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Abstract
Nanostructured alloys are efficient catalysts for mediating
renewable energy storage and recovery reactions. The
morphology and composition of an alloy can change during
catalysis; particularly for potentials more oxidizing than the
reversible hydrogen electrode. The formation of noble-metal
shells covering an alloy core, or bi-continuous nanoporosity, is
a common way an alloy can evolve by a corrosion mediated
process. Recently, it was found that alloys can reconstruct
within the bulk and form an ordered intermetallic material with
different crystal structures and compositions than the starting
material during corrosion. This review will discuss the different
pathways alloys can be altered by electrochemistry. We will
discuss the mechanisms which cover known structural
changes and the more recently discovered process involving
electrochemically driven incongruent phase transformations.
Insights into the transformation of alloy materials are important
for understanding how to prepare catalysts with improved
electrochemical stability, and for synthesizing materials.
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Introduction
Electrocatalysts play an important role in the develop-
ment of sustainable energy technology because it is a
www.sciencedirect.com
critical component for fuel cells [1], water electrolysis
[2,3], and the electrosynthesis of molecules to value-
added products [4,5]. In the last two decades, ad-
vancements in the fundamental knowledge of chemical
catalysis and the preparation of nanomaterials have led

to improvements in electrochemical performance [6].
However, maintaining the stability of nanostructured
materials during electrocatalysis is a critical challenge
because nanomaterials are inherently thermodynami-
cally unstable [7]. Improved stability for nanostructured
alloys under electrochemical conditions is important for
the commercialization of renewable-energyebased
electrochemical devices for several reasons, such as (i)
commercial electrochemical devices require stability to
be reliable for maintaining performance over a long
period of time [8] (ii) structural changes can make it

difficult to correlate catalyst activity to structure, and
(iii) the corrosion of the catalyst can cause contamina-
tion to other components in the device, reducing effi-
ciency [9,10].

One of the primary modes of instability for nano-
structured alloys is the oxidation and dissolution of the
non-noble metal component. This manuscript will focus
on recent developments in the morphological and
structural evolution of complex nanomaterials when
subject to oxidizing voltages in aqueous solutions. We

will begin this review by introducing some of the con-
ventional wisdom regarding binary alloy transformations
under oxidizing conditions. Next, we will discuss elec-
trochemically driven incongruent phase transformations
of ordered intermetallic materials. Insights into the
structural evolution of materials under electrochemical
conditions are critical for understanding the dynamic
changes of catalyst active sites and for developing new
ways of synthesizing materials.
Structural evolution of multi-metallic
nanomaterials
Nanomaterials can undergo structural, compositional,
and morphological changes during electrochemical
catalysis. Modifications to the catalyst are commonly
observed during the oxygen reduction reaction (ORR)

because the potential limit, between ~0.6 and 1.0 V
versus the reversible hydrogen electrode, is oxidizing to
most elements. Consequently, understanding material
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2 Innovative Methods in electrochemistry
stability under ORR operating conditions has been a
major focus of research.

Early reports of improved ORR electrocatalysis on Pt
alloyed with transition metals such as Ti, V, Mn, Mo, and
Al were from patents awarded to United Technologies
(International Fuel Cells) in the 1980s [11e15]. It was
found that alloys with a composition of PtxM1�x (x = 0.6

to 0.75) lost up to ~35% or ~70% of the non-noble
metal component when M was Cr or V, respectively,
during ORR stability testing. Besides this information,
little was known about the structure of the material
until more rigorous investigations of catalyst stability
were performed in the early 1990s on the Pt3Co system
by Beard and Ross [16]. It was found that the Pt3Co
alloy lost ~15% of the Co during ORR testing. In 1994,
Watanabe et al. [17] proposed that the non-noble
Figure 1

Atomic-resolution high-angle annular dark-field scanning transmission electro
quired at different temperatures and annealing times. The different facets are m
to L12 ordered phase. Adapted from the study by Chi et al. [25].
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element corroded from the surface of Pt3Co alloys;
they suggested that a Pt-skin formed over the alloy core.
Later, a report by Watanabe et al. [17] in 1999 found
that pure Pt skins were formed on Pt-M (M = Ni, Co,
Fe) alloys for various compositions as probed by X-ray
photoelectron spectroscopy [18]. Several studies have
found that the performance and stability of the Pt-skin
layer can be substantially altered by its method of for-

mation. There are three dominant pre-treatment stra-
tegies, chemical dealloying, high-temperature
annealing, or electrochemical dealloying; the latter two
methods typically result in the formation of Pt skins
[19e24]. High-temperature annealing is valuable for
the preparation of Pt skins on bulk electrodes, but this
method can cause a decrease in the surface area and
alter the morphology of nanoparticles, which may be
unfavorable or beneficial depending on the application
n microscopy (HAADF-STEM) images of a Pt3Co nanoparticle were ac-
arked on the images. The arrows in the d indicate the transition from FCC
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Transformations of alloys in electrocatalysis Wang et al. 3
(Figure 1) [25]. In 2006, Liu et al. [24] and Strasser and
Kuhl [26] described a method for producing stable Pt
skins on several alloys by intentional electrochemical
pre-treatment [20]. In one of these reports, it was found
that dealloyed-PtCu3 exhibited a ~5-fold increase in
mass activity relative to Pt because of improved geo-
metric and ligand effects provided by the core/shell
structure. Stamenkovic et al. [27] found that Pt skins

over Pt3Ni (111) single crystals prepared by thermal
annealing exhibited 10� enhancement for ORR relative
to Pt (111) because of improved surface site availability.
Snyder et al. [28] found that chemically dealloyed Pt-Ni
alloys with a nanoporous morphology, with and without
ionic liquid impregnation, exhibited improved mass and
specific activities relative to Pt/C benchmarks.

The formation of noble metal skins on top of alloy cores
is not unique to the Pt d d-block metal alloys. Several
reports have found similar structures can evolve when Pt

is alloyed, with f-block metals [29] and some metalloids
[30,31]. The formation of noble metal shells has also
been observed with alloys of Pd [32,33] and Au [34].
Morphology control of alloys formed by
dealloying
Systems that form core-shell structures were found to
evolve from small nanoparticles, while bicontinuous
nanoporous structures with a ‘spongy’ morphology
evolved from large nanoparticles, bulk materials, and
thin films; as indicated from studies by Gan et al. [35],
Figure 2

HAADF-STEM images and the corresponding electron energy loss spectrosco
000 cycles of stability test [35].
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Gan et al. [36], McCue et al. [37], and Li et al. [38] on
the Au-Ag and Pt-Ni systems, respectively [35e38]. A
systematic study performed on the PtNi3 system found
that smaller nanoparticles formed Pt skins which
protected the core and slowed down the corrosion of the
non-noble metal component, whereas the larger nano-
particles lost 80% or more Ni because passivating Pt
shells were not formed (Figure 2) [35,36]. Because the

larger nanoparticles contained less Ni, the electronic
and geometric effects were minimized, which resulted
in lower intrinsic activity than nonporous particles [28].
Stability of catalysts with atomic scale
ordering
Metal alloy nanocrystals can be solid solution type alloys
or ordered intermetallic compounds (OIC), where the
former exhibits short-range order and the latter long-
range order. Reports from the early 90s have suggested
that the crystal structure of an alloy can impact the
stability and activity of the material. For example, an
early report from Beard & Ross in 1990 found that or-
dered intermetallic Pt3Co (L12 structure type)
displayed higher stability than disordered alloy phases.
This contrasted with reports from the study by Wata-

nabe [17] and Yano et al. [39] in 1994 and 2017, where it
was found that disordered Pt3Co alloys exhibit higher
stability (but lower activity) than ordered intermetallic
Pt3Co. This system was also examined by Wang et al.
[40] in 2013, and it was found that ordered intermetallic
Pt3Co exhibited higher catalytic activity and stability for
py line profiles of dealloyed PtNi3 nanoparticles with different sizes after 10
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4 Innovative Methods in electrochemistry
ORR than disordered Pt3Co alloys. The differences in
stability of ordered intermetallic Pt3Co across the
studies is related to the choice of the electrolyte, the
temperature used during testing, and differences in
preparation methods. Thus, it is important to consider
that the stability of a catalyst can be altered by the
testing conditions or preparation method. Nevertheless,
most reports published in the last decade have sug-

gested that ordered intermetallic materials exhibit
higher stability and activity than disordered alloy ma-
terials with the same composition.

Ordered intermetallic compounds are expected to have
a high enthalpy of mixing, contributing to improved
resistance to sintering or dealloying [41]. Indeed, many
ordered intermetallic phases of the Pt-X (X = Co, Ni,
Figure 3

Distrubution of Fe on the surface of ordered intermetallic and disordered PtFe
potential measured by in- situ X-ray absorption near edge structure (XANES)
(EDS) elemental mapping analysis of ordered fct-PtFe/C (upper panel) and d
the study by Chung et al. [42].
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Fe) systems, display excellent catalytic activity relative
to disordered alloy phases. For example, ordered inter-
metallic PtFe (L10 phase) was found to exhibit lower
dissolution of Fe in comparison to disordered PtFe alloys
with the same composition [42,43]. The disordered
PtFe alloy had more Fe-rich clusters on the surface and
sub-surface of the nanoparticles, which served as a
network for Fe dissolution. The uniform mixing pattern

of the ordered intermetallic phases reduced the amount
of undercoordinated Fe sites near the surface, which
improved the stability of the Pt skin (Figure 3).

Several other studies have shown that ordered inter-
metallic structures form more stable noble-metal skins
than disordered alloys of the same composition,
improving the stability of the system and preserving
. (a) Change to the white-line intensity of the Pt L3-edge as functions of
analysis. (b) HAADF-STEM and energy-dispersive X-ray spectroscopy

isordered fcc-PtFe/C (lower panel) after ADT 10000 cycles. Adapted from
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Transformations of alloys in electrocatalysis Wang et al. 5
high catalytic activity over long periods [30,40,42,44e
46].

Doping to improve stability of alloys
Recently, it has been found that the addition of a third

element to an ordered intermetallic or disordered alloy
can stabilize the materials and improve the catalytic
activity. The incorporation of dopants such as Au or Mo
were present on the surface of the alloy and passivated
dissolution sites, leading to increased stability
[45,47,48]. For example, incorporation of Au into the
Pd6CoCu system led to a partial replacement of Co and
Cu on the surface and within the bulk of the material,
improving stability (Figure 4) [42]. Doping ordered
intermetallic PdeZn alloys with Au reduced the disso-
lution of Zn, limiting the Pd skin thickness to < 1 nm
[33]. In contrast, Pd-Zn alloys without Au incorporation
Figure 4

The composition analysis showing the uniformity of the elements of Au-Pd6C
analysis of the nanoparticle. (b) Elemental distribution of Pd, Co, Cu, and Au
corrected scanning transmission electron microscopy energy-dispersive X-ray
corrected STEM-EDX 2D elemental maps of Pd, Co, and Au. Scale bar, 5 nm
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formed 3 nm Pd shells [33]. Huang et al. [49] found that
doping Pt3Ni alloys with Mo improved the activity and
stability of ORR. The surface doped Pt3Ni displayed a
~6% decrease of specific activity after 8000 cycles,
while undoped Pt3Ni decreased by 67% from large
compositional and morphological changes. DFT calcu-
lations suggested that the Mo atoms occupy the edge or
vertex site inhibiting surface diffusion and stabilizing

the surface Pt and Ni atoms [50].

Mechanisms of dealloying
As mentioned in the preceding sections, conventional
wisdom has indicated that alloy nanomaterials can
evolve to the following (1) core-eshell particles, or (2)
bi-continuous nanoporous metals. When a binary alloy
consisting of a noble metal and non-noble metal is
placed in solution under oxidizing conditions, the non-
oCu/C nanoparticles. (a) Energy-dispersive X-ray spectroscopic (EDX)
in a single Au-Pd6CoCu/C nanoparticle extracted from an aberration-
spectroscopy (STEM-EDX) line profile. Scale bar, 2 nm. (c) Aberration-
. Adapted from the study by Wang et al. [51].

Current Opinion in Electrochemistry 2021, 30:100796

www.sciencedirect.com/science/journal/24519103
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noble metal component can be removed when the
voltage is above its corrosion potential, enriching the
material with noble metal in a process known as
dealloying. The evolution of porosity or formation of
shells depends on the interplay between the diffusion
of the noble metal atoms on the surface and the
dissolution rate of the non-noble metal component
(Figure 5). The enrichment and surface diffusion of

the noble metal cause clusters to form on the surface
Figure 5

Schematic depicting the (a) dissolution of Ag from Au-Ag alloys, (b) enrichmen
and (c), (d), (e), and (f) Evolution of ligament formation, and ligament coarse

Current Opinion in Electrochemistry 2021, 30:100796
of the material; these clusters grow as the non-noble
metal is continuously removed. If there is not
enough noble metal to fully passivate the surface, that
is, form a Pt skin or thin shell, then the less noble
metal will continue to dissolve causing nanoporosity to
occur. The rate of surface diffusivity is linked to the
ligament size that will form during dealloying. Sys-
tematic studies by Snyder et al. [28], McCue et al.

[37], and Li et al. [38] have shown that ligament size
t of surface with Au adatoms, surface diffusion of Au, and island formation,
ning. Adapted from the study by McCue et al. [37].
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Transformations of alloys in electrocatalysis Wang et al. 7
of dealloyed Ni-Pt and Ag-Au was 2 nm and 4 nm,
respectively. Nanoparticles with diameters less than
the ligament size were unable to form bi-continuous
nanoporous structures and instead formed core-shell
structures.

In contrast, nanoparticles and other morphologies (thin
films, bulk materials, and so on) with feature size

greater than the ligament size can form bi-continuous
nanoporous structures. The mechanisms of pore for-
mation in dealloyed materials have been discussed in
several other manuscripts [52e54] and reviews
[37,55], which the reader is referred to for more
comprehensive information.
Evolution of crystal structure during
corrosive electrocatalytic conditions
The crystal structure of alloys can be altered during
catalysis. For solid solution type alloys with wide solu-
bility ranges, for example, Au-Ag, changes to the
composition of the material as Ag is removed would not
lead to changes in the crystal structure. However, some
OICs can only permit limited changes to the composi-
tion before the crystal structure will change, as indicated

by thermodynamic stability from the phase diagram.
When the deviations of the composition exceed what is
thermodynamically allowed, then the OIC can restruc-
ture into another phase to reduce its Gibbs free energy.
This is usually achieved by the disordering of the lattice
or by transforming the OIC to a disordered solid solution
alloy. For example, corrosion-based disordering has been
observed on ordered intermetallic Pt3Co when the
composition of the material deviates from the stability
range of the OIC phase [17].
Figure 6

Schematic, TEM image, and cyclic voltammogram depicting the conversion o
electrochemically driven incongruent phase transformation at room temperatu
microscopy.
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Electrochemically induced incongruent
phase transformations
Recently, Sun et al. [56] has reported a new pathway for
the structural evolution of alloys during electrochemical
catalysis. In this report, it was found that ordered
intermetallic PdBi2 (I4/mmm space group) transformed
to Pd3Bi (Pmma space group) by potential cycling under
ORR conditions or inert gas (Figure 6). This result was
striking because it demonstrated that an OIC can
transform into another OIC with different composition
and crystal structure under ambient temperature and
pressure.

It was found that the formation of crystalline Pd shells
over Pd3Bi cores (orthorhombic lattice) is kinetically
hindered as the crystal structure and lattice constants
vary considerably from the ground state of elemental Pd
(FCC). After 10,000 cycles, the phase converted Pd3Bi
maintained crystallinity even though ~3% of the Bi was
lost from the material. Pd3Bi prepared by the electro-
chemically driven incongruent phase transformation
exhibited an 11� improvement relative to Pt/C catalysts,
which is among the highest mass and specific activities
measured for a Pd-based material for ORR [57]. High-

performance ORR activity was also found for Pd31Bi12, a
metastable phase similar in composition to Pd3Bi [58,59].

Factors which control the dealloying
pathway of alloy nanomaterials
Metal alloys can undergo several types of structural
transformations during corrosion by forming core-shell
nanoparticles, bicontinuous nanoporous metals, or con-

version to an intermetallic phase with a different compo-
sition and crystal structure than the starting material.
f ordered intermetallic PdBi2 to ordered intermetallic Pd3Bi through an
re. Adapted from the study by Sun et al. [56]. TEM, transmission electron
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8 Innovative Methods in electrochemistry
To understand which pathway a material will undergo, it
is important to carefully consider the properties of the
initial starting material. There are two points that must
be carefully considered: (1) the thermodynamic stability
of phases, (2) the kinetics of diffusion within the bulk
and surface.

First, bulk phase diagrams need to be assessed; if

intermetallic phases are not present on the phase dia-
gram, then conversion to intermetallic phases is un-
likely. Next, it is important to consider the
thermodynamic stability of a material in an aqueous
electrolyte as a function of potential and pH (Pourbaix
diagrams). Multiple ordered intermetallic phases, such
as Pd3Bi, PdBi, and Pd5Bi2, and elemental Pd, are
observed from the oxidative dissolution of Bi from
PdBi2, with the stability range of each phase depending
on the applied voltage (Figure 7).

Kinetic factors must also be considered because inter-
diffusion within the bulk of the material is necessary for
crystal lattice reorganization to take place. We investi-
gated the rate of the phase conversion of PdBi2 to Pd3Bi
to shed light on the importance of fast diffusivity [56].
We used density functional theory [60] to calculate the
minimum diffusion activation energy of Bi atoms in
PdBi2, assuming a vacancy-mediated diffusion mecha-
nism. The lowest activation barrier for Bi diffusion in
PdBi2 is 42 kJ/mol (0.44 eV), corresponding to a two-
dimensional migration pathway. We found that diffu-

sion of Bi through PdBi2 is likely facilitated by high
vacancy concentrations because the calculated vacancy
Figure 7

Electrochemical stability of PdBi2. (a) The calculated Pourbaix diagram (b) and
the electrochemical stability window for water, with the lower line correspondi
potential for the H2O/O2. Adapted from the study by Sun et al. [56]. RHE, rev
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formation energy for Bi along the diffusion path is only
0.17 eV relative to bulk Bi. We estimated that at room
temperature, the root mean square displacement of Bi in
PdBi2 reaches a typical particle width (~20 nm) in well
less than 1 s. This result indicated that Bi diffusion in
PdBi2 is facile, enabling the rapid removal of Bi from the
material. The low melting point of PdBi2 suggests that it
has low vacancy formation energies, which facilitates the

removal of the Bi from the surface and promotes inter-
diffusion of the constituent atoms [61,62].

The low melting point of the starting material is an
important indicator for bulk restructuring to occur since
the atoms with high atomic diffusivity can reorganize
into another state. In contrast, materials with high
melting points (e.g. Pt-Co, Pt-Ni, Pt-Fe, and so on)
cannot undergo conversion to another OIC phase since
bulk diffusion is too low. It is possible that other low
melting point OIC materials besides the Pd-Bi system

can undergo lattice reorganization during dealloying;
this is currently an ongoing effort of exploration in the
Hall laboratory.

Future outlook
This review covers recent progress on the preparation
and stability of alloy nanoparticles under electro-
chemical conditions. During electrochemical catalysis,
the non-noble element can corrode, resulting in struc-
tural and morphological changes to the catalyst. The
formation of core-shell structures or bi-continuous
nanoporous materials is commonly observed. However,
it was recently found by Sun et al. [56] that low-
modified Pourbaix diagram excluding the oxide. The dashed lines indicate
ng to the RHE and the upper line corresponding to the thermodynamic
ersible hydrogen electrode.
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Transformations of alloys in electrocatalysis Wang et al. 9
meltingepoint OICs can undergo bulk reconstructions
to another OIC with a different composition and crystal
structure in voltage ranges relevant to electrochemical
catalysis. It is important for researchers to carefully
evaluate the crystal structure and composition of cata-
lysts after stability testing to identify if electrochemi-
cally induced phase transformations have occurred;
particularly if intermetallic materials with low melting

points are being used as the catalyst. While electro-
chemically induced-phase transformations were origi-
nally used as a synthetic tool for preparing OICs at room
temperature, this knowledge can be used to understand
the stability of materials under electrocatalytic
conditions.
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