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Abstract. We study the behaviour of Yukawa and Newtonian gravitational forces in a cubic box with fully
periodic boundaries commonly encountered in N-body simulations of the structure formation. Placing a
single gravitating body at the origin of coordinates, we reveal the scales at which non-negligible deviation
from the Yukawa law occurs when the Newtonian approximation is employed. We discuss the results in
terms of the corresponding physical distances today as well as earlier, back at the matter-dominated stage.
Revisiting the problem for free boundaries, we also compare the periodic and plain gravitational forces for
Yukawa-type interactions.

1 Introduction

Nonlinear dynamics governing structure formation at sub-horizon scales is often modelled using the Newtonian ap-
proximation in cosmological simulations [1,2,3]. The absence of relativistic effects in the formulation is, however, a
major drawback as they are an essential part of cosmological processes, and not to be neglected particularly in the
era of precision cosmology. This can be overcome by employing the Yukawa gravitational potential instead of the
Newtonian one in the equations of motion of the underlying N-body codes. The sought-for contribution of general rel-
ativistic effects is inherent in the Yukawa potential as it follows directly from the Einstein equations. The Yukawa-type
interaction of gravitating bodies was initially introduced in [4] as the manifestation of gravitation at all scales, namely,
at both sub- and super-horizon distances. Later, the associated time-dependent cutoff distance λ for the potential and
force (i.e. the Yukawa interaction range, or the screening length) was revisited in [5] where it was used (along with
the cutoff scale from [6]) to define the effective screening length λeff which fully agrees with the sizes of the largest
cosmic structures observed today. At small scales, well below λeff , the Yukawa gravitational potential is reduced to its
Newtonian counterpart. However, at scales comparable to the screening length and beyond those, two laws of gravity
deviate from one another since unlike the Newtonian behaviour, the potential undergoes rapid exponential decay in
the Yukawa formulation. In this connection, it is interesting to study the discrepancy in terms of the force generated by
a single particle in a cubic box, conventionally utilized in N-body simulations. The results then can straightforwardly
be translated into the physical setting to reveal the scales at which the Newtonian approximation differs significantly
from the Yukawa law.

Certainly, there are other types of alterations of the Newtonian potential in literature, especially in the context of
modified gravity. For example, the f(R) and Dvali-Gabadadze-Porrati braneworld models have been investigated with
respect to large-scale structure formation in [7,8,9,10] (see also references therein). In addition, it is sometimes argued
that the Newtonian potential acquires quadratic correction due to the cosmological constant (see recent reasoning in
[11,12,13] and references therein).

In the present work, our primary focus is on the comparison of Yukawa and Newtonian forces for a single gravitating
body in a simulation box with three-dimensional periodic boundaries. We investigate how the behaviour of forces
changes with increasing distance from the source and how it depends on the screening length of Yukawa gravity, i.e.
what happens when the screening length is significantly smaller than, comparable to or larger than the box size. We
then evaluate our results based on the corresponding physical distances, provided that the box size today is set to
1.3 Gpc. Additionally, to see the impacts of periodicity on the force, we extend the analysis to include the problem
with free boundaries.
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The outline of this paper is as follows. In Section 2, we present the formulas for the Yukawa and Newtonian
potentials and forces, both for free and periodic boundaries. The expressions for periodic boundaries are formulated
via Ewald sums to ensure better correspondence with the available N-body simulations. We compare the behaviour
of forces for various values of the screening length. In Section 3, we provide a more detailed analysis showing how far
from the gravitating source the periodic Yukawa and Newtonian as well as the periodic and plain Yukawa forces begin
to significantly differ from one another. We analyze the results in terms of the corresponding physical distances for a
box size of 1.3 Gpc today. In concluding Section 4 we provide a brief summary.

2 Potentials and forces

In the cosmological setting, the motivation for calculating the gravitational potential and force for periodic boundaries
is twofold. From the theoretical point of view, it is possible that the universe is not simply connected, contrary to
what is suggested by concordance cosmology, but multiply connected. Hence, as is a matter of investigation also in
observational cosmology [14,15,16], the space may have toroidal topology: it may be shaped as a cubic torus (T 3),
the size of which is bounded from below by the available data [17]. If this is the case, periodicity in three dimensions
naturally requires that one should resort to fully periodic boundary conditions to accurately describe gravity at the
scales of interest [18]. Nonetheless, if not imposed on physical grounds, i.e. when the study is based on concordance
cosmology, periodic boundaries come into play in N-body codes for practical reasons. In order to mimic the interactions
in the infinite universe, simulations are generally run for cubic boxes replicated periodically in three dimensions [1,2,
3,19].

Cosmological N-body simulations based on the Newtonian approximation often employ the Ewald method so that
the very slowly converging series in the periodic force expression becomes numerically manageable [21,20]. Though the
Yukawa force has good convergence properties, especially for the small values of the interaction range in comparison
to the box size [18], we employ the Ewald summations for both laws to ensure consistency.

Below we present, respectively, the formulas for the rescaled Yukawa-Ewald gravitational potential and x-component
of the corresponding rescaled gravitational force in a cubic simulation box [18]. They are sourced by a single particle
of mass m at the origin of comoving Cartesian coordinates as well as its periodic images which are positioned at
(x, y, z) = (k1l, k2l, k3l) , k1,2,3 = 0,±1,±2, ..., where l represents the cubic torus period:
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The rescaled quantities (with tildes) in the above expressions as well as throughout the paper follow from the definitions

x = x̃l, y = ỹl, z = z̃l, λeff = λ̃effal , (2.5)

where a is the scale factor. As regards the rescaled potential Φ̃, if we multiply it by −GNm/
(
c2al

)
(where GN is the

Newtonian gravitational constant and c is the speed of light), and then sum up such contributions from all N particles
in the simulation box, adding also the term (1/3)λ2

eff/λ
2, then we get the total scalar metric perturbation Φ [18].

In an identical setup, the rescaled Newton-Ewald potential and x-component of the gravitational force read [21,
20]
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In both expressions (2.2) and (2.7), the free parameter α of the Ewald formulation is set to α = 2, according to [21,
20], to achieve good accuracy at fairly low computational cost. In principle, the results do not depend on the choice
of α for a reasonable range of values. Assigned an optimal value, it rather serves to facilitate rapid convergence of
the series so that adequate precision may be reached by including a small number of terms in the summation, which
reduces computational effort.

Given the possibility that periodicity may not be demanded by topology, and hence the related effects in simulations
may be artificial [22], we find it worthwhile to study two laws of gravity also for free boundaries. Losing the lattice,
we formulate the solutions again for a single gravitating body, placed at (x, y, z) = (0, 0, 0). The rescaled Yukawa
potential and x-component of the gravitational force are then, respectively,
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x̃2 + ỹ2 + z̃2

]
exp

(
−
√
x̃2 + ỹ2 + z̃2
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whereas the rescaled Newtonian potential and x-component of the gravitational force are
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, (2.10)
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. (2.11)

In Figs. 1a - 2b, we simultaneously plot four force curves, according to (2.2), (2.7), (2.9) and (2.11), versus x̃

(in the case of fixed ỹ = z̃ = 0) for λ̃eff = 0.05, 0.1, 1, 2, respectively. We aim to demonstrate how they behave with

increasing distance from the gravitating body, depending on the effective screening length λ̃eff , especially when periodic
boundaries are imposed. Looking first at Figs. 1a and 1b, one realizes that the curves corresponding to two different
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Fig. 1: x-components of four rescaled gravitational forces F̃ ≡ ∂Φ̃/∂x̃ on the line ỹ = z̃ = 0 when (a) λ̃eff = 0.05 and

(b) λ̃eff = 0.1. The range of the x̃-axis lies between 0.2λ̃eff and λ̃eff in the embedded plot and starts from λ̃eff in the
larger plot to cover up to x̃ = 0.5.

laws of gravity are visibly separated from one another except in the immediate vicinity of the source placed at x̃ = 0,
and near x̃ = 0.5, where the Yukawa-Ewald and Newton-Ewald forces tend to zero. The Ewald summations of Yukawa
and Newtonian forces do not deviate much from the corresponding plain (Yukawa and Newtonian) forces themselves
which, unlike the Ewald summations, do not involve the effects of periodicity. Contrarily, in Figs. 2a and 2b, the plain
Yukawa and Newtonian forces remain close to each other just like the curves demonstrating the corresponding Ewald
forces, and now these two sets are separated within the range of interest instead. The reason for such an outcome is the
following: for small λ̃eff , the difference in the forms of gravitational interaction for Yukawa and Newtonian laws comes
into play at rather small distances from the source due to the small range of the exponentially decaying Yukawa force,
characterized by nothing but the interaction range λ̃eff . The Ewald summation here does not significantly change the
behaviour of the plain Yukawa force, again, because of the smallness of the interaction range, which is well below
the half-box size. For larger λ̃eff , however, periodicity does make a difference and one sees that Ewald forces decrease
rapidly to reach zero at x̃ = 0.5 in the last two figures. Nevertheless, the Yukawa vs. Newtonian behaviour of gravity is
no longer recognizable, as the interaction range is equal to or larger than the box size in Figs. 2a and 2b, respectively.

3 Deviations from the plain Yukawa and Yukawa-Ewald forces

Elaborating further on our analysis in the previous section, we now zoom into the region in the box where deviations
from the Yukawa-Ewald and plain Yukawa forces become non-negligible. To begin with, we employ the formulas (2.2)

and (2.7) and plot the relative error |(F̃YE − F̃NE)/F̃YE| (for ỹ = z̃ = 0) against x̃, i.e. the distance from the source

particle. In Fig. 3a, we show that for λ̃eff = 0.05, the distinction among periodic forces grows very fast. A relative
error as large as 10% takes place at x̃ ∼ 0.025, and the 1% error is encountered at a distance smaller than 1% of the
box size, that is at x̃ ∼ 0.0074. Since the difference between Yukawa-Ewald and Newton-Ewald forces is sensitive to
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Fig. 2: x-components of four rescaled gravitational forces F̃ ≡ ∂Φ̃/∂x̃ on the line ỹ = z̃ = 0 when (a) λ̃eff = 1 and (b)

λ̃eff = 2. The range of the x̃-axis lies between (a) x̃ = 0.2λ̃eff and x̃ = 0.5, (b) x̃ = 0.1λ̃eff and x̃ = 0.5.

the screening length, when we fix λ̃eff = 0.1 in Fig. 3b, we observe the 1% and 10% errors at the points x̃ ∼ 0.015
and x̃ ∼ 0.05, respectively, that are shifted further from the previous two towards the middle of the box edge. Owing
to the larger cutoff scale of the Yukawa force here, two laws of gravity behave similarly throughout a larger region
surrounding the gravitating body; yet both computed distances are still significantly small relative to the box size, as
λ̃eff merely equals one tenth of it.

Then, using the formulas (2.2) and (2.9) (again, calculated for ỹ = z̃ = 0), we plot the relative error |(F̃YE−F̃Y)/F̃Y|
versus x̃ in Fig. 4. We consider two cases with λ̃eff = 1, 2 to study where in the box the plain Yukawa and Yukawa-
Ewald forces begin to significantly deviate from one another. This time, for both curves the 1% and 10% errors occur
at x̃ ∼ 0.135 and x̃ ∼ 0.275, respectively, and we see that locations of two fixed percent errors shift towards the point
x̃ = 0.5 with increasing λ̃eff . As mentioned previously, periodic boundaries result in deviations from the plain Yukawa
force, especially when the cutoff distance exceeds the half-box size, because at x̃ = 0.5 the Yukawa-Ewald force tends
to zero regardless of the greater interaction range. For the same reason, deviations take place closer to the center of
the edge rather than to the gravitating source. It is worth noting at this point that as we consider a sample simulation
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Fig. 3: Relative error for the x-components of Yukawa-Ewald and Newton-Ewald forces calculated along the line
ỹ = z̃ = 0 when (a) λ̃eff = 0.05, (b) λ̃eff = 0.1. The range of the x̃-axis lies between 0.1λ̃eff and λ̃eff in the embedded

plot and starts from λ̃eff in the larger plot to cover up to x̃ = 0.3. From left to right, red dots indicate the locations
of the (a) 1% (x̃ = 0.00739), (b) 1% (x̃ = 0.0148) and (a) 10% (x̃ = 0.0251), (b) 10% (x̃ = 0.0504) errors, respectively.

box in the following steps, the range of interest for λ̃eff will be 0.2−2, which corresponds to a period between redshifts
z ≈ 119 and z ≈ 0 for our particular example.
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Fig. 4: Relative error for the x-components of Yukawa-Ewald and pure Yukawa forces calculated along the line ỹ = z̃ = 0
when λ̃eff = 1, 2. The range of the x̃-axis lies between x̃ = 0.1 and x̃ = 0.3.
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Fig. 5: Locations of some fixed percent errors for the force components (a) F̃YE and F̃NE, (b) F̃YE and F̃Y calculated

along the line ỹ = z̃ = 0 as functions of λ̃eff . From top to bottom, the curves are limited to the intervals (a) x̃:
0.0297–0.408 (1%), 0.00909–0.0938 (0.1%), 0.00284–0.0287 (0.01%), 0.000896–0.00898 (0.001%), (b) x̃: 0.222–0.133

(1%), 0.123–0.0628 (0.1%), 0.0611–0.0292 (0.01%), 0.0289–0.0136 (0.001%). The selected range of λ̃eff between 0.2 and
2 corresponds to the period from z ≈ 119 to z ≈ 0 for a simulation box of 1.3 Gpc today.

In Fig. 5a, four distinct percent error values ranging from 0.001% to 1% for Ewald forces are displayed with
respect to where they are encountered in the simulation box for different λ̃eff . The physical size of the box is set to
lph = (a/a0)(a0l) = 1.3 Gpc today (z = 0), i.e. a0l = 1.3 Gpc. This approximately corresponds to λ̃eff = 2 on the

horizontal axis via λeff = (a/a0)(a0l)λ̃eff , where λeff is determined from Eq. (41) of [5],

λeff =

√
c2a2H

3

∫
da

a3H3
, (3.12)

using the current values of the cosmological parameters relevant to the calculation of H, the Hubble parameter, as
reported in [23]. The same relation indicates that the minimum value of λ̃eff on the plot (λ̃eff = 0.2) corresponds to
the redshift z ≈ 119. The physical distances at which the fixed percent errors are encountered at the present time
approximately equal 530 (1%), 122 (0.1%), 37 (0.01%) and 12 (0.001%) Mpc. We see clearly in this figure that the
distances of relative error points from the source are generally much smaller than the box size. Fig. 5b demonstrates
the same four fixed percent error curves in an identical setting, except now for the relative error associated with the
Yukawa-Ewald and plain Yukawa forces. Herein the respective physical distances at the present time approximately
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equal 173 (1%), 82 (0.1%), 38 (0.01%) and 18 (0.001%) Mpc. Unlike the behaviour in the previous figure, locations of

percent errors shift towards the middle of the box edge as we move towards larger redshifts (smaller λ̃eff).
As an alternative representation, in Figs. 6a and 6b we present, respectively, the relative error for the Yukawa-

Ewald vs. Newton-Ewald forces and Yukawa-Ewald vs. plain Yukawa forces for the range 0.2 ≤ λ̃eff ≤ 2 at certain fixed
points in the box that correspond to 1.3 (x̃ = 0.001), 6.5 (x̃ = 0.005), 13 (x̃ = 0.01) and 26 (x̃ = 0.02) Mpc distances
from the gravitating source today.
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Fig. 6: Relative error for the x-components of (a) Yukawa-Ewald and Newton-Ewald, (b) Yukawa-Ewald and pure

Yukawa forces calculated at points x̃ = 0.001, 0.005, 0.01, 0.02 along the line ỹ = z̃ = 0 for the range 0.2 ≤ λ̃eff ≤ 2.

4 Conclusion

In the present work we have provided a thorough comparison of the Yukawa and Newtonian gravitational forces that
are generated by a particle in a cubic box with periodic boundaries. As is the conventional method in cosmological N-
body simulations, we have employed Ewald sums in expressing both periodic forces. We have additionally investigated
how the Yukawa-Ewald force compares to the plain Yukawa force of the free boundary problem to reveal the effects
of periodicity for Yukawa-type interactions.

With a detailed analysis, we have shown that regarding the Yukawa-Ewald and Newton-Ewald forces, a relative
error of 0.001% (10−5) already takes place at 12 Mpc from the gravitating source, followed by an error of 0.01% (10−4)
at 37 Mpc distance today, while λeff = 2.6 Gpc and lph = 1.3 Gpc. As for the plain Yukawa vs. Yukawa-Ewald forces,
the corresponding distances are revealed to be 18 and 38 Mpc, respectively. The measure of discrepancy between the
plain Newtonian and periodic Newton-Ewald forces has previously been studied in view of cosmological simulations
[1,22], with a reported relative error of 10−5 produced at distances as small as 1% of the box size [1]. Here we
have shown that the error associated with different laws of gravitation, i.e. the difference between the Yukawa-Ewald
and Newton-Ewald forces is more significant since the 10−5 error is already encountered at a point closer to the
source than x = 0.01l. At earlier epochs, for smaller lph and λeff , the error points are shifted towards the gravitating
body. Therefore, in simulations that employ periodic Newtonian forces, non-negligible deviations from the periodic
Yukawa force are expected, especially throughout the matter-dominated epoch that is directly associated with structure
formation. Meanwhile, imposing periodic boundaries also results in deviations from the plain Yukawa force, but the
error associated with periodicity in Yukawa-type interactions is less significant (as it clearly follows from the comparison
of Figs. 6a and 6b).

Finally, we would like to comment on the larger percent errors (see, for instance, the orange curve in Fig. 5a)
encountered with increasing distance from the source. In our analysis, we have considered a single gravitating body
and naturally, the gravitational force due to this particle is decreasing with distance. Though the calculated error is
growing significantly as we move further away from the source, it is of no importance at large enough scales because
had there been other gravitating bodies included in the configuration, as is the case in the physical setting, the forces
induced by neighboring particles in that location would be much larger than the force due to the original source and
the latter would eventually become negligible. In this connection, the errors associated with the single particle case in
this study are not to be considered relevant to the multi-particle configurations at significantly large scales.
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