=T - B I = & I R

Intelligent Sight and Sound:
A Chronic Cancer Pain Dataset

Catherine Ordun "2, Alexandra N. Cha !, Edward Raff -2,
Byron Gaskin ', Alex Hanson !, Mason Rule 3, Sanjay Purushotham 2, James L. Gulley
1 Booz Allen Hamilton
ZUniversity of Maryland, Baltimore County
3Center for Cancer Research, National Cancer Institute, National Institutes of Health

3

Abstract

Cancer patients experience high rates of chronic pain throughout the treatment
process. Assessing pain for this patient population is a vital component of psycho-
logical and functional well-being, as it can cause a rapid deterioration of quality
of life. Existing work in facial pain detection often have deficiencies in labeling
or methodology that prevent them from being clinically relevant. This paper in-
troduces the first chronic cancer pain dataset, collected as part of the Intelligent
Sight and Sound (ISS) clinical trial, guided by clinicians to help ensure that model
findings yield clinically relevant results. The data collected to date consists of 29
patients, 509 smartphone videos, 189,999 frames, and self-reported affective and
activity pain scores adopted from the Brief Pain Inventory (BPI). Using static im-
ages and multi-modal data to predict self-reported pain levels, early models show
significant gaps between current methods available to predict pain today, with room
for improvement. Due to the especially sensitive nature of the inherent Personally
Identifiable Information (PII) of facial images, the dataset will be released under
the guidance and control of the National Institutes of Health (NTH).

1 Introduction

The prevalence of chronic pain in cancer patients is high, with an estimated prevalence of 59% in
those undergoing anticancer treatment, 64% of whom have advanced stage disease and 33% who
continue to experience pain following completion of curative treatment [1]. Despite advances in pain
management, prompt assessment and management of cancer pain remains a challenge and a large
proportion of patients continue to experience moderate to severe pain.

Sub-optimal pain management can block patient recovery and improvement, making the already
difficult cancer experience, worse, for both patient and family [2, 3]. Manual clinical assessment
requires accounting for a landscape of complex emotions and beliefs that clinicians must regularly
take into account when assessing cancer patient pain - physical, psychological, social, and spiritual
elements combined with severe distress for future outlook [2, 4]. For example, patients undergoing
chemotherapy are more likely to believe that “good patients” do not complain about pain which they
believe can be distracting to clinicians and become non-communicative [2]. Further, few patients are
actually screened for pain at each clinical visit [3], and pain is under-reported in patient populations
such as nursing home patients [3]. Due to the variety of complex conditions affecting cancer pain,
experts recommend repeated, regular pain assessment, which can be difficult and impractical for
manual assessment by clinicians.

Currently, no facial pain datasets exists for chronic cancer pain and little research overall has been
conducted into machine learning for the identification and evaluation of chronic pain. For example, in
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a review by [4], only seven out of 52 machine learning papers evaluated pain in a non-acute context
such as chronic fatigue, fibromyalgia, chronic pancreatitis, migraines, and genetic pain. Existing
facial pain research focuses on acute, musculoskeletal pain such as chronic lower back pain [5]
and shoulder pain [6, 7] or simulated pain induced by heat or electrical stimuli [8, 9] where painful
expressions are obvious through grimaces and eye raises. Such datasets are manually labeled by
trained observers with Facial Action Coding Units [10], making the labeling procedure prohibitively
expensive and impractical for clinical use. Further, external pain labels may be biased towards an
outside observer’s impression of a patient’s pain, not the patient themselves. Research also shows that
typical pain facial expressions that correlate with physical pain are less frequently observed among
chronic pain cancer patients who exhibit subdued and placid expressions [11].

Given the limitations of existing facial expression pain data, the U.S. National Institutes of Health
(NIH) National Cancer Institute (NCI) initiated “A Feasibility Study Investigating the Use of Machine
Learning to Analyze Facial Imaging, Voice and Spoken Language for the Capture and Classification
of Cancer Pain" [12], or "Intelligent Sight and Sound" (ISS). Details of the protocol are available
publicly at https://clinicaltrials.gov/ct2/show/NCT04442425. This is an observational,
non-interventional clinical study that aims to address the following problem statement [12, 13]: “To
determine if a new observational based pain prediction algorithm can be produced that is accurate to
standard, patient-reported pain measures and is generalizable for a diverse set of individuals, across
sexes and skin types.” The study has two objectives: 1) investigate facial image data, and 2) analyze
text and audio, as modalities for predicting self-reported chronic cancer pain.

The study is ongoing and aims to recruit 112 patients. We report the initial dataset, which is less
than a quarter of the final data consisting of 29 patients. Data include multimodal extracts from
video submitted in a spontaneous, home setting, and in a few cases of in-clinic capture at the NIH. It
includes visual spectrum (RGB) video frames, facial images resulting from face detection models,
facial landmarks from Active Appearance Models (AAMs) [14, 15], audio files, Mel spectrograms,
audio features, and self-reported pain scores adopted from the Brief Pain Inventory (BPI) [16-18].We
will present details of the study design, data distribution, and storage procedures to ensure patient
privacy. We also provide initial baseline results for pain classification using simple, traditional,
machine learning models and neural networks.

2 Related Works

Automatically detecting pain from facial expressions has been extensively published following
methods of facial emotion recognition (FER). The majority of these works have focused on acute or
musculoskeletal physical pain [4, 19-27]. Primary pain datasets based upon facial imaging include
UNBC-McMaster Shoulder Pain Expression Archive [6, 7], the Biopotential and Video Heat Pain
(BioVid) Database using controlled, simulated heat to induce pain [8], Multimodal Intensity Pain
(MIntPAIN) database using pain resulting from electrical stimulation [9], the Experimentally Induced
Thermal and Electrical (X-ITE) Pain Database [28, 29], and the EmoPain for chronic, musculoskeletal
pain [30]. These datasets traditionally contain video sequences since video enables continuous clinical
monitoring of pain response [18]. These datasets also contain extensive offline annotations of pain
ratings by external observers, and sometimes include additional modalities such as thermal and depth
data. Additional video facial expression pain datasets exist that focus on different patient populations,
but primarily focus on physical pain. These include multimodal behavioral and physiological data for
neonatal pain [31, 32] and the University of Regina (UofR) Pain in Severe Dementia dataset [33, 34].
A summary of the pain datasets is provided in Table 1.

Table 1: Related Pain Datasets.

Dataset Stimulus Subjects Frames Sequences Seq. Duration  Modality
UNBC-McMaster [6, 7] Shoulder pain 25 48,398 200 10 - 30 sec., per  Unimodal
BioVid [8] Heat stimulus 90 8700 87 5.5 sec. Multimoda
MIntPAIN [9] Electronic stimulus 20 187,939 9366 1- 10 sec. Multimodal
EmoPain [30] Chronic lower back pain 22 44,820 35 3 sec. Multimodal
Neonatal Pain, USF [32, 35, 36] Heel lancing 31 3026 200 9 sec. Multimodal
UofR [33] Physical, painful movements 102 162,629 95 Unknown Multimodal
X-ITE [28, 29, 37] Heat and electronic stimuli 134 26,454 N/A 7 sec. Multimodal
ISS (Dec. 2020 - Jul. 2021) Chronic cancer pain 29 189,999 509 3.52-13559 Multimodal
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3 ISS Dataset

The ISS protocol is a single site study with a goal of enrolling a total of 112 patients (90 adult and
22 pediatric) who are actively receiving treatment for advanced malignancies and/or tumors at the
NIH Clinical Center or treated with standard of care in the community. The study is overseen by
the NIH Institutional Review Board (IRB), and the protocol was also reviewed by NCI’s Center for
Cancer Research (CCR) Scientific Review Committee. New patient enrollment was paused during
the Covid-19 pandemic due to initially unknown risks, but has resumed with vaccine availability and
clinician guidance.

3.1 Sample and Study Design

To obtain as representative a sample as possible within the constraints of a feasibility study with an
overall small sample size, the sample consists of twelve cohort groups of seven patients each. Patients
represent a breadth of age, sex, skin tone (as a proxy for ethnicity), and pain experience. The current
ISS dataset consists of 29 adult patients ages 18 years and over who have consented to participate in
the study; no pediatric patients (ages 12-17) have been enrolled yet.

The goal is to evenly Table 2: ISS: Twelve Patient Cohorts.
split the sample by
i) sex (Male or Fe- Number Pain Target Skin Types Sex Pain Class Goal Current

male), ii) Fitzpatrick 1A 0 I-T0 Male  None 7 7
Skin Type [38], a 1B 0 I-110 Female None 7 2
self-reported, visual :g g g-xi xﬂnlleal :ﬂﬂe ; g
H - c one

"lleth.of? of skin :lone 2A 13 1-11 Male  Low 71
classification, where g 13 -1 Female Low 7 1
patients are asked to 2C 13 IV - VI Male Low 7 3
type themselves into 2D 1-3 IV -VI Female Low 7 0
one of two groups: 3A 4-6 I-1II Male Moderate 7 2
TR : : 3B 4-6 [-1II Female Moderate 7 2
light lsill(lm mf}gs l‘(n 3C 46 IV -VI Male  Moderate 7 0
types 1-1Il or “dar 3D 46 IV-VI Female Moderate 7 0
skin tones in types  4A 7-10 I-10 Male  Severe 7 1
IV-VI1, and iii) a self- 4B 7-10 -1 Female Severe 7 2
repor[ed “worst" pain 4C 7-10 IV-VI Male Severe 7 2
score reported onao0 4D 7-10 IV-VI Female Severe 7 3

30

— 10 Numerical Rating 112
Scale (NRS) [39]. The

self-reported pain score is referred to as the “Pain Target" and are grouped into levels 0, 1-3, 4-6, and
7-10. It represents the worst pain the patient has experienced in the past thirty days prior to the start
of the study. It is fixed throughout the patient’s enrollment and does not change. As a result, there is
no variance for the “Pain Target" score. The “Pain Target" is the classification target which is later
used for our baseline tasks.

The twelve different cohorts are

shown in Table 2, along with the goal Taple 3: ISS Study Design Overview. * Note that due to the global
of seven patients to be enrolled per  Covid-19 pandemic, the majority of patient videos were submitted
cohort, and the current distribution in the remote setting.

of patients enrolled. Note that data
from one patient (0009) in Cohort 2B~ StudyDuration 3 months

was unusable. As a result our analy- #Remote Submission  3/weck; Max. 1 /day
sis reports across 29 patients. Clin- #In-Clinic Submissions 1 -4 /week*

ical inclusion criteria include indi- Survey Tool Smartphone (iPhone or Android) or computer (camera/mic. )
viduals with a diagnosis of a cancer Time/ Submission Average total time: 3 min

or tumor who are under active treat- Time / Question Q 1-9: 1 min, Q10: 15 sec, Q11: 15 sec. - 3 min.

ment for this condition at NIH/NCI. ~ Sel-Reported Pain Q 1-9: Questions with Likert-scale responses

Patients must also have access to a  Yeice/Video: Prompt Q10: Read and record one of 3 randomized nursery rhymes.
smart phone or computer with cam- Voice/Video: Narrative  Q11: Record respond to "Describe how you feel right now."”
era, microphone, and internet access. ~Compensation: Min. 3/ week, they eamn $15.

Several clinical exclusion criteria ap-

ply. Excluded are patients with active central nervous system (CNS) metastases, with the exception
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of those who have completed curative intent radiotherapy or surgery and have been asymptomatic for
three months prior to consent, patients with Parkinson’s disease, and any psychiatric condition that
would prohibit the understanding or rendering of informed consent. Additional exclusion criteria
those who are non-English speaking or have known current alcohol or drug abuse. Each patient is
enrolled for a three-month period and are financially incentivized to complete three check-ins per
week remotely and up to four in-clinic check-ins. The study design is summarized in Table 3. Patients
engage using an electronic questionnaire and through video recording using a custom developed
mobile or web application, using an Android, iPhone, or computer with camera and microphone.

3.2 Patient Protocol
Figure 1 provides a series of screenshots showing the patient at-home or in-clinic check-in using

the ISS application. For each approximately 3-minute check-in, patients respond to a nine element
questionnaire based on the Brief Pain Inventory (BPI, licensed from MD Anderson) [16-18] and two

prompts to record videos of themselves.

Questions about

! Record a Video Record a Video
pain 1. Contar posat head in The (Slurry) 1. Center pour head in the (blury)
viewer bae Below. wiewer bo below
- 2 Click the grasn tutinn. 2 Click the grewn butos.
==
= . Fead the passage slowd: 3. Rusand sloud i your own wands
1 ] Hew do yeu few' ripht new
& ek red Bt
5 Click "Subbmit
. . Chck tha e hutten
- o * 5. Chck Bubm’ =
} - Home or Clinic Self-Reported Recording -
Patient Login Setting Pain Scores Instructions Record Prompt Record Narrative
Questions 1-9 Question 10 Question 11

Figure 1: Submitting a Video through the ISS Mobile Application.

3.2.1 Questions 1 - 9: Self-Reported Pain Scores

In addition to the self-reported “Pain Target" which was assigned to each patient upon enrollment
shown in Table 2, there are nine additional self-reported pain scores. We capture these self-reported
pain scores based on the cancer pain literature which indicates that cancer patients experience complex
emotions and beliefs that can influence their perception of pain and as a result, clinical treatment
[2, 3]. These nine pain scores are submitted at the time of video submission and change at each
submission. They are distinct and unrelated to the “Pain Target" which is used for the baseline
classification tasks. There is no formula that relates the nine self-reported scores among themselves
or to the “Pain Target". In the below, Question 1 captures current pain intensity scored on an 11-point
Likert Scale (0 No Pain - 10 Worst Possible Pain) followed by Question 2 which, when answered
affirmatively, indicates the presence of chronic pain. Questions 3-9 utilize an 11-point Likert Scale (0
Does not Interfere - 10 Completely Interferes) to measure the interference of pain in an individual’s
activity (3, 5, 6) and an individual’s affect or mood (4, 7, 8, 9).

How do you rate your pain right now? (0 No Pain — 10 Worst Possible Pain on Likert-scale).

Do you have pain, related to your cancer, that has lasted for more than 3 months? (Yes/No)

How is your pain interfering with your General Activity?

How is your pain interfering with your Mood?

How is your pain interfering with your Walking Ability?

How is your pain interfering with your Normal Work (both work outside the home and housework)?
How is your pain interfering with your Relationships with other people?

How is your pain interfering with your Sleep?

How is your pain interfering with your Enjoyment of life?

W N R WD =
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3.2.2 Questions 10 and 11: Prompt and Narrative

Following the questionnaire, Question 10 is a prompt to record a video where the patient reads a 10-
15 second passage of text at a grade 3 reading level selected at random from three different passages.
The use of this sort of prompt is common practice in mood induction or conditioning trials where a
neutral, non-emotion inducing prompt is used as a control versus a potentially, emotionally charged
response related to the experimental condition [40—42]. The neutral passage options are:

+ “Sarah stepped down from the wagon, a cloth bag in her hand. She reached up and took off her
yellow bonnet, smoothing back her brown hair into a bun. She was plain and tall.” From Sarah Plain
and Tall by Patricia MacLachlan [43]

* “And then the dog came running around the corner. He was a big dog. And ugly. And he looked
like he was having a real good time. His tongue was hanging out and he was wagging his tail.” From
Because of Winn Dixie by Kate DiCamillo [44]

* “You have brains in your head. You have feet in your shoes. You can steer yourself any direction
you choose. You’re on your own. And you know what you know. And YOU are the one who’ll
decide where to go.” From Oh the Places You Will Go by Dr. Seuss [45]

Finally, in Question 11, the patient records a video responding to the prompt "Please describe how
you feel right now.” Narratives include discussion of medical conditions, mood, daily activities,
current beliefs and attitudes about their pain. The allowable video length can range from 15 seconds
to 3 minutes, with recording instructions shown prior to each video prompt. For “at-home” check-ins,
patients are instructed to complete the submission alone, in a quiet and brightly lit room, preferably
with a white wall or background. In addition, patients are asked not to reveal personal information
such as their name or address. In Figure 1, the application screens for Questions 10 and 11 include a
live video image to help the patient keep their face centered in the frame, but the application blurs the
video. The blur effect is to prevent the patient from manipulating their facial expression and minimize
self-conscious alteration of their appearance, allowing them to focus on their responses.

3.3 Data Description

A high level summary of the ISS dataset is provided in Table 4. The ISS dataset is comprised of
29 patients submitting videos in a spontaneous, non-posed, home setting through a smartphone or
computer. Patients are adults over the age of 18 y.o. and consist of the following demographics:
20 Male, 9 Female, 17 Skin Type I-II1, 12 Skin Type IV - V1. All patients were enrolled between
December 2020 and July 2021. There are 189,999 total video frames. After facial detection, we
extracted 173,011 facial images. After landmark detection on the facial images, the dataset was
reduced by 2.86% to 168,063 facial images with landmarks, since landmarks could not be detected for
some faces. We show the ratio of data imbalance across four pain levels using the total frames in Table
4 where the "None" label is the majority class. The dataset also contains self-reported pain scores from
Questions 1 - 9, described in detail in the Study Design section, along with sex and skin type labels
assigned upon enrollment. Additional descriptive analysis is provided in Supplementary Materials.

Table 4: ISS Data Summary.

155 Data Summary Ratios of Total Frames by Pain Levels
Total Patients - 20 M, 9F, 17 Skin Type I-II1, 12 Skin Type IV-VI 4 Pain Levels Frames Ratic No. Patients | 2 Pain Levels Frames Ratio  No. Patients
Total Videos 509 Avg Videos per Patient 17.55 None 100984  1L.0O 13 No Pain 100984  1L.0OO 13
Total Frames 189 999 Avg Frames per Patient 6551 Low 11784 857 4 Pain 89015 LI3 16
Total Duration 3l6min. | Avg Duration per Patient 655 sac. Mod. 25999 338 4
Avg Duration per Video 37.32 sec. | Range of Duration per Video  3.52- 13579 sec. | Severe 51132 La7 &

A notional depiction of ISS data types is shown in Figure 3 to provide context for the data types.
Due to the sensitivity of Personal Identifiable Information (PII) in the clinical study protocol, we are
unable to display actual facial images from the dataset at this time.

3.3.1 Data Extraction

We use the patient narrative (Question 11) video files (.mp4) and extract frames at 10 frames-per-
second. We decide to use the narrative versus the prompt since it may contain greater signals of pain
and emotion, compared to the neutral baseline recording. An audio .wav file of the patient narrative
is simultaneously extracted using the ffmpeg library. We use the PyTorch FaceNet library that
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Figure 2: Distribution of ISS Data. Histograms for the total videos, frames, seconds, and average seconds per
video, for the ISS dataset are in the four left-most plots. The four plots on the right illustrate the distribution of
patients (y axis) by the four pain levels, when combined into two pain levels, by sex, and by skin type.
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Frames are extracted from each patient video at 10 fps. Face detections are cropped
at 160 x 160. Landmarks are detected on faces, each an array of 468 x 3.

DataType6- Audio Extracts: Mel § Ak e F.

Data Type5- o 1 2 E] 4 ] 3 4
Patientarative Audio. 205462 P13 16wrs Tqa115aa a0 ioea Paisresar] ... | asesneed asmssrd o sereod

Audio is extracted from video. A Mel Spectrogram is generated for each audio file.
25 audio features are calculated for the audio file.

Figure 3: ISS Data Types. Facial images shown are not actual patients from the ISS dataset due to privacy
restrictions. The ISS Dataset currently consists of six types of data: 1) Nine Self-Reported Pain Scores, 2) Labels
for Sex, Skin Type, and Timeframe, 3) Patient Narrative Video, 4) Video Extracts: Frames, Faces, Landmarks,
and 5) Patient Audio, and 6) Audio Extracts: Mel Spectrogram, Audio Features.

implements a fast and CUDA-enabled version of the Multi-task Cascaded Convolutional Networks
(MTCNN) algorithm [46] using an InceptionResnetV 1 model pre-trained on VGGFace?2 for face
detection and cropping faces from frames. All patient faces were recorded in a frontally aligned
position so no realignment was implemented. Similar to [26], we extract features using AAMs.
Specifically, we use the Google MediaPipe [47] Face Mesh AAM model based on 3D Morphable
Models [15] to detect facial landmarks where each face returns an array of 468 points for three
coordinates. From the audio .wav file, we use the Librosa [48] library to generate a Mel Spectrogram
(n_fft=2048, hop_length=512, n_mels=128), and apply signal processing to capture audio features
about the .wav file to include Mel-frequency cepstral coefficients (MFCCs), chromogram, spectral
centroid, spectral bandwidth, roll-off frequency, and zero crossing rate, leading to 25 audio features.
We further break up the original video into 4-second chunks leading to 40 frames per video chunk,
extracting its respective .wav file, spectrogram, and audio features.

3.3.2 No External Labels

In contrast to existing acute pain datasets [7-9], the ISS dataset lacks external offline labeling
traditionally completed using the Facial Action Coding System (FACS) [10]. Per the ISS problem
statement, the goal is to predict patient (self)-reported pain, as opposed to observations made by non-
patients via offline pain coders. There are three reasons for not externally encoding ISS video frames
using FACS. First, researchers agree that FACS is expensive due to the need for a trained coder to
annotate each video frame, making the process time-consuming and clinically infeasible [18, 49].
Second, ethicists and psychologists argue that there is limited evidence that facial expressions
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are reliably and specifically mapped to emotion production [50, 51]. Emotion production is not
necessarily tied to a single set of facial expressions, but relies on the context of the situation and
human culture [50]. Third, cancer patients with chronic pain may not display the typical set of facial
action units (AUs) commonly associated with acute pain. For example [11] collected video data
from 43 outpatient lung cancer patients obtained in a spontaneous home setting [11]. They found that
the cancer patients were more subdued in expression, and displayed fewer AUs such as grimaces or
clenched teeth, commonly found in facial pain images. As a result, AU labels associated with pain
such as brow lowering (AU4), orbital tightening (AU6, AU7), levator contraction (AU9, AU10), and
eye closure (AU43) may not be applicable to chronic cancer facial pain detection [52]. However, when
the ISS dataset is released, there are no prohibitions on researchers attempting to annotate using FACS.

3.4 Data Storage and Access

A secure cloud-based environment receives mobile and web-based submissions of patients’ video,
audio, and survey (nine self-reported pain scores) data. No PII such as names or date of birth is stored,
with the exception of face, voice, and sex information. The environment is AWS GovCloud FedRAMP
Moderate, with Federal Information Security Management Act (FISMA) moderate Authority-to-
Operate (ATO) credentials.

The ISS dataset consists of cancer patients discussing their medical conditions. The very nature of the
images and videos make the data Protected Health Information (PHI) due to the NIH/NCI not being
classified as a "covered entity". Extreme care must be exercised to ensure patient privacy and rights
are not violated. As a result, we plan to ensure proper patient protections by placing the collected
data in restricted access repositories under the stewardship of the NIH. Members of the scientific
community will be able to request access to the data and code which may be granted on a per-case
basis. This requirement is necessary to ensure legal requirements are met, avoid public spillage of
PII data, and ensure patient trust that their data is used within the scope of the intended scientific
use. In return researchers receive access to a dataset with numerous modalities and potential clinical
relevance of results.

4 Baselines

We conduct seven baseline experiments for a classification task to predict each patient’s self-reported
“Pain Target" level assigned at the start of their enrollment shown in Table 2. These levels are fixed
upon enrollment for cohort assignment and remain unchanged throughout the study. As a result, one
patient represents a single pain level throughout the study. All experiments are static models, which
return predictions on a frame-by-frame level. Given how we are in the initial phase of the ISS study,
we train models using facial images, landmarks, and the additional nine self-reported pain scores
for emotion and activity. However, we do provide baseline results on 4-second chunks of audio via
spectrograms and audio features. These are meant to be representative of common approaches to
similar work, and establish the careful curation results in a task more difficult than prior literature
with simpler labeling or collection. More details on all results are in the Supplementary Materials.

Training Details All experiments are trained using 10-fold cross validation where three test patients
are withheld in the test set for nine splits and two patients set aside for the tenth split. There is no
overlap between training and test sets for each split. Please refer to the Supplementary Materials
Appendix Section E 1. Table 10 that shows the “10-fold-CV details - Test Patients per Split." For
neural networks in Experiments 1 and 3 - 7, we use a batch size of 16, Adam optimizer with le-4
learning rate, and cross entropy as the loss function, training for 10 epochs, for all experiments. The
batch size of 16 was selected empirically based on cross validation accuracy, after running several
experiments varying batch size from 4, 8, 16, 32, and 64. We selected Adam optimizer since it has
been used in recent facial pain detection studies such as [24, 53]. We fine-tune ResNet50 as the
convolutional neural network (CNN) backbone for all multimodal experiments, which is pretrained
on ImageNet. We use PyTorch for model training and train on four NVIDIA Tesla T4 GPUs.
Experiments 2 and 3 are trained using the Scikit-Learn library for the Random Forest Classifier, using
100 estimators, gini criterion, min_samples_split=2, and min_samples_leaf=1.

Experiment 1: Pain Prediction using Static Face Images The first set of experiments only uses
static, facial images. We fine-tune ResNet-50 [54] pretrained on ImageNet [55] to predict four and
two levels of pain. Four levels are “None" (Self-Reported Pain Level 0), “Low" (1-3), “Moderate”
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(4-6), or “Severe" (7-10), and two levels combine “Low", “Moderate", and “Severe" pain levels into
a single “Pain" class. Training binary classifiers for*No Pain"/“Pain" prediction is similar to many
existing facial pain detection works [7, 22]. We found that the binary classifier leads to better test
patient accuracy scores, and continued Experiments 2 through 7 using only two pain levels.

Experiments 2, 3: Pain Prediction using Static Landmarks or Pain In these experiments, we
use only one modality to train two separate models and use traditional machine learning models,
specifically the Random Forest algorithm [56]. Experiment 2 uses the landmark arrays detected for
each facial image and Experiment 3 uses the nine self-reported pain scores explained in Section 3.2.1
that represent how pain interferes with the patient’s emotions and activity, plus labels for sex, skin
type, and timeframe. The timeframe label is categorical and is extracted from the video submission
timestamp representing what time of day (early AM, late PM, etc.) the video was submitted. For
both Experiments 2 and 3, we train a Random Forest Classifier. Note, that the target “Pain Target" is
not in the set of the nine self-reported pain scores, which are distinct and separate.

Experiments 4 - 6: Pain Prediction using Static Multimodal Data We train three multimodal
networks using an early, joint fusion strategy as proposed by [57]. For Experiment 4 (“Fusion 1"),
we concatenate the fully connected outputs of ResNet50 with raw landmarks. The feature vector is
then inputted to a feedforward neural network for binary pain prediction. Experiment 5 (“Fusion 2")
concatenates the fully connected outputs of ResNet50 with raw landmarks, in addition to the nine
pain scores, skin, sex, and timeframe labels. Similarly, the feature vector is inputted to the same
feedforward network architecture for binary pain prediction. Experiment 6 (“Fusion 3") concatenates
three vectors: the feature map from layer-4-conv2D-1, the landmark features outputted from a
landmark-specific feedforward network, and the nine pain scores, sex, skin, and timeframe features
outputted from a pain-specific feedforward network. The resulting feature vector is inputted to a
CNN for binary pain prediction.

Experiment 7: Audio Models Experiment 7 is a binary pain prediction model that uses the Mel
spectrogram image and 25 audio features from 4-second chunks of audio extracted from each patient
video. A feature vector resulting from the concatenation of the spectrogram feature map from
layer-4-conv2D-1 and audio features learned by a feedforward network, are inputted to the same
CNN architecture as used in Experiment 6. Diagrams for all experimental architectures are provided
in the Supplementary Materials.

5 Results

Accuracy Calculation The accuracy of each model is evaluated for each test patient using the tenth
model checkpoint. Using the checkpoint, we evaluate each test patient individually. We only evaluate
test patients using their respective, assigned split per 10-fold cross-validation (See Supplementary
Materials Section F.1. Table 10 “10-fold-CV details - Test Patients per Split" for details). For example,
test patients 0002, 0029, and 0021 are only evaluated using the trained model from Split 1, not Split 2
which would have included these three patients in its training set. We evaluate each test patient using
a batch size of 1, predicting the target pain score for each patient image. We then calculate accuracy
for the test patient in question as simply accuracy_score(y_true,y_pred) where y_true is the set
of true “Pain Target" labels and y_pred is the set of predicted “Pain Target" labels.

As aresult, in Table 5, we show the mean accuracy computed for each “Pain Target" level across all
test patients (“No Pain" or “Pain" for two levels, and “None", “Low", “Moderate"”, or “Severe" for
four levels of pain). For example, in Experiment 1 “ResNet50-4-static", the accuracy scores for all
patients with ground truth pain labels of “None", were averaged together to calculate the result of
0.583. In Figures 4 and 5, the bars are color-coded by the ground truth “Pain Target" level for each
patient. The y-axis is the accuracy predicted for the patient. For example, upon zooming into Figure
4a, Patient 0029’s (8 marks from the right of the x-axis) ground truth “Pain Target" level is “No Pain".
However, the Experiment 1 static binary model only predicts it with 0.309 accuracy.

Experiment Results The Experiment 6 multimodal network combining multiple features from
the facial images, landmarks, pain scores, sex, skin, and timeframe labels performs the best for
overall pain classification. Compared to training on a single modality alone (Experiments 1, 2, 3, 7),
Experiment 6 (Fusion 3) shows the best overall class accuracy of 0.657 shown in Table 5. Fusion 3 also
shows the highest accuracy for the “Pain" level at 0.717. Experiment 6 (Fusion 3) led to 72.4% of test
patients exceeding 50% accuracy per frame as noted in Figure 5b. However, it ties with Experiment
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5 (Fusion2) and Experiment 2 (Random Forest PM) for 51.7% of test patients achieving over 75%
accuracy per Figure 5a and Figure 4d. While the Random Forest pain model (Figure 5d) shows greater
“No Pain" accuracy, using only the self-reported nine pain scores does not detect the original “Low"
pain levels as well as the multimodal Fusion 3 model visualized in Figure Sc shown in blue bars.

Experiment 3 (Random Forest Pain) shows the highest “No Pain" accuracy scores at 0.706 per Table
5. Adding the nine self-reported pain scores appears to boost accuracy, compared to training only
on faces and landmarks per Experiment 4 (Fusion 1, 0.513) in Table 5. This is likely due to high
correlations between the nine reported pain scores. Analysis shows strong Pearson correlation values
exceeding 0.89 among activity, mood, work, enjoyment, and relationship scores. Continued analysis
as more patients enroll in the study is required to understand the effect of the nine pain scores across
all patients. The facial landmarks perform the worst in Experiment 2 (Random Forest LM) with only
37.9% of test patients exceeding better than random at over 50% accuracy per Figure 4b. However,
when adding landmarks to facial images in Experiment 4 (Fusion 1), several test patients completely
fail to be detected (1, 2, 16, 13, 29, 3, 28, 25) per Figure 4d. This may be consistent with recent
research by [34] who show that landmark detection declines when comparing different populations,
such as older patients with dementia, to healthy adults.

Table 5: Experiment Results by Pain Level Accuracy. “LM" indicates facial landmarks.

Experiment 4-Class Model Data All Classes None Low  Moderate Severe

Exp. 1 ResNet50-4-static Faces , only 0.378 0.583 0.168 0.252 0.213
2-Class Model All Classes  No Pain  Pain

Exp. 1 ResNet50-2-static Faces, only 0.568 0.513 0.612

Exp. 2 Random Forest LM Landmarks, only 0.373 0.479 0.287

Exp. 3 Random Forest Pain  Pain Scores, only 0.650 0.706 0.602

Exp. 4 Fusion 1 Faces + Landmarks 0.513 0.304 0.683

Exp. 5 Fusion 2 Faces + Landmarks + Pain Scores  0.631 0.563 0.687

Exp. 6 Fusion 3 Faces + Landmarks + Pain Scores  0.657 0.582 0.717

Exp. 7 Static Audio Audio, only 0.456 0.645 0.303

(a) Faces, 48.3% (b) LM, 37.9% (c) Pain, 65.5% (d)F1,51.7%

Figure 4: Accuracy Scores per Test Patient by Model: Faces, Landmarks, Pain, and Fusion 1. We show
the resulting scores per test patient for the binary pain classifiers. Horizontal bar indicates 50% accuracy. Percent-
ages in sub-captions indicates the number of patients exceeding 50% test accuracy. Notation: Faces=ResNet50-
2-static; LM=Random Forest LM (landmarks); Pain=Random Forest Pain; F1=Fusionl. Best viewed in color
and zoomed in.

an an an an
FRATRA=NEIRARRR"ATRARART"KRR™ RER"ANARARER"R AN "RREA“ARARR™ RERTANARORER"R"AA""RRE“ARRRR™ MORRRANTALEIRTRTARRARRTARTRER A
Patint Patiart Paiamt Patime

(a) F2, 62.1% (b) F3,72.4% (c) F3 - 4 Labels (d) Pain - 4 Labels

Figure 5: Accuracy Scores per Test Patient by Model - Fusion 2, 3, and Pain, Visualized with 4 Original
Labels. We show the resulting scores per test patient for the binary pain classifiers. Horizontal bar indicates 50%
accuracy. Percentages in sub-captions indicates the number of patients exceeding 50% test accuracy. Notation:
Pain=Random Forest Pain; F1=Fusionl; F2=Fusion2; F3=Fusion3. Best viewed in color and zoomed in.
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6 Discussion and Future Work

Due to a variety of state-of-the-art techniques, we sought to implement simple models to demonstrate
baseline results using fairly minimal preprocessing, transformations, and architectures. The results of
our models show the dataset’s difficulty. For comparison, acute pain detection studies have shown
accuracy scores up to 82.4% (hit rate) [26] using the UNBC-McMaster Shoulder Dataset and 95%
for multimodal infant pain detection using a custom dataset by [31]. Chronic pain detection using
psychological inventories have achieved 86.5% (cross-validated balanced accuracy) using a support
vector machine [58].

Limitations The first limitation of the dataset is the low number of currently enrolled patients at only
29 patients and the imbalance across pain levels. However, we observe that two new patients enroll
into the study every month. As the number of patients grow, we expect a more balanced distribution of
pain levels, sex, skin type, and increased volume of data, consistent with the cohort design indicated in
Table 2. However, medical datasets using active patient populations for major diseases such as cancer,
are extremely scarce due to the time and review required for medical privacy and ethics. This differs
greatly from current pain datasets that have recruited fairly healthy patients, who are not actively
undergoing disease treatment. Due to the special sensitivity of the ISS study population, we believe
that our current initial results offers important insights currently missing in the medical AI community.

Next, despite the patient instructions to complete the submission in a quiet, brightly lit room with a
white wall or background, many videos submitted varied in quality and resolution. The following
examples observed in the dataset present challenges to machine learning: 1) Patient sitting in front of
a door with signage in the background showing letters and numbers; 2) Patient occasionally wears a
mask in some videos (due to Covid-19); 3) Patient records video in area of intense sunshine and glare
causing reflection from various surfaces; 4) Patient records in a dark, shady room, leading to grainy
resolution and video quality; 5) Patient speaks very quietly or muffled, making it difficult to hear the
patient narrative; 6) Missing data as is the case of Patient 0009 and absent self-reported nine pain
scores from Patient 0015.

Ethics Publicly available acute pain datasets have lacked ethnic diversity. For example, the UNBC-
McMaster Database [6] uses ethnicity as a demographic indicator where out of the original 129
patients (63 Male, 66 Female), a minimum of 13.2% (17 patients) consisted of non-Caucasian
ethnicity (refer to Table 1 of [6]). It may be less given how studies using the UNBC-McMaster dataset
have access to data from only 25 out of 129 patients [20-22, 24]. The BioVid and MIntPAIN datasets
provide no information about ethnicity and race [8, 9]. EmoPAIN contains 22 patients (18 Caucasian,
3 African-American, 1 South-Asian) who are majority white [30]. As a result, we sought to increase
the diversity of enrolled patients by using cohorts that include sex and skin type specifications. While
the Fitzpatrick Skin Type scale was originally developed for dermatological use, it has recently
been criticized for its conflation with race and ethnicity [59]. It has been found to overestimate the
prevalence of Type IV skin classification in African Americans [60]. The visual grouping of patients
into lighter tones (Skin Types I - III) or darker tones (Skin Types IV - VI) may be too restrictive and
biased in terms of broadening our diversity of patients. As a result, the ISS dataset requires careful
monitoring and a regular ethics review.

Future Work The second phase of the study will analyze more diverse modalities. First, we will
extract text from the audio files and explore its utility towards multimodal pain models. Next, since
patients were unable to conduct in-clinic visits, we were unable to gather thermal imagery captured
from a thermal camera stationed at the clinic. Thermal imagery offers insights into physiological
states that is unseen on visible images alone [61]. Our intent is to generate paired visible-thermal
datasets as collected by the Iris, Eurecom, and Equinox datasets [62-64]. Lastly, we estimate that
after enrolling 112 patients, the ISS dataset will contain an additional 1,456 videos, 543,733 frames,
and 3.8 hours of content.
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