPI

calls that complete based on local information are preferred

over MPI calls requiring peer-to-peer communication. Min-

imizing the internal communication of MANA not only im-

proves runtime performance, but also reduces the possibility of

race conditions in the code, and helps to simplify debugging.

Another lesson learned in MANA-2.0 is that some MPI calls

can be emulated with other MPI calls. This was described in

greater detail in item 1 at the beginning of Section III.

Last but not least, one should instrument MANA to pro-

vide additional information that can be used in its algo-

rithms: a globally unique ID for each communicator (see

MPI_Translate_group_ranks); and recording the num-

ber of bytes sent and received for each possible sender-receiver

pair (using MPI_Alltoall).

IV. EXPERIMENTAL EVALUATION

All experiments were run on Cori, a Cray XC40 system

at NERSC. Cori contains two types of compute nodes, dual-

socket Intel Haswell and single-socket KNL nodes, intercon-

nected with Cray Aries network. Each Haswell node has 32

cores (64 hardware threads) running at 2.3 GHz, and 128 GB

DDR4 2133 MHz memory; each KNL node has 68 cores (272

hardware threads) running at 1.4 GHz, and 96 GB DDR4

2400 MHz memory. Cori runs Cray Linux environment version

7.0.UP01 with Linux kernel version 4.12. All experiments used

Cori’s burst buffer [21] for I/O, the most suitable file system

for writing checkpoint images on Cori.

We evaluated MANA-2.0 using two commonly used appli-

cations at NERSC: GROMACS, a molecular dynamics code,

and VASP, a materials science code. GROMACS (2021.02)

was compiled with the Intel compiler (2019.3.199), and linked

with Cray MPICH 7.7.10 and FFTW 3.3.8. Two versions of

VASP were tested: VASP 5 (5.4.4), a pure MPI code and

VASP 6 (6.2.1), a hybrid OpenMP + MPI code. Both VASP

versions were compiled with the Intel compiler (2019.3.199),

and linked with Cray MPICH (7.7.10), MKL (2019.3.199) and

FFTW (3.3.4) libraries.

Two branches of MANA-2.0 were used in the experiments:

a relatively stable branch, the master branch, and a devel-

opment branch, “feature/2pc”. The “feature/2pc” branch has

been extensively tested (and is hence more reliable), but

has a high runtime overhead. We used the master branch in

the checkpoint/restart experiments. The “feature/2pc” branch

contains the latest improvements to runtime overhead, thus

we used it in the runtime overhead tests. There are some

issues to resolve in interface8 before merging it into the stable

master branch, e.g., it fails to restart GROMACS using 2048

MPI processes. MANA is free and open-source software [22].

Documentation of the internals of MANA can be found at [20].
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Fig. 2. Run time comparison between running GROMACS natively (blue
bars) and under MANA (red bars) on Haswell (upper panel) and KNL (lower
panel) nodes. The yellow line represents the run-time ratio between the
MANA-enabled and native runs. Experiments were run on Cori Haswell and
KNL nodes using 32 MPI processes per node. For the KNL runs, each task
was run with two OpenMP threads.

A. Running GROMACS at Scale

GROMACS was chosen to evaluate the scalability improve-

ment of MANA after the code enhancements described earlier.

GROMACS was run with MANA-2.0 on a AuCoo monolayer

system containing 407,156 atoms (nano particles in water).

This system was studied in [23] by a NERSC user.

First, we evaluated the runtime overhead of MANA by

running the benchmark using from 1 to 64 Haswell and KNL

nodes (strong scaling) with and without MANA. We used the

interface8 branch of MANA with commits present at the time

of this writing. The interface8 branch includes mainly runtime

overhead performance improvements.

The GROMACS run time was measured for 10,000 MD

steps. Figure 2 shows the results. The blue and red bars show

the run time of GROMACS when running natively and under

MANA, respectively; the yellow line shows the run-time ratio

between the MANA-enabled and native runs. One can see that

for KNL runs, the runtime overhead is negligible except at

2048 processes. But for the Haswell architecture, the runtime

overhead is still excessively high when running on more than

two nodes, and increases rapidly when the number of processes

increases. We continue our efforts to further reduce MANA’s

runtime overhead by addressing the remaining causes of the

overhead.

Next, MANA’s checkpoint/restart capability was tested at

scale. GROMACS was run with MANA using 2048 processes

using 64 Haswell and KNL nodes (32 processes per node),

respectively. The KNL runs were configured to use two

Fig. 3. Checkpoint/Restart overhead of MANA when running GROMACS
with 2048 processes on Haswell (upper panel) and KNL (lower panel) nodes
on Cori’s Burst Buffer. The blue and red bars show the checkpoint and restart
time, respectively; the yellow line indicates the total size of the checkpoint
files.

OpenMP threads per process. The jobs were checkpointed

at the 5-minute mark and terminated after 8 minutes (to

assure sufficient time to write the checkpoint file), and then

restarted. MANA was able to successfully checkpoint and

restart GROMACS 10 times on each of Haswell and KNL.

Note that GROMACS does not scale well to an increasing

number of MPI processes (see Figure 2). So using 2048 MPI

processes to run the selected benchmark is not optimal. In

fact, a high load imbalance was observed when running with

2048 MPI processes. This, however, does not affect our goal

of demonstrating the scalability of MANA.

B. VASP: a resource for robustness testing

MANA-2.0 was tested with VASP, a materials science

code. VASP is largest consumer of computer time on Cori at

NERSC. VASP has been extensively tested with MANA using

the representative workloads summarized in Table I. These

benchmark cases were chosen to cover the representative

VASP workloads and to exercise different code paths. For

example, the first test case, denoted as PdO4 in the table, is

a PdO slab containing 348 atoms. It was chosen to test the

most commonly used code path, the DFT (Density Functional

Theory) functional calculations using the RMM-DIIS [24]

iteration scheme. Some test cases are real-world experiments,

taken from the work of NERSC users.

Many of the MANA code enhancements described earlier

arose from fixing bugs and issues exposed by these VASP

jobs when running them in production settings. As of this

writing MANA-2.0 can successfully checkpoint and restart all
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TABLE I
VASP TEST CASES FOR MANA-2.0. THESE CASES WERE CHOSEN TO COVER REPRESENTATIVE WORKLOADS AND TO EXERCISE DIFFERENT CODE PATHS.

PdO4 GaAsBi-64 CuC vdw Si256 hse B.hR105 hse PdO2 CaPOH WOSiH GaAs-GW0

Electrons (Ions) 3288 (348) 266 (64) 1064 (98) 1020 (255) 315 (105) 1644 (174) 288 (44) 80 (18) 8(2)

Functional DFT DFT VDW HSE HSE DFT DFT HSE GW0

Algo RMM
(VeryFast)

BD+RMM
(Fast)

RMM
(VeryFast)

CG
(Damped)

CG
(Damped)

RMM
(VeryFast)

BD
(Normal)

BD+RMM
(Fast)

BD
(Normal)

KPOINTS 1 1 1 4 4 4 3 3 1 1 1 1 1 1 1 1 1 1 2 1 1 3 3 3 3 3 3

TABLE II
PERFORMANCE COMPARISON OF THE VASP CAPOH WORKLOAD WITH 128 RANKS.

Native MANA
master branch

MANA
feature/2pc branch

Haswell 25s 41s 35s

KNL 69s 137s 101s

32 64 128 256
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Fig. 4. Number of collective communications per second per process for
VASP-5 on Haswell and KNL nodes. When doubling the number of ranks,
the growth in the number of collective calls is roughly logarithmic in the
number of nodes. This figure was cited from [19].

the benchmark cases listed in Table I with both VASP 5 (MPI)

and VASP 6 (OpenMP + OpenMP). For VASP 6 we needed

to disable the use of MPI_Win_ family APIs at compilation

time to use MANA, because they are not yet supported in

MANA. There are still other issues to resolve, e.g., some of

the VASP jobs run into segmentation faults after many rounds

of checkpoint/restart.

Note that VASP is highlighted for its intensive use of MPI

collective communication. While users typically run VASP

across a small number of nodes due to the nature of its

algorithms, VASP invokes an excessively high number of MPI

collectives per second, as shown in Figure 4. This presents an

additional challenge: runtime overhead.

C. MANA “Hybrid-2PC”: initial successes in reducing run-

time overhead

VASP was chosen to evaluate improvement in runtime

overhead. We tested the CaPOH workload with 128 processes

on both Haswell and KNL nodes. Table II shows the perfor-

mances of the native VASP program, and VASP run under the

MANA master branch and MANA experimental “feature/2pc”

branch.

The MANA master branch focuses on scalability and sta-

bility; the “feature/2pc” branch is our first attempt to reduce

runtime overhead. Currently, “feature/2pc” includes the hybrid

two-phase-commit algorithm and removes lambda functions in

the code base. From the table, we can see that on Haswell

nodes, the runtime overhead has been reduced from 64% to

40%. On KNL nodes, the runtime overhead has been reduced

from 99% to 46%. As discussed in Section III, there are

additional known sources of runtime overhead. MANA-2.0

remains a work in progress, and efforts to solve each problem

and reduce MANA’s runtime overhead are continuing.

V. RELATED WORK

The history of MPI checkpointing is littered with ap-

proaches that tried too closely to tie the checkpointing process

to a specific underlying network.

There have also been a series of checkpointing approaches

for particular implementations of MPI. These include: the

Open MPI checkpoint-restart service [7], [25], the MVAPICH2

checkpoint-restart service [6] — both of which temporarily

disconnect the network and then delegate to BLCR [26] for

checkpointing an individual process. Similarly, MPICH-V [4]

disconnects a transport layer channel of MPICH (primarily

based on TCP). It then delegates to the Condor package for

checkpointing single-threaded individual processes [27].

Each of the above packages is implemented within a

particular implementation of MPI. In contrast, the origi-

nal DMTCP [5] (for TCP), and an InfiniBand plugin for

DMTCP [8] are independent of the MPI implementation, and

do not disconnect the network during checkpoint. But both are

otherwise tightly bound to the underlying network.

An approach to support mobile MPI applications exists,

albeit while partially abandoning application transparency

and requiring re-compilation of the MPI application source

code [28]. And CIFTS provides a fault-tolerant BLCR-based

“backplane” [29].

MANA then introduced the split-process model for check-

pointing of MPI [1]. Details are in Section II-A. The first

work [1] demonstrated transparent checkpointing of GRO-

MACS [12] and additional three applications at 2048 MPI

76

Authorized licensed use limited to: Northeastern University. Downloaded on March 30,2022 at 00:44:43 UTC from IEEE Xplore.  Restrictions apply. 



processes over 64 Haswell nodes. Efforts to deploy MANA

at NERSC are described in [9], while MANA was previously

updated for compatibility with the latest NERSC environment

and to remove code specific to one environment, as described

in [11]. The second work [11] demonstrated transparent check-

pointing for 64 processes with GROMACS and 512 processes

with the HPCG benchmark [30].

Note that transparent checkpointing of MPI was already

demonstrated to the level of 16,368 processes for NAMD and

32,368 processes for HPCG (using 1/3 of the supercomputer)

on Stampede at TACC in 2016 [31]. That early work was based

on DMTCP’s transparent support for InfiniBand, and that code

likely would not run on today’s machines using either Cray

GNI or extensions to the original InfiniBand. Further, no effort

was made in the current work to test the limits of scalability

of MANA-2.0.

VI. CONCLUSION

This report on MANA-2.0 represents encouraging progress

toward a robust, reliable package for transparent checkpointing

that will be future-proof. There are important lessons from this

work. Each individual subsystem for MANA-2.0 must be care-

fully designed with appropriate data structures and algorithms

to enable an MPI computation to survive over the checkpoint-

restart barrier. The subsystems requiring particular support

are: point-to-point communication (translating MPI_Send to

MPI_Isend, etc.); MPI collective communication (allowing

each MPI process to proceed until all MPI processes have

reached a safe point with no MPI process currently in an

MPI call); decisions whether to wait for an MPI call to

complete, or to virtualize and replay at restart time; MPI

requests (virtualizing those requests and deciding when the

memory of old requests can be reclaimed); and in the case of

asynchronous MPI calls, deciding which processes must replay

point-to-point and collective calls in order to re-instantiate

vitual MPI requests for completion after restart.

MANA-2.0 is a significant improvement over the previous

MANA in both scalability and reliability. It can checkpoint

and restart GROMACS reliably, which uses MPI point-to-point

communication intensively, using up to 2048 MPI processes

(with the selected benchmark system). It can also checkpoint

and restart the representative production workloads of VASP,

which uses MPI collective communications intensively.

MANA-2.0 is still a work in progress. There are multiple

issues to resolve before it can be used in production. Currently

applications that invoke MPI collectives frequently, or appli-

cations that run at large scale, incur high runtime and memory

overheads. Many causes have been identified, and fixes have

been implemented or are under implementation.

In particular, MANA-2.0 need not be restricted to a stan-

dalone environment. It would be simple to extend MANA-

2.0 to support the MPI-3.1 tools interfaces. This would give

MANA-2.0 the ability to introspect into an MPI imple-

mentation. Hence, MANA-2.0 could play a supportive role

within other fault-tolerant libraries. And the use of the tools

interface could lighten MANA’s current burden of indirect

discovery through wrapper functions around MPI calls. The

tools interface also represents an opportunity to provide a

deadlock detector, as one more component in a general fault-

tolerant ecosphere that includes such well-known packages

as CRAFT [32] (Checkpoint/Restart and Automatic Fault

Tolerance), SCR [33] (Scalable Checkpoint/Restart library),

ULFM [34] (User-Level Failure Mitigation), and VeloC [35]

(Very Low Overhead Checkpoint-Restart).
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