
Transparent Checkpointing for OpenGL Applications on GPUs

David Hou
MemVerge, Inc.

Milpitas, USA

david.hou@memverge.com

Jun Gan
MemVerge, Inc.

Milpitas, USA

jun.gan@memverge.com

Yue Li
MemVerge, Inc.

Milpitas, USA

yue.li@memverge.com

Younes El Idrissi Yazami
Northeastern University

Boston, USA

elidrissiyazami.y@northeastern.edu

Twinkle Jain
Northeastern University

Boston, USA

jain.t@northeastern.edu

Abstract—This work presents transparent checkpointing of OpenGL

applications, refining the split-process technique [1] for application in

GPU-based 3D graphics. The split-process technique was earlier applied

to checkpointing MPI and CUDA programs, enabling reinitialization

of driver libraries. The presented design targets practical, checkpoint-

package agnostic checkpointing of OpenGL applications. An early proto-

type is demonstrated on Autodesk Maya. Maya is a complex proprietary

media-creation software suite used with large-scale rendering hardware

for CGI (Computer-Generated Animation). Transparent checkpointing of

Maya provides critically-needed fault tolerance, since Maya is prone to

crash when artists use some of its bleeding-edge components. Artists then

lose hours of work in re-creating their complex environment.

Keywords—Checkpoint-Restart, OpenGL, GPU, DMTCP, CRIU, Maya

I. INTRODUCTION

In complex media-creation programs such as Autodesk Maya [2],

artists are faced with a crucial dilemma. They can stay with the core

software and plugins, which are relatively robust. But eventually, for

superior work, they are forced to use some third-party plugins that

can be prone to crash during normal operation.

A crash causes artists to lose hours of work and forces them to

wait multiple minutes to reload their project and continue working.

These interruptions put artists out of their flow at the most inopportune

times, and result in significant loss of productivity. Transparent

checkpoint/restart (C/R) technology is a promising tool for dealing

with these occurrences: by taking periodic snapshots of the editor

program in the background, the artist will be able to restore from a

recent checkpoint and quickly resume working.

Many media creation programs, including Maya, make extensive

use of GPUs to render 3D graphics using OpenGL [3] and to perform

heavier computations using CUDA and OpenCL. This typically

occurs in the context of rendering farms (analogous to traditional

HPC clusters) for CGI (Computer-Generated Animation). We will be

focusing on OpenGL in this paper, but the techniques described are

reasonably general and can be applied to any subsystem of this form.

These APIs are usually implemented by a vendor-specific library,

which talks to the hardware through various means.

The OpenGL API is structured as a state machine. The consumer

(of the API) can allocate and load various resources, such as shaders

and textures, and operate on the resources they have created. In

handling these operations, the OpenGL drivers will load some state

into the GPU device. We must maintain this state across checkpoint

and restart. Unfortunately, current driver implementations do not

provide a convenient way to do this directly. To make matters worse,

driver-device communications are often closed-source, opaque, and

unstable.

Luckily, the OpenGL API is well-defined and provides a clean,

deterministic interface. We can leverage this to capture a program’s

entire OpenGL state by logging all OpenGL calls made by the

program. This provides a promising idea to support C/R of OpenGL

programs:

• While the user program is running: intercept and log all

OpenGL API calls to encapsulate the state of the OpenGL

state machine.

• When checkpointing: drop all resources (VMAs, FDs, etc)

related to OpenGL drivers.

• On restore: recreate OpenGL drivers, and replay the logs to

restore driver state.

We are able to maintain a representation of the OpenGL drivers’

state and reset the drivers at will. One could say that we are

checkpointing the OpenGL drivers’ state separately from the rest of

the program.

We present two implementations of our system, one based on

CRIU and the other based on DMTCP. These two implementations

share all core functionalities, demonstrating the checkpoint-package

agnostic nature of our solution. These two implementations differ in

their interaction with their respective checkpointing packages in order

to take advantage of their different architectural properties.

There are two major problems to consider in order to enable

checkpoint-restart an OpenGL application: a) reinitializing a fresh

OpenGL library on restart from a checkpoint image (Section II);

and b) restoring the earlier state of that reinitialized OpenGL library

(Section III). Following that discussion, an experimental evaluation

for the Autodesk Maya suite (Section IV) is presented. Sections III

and IV are based primarily on the implementation using CRIU and

VNC/VirtualGL. Section V presents a second implementation using

DMTCP with native handling of X instead of VNC, but only for the

GLX demo glxgears. Lastly, related work (Section VI) is presented.

II. SPLIT PROCESSES FOR OPENGL AND ITS KERNEL DRIVERS

Naively, one would like to simply save the user-space memory

of the OpenGL library and restore it on restart. This cannot work,

since on restart, the kernel drivers will be in a state inconsistent with

that of OpenGL. And for natural reasons, there is no library call in

OpenGL to re-initialize the library and kernel drivers to a fresh state.

So, the preferred solution is to load a fresh copy of OpenGL during

restart. Any constructor functions in OpenGL will use knowledge of

internals to reset the kernel drivers at that time.

The approach taken is that of a split process. Jain et al. [4] refined

the split process concept of MANA for MPI [1] to apply to GPUs and

CUDA. That package, CRAC for CUDA [4], splits the memory of a

process into two regions: application code and system libraries (e.g.,

network, MPI, CUDA, etc.). All memory regions are tagged as upper

half (application code) or lower half (system libraries). At the time

1

ar
X

iv
:2

1
0
3
.0

4
9
1
6
v
2

[c

s.
D

C
]

 1
 A

u
g
 2

0
2
1

of checkpoint, only the upper half memory regions are saved. At the

time of restart, a trivial lower-half application (with system libraries)

is launched, and the trivial application then restores the upper half

memory that was saved earlier.

The split-process approach performs better than the well-known

use of proxy or helper processes (e.g., see Kazemi et al. [5], [6]).

In the proxy approach, any OpenGL calls that use pointers require

copying to the proxy process the buffer referenced by the pointer.

With split processes, a pointer is passed directly between upper

and lower half, since they share the same memory space. Further

efficiencies apply when managing OpenGL resource ids.

While the OpenGL library is thread-safe, managing threads is

non-trivial. If the upper-half application has two threads, then there

must be two corresponding threads in the lower half. Any use of

thread-local variables by the OpenGL library will be sensitive to this.

Finally, the split process approach is C/R-package agnostic. All

OpenGL resource creation and deletion operations by the driver-half

libraries are captured and tracked independently of the C/R package.

Further, the management of upper-/lower-halves is independent of the

C/R package. To demonstrate this, the work has been implemented

twice (using the CRIU [7] and DMTCP [8] C/R packages).

III. LOG-REPLAY TO RESTORE OPENGL STATE

Section II described how to reinitialize the OpenGL library and

kernel drivers on restart. Broadly, there are two important libraries,

OpenGL [9] and GLX [10], which are responsible, respectively, for:

(i) state machines for rendering; and (ii) managing their interaction

with X-Windows. We are interested in providing the user program this

interface in a way that is consistent across unload/reload operations.

To restore OpenGL state correctly during log-replay, we imple-

ment virtualization of graphics IDs. The graphic IDs are not assigned

deterministically, and can change between checkpoint and restart.

For example, glCreateShader(. . .) returns a value with type

GLuint, which is an ID pointing to a graphic shader object. We

may log the ID saved in the user code, but on replay, we may receive

a different ID. The solution is to maintain a translation table between

a virtual ID and the real ID returned by the current OpenGL library.

The virtual ID is saved in the user code. Any OpenGL call using

a virtual ID is automatically translated to the real ID of the current

OpenGL. On restart, the virtual-to-real table is updated to use the real

ID returned by the newly loaded OpenGL library.

GLX is primarily responsible for setting up an X11 Window that

is responsive to X11 events. The OpenGL library creates the graphics

image within a frame buffer provided by X11. We are able to save the

entire state of these libraries by a log-and-replay system for capturing

calls made to the two libraries. In addition, we need to handle the

connection to the X server, since user program will hold coordinated

state (e.g., created windows) with the X server. The standard method

for dealing with this for non-OpenGL programs is to checkpoint the X

server along with the user program, so that both the client and server

state are captured together [7], [8]. However, these X servers generally

do not support the GLX extension, so we cannot normally use GPU-

backed OpenGL rendering with them. Luckily, there exists an off-the-

shelf solution to this, VirtualGL. VirtualGL separates rendering from

the X server implementation one by using an alternative X server

to do the rendering and passing the resultant bitmap images to the

desired X server. Therefore, we just need to shut down the alternative

X server connection before checkpoint and restore it on restart along

with the OpenGL drivers.

IV. EXPERIMENTAL EVALUATION

Our prototype has been applied to Autodesk Maya 2020, a

complex computer graphics design software widely deployed in the

movie and entertainment industry. One of our goals is to demonstrate

the fast restart capability that our approach brings to Maya for

better crash-recovery. All the tests ran on a 2-socket compute server

running CentOS 7.6 with Intel Xeon Gold 5220 CPU (2.2 GHz,

18 cores/socket), 192 GB of RAM, two 1.6 TB NVMe SSDs and one

Nvidia RTX 4000 graphics card. We use CRIU as the C/R package,

a VNC session to support checkpointing of the X windows, and

VirtualGL is used to support GPU-accelerated OpenGL with VNC.

We use Maya to first load a moderately-sized model from the

Disney’s Moana Island Scene dataset [11]. We measure the loading

time for both baseline (without our system), and using log-replay for

OpenGL calls (with our system). In our system, we checkpoint (using

the CRIU variant of our software), kill the Maya process, and restart.

We show that our checkpoint-restart time is actually shorter than the

time for the baseline to: relaunch Maya, wait for the initialization to

finish and reload the same model from storage.

Figure 1 shows Autodesk Maya loaded with the model

isBayCedarA1.obj (121 MB).

Fig. 1. Maya after loading a model from the Moana Island Scene dataset.

For the baseline, launching Maya and this model takes 60 s. We

are able to restart Maya at this state from a checkpoint image on disk

in just 4 s. Figure 2 shows baseline vs. C/R for various models from

the dataset, and shows a clear advantage of our approach on restart

speed.

The library logging, use of VNC and VirtualGL [12] during

the normal operation of the OpenGL program necessarily incur

performance overhead. Preliminary results show up to 10% increase

on cold start time (Figure 2) and a noticeable viewport frames-per-

second (FPS) penalty when interacting with the model. However, we

are still able to achieve a very usable FPS on models that were tested.

We plan to improve upon this in the future by reducing the number

of extra transport layers introduced by the facilities above, and by

introducing log pruning [5].

2

	I Introduction
	II Split processes for OpenGL and its kernel drivers
	III Log-replay to restore OpenGL state
	IV Experimental Evaluation
	V Second Implementation using DMTCP
	VI Related Work
	References

