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Magneto-Kresling Truss
Structures
The Kresling truss structure, derived from Kresling origami, has been widely studied for its
bi-stability and various other properties that are useful for diverse engineering applica-
tions. The stable states of Kresling trusses are governed by their geometry and elastic
response, which involves a limited design space that has been well explored in previous
studies. In this work, we present a magneto-Kresling truss design that involves embedding
nodal magnets in the structure, which results in a more complex energy landscape, and con-
sequently, greater tunability under mechanical deformation. We explore this energy land-
scape first along the zero-torque folding path and then release the restraint on the path
to explore the complete two-degree-of-freedom behavior for various structural geometries
and magnet strengths. We show that the magnetic interaction could alter the potential
energy landscape by either changing the stable configuration, adjusting the energy well
depth, or both. Energy wells with different minima endow this magneto-elastic structure
with an outstanding energy storage capacity. More interestingly, proper design of the
magneto-Kresling truss system yields a tri-stable structure, which is not possible in the
absence of magnets. We also demonstrate various loading paths that can induce desired
conformational changes of the structure. The proposed magneto-Kresling truss design
sets the stage for fabricating tunable, scalable magneto-elastic multi-stable systems that
can be easily utilized for applications in energy harvesting, storage, vibration control, as
well as active structures with shape-shifting capability. [DOI: 10.1115/1.4051705]

Keywords: origami, multi-stable structure, magneto-active structure, magneto-elastic
coupling, energy storage

1 Introduction
Origami is a well-known ancient art of paper folding. Common

origami expressions include Yoshimura pattern, Kresling pattern,
Miura-ori pattern, and waterbomb base [1]. Apart from its esthetic
value, origami has been foundational for engineering folded struc-
tures that broke new ground in applications including medical
equipment [2–4], ballistic shields [5], and aerospace devices
[6–8]. While traditional origami involves folding sheets, origami
units or building blocks can also be tessellated into multidimen-
sional lattices, forming so-called origami-inspired metamaterials
[9–14], displaying controllable mechanical properties, like the
tunable thermal expansion [15] and adjustable Poisson’s ratio [16].
General multi-stable structures possess several energy wells, thus

various stable states. Statically, under external mechanical perturba-
tions, the system may shift from one stable state to another along
with shape and energy changes. Dynamic excitations with sufficient
amplitude can result in transitions from linear or weakly nonlinear
intra-well fluctuations to highly nonlinear inter-well oscillations of
the system [17]. These features make the multi-stable structure an
ideal platform for applications like energy adsorption [18–20],
energy harvesting [20–23], vibration control [24–28], and mechan-
ical switches [29,30]. Investigating the number and position of the
existing stable states is necessary for designing systems that suit
these purposes. Remarkably, many origami structures have more
than a single stable state. The Kresling pattern has been studied
extensively due to its ability to undergo both vertical and rotational
deformations in the deployment. The 2D crease pattern and the
folded 3D cylindrical model for a typical Kresling origami are

shown in Figs. 1(a) and 1(b), respectively. The initial configuration
dictates the number of stable states that the structure will have. This
has been explored previously either using a Kresling origami with
six elements [31] or a simplified origami-inspired pentagon-based
Kresling truss model [29]. In the truss model, the original Kresling
origami panels are removed and creases are replaced with elastic
truss members connecting vertices of top and bottom rigid regular
polygons, as shown in Fig. 1(c) with detailed description in
Sec. 2. Compared with the Kresling origami cylinder, the truss
model simplifies the analysis by changing the system potential
energy contributions from non-rigid panel deformation to elastic
truss elongation. This simplification also generalizes this specific
origami structure to a network system with only nodal interactions,
which may help with finding its analogies in other fields, like bio-
logical systems where elastic network models are prevalently
used for describing mechanical phenomena [32–34]. Further inves-
tigation of this truss representation and its multi-stability property
illustrates the relationship between the rich motion paths [35] and
some instability-induced phenomena, like bifurcation, snapback,
and reverse rotation [36].
A shortcoming of the purely elastic Kresling truss structure is that

it can display at most two potential energy minima with zero-strain
energies; thus, it is unable to store or release energy due to confor-
mational changes. To solve this problem, we get inspired by
magneto-active soft materials made up of elastomers with embed-
ded magnetic particles and cured with controlled magnetic fields
[37,38]. These magneto-active soft materials exhibit tunable
mechanical properties and shape-shifting ability, and have been
exploited in designs for applications ranging from damping
systems [39–42] to soft actuators [43–47]. In addition, some
magneto-elastic mechanical metamaterials have been prospected
for energy dissipation and wave filtering by incorporating discrete
permanent magnets and periodic elastic lattices [48–50]. Based on
these findings, we hypothesized that introducing nodal magnets to
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the Kresling truss structure to generate noncontact, nonlinear mag-
netic interactions superposed with elastic contributions could alter
energy landscapes that could result in three or more stable states.
Indeed, systems with complementary dipole interactions (electro-
static instead of magnetostatic) are commonly found in structural
protein motifs that exhibit outstanding mechanical properties such
as energy dissipation and storage capacity [51,52]. We show in
Fig. 1(d ) that the Kresling truss model is a good candidate for a
tunable magneto-elastic system because it offers easily accessible
magnet mounting sites marked by solid squares. Embedding perma-
nent magnets in an origami structure to change its stability profile
was first reported by Fang et al. using the stacked Miura-ori struc-
ture and the Kresling origami [53]. They showed that embedding
magnets in a bi-stable Kresling origami could shift the two stable
states in the folding process and bring the magneto-origami struc-
ture to another stable state at zero height. Their experiments vali-
dated the quantitative change of the stable states at relatively
large structural heights but huge discrepancies occurred in the low-
height region where the strong magnetic interactions prohibited
further development of rotation angle along the desired deformation
path and compressed the origami facet material substantially. In the
magneto-Kresling structure we proposed here, via replacing thin-
walled origami panels with the truss system, the kinematic con-
straints from allowable elastic deformations of the panel on restrain-
ing the coupling between the vertical displacement and rotation
angle are released such that we could take into account both the
magnetic interactions and elastic potentials in determining the cou-
pling behavior along the path.
In this study, the bi-stability property of Kresling truss systems

without magnets is first briefly illustrated, followed by a detailed
discussion on the magneto-elastic coupling effect observed in the
multi-stable magneto-Kresling truss structure. Our numerical
study reveals that the magnetic interaction not only enables pre-
scribing the number of stable states and shifting the potential
energy well positions while controlling well depths but also influ-
ences the kinematics along the folding path. We show several pos-
sible quasi-static loading paths joining different stable states, which

can be traversed either by displacement-controlled deformation
with free rotation, rotation-controlled deformation with free vertical
displacement, or a combination of both. Prior works have mostly set
the external torque to zero in the deployment and ignored other
paths [29,30], because both of the local minima for a purely
elastic bi-stable Kresling truss structure could be visited along
such a zero-torque path. Nevertheless, we show that the
magneto-Kresling truss system subjected to an external torque
may reach a local potential energy minimum which is inaccessible
under loading with only axial compression or tension. This potential
energy minimum with trusses locked in a relatively heavily
stretched configuration plays an important role in gaining a high-
energy storage capacity. Finally, we demonstrate the dependence
of the number of stable states and energy storage capacity on
several design parameters. The path-dependent multi-stability prop-
erty and the highly tunable potential energy landscape intrinsic to
the magneto-Kresling truss structure are expected to advance the
design and engineering of origami-inspired multi-stable
metamaterials.

2 Methods
2.1 Elastic Force and Potential. The Kresling truss unit has

two identical rigid regular polygons with n vertices/edges with a
circumscribed circle of radius R. The two polygons share the
same out-of-plane rotation axis and are separated by a
center-to-center distance h0 along this axis, which is the initial
height of the structure. The polygons are connected by elastic
trusses and offset by a relative rotation angle θ, defined as the
angle between the perpendicular bisector of a bottom polygon
edge in an isosceles triangle and the projection of the right edge
of its counterpart triangle (the one connected by the same moun-
tain creases) in the top polygon. This definition simplifies the cal-
culation mathematically [29]. Initially, the relative angle is θ0 and
lengths for mountain and valley trusses are a0 and b0, respectively.
A schematic of the structure is shown in Fig. 1(c). In our analysis,

Fig. 1 (a) The crease pattern, (b) Kresling origami cylinder, (c) Kresling truss structure with the initial configuration
(h0, θ0)= (110 mm, 35 deg), R=90 mm, and n=8 (octagon-based), (d ) Magneto-Kresling truss structure with possible
magnet embedment sites shown as solid squares (Color version online.)
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we only consider counter-clockwise θ0 since the derivation of the
clockwise case is similar. The bottom polygon is held fixed and
cannot be displaced or rotated. Under a vertical force and/or
torque applied on the top polygon, the Kresling truss structure
folds (contracts) or unfolds (expands) with two degrees-
of-freedom (DOF) globally, i.e., vertical displacement, u, along
the z-axis, and rotation angle, φ = θ− θ0, about the z-axis.
Upward displacement and anti-clockwise rotation angle are posi-
tive by convention. The structure reaches its maximum or
minimum rotation angle when all the valley or mountain creases
intersect at the same point, resulting in φmax= (π− π/n)− θ0 and
φmin=−[(π− π/n)+ θ0], respectively. Additionally, to prevent
close contact between top and bottom polygons (steric clash of
structural elements), the minimum vertical displacement is set to
−0.8h0 in this study.
Nodal forces acting in x, y, and z directions in response to truss

elongation at structural deformation (u, φ) can be evaluated by
structural matrix analysis [54]. Consider a system with 2N nodes
(first N nodes from the bottom polygon and another N nodes from
the top) and V trusses (here V= 2N ). Nodal forces are represented
by a 6N× 1 force matrix P:

P = BQf (1)

where

P= F1,x F1,y F1,z F2,x F2,y F2,z · · · F2N,x F2N,y F2N,z
[ ]T

Qf is a V × 1 element force matrix:

Qf = q1 q2 · · · qv · · · qV
[ ]T , qv = kv · (lv − lv0)

The vth entry, qv, stands for the axial force of the vth truss,
with initial length lv0 and stiffness kv. lv is the truss length when
the system undergoes deformation (u, φ). The geometry, end
forces, and element force of truss v are depicted in the left panel
of Fig. 2. B is a 6N ×V structure strain–displacement
matrix, which can be calculated from the summation of element
strain–displacement matrix Bv. For the vth truss connecting node i

and j,

bv =

bv,1
bv,2
bv,3
bv,4
bv,5
bv,6

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
=

−
Xj − Xi

lv

−
Yj − Yi

lv

−
Zj − Zi

lv
Xj − Xi

lv
Yj − Yi

lv
Zj − Zi

lv

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bv =

1 2 v− 1 v v+ 1 V

0 0 · · · 0 0 0 · · · 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 bv,1 0 · · · 0
0 0 · · · 0 bv,2 0 · · · 0
0 0 · · · 0 bv,3 0 · · · 0
0 0 · · · 0 0 0 · · · 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 bv,4 0 · · · 0
0 0 · · · 0 bv,5 0 · · · 0
0 0 · · · 0 bv,6 0 · · · 0
0 0 · · · 0 0 0 · · · 0

..

. ..
. . .

. ..
. ..

. ..
. . .

. ..
.

0 0 · · · 0 0 0 · · · 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1

6N

3i− 2
3i− 1
3i

3j− 2
3j− 1
3j

, B=
∑V
v=1

Bv

In the folding process, nodal position matrix Uf first gets updated
with respect to current vertical displacement u and rotation angle φ
using Eq. (2).

Uf = (U0 + ΔU)R (2)

where ΔU is the 2N × 3 displacement matrix and R is the 3 × 3 rota-
tion matrix:

Fig. 2 Left: geometry, end forces, and element force qv of the vth truss with stiffness kv and length lv joining
nodes i and j in structural matrix analysis. Right: model for calculating the magnetic force felt by magnetic
dipole mi from magnetic dipole mj. rij is the vector from the position of mi to mj.
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ΔUT =

1 2 N N + 1 N + 2 2N − 1 2N
0 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 u u · · · u u

⎡
⎢⎣

⎤
⎥⎦

R =

cosφ −sinφ 0

sinφ cosφ 0

0 0 1

⎡
⎢⎣

⎤
⎥⎦

Then each truss length lv, structure strain–displacement matrix B,
and element force matrix Qf are updated accordingly. Finally, the
nodal force matrix P is obtained. By calculating the resultant
force and torque for nodes in the top polygon from P, we could
get force Fz,el and torque Tz,el acting on the system in response to
deformation (u, φ). We assume all the mountain and valley
trusses have the same stiffness k. The elastic potential energy of
the system is:

Eel =
∑V
v=1

1
2
k(lv − lv0)

2 (3)

For the displacement-controlled zero-torque quasi-static loading
path, u changes linearly from the initial value to the target
value. Given any ui in the path, we can find φi by imposing
Tz,el(ui, φ)= 0. Similarly, solving Fz,el(u, φi)= 0 gives us the displa-
cement ui for a desired φi in the rotation-controlled zero-
compression loading path.
This matrix analysis method keeps track of nodal positions in the

deployment, which makes later evaluation of magnetic interactions
using matrix multiplications based on magnet positions straightfor-
ward. It is also applicable to a system with different member stiff-
nesses. In addition, by simply modifying the nodal position
updating rules, i.e., Eq. (2), this model can be extended to a
6-DOF (three translations plus three Euler rotation angles) Kresling
truss system, taking both the axial and off-axis responses into con-
sideration [55]. However, this is beyond the scope of our work and
left for future studies.

2.2 Magnetic Force and Potential. We assume that magnets
discussed here are uniformly magnetized and can be simplified as
magnetic point dipoles. This assumption holds if the magnets are
small enough or sufficiently distant [56]. Under the point dipole
approximation, the magnetostatic energy emag,ij and force fmag,ij

felt by magnetic dipole mi from magnetic dipole mj are described
by Eqs. (4) and (5), respectively [57–59].

emag,ij =
μ0
4π

· (mi ·mj)

r3ij
− 3

(mi · rij)(mj · rij)
r5ij

[ ]
(4)

fmag,ij = −
3μ0
4πr5ij

[
(mi · rij)mj + (mj · rij)mi + (mi ·mj)rij − 5

×
(mi · rij)(mj · rij)

r2ij
rij

]
(5)

where rij is the vector from node i to node j, and magnitude rij= |rij|.
Figure 2, right panel, shows the model for calculating the energy
and force between two magnets with arbitrary directions of mag-
netic dipole moments.
For uniformly magnetized permanent magnets, the magnitude of

dipole moment m= |m|=MVol. Vol is the bar magnet volume.M is
saturation magnetization (in A/m) converted from material residual
induction Br (in T), M=Br/μ0. Br is specified by the manufacturer
for a given magnet. μ0 is the permeability of vacuum, μ0= 4π×
10−7 H/m. We only consider the case where all magnets embedded
in the magneto-Kresling truss structure are of the same size, shape,
and strength. We use m2 (in A2 m4) as the parameter to regulate the
magnet strength. Since the elastic energy and magnetostatic energy
are proportional to k andm2, respectively, the relative strength of the
truss and magnet, k/m2, plays an important role in tuning the poten-
tial energy profile of the truss-and-magnet system.
As mentioned in Sec. 1, magnets can be embedded at different

sites with various dipole layouts. To keep the model simple,
instead of having magnetic dipoles with arbitrary directions, we
only consider those along the rotation axis (z-axis). For the
magnet embedment, we could center magnets at top and bottom
polygons with purely attractive or repulsive interactions as shown
in Figs. 3(a) and 3(b), respectively. If magnets are involved in
this way, the magnetostatic energy is governed by the vertical dis-
placement u and is insensitive to the rotation angle φ. Alternatively,
magnets could be embedded using a node-centered pattern. For this
pattern, in order to avoid uneven forces along z-axis felt by nodal
magnets embedded in the same layer and non-trivial resultant
forces in and torques about x- and y-axis on the rigid plate, the
arrangement of dipole moment directions should either take a
layout with n-fold radial symmetry (consistent dipole directions
for magnets embedded in the same plate) or an alternate layout
(opposite dipole directions for neighboring magnets). Otherwise,
without extra constraints, the top plate will slide in the plane perpen-
dicular to z-axis and rotate about x- and y-axis. Again, these motions
could be captured by an extended 6-DOF model which is not
covered here. In this study, truss-and-magnet systems are all
designed using an alternate layout of nodal magnetic dipoles to
reach a more variant energy landscape. Figure 3(c) illustrates this
layout using an octagon-based magneto-Kresling truss structure.
Magnets centered at nodes 1, 3, 5, 7 on the bottom polygon and
10, 12, 14, 16 on the top have the same dipole moment along the
[0, 0, 1] direction, while at nodes 2, 4, 6, 8 and 9, 11, 13, 15, mag-
netic dipoles are along the [0, 0, −1] direction. These alternately

Fig. 3 Typical ways to embed magnets in Kresling truss structures. Magnets are centered at
top and bottom polygons with (a) attractive, (b) repulsive interactions, and (c) A
magneto-Kresling truss structure with neighboring nodal magnetic dipoles pointing to oppo-
site directions. Arrow depicts point dipole moment direction from north pole to south pole as
shown on the right.
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arranged dipole moments also break the rotational symmetry for
Kresling truss structures with θ0= 0. Structures with three other
allowable layouts of nodal magnetic dipoles are discussed (in the
Supplemental Material on the ASME Digital Collection), including
a different alternate layout with dipoles in the top layer flipped, an
attractive layout, and a repulsive layout.
Note that relative positions of magnets on the same layer are fixed

in the deployment, leading to in-plane magnetic interactions invari-
ant to vertical displacement u and rotation angle φ. Therefore, only
the dipole–dipole energies for inter-layer magnet pairs are consid-
ered. Intra-layer dipole–dipole interactions are neglected. If there
are N magnets embedded in the bottom and another N in the top,
the total magnetostatic energy of the system is

Emag =
∑2N
i=N+1

∑N
j=1

emag,ij (6)

The magnetic force on node w is

Fmag,w

∑2N
i=1+N

fmag,wi, w = 1, 2, . . . , N

∑N
i=1

fmag,wi, w = N + 1, N + 2, . . . , 2N

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(7)

By calculating the negative of the resultant force and torque felt
by magnets embedded in the top polygon along z-axis (the rotation
axis), we could get the input force Fz,mag and torque Tz,mag under
any deformation (u, φ). Combining the truss elastic energy and
magnetostatic energy, the total potential energy of the system
Etot(u, φ)=Eel(u, φ)+Emag(u, φ). The total force Fz (u, φ)=Fz,el

(u, φ)+Fz,mag (u, φ) and torque Tz (u, φ)= Tz,el (u, φ)+ Tz,mag

(u, φ).

2.3 Numerical Search for Local Minimum Energy States.
In most published studies of Kresling origami/truss structures,
deployment is assumed to follow a displacement-controlled
loading path, where the zero-torque condition restricts the way ver-
tical displacement u and rotation angle φ get coupled, i.e., φ is a
known function of u. In this case, the Kresling origami/truss in
fact exhibits a pseudo 1-DOF mechanism. The local minima of
the potential energy can be found by inspecting the 1D energy
curve as a function of u. This pseudo 1-DOF mechanism is the
nature of Kresling origami, the predecessor of Kresling truss struc-
ture, due to the geometry constraint from the triangular facet. This
geometry constraint could be modeled as either the non-deformable
mountain [26] or valley [53] creases, based on which φ is calculated
for a given value of u. But for the 2-DOF Kresling truss system, this
constraint is released, making the structure able to deform along
various paths where u and φ are coupled differently. For
example, we can force a Kresling truss structure to shift from its
first stable configuration to the second by simply compressing
it (Fz≠ 0, Tz= 0), or compressing and rotating it simultaneously
(Fz≠ 0, Tz≠ 0), or even just rotating it (Fz= 0, Tz≠ 0). Therefore,
the 1-DOF solution may miss the energy minima that are not
on the presumed zero-torque deployment path for the
magneto-Kresling truss structure. A more general approach is to
apply the first- and second-order conditions for local minima by
finding points (us, φs) giving zero-force Fz(us, φs) and zero-torque
Tz(us, φs) on the convex surface of the 2D energy landscape
E(u, φ) [36]. The 2D potential energy landscape of the
magneto-Kresling truss system is highly nonlinear and complex.
Thus, finding analytical solutions by symbolic calculation is chal-
lenging. Here, we numerically search stable states (us, φs) satisfying
the first- and second-order conditions for local minima. We first
perform a uniform mesh of the accessible (u, φ) space (the upper
bound for u is safely set to 0.8h0). Starting from each grid point
(ui, φj), “hybr” solver in scipy.optimize.root package [60] is used
to find the root for functions Fz(u, φ) and Tz(u, φ). Then, for
points found by the solver, we remove those not in the domain of

our interest, such as roots with u<−0.8h0, and those giving nega-
tive eigenvalues of the Hessian matrix, which violate the
second-order condition. For a given structure, its stable states
found by this search algorithm depend on the mesh of the accessible
deformation space. A coarse mesh with large spacing in either u or
φ may lead to the missing of local minima which could only be
reached by the solver from starting points between two grid
points. Thus, we iteratively perform this numerical search protocol
until the detected stable states do not change with the mesh of (u, φ)
space. The mesh goes from 20 × 20 to 30 × 30, 40 × 40, and so on,
with 30 × 30 being sufficient for all of our cases reported herein.

3 Results
3.1 Truss-Only System

3.1.1 Multi-Stability Property of Octagon-Based Kresling
Truss Structures. In this section, we briefly discuss the multi-
stability property of octagon-based (n= 8) Kresling truss structures
without magnets. The model displays either mono-stable state or
bi-stable states in the deployment, dependent on its initial equilib-
rium configuration characterized by height-to-radius ratio h0/R
and initial rotation angle θ0. A mono-stable Kresling truss structure
can only rest at its initial state S0 (u, φ)= (0, 0). For the bi-stable
case, the first stable state S0 is the initial configuration (0, 0),
while the second minimum energy position S1 can either appear
in the contracted shape (u< 0, φ> 0) or in the expanded shape
(u > 0, φ< 0), as illustrated in Figs. 4(a) and 4(b), respectively.
The potential energy minima are denoted by the white crosses in
the energy landscape. The vertical displacement u and potential
energy E are normalized by structure initial height h0 and energy
kh0

2, respectively. It is notable that the potential energy minima
for Kresling truss structures arise at zero-strain configurations,
where all of the linear elastic truss members are at their initial
lengths. These zero-strain positions are determined only by the
geometry and are insensitive to the truss stiffness. The net expended
energy in the conformational change is zero.

3.1.2 Effect of Different Polygon Shapes. In order to investi-
gate how the multi-stability property would depend on shape of
the regular polygon, as determined by the number of vertices, n,
we examined systems with n ranging from 4 to 10. We only con-
sider polygons with even numbers of vertices because they offer
magnet embedment sites compatible with the nodal magnet layout
as described in Fig. 3(c), which is used in the later discussion of
magneto-Kresling truss structures. For each n, we search potential
energy minima in the constrained (u, φ) domain for structures
with different initial configurations. In the multi-stability diagram
shown in Fig. 5, structures with different combinations of (h0/R,
θ0) are labeled using numbers of stable states they have. As in pre-
vious reports, we find that structures with the initial rotation angle
set at θ0= 90 deg exhibit a so-called zero-stiffness mode, with neg-
ligible tangential stiffness and trivial resistance force and torque for
small deformations [29]. This behavior is consistent with our obser-
vation of a broad and nearly flat energy well centered at the origin
(u = 0, φ= 0) for structures with θ0= 90 deg. Here, we also use the
term, zero-stiffness, to distinguish this behavior from the aforemen-
tioned mono-stable and bi-stable cases in our multi-stability
diagram. In each panel, the diagram provides the design space of
(h0/R, θ0) for creating a bi-stable Kresling truss structure with
fixed polygon shape. The upper left region is mono-stable while
the lower right is bi-stable. Thus, bi-stability can always be realized
by designs with large enough height-to-radius ratio and initial rota-
tion angle. We notice that the bi-stable region is interrupted by a
horizontal cap for small values of n. This is caused by the
maximum and minimum rotation angle φ the structure could
reach, where the crease line trusses start to intersect with each
other as mentioned previously. For large n, the accessible φ range
increases and the constraint effect of rotation angle on finding a
second stable state is suppressed, therefore the cap is gradually
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removed. As n increases, the curve separating mono-stability and
bi-stability moves towards higher h0/R and larger θ0, which indi-
cates that Kresling truss structures with more vertices generally
need higher height-to-radius ratio and larger initial rotation angle
to exhibit a second zero-strain configuration within the accessible
(u, φ) space. Lastly, we find that for bi-stable Kresling truss struc-
tures with θ0 < 90 deg, the second stable state S1 always falls in
the counter-clockwise contracted quadrant (u< 0, φ> 0), while
for θ0 > 90 deg, S1 is found in the clockwise expanded quadrant
(u> 0, φ< 0). Example cases are shown in Figs. 4(a) and 4(b),
respectively. This θ0-dependent feature is invariant with n.

3.2 Truss-and-Magnet System

3.2.1 Strength of Embedded Permanent Magnets. The
magneto-Kresling truss structure incorporates both elastic and the
magnetic components where the competition between truss elastic
energy and magnetostatic energy plays a critical role in forming
the total potential energy profile for a system with a given initial
configuration. Here, to pick proper truss-and-magnet strengths,
we investigated the number and positions of stable states for
an octagon-based (n= 8) magneto-Kresling truss structure with
R = 90 mm, (h0, θ0)= (110 mm, 24 deg) with fixed truss stiffness
k= 26.56 N/m, and varying magnet strength m2. More details can
be found in the supplemental information note 1 available in the

Supplemental Materials on the ASME Digital Collection regarding
the selection of this initial geometry. The result is shown in Fig. 6.
Three color schemes were chosen to better visualize the energy gra-
dients in zones with different energy levels. With either very low or
very high magnet strength m2, the system is mono-stable with only
one stable state near the initial configuration having nearly zero
potential energy (middle row). With intermediately strong (0.663
≤m2≤ 0.824 A2 m4) magnets embedded, the system could have a
second stable state in the clockwise contracted shape (bottom
row) and even a third one in the anti-clockwise folded region (top
row). For demonstrating how one can find the maximum number
of stable states and energy storage capacity, the following discus-
sions are based on the fixed relative strength between trusses and
magnets with k= 26.56 N/m and m2 = 0.785 A2 m4. Additionally,
radius of the circumscribed circle is kept fixed at R= 90 mm.
These parameters were chosen because they allow us to create
tri-stable magneto-Kresling truss structures for certain combina-
tions of h0 and θ0.
To reach magnet strength m2= 0.785 A2 m4, we could use cylin-

drical permanent magnets with radius Rm= 5 mm, height tm=
10 mm, and residual induction Br= 1.42 T. In the published work
by Fang et al. [53], the force exerted by a magnetic dipole moment
mj on another dipole moment mi given in Eq. (5) has been tested
and validated experimentally using two neodymium–iron–boron
(NdFeB) magnets (Rm= 6.35 mm, tm= 12.7 mm, Grade N52 and

Fig. 4 (a) A bi-stable Kresling truss structure with the second stable state in a contracted shape. Left: initial stable configu-
ration S0 (u, φ)= (0, 0). Middle: the second stable state S1 (−0.58h0, 49.39 deg). Right: total potential energy in (u, φ) space. (b)
A bi-stable Kresling truss structure with the second stable state in an expanded shape. Left: initial stable configuration S0(0,
0). Middle: the second stable state S1 (0.25h0, −20.00 deg). Right: total potential energy in (u, φ) space. The stable states are
denoted by white crosses. Only regions with relatively low energies are shown.
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Br= 1.44 T)with the face-to-face distance decreasing from60 mm to
0 mm. Their findings indicate that the interaction model built on the
point dipole assumption can still be used for the close contact of small
magnets within negligible error. In our work, we chose to employ
smaller magnets with weaker magnetic fields. The constraint of u≥
−0.8h0 keeps the magnet center-to-center distance at least 0.2h0
(h0≥ 72 mm, leading to a face-to-face distance≥ 4.4 mm). Based
on Fang’s experiment, the point dipole assumption should hold for
our magneto-Kresling truss model. Thus, the energy and force
from Eqs. (4) and (5) can be safely applied to evaluate the magneto-
static interaction in the distance range of our interest.

3.2.2 Multi-Stability Property of Octagon-Based
Magento-Kresling Truss Structures. We extensively studied total
potential energy profiles of octagon-based (n= 8) magneto-Kresling
truss structures and compared themwith those of truss-only systems.
The changes brought to the potential energy landscape of the
truss-only system by magnetostatic interactions can be summarized
as follows. First, the number of energy wells encountered along the
displacement-controlled zero-torque folding path might be reduced
(from mono-stable to unstable and from bi-stable to mono-stable)
or increased (from mono-stable to bi-stable) and the energy well

might shift with significant change in well position and depth. For
example, total potential energies of a truss-only system and a
truss-and-magnet system with the same initial height and rotation
angle (h0, θ0)= (145.47 mm, 53.06 deg) are shown in Fig. 7(a) left
and middle panels, respectively. The two stable states for the
truss-only system in the (u, φ) space are S0(0, 0) and S1(−0.61h0,
73.88 deg). Both of these states have zero potential energies. For
the truss-and-magnet system, the two positions move to
S0(−0.00158h0, 0.33 deg) and S1(−0.43h0, 58.67 deg) with normal-
ized total potential energy −0.000065 and 0.004714, respectively.
The distance between top- and bottom-layer magnets is relatively
large initially, thus weak contributions from the magnetic potential
lead to a negligibly small shift of S0. In contrast, S1 is more promi-
nently affected by stronger magnetic interactions as the plates are
much closer in this configuration. Since the stable states are no
longer zero-strain positions, trusses are stretched in response to the
magnetic field. Total potential energies evolving along the two
paths are shown in Fig. 7(a) right panel, which clearly exhibits the
shift of S1 in both the well position and well depth.
Additionally, the coupling behavior of vertical displacement and

rotation is also altered. Figure 7(b) left and middle panels demon-
strate the displacement-controlled zero-torque folding path of a

Fig. 5 Multi-stability diagrams showing the number of stable states found numerically for Kresling truss structures with
different initial configurations (h0/R, θ0) in the domain of interest (u≥−0.8h0, φmin≤φ≤φmax). Mono-stable and bi-stable
regions illustrate cases with one and two stable states, respectively. Zero-stiffness line indicates a special case (θ0=
90 deg) where there is a broad and nearly flat energy well surrounding the initial configuration. Diagrams are made for
(a) n =4, (b) n=6, (c) n=8, and (d ) n=10.
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truss-only system and a truss-and-magnet system, respectively, with
(h0, θ0)= (108.00 mm, 6.10 deg) on the normalized potential
energy landscape in the (u, φ) space. In the beginning, top- and
bottom-layer magnets are far from each other, thus the folding is
driven by elastic trusses, resulting in tiny differences between the
two paths before u reaches −0.5h0. As the vertical distance
between magnets decreases, magnetic interactions become strong
enough to drag the (u, φ) curve of the truss-and-magnet composite
system away from that of the truss-only system. In the
magnet-and-truss system, the rotation angle φ reaches a
maximum value of 68.7 deg, then starts to decrease, and finally
stops at 63.4 deg when u approaches −0.8h0, while in the structure
without magnets, φ keeps growing and ends up with a final rotation
angle of 75.7 deg. To better illustrate this phenomenon, Fig. 7(b)
insets show the configurations at u=−0.8h0 for the two structures.

In the final folded configuration of the magneto-Kresling truss
system, further rotation pushing node 14 towards node 8 is prohib-
ited by the strong attractive interaction between magnets at nodes 14
and 7. The dominant attractive magnetostatic interactions also lead
to a significant decrease in the final total potential energy as shown
in Fig. 7(b) right panel. Animations of the folding process for the
two structures can be found in Supplemental Materials on the
ASME Digital Collection. The deformation path sought by our
2-DOF truss model fits the previous experimental observations
better than the pseudo 1-DOF model in terms of the locking
effect on the rotation angle caused by favorable magnetic interac-
tions at small heights. Therefore, the difference in (u, φ) coupling
behavior between the systems with and without magnets may
offer an explanation to the discrepancy seen between experiments
and theoretical calculations in prior studies.

Fig. 6 Changes in the number and region of stable states due to increasingmagnetic strengthm2 for an octagon-based (n=8)
magneto-Kresling truss structure with (h0, θ0)= (110 mm, 24 deg). Truss strength is kept fixed with stiffness k=26.56 N/m.
Accessible stable states in the domain of interest (u≥−0.8h0, φmin≤φ≤φmax) are divided into three regions based on their
deformation (u, φ) with respect to the initial configuration (0, 0). Colors show the normalized total potential energy at each
stable state. m2=0.785 A2 m4 marked by the dashed line is used for the following discussions. (Color version online.)

Fig. 7 Comparison of the energy landscape and folding path between the Kresling truss structure and the magneto-Kresling
truss structure with the same initial configuration: (a) (h0, θ0)= (145.47 mm, 53.06 deg) and (b) (h0, θ0)= (108.00 mm, 6.10 deg).
Left: potential energy landscape of the truss-only system. Middle: potential energy landscape of the truss-and-magnet system.
Right: total potential energies along vertical displacement in the displacement-controlled zero-torque folding paths of the
truss-only and truss-and-magnet systems. The folding paths starting from u=0 are depicted in solid lines and stable states
are marked by solid circles. Insets in (b) are final configurations (u=−0.8h0) in the paths.
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More interestingly, the magneto-Kresling truss structure with
magneto-elastic coupling can be designed to exhibit three stable
states, as mentioned previously in justifying our selections on
magnet strength. Figure 8 shows details of such an octagon-based
magneto-Kresling truss structure with initial configuration (h0, θ0)
= (107.80 mm, 29.66 deg). The truss-only system with the same
geometry is mono-stable. The magnetic interaction not only
pushes the initial potential energy minimum slightly away from
the origin to S0(0.00011h0, 0.073 deg) but also brings about extra
stable states S1(−0.68h0, 50.78 deg) in the anti-clockwise and
S2(−0.79h0, −124.49 deg) in the clockwise folding domains. The
normalized total potential energies for configurations S0, S1, and
S2 are 0.0011, 0.078, and 0.96, respectively. Note that the arrange-
ment of magnetic dipoles is crucial to the existence of these three

stable states because it determines the magneto-elastic coupling
by varying the magnetic energy landscape to be superposed onto
the elastic potential in the (u, φ) space, while the elastic potential
profile is fixed for a given initial geometry. We show in multi-
stability diagrams (in the supplemental information notes 2, 3,
and 4 available in the Supplemental Materials on the ASME
Digital Collection) a different alternate layout with top-layer
magnets flipped, the attractive layout and the repulsive layout all
result in a mono-stable structure for (h0, θ0)= (107.80 mm,
29.66 deg), instead of a tri-stable one discussed here. Under differ-
ent vertical force and/or torque applied to the top-layer polygon, the
system is able to switch from state S0 to state S1 along various
paths, such as a displacement-controlled loading path with zero-
torque (path 1 in solid line connecting S0 and S1) or a rotation-

Fig. 8 Top: (a) force Fz, (b) torque Tz applied on the top polygon, (c) normalized total potential energy E in (u, φ) space for the
octagon-based tri-stable magneto-Kresling truss structure with initial configuration (h0, θ0)= (107.80 mm, 29.66 deg). The solid
and dashed curves between S0 and S1 show the displacement-controlled zero-torque loading path and the rotation-controlled
zero-compression loading path connecting the two states, respectively. The rotation-controlled zero-compression loading
path joining S0 and S2 is also shown with a solid curve. Middle: three stable configurations corresponding to point S0 (u,
φ)= (0.00011h0, 0.07 deg), S1 (−0.68h0, 50.78 deg) and S2 (−0.79h0, −124.49 deg) in the potential energy landscape. Bottom:
change of potential energy along (d ) the Tz=0 path from state S0 to S1 and (e) the Fz=0 paths from S0 to S1 and S0 to S2.
(Color version online.)
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controlled loading path with zero vertical force (path 2 in dashed
line connecting S0 and S1). However, it is impossible to find a zero-
torque path to switch from state S0 to state S2, because there exists a
non-zero-torque region separating S0 and S2 states, as shown in
Fig. 8(b). Here, we show a possible rotation-controlled zero-
compression loading path (path 3 in solid line connecting S0 and
S2) as an example to complete this conformational change. It is
evident from these findings that the magneto-Kresling truss is
capable of being programed into reaching two or more equilibrium
states with different energies under various loading conditions. This
path-dependent multi-stability is not observed in the truss-only
system. For a Kresling truss structure with an anti-clockwise
initial rotation angle (θ0 > 0), relatively low potential energies
always appear in anti-clockwise contracted (u< 0, φ> 0) or clock-
wise expanded (u> 0, φ< 0) quadrants as shown in Figs. 4(a) and
4(b) right panels. There is no energy minimum in the clockwise
contracted (u< 0, φ< 0) or anti-clockwise expanded (u> 0, φ> 0)
regions due to strains induced in truss members in those two
regions. As a result, all of the potential energy minima with zero
strain can be found along the displacement-controlled zero-torque
path connecting the deformation space. However, an extra local
energy minimum with zero-force and zero-torque located in the
relatively high-energy region with u< 0 and φ< 0 could arise in a
magnet-and-truss system if magnetic interactions are strong
enough to counteract forces coming from heavily stretched truss
members. With these considerations, we can classify the potential
energy minima into two categories based on the stress state of
truss members. Class 1 minimum describes cases with slightly
stretched truss members, and class 2 minimum involves heavily
stretched ones. Along a zero-torque loading path starting
from the initial configuration, every low-energy class 1 minimum
can be visited, whereas the class 2 local minimum is inaccessible
in the absence of torque. This classification helps with our follow-
ing discussion about the multi-stability diagram of the
magneto-Kresling truss structures. It should be noted that we
exclude extremely low-energy states where two layers of magnets
are in close contact with each other since this may violate the mag-
netic point dipole assumption and may not be functional given the
large forces needed to reset the system to another state. Thus, we
restrict our attention to cases with u≥−0.8h0. Such a limit on dis-
placement can be adopted in experiments using springs or soft con-
tacts to keep the top and bottom plates sufficiently apart. To prove
S0, S1, and S2 are equilibrium positions, the structure would finally
rest at under a small perturbation introduced to the system, we
carried out dynamic tests numerically by releasing the structure
from a position very close to any of the three states with zero
initial velocity and observed that the system ended up staying at
the desired energy well after a short period of damped free vibra-
tion. Details can be found in the supplemental information note 5
available in the Supplemental Materials on the ASME Digital
Collection.

3.2.3 Effect of Different Polygon Shapes and Energy Storage
Capacity. For Kresling truss structures with n-sided polygons,
the number of stable states is only determined by height-to-radius
ratio h0/R and initial rotation angle θ0. However, with the same n,
the interplay between multi-stability the property of the
magneto-Kresling truss structure and design parameters is much
more complicated, involving the height h0, radius R, initial rotation
angle θ0, truss stiffness k, magnetic moment magnitude m, and
magnet arrangement. Note that it is the absolute values of height
and radius that affect the potential energy landscape of the
magnet-and-truss system, rather than the ratio of them. This is rea-
sonable because as the model dimensions are increased, the magnet
interactions eventually become negligible unless the magnet sizes
and strengths are also scaled proportionally. The full multi-stability
diagram of the truss-and-magnet system should be in a high-
dimensional space with all of the geometry and strength variables
considered. Here, we fix the geometry parameter R, strength param-
eter k and m2, and magnet arrangement as those in the previous

section such that we can obtain 2D multi-stability diagrams with
n= 4, 6, 8, and 10 for magneto-Kresling truss structures to study
the dependence of number of stable states on initial height h0 and
rotation angle θ0 with different polygon shapes and compare them
with the truss-only system in Sec. 3.1.2. As shown in Fig. 9,
initial configurations with different numbers of stable states are
not simply separated by one or two curves, which is the case for
the truss-only system. The (h0, θ0) space is divided into several
pieces and the zero-stiffness case is removed. Besides the change
of mono-stability and bi-stability regions, the magnetostatic interac-
tion also creates unstable structures. The structure becomes unstable
when the potential energy well of the purely elastic Kresling truss
structure is replaced by a saddle point. As n increases from 6 to
10, the unstable region moves in the direction of smaller height
and rotation angle with diminishing area. Additionally, tri-stability
is observed for n= 8 under our current selection of R, k, m2, and
magnet layout.
To better understand the role of n in forming the multi-stability,

we break down the regions of bi-stable and tri-stable cases accord-
ing to the types of minima each structure has. We exclude unstable
and mono-stable systems from our discussion because they do not
possess multiple local minima with distinct energy levels to facili-
tate functions such as energy storage upon deformation-induced
switching. Also, we ignore disjointed scattered multi-stable points
because the desired initial configurations could be inevitably
missed within fabrication error, such as the point near θ0= 0 bound-
ary with (h0, θ0)= (114.97 mm, 1.51 deg) in Fig. 9(a). The multi-
stability decomposition result is shown in Fig. 10. Class 1 and
class 2 minima were defined previously. For small values of n (n
= 4 and 6), we just observe regions of bi-stable structures with
two class 1 minima where trusses are slightly stretched. For n= 8
and 10, class 2 minimum in the (u< 0, φ< 0) quadrant with
heavily stretched truss members comes into the picture. As shown
in Figs. 10(c) and 10(d ), the bi-stable point is made up of either
two class 1 minima or one class 1 minimum and one class 2
minimum. As n increases, the contribution of the rotational period-
icity of magnetostatic energy to creating total potential energy
minima increases because the range of accesible φ values broadens,
and various favorable states are introduced with increasing magnet
pairs. This is evident from the numerous valleys and hills formed
near u=−0.8h0 in the force and torque plots in Figs. 8(a) and
8(b). These valleys and hills become apparent when the two
plates are in close proximity and this is key to generating class 2
local energy minima. Furthermore, for n= 8, the two types of bi-
stable bands intersect with each other thus creating tri-stability in
the intersections. However, those two bands get well separated
when n= 10, thus failing to generate a shared region with three
stable states. In conclusion, the appearance of tri-stability requires
both large enough n to develop class 2 minimum and also the inter-
section of regions with one class 2 minimum and two class 1
minima.
Finally, turning our attention to applications of these multi-stable

systems, we investigated how the design parameters influence the
maximum amount of energy that can be stored, ΔEmax, when
these systems are deformed. The results for parametric sweeps
for initial height h0, rotation angle θ0, and number of edges, n,
are summarized in Fig. 11. ΔEmax is defined as the maximum
value of total potential energy difference (normalized by kh0

2)
between any of the two stable states a structure could rest at
without external force and torque, which amounts to the work
expended in switching between these two states. Unstable and
mono-stable structures cannot store energy, thus have ΔEmax= 0.
We find that for structures with n= 4 and 6, the energy storage
capacity is generally much smaller than those with larger values
of n. This is related to the emergence of the class 2 minimum
with relatively large strain energy resulting from heavily stretched
truss members in structures with n= 8 and 10. The highlighted
regions in Figs. 11(c) and 11(d ) are reminiscent of the bands
with a class 2 minimum in Figs. 10(c) and 10(d ), respectively.
For multi-stable octagon-based (n= 8) magneto-Kresling truss
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systems, the structure with initial configuration (h0, θ0)=
(86.47 mm, 50.75 deg) has the maximum energy storage capacity
ΔEmax= 2.25 (measured in kh0

2), which amounts to an energy
density of 0.297 J/L (see supplemental information note 6 available
in the Supplemental Materials on the ASME Digital Collection). A
deformation path from the linear interpolation between its two
stable states is depicted and animated in the Supplemental
Material on the ASME Digital Collection. Starting from its initial
stable state, a prescribed force and torque quasi-statically compress
and rotate this magneto-Kresling truss structure and finally lock it
at a heavily deformed stable configuration with much higher poten-
tial energy when the force and torque are removed. To put our find-
ings into a broader context, we introduce two scaling factors for the
magneto-Kresling truss structure, the geometry coefficient, Cgeo,
and the strength coefficient, Cstr. Fixing the polygon shape and
magnet arrangement, the system with initial height h0, radius R,
truss stiffness k, and magnet strength m2 would have the same nor-
malized potential energy landscape as the system with initial height
Cgeo·h0, radius Cgeo·R, truss stiffness Cstr·k, and magnet strength
C5
geo · Cstr · m2, indicated by the elastic energy and magnetostatic

energy described in Eqs. (3) and (6), respectively. This scaling
law sheds light on tuning the energy storage capacity and

miniaturizing the truss-and-magnet system without altering the nor-
malized energy landscape.

4 Discussion
We believe that the magneto-Kresling truss structure we estab-

lished offers insights into the development of origami-based meta-
materials. Possible engineering applications may take advantage of
its multi-stability property, which is particularly useful for mechan-
ical switches, energy storage, and harvesting, among other applica-
tions. Compared with the previously proposed magneto-origami
structure, the truss-based design shows the similar behavior in
terms of quantitatively shifting the stable states and changing
energy well depths of the system without magnets. The zero-height
configuration with favorable magnetic interactions was reported as
an additional stable state of the magneto-origami structure in their
numerical calculations. This low-energy configuration also
appears in our magneto-Kresling truss structure when the magnets
in the top layer get close contact with those in the bottom layer
and create strong adhesion, but this state is not counted in our multi-
stability analysis as mentioned previously. The truss system in our

Fig. 9 Multi-stability diagrams showing the number of stable states found numerically for magneto-Kresling truss structures
with different initial configurations (h0, θ0) in the domain of interest (u≥−0.8h0, φmin≤φ≤φmax). Unstable, mono-stable,
bi-stable, and tri-stable regions illustrate cases with zero, one, two, and three stable states, respectively. Diagrams are
made for (a) n=4, (b) n=6, (c) n=8, and (d ) n=10 with R=90 mm, k=26.56 N/m, and m2= 0.785 A2 m4. Nodal magnets
take opposite dipole moment directions as shown in Fig. 3(c).
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design enables coupling the vertical displacement and rotation angle
in a way controlled by the input force and torque thus making it pos-
sible to visit different stable states along various deployment paths
and create a tri-stable structure with an extra stable state not discov-
ered in previous findings. Embedding permanent magnets in the
purely elastic frame to trigger the magneto-elastic coupling
endows the magneto-Kresling truss structure with unprecedented
versatility relative to designs focusing on elastic components
only. Our investigation of the path-dependent multi-stability prop-
erty and highly tunable potential energy landscape partly unravels
the complicated mechanical performance of the magneto-Kresling
truss structure. Further exploration could focus on prototype fabri-
cation and experimental validation, to overcome possible chal-
lenges such as buckling of slender members or other failure
mechanisms [36]. Although the magneto-Kresling truss structure
proposed herein was envisioned for macroscale applications, it
would also be interesting to find its microscale counterparts. It
has been discovered that the α-helical barrel structure of the trans-
membrane domain of the large conductance mechanosensitive ion
channel (MscL) shares similar shape and structural characteristics
with the Kresling origami [61]. Moreover, our idea of using com-
plementary magnetic interactions to create hills and valleys along
the deformation path is also used in tough structural biomaterials

like spider silk, where complementary electrostatic interactions
such as hydrogen bonds in beta-sheets and beta-helices also
exhibit similar energy landscapes [51,52]. Realizing the analogy
between proteins and origami, the origami-inspired structure is a
promising platform for scaling up the mechanisms seen in
proteins.
We note that the focus herein was the static or quasi-static

deformations. The dynamic behavior of the 1D chain and 2D
lattice made up of Kresling truss units has been recently
studied with respect to its low-amplitude wave propagation prop-
erty [9–11]. The chaotic dynamics of a two-unit composite sub-
jected to base excitations can be predicted by the machine
learning technique [62]. The deployment dynamics of a single
bi-stable unit and multiple bi-stable units is demonstrated via
releasing the structure at different heights and recording the
final configurations [55]. However, the unit cell in response to
different dynamic loadings and the effect of the initial configura-
tion still remain largely unexplored due to the complexity from
the multi-stability and strong nonlinearity [26,30,63]. A thorough
study of the dynamic behavior of the truss-only structure and its
extension to the magneto-Kresling truss system could be useful to
prospect these systems for acoustic and mechanical metamaterials
applications.

Fig. 10 Decomposition of the multi-stability diagram in Fig. 9 to classify potential energy minima of multi-stable
magneto-Kresling truss structures. Class 1 and class 2 minimum are defined as the stable state with slightly and heavily
stretched truss members, respectively. Bi-stable structures could have either two class 1 minima or one class 1 minimum
and one class 2 minimum. Tri-stable structures possess two class 1 minima and one class 2 minimum. Diagrams are made
for (a) n=4, (b) n=6, (c) n=8, and (d ) n= 10. (Color version online.)
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5 Conclusions
Kresling truss structure, a derivative of Kresling origami cylin-

der, is a popular unit cell in forming origami-inspired metamater-
ials. Taking inspiration from biological structures found in
proteins, we presented a magneto-elastic system by embedding
nodal magnets in the top and bottom polygons of the Kresling
truss structure with alternate point dipole directions and then exten-
sively investigated its rich patterns of the potential energy landscape
resulting from coupled elastic and magnetostatic energies. We
primarily focused on the multi-stability property of the
magneto-Kresling truss structure and described how design param-
eters such as the initial configuration, polygon shape, and magnet
properties influence the behavior. Unlike the truss-only system
with uniform truss stiffness, the multi-well potential energy
profile of the magneto-Kresling truss structure not only relies on
its geometry but also rests with the relative strength of the constit-
uent truss and magnet. We illustrated that the octagon-based
magneto-Kresling truss structure with nodal magnets could trans-
form the elastic structure from bi-stable to mono-stable, and vice
versa, or produce an unstable structure. The magnetic interaction
could also shift the local minimum energy position and change
the energy well depth. We demonstrated the vertical displacement
and rotation coupling is different for the truss-only and the
truss-and-magnet systems, an aspect that was not explored before
and may explain previously observed discrepancies between
theory and experiments. In our efforts to probe the possibility of
multi-stability in these systems, we emphasized that the quasi-static

transition paths joining different stable states should not be limited
to the commonly studied zero-torque pathway, where only the axial
compression or tension is applied. In particular, we show that a
rotation-controlled loading path without axial forces also exits.
This turns out to be a crucial aspect, as it allows us to detect
initial configurations resulting in three stable states for the
magneto-Kresling truss structure. Specifically, the third stable
state with the highest potential energy among all of the three
local minima can only be reached from other stable states when
an external torque is applied. This tri-stability feature is missing
for the truss-only system. In the end, we show that the magnetostatic
interaction enables the energy storage by converting the zero-strain
stable state of the truss-only structure into either a slightly stressed
or a heavily stressed one. The amount of energy trapped or released
during the switch could be adjusted by various geometry and
strength design parameters. This highly tunable energy storage
capacity intrinsic to our proposed magnet arrangements of the
multi-stable magneto-Kresling truss structure exemplifies potential
advantages of magneto-elastic designs over the traditional purely
elastic Kresling truss structure.
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Fig. 11 Maximum normalized energy ΔEmax that can be stored in magneto-Kresling truss systems with different initial
configurations (h0, θ0). Energy stored amounts to the work expended in snapping between two stable states in the
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with R=90 mm, k=26.56 N/m, and m2=0.785 A2 m4. Nodal magnets take opposite dipole moment directions as
shown in Fig. 3(c).
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Nomenclature
m = magnitude of magnetic dipole moment m
u = vertical displacement of the top polygon in the

deployment
M = saturation magnetization of the magnet
N = number of vertices (or nodes) of each polygon
R = radius of the circumscribed circle of the n-sided regular

polygon
V = number of trusses connecting the top and bottom

polygons
B = structure strain–displacement matrix with size 6N×V
P = nodal force matrix with size 6N× 1
R = rotation matrix with size 3 × 3
a0 = initial length of mountain creases
b0 = initial length of valley creases

emag,ij = magnetostatic energy between magnetic dipole at node i
and magnetic dipole at node j

h0 = initial height of the Kresling or magneto-Kresling truss
structure

kv = stiffness of the vth truss
lv = length of the vth truss
lv0 = initial length of the vth truss
qv = force of the vth truss (entry of Qf)
rij = magnitude of vector rij
tm = height of embedded cylindrical permanent magnets

fmag,ij = magnetic force felt by magnetic dipole at node i from
magnetic dipole at node j

mi = magnetic point dipole moment at node i with size 3 × 1
rij = the vector from node i to node j with size 3 × 1
Br = material residual induction of the magnet

Cgeo = scaling factor for the geometry parameters
Cstr = scaling factor for the strength parameters
Eel = total elastic energy from the truss deformation

Emag = total magnetostatic energy involving all inter-layer
magnet pairs

Etot = total potential energy
Fz = total force along z-axis acting on the top polygon to

equilibrate the structure undergoing deformation (u, φ)
Fi,j = force applied on node i in j-dir (entry of P)
Fz,el = force along z-axis acting on the top polygon in response

to the truss deformation
Fz,mag = force along z-axis acting on the top polygon to resist the

magnetic interactions
Rm = radius of embedded cylindrical permanent magnets
Tz,el = torque about z-axis acting on the top polygon in response

to the truss deformation
Tz,mag = torque about z-axis acting on the top polygon to resist the

magnetic interactions
Tz = total torque about z-axis acting on the top polygon to

equilibrate the structure undergoing deformation (u, φ)
Bv = element strain–displacement matrix for the vth truss with

size 6N×V

Fmag,w = magnetic force felt by magnetic dipole at node w
Qf = element force matrix with size V× 1
Uf = nodal position matrix with size 2N × 3

Vol = volume of the magnet
ΔEmax = maximum energy (normalized by kh0

2) can be stored in a
magneto-Kresling truss structure

ΔU = nodal displacement matrix with size 2N× 3
θ = relative rotation angle offset by the top and bottom

polygons
θ0 = initial relative rotation angle offset by the top and bottom

polygons
μ0 = permeability of vacuum
φ = rotation angle of the top polygon in the deployment

φmax = maximum rotation angle of the top polygon due to the
intersection of valley creases

φmin = minimum rotation angle of the top polygon due to the
intersection of mountain creases
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Supplemental Information: Multi-stability Property of Magneto-834 

Kresling Truss Structure 835 

 836 

Xinyan Yang1 , Sinan Keten1, 2 837 

1 Department of Civil & Environmental Engineering,  838 

Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. 839 

2 Department of Mechanical Engineering, 840 
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 842 

NOTE 1. SELECTION OF PROPER MAGNETIC MOMENT MAGNITUDE TO CREATE 843 

TRI-STABLE STRUCTURES 844 

The number of stable states of a magneto-Kresling truss structure is determined by the initial height h0, radius 845 

R, initial rotation angle θ0, truss stiffness k, magnetic moment magnitude m and magnet arrangement. It is 846 

computationally expensive to study all (h0, R, θ0, k, m, magnet arrangement) combinations. Therefore, we 847 

first fixed R = 90 mm, k = 26.56 N/m and took the magnet layout shown in Fig. 3 (c), then explored how the 848 

potential energy minima changes with increasing m2 for several combinations of (h0, θ0). Studied initial 849 

heights h0 include 80 mm, 110 mm and 140 mm. Initial rotation angle θ0 ranges from 0º to 100º at a spacing 850 

of 10º. Magnet strength m2 increases from 0 to 2.0 A2⋅m4 linearly. The deformation domain (u, φ) was divided 851 

into five subdomains based on directions of the vertical displacement and rotation, i.e., four quadrants and 852 

the zone near the origin. The thresholds for u and φ to distinguish the origin zone and the other four quadrants 853 

were set such that the number of stable states detected in each subdomain is no more than one, in case the 854 

plot cannot show all of the local minima. We find for n = 4 and 6, the maximum number of stable states is 855 

two without any stable configuration falling in the high-energy contracted clockwise (u < 0, φ < 0) or 856 

expanded anti-clockwise (u > 0, φ > 0) quadrant. As n increases to 8, potential energy minima in the (u < 0, 857 

φ < 0) quadrant were found. We notice minima in high-energy contacted clockwise quadrant (magenta block) 858 

and minima in low-energy contracted anti-clockwise quadrant (blue block) exchange their relative positions 859 

with respect to m2 for θ0 = 20º and 30º at fixed height h0 = 110º as illustrated in Supplemental Figure 1 (a) 860 
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and (b), respectively. We expect as θ0 goes from 20º to 30º, the two blocks would appear at the same m2 at 861 

some point thus creating a tri-stable structure. This is validated in SupplementalMovie1. We finally set m2 to 862 

0.785 A2⋅m4, which results in a tri-stable structure with initial configuration near (h0, θ0) = (110 mm, 24º). 863 

Note the selection of m2 is flexible, for example, we find other choices of m2 can trigger tri-stability near (h0, 864 

θ0) = (80 mm, 24º), as shown in Supplemental Figure 2. For n = 10, potential energy minima with a relatively 865 

high strain energy are detected, but they do not co-exist with two additional minima. Thus, we do not observe 866 

tri-stability for n = 10 in the limited combinations of (h0, θ0) we have studied. 867 

 868 

NOTE 2. MULTI-STABILITY DIAGRAMS OF MAGNETO-KRESLING TRUSS 869 

STRUCTURES WITH A DIFFERENT ALTERNATE NODAL MAGNET 870 

ARRANGEMENT BY FLIPPING TOP-LAYER DIPOLES871 

Supplemental Figure 3 shows multi-stability diagrams of the magneto-Kresling truss structure with a 872 

different alternate nodal magnet arrangement, where all top-layer magnetic dipoles in Fig. 3 (c) are flipped. 873 

Magnets centered at node 1, 3, 5, 7, 9, 11, 13 and 15 have the same dipole moment along the [0, 0, 1] 874 

direction, while at node 2, 4, 6, 8, 10, 12, 14 and 16, magnetic dipoles are along the [0, 0, -1] direction. 875 

For this layout, only mono-stable and bi-stable configurations are detected for n = 4 and 6, without any 876 

unstable regions. An obvious shift of the initial geometry giving one or two stable states is observed 877 

compared with the alternate arrangement discussed in the main text. We also find flipping the top-layer 878 

magnets removes all tri-stable octagon-based (n = 8) magneto-Kresling truss structures but triggers the 879 

tri-stability for n = 10 in the orange intersection zone between two yellow bands at large h0 in 880 

Supplemental Figure 3 (d). Considering the fact revealed in Fig. 9 that the original alternate arrangement 881 

only creates tri-stable systems for n = 8, this interesting phenomenon provides us with the possibility of 882 

exclusively developing the tri-stability in magneto-Kresling truss structures with a desired polygon shape 883 

via varying nodal magnet arrangements.   884 

 885 
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NOTE 3. MULTI-STABILITY DIAGRAMS OF MAGNETO-KRESLING TRUSS 886 

STRUCTURES WITH TOP AND BOTTOM MAGNETS ARRANGED IN A PURELY 887 

ATTRACTIVE PATTERN 888 

With R = 90 mm, m2 = 0.785 A2⋅m4 and k = 26.56 N/m, multi-stability diagrams with nodal magnets all 889 

pointing upwards and thereby creating a pure attraction between the two plates are shown in Supplemental 890 

Figure 4. For n = 4, only mono-stable and bi-stable structures are found. Compared with the truss-only 891 

systems, the magnetostatic interaction changes the dependence of number of potential energy minima on 892 

initial configuration (h0, θ0). As n increases from 6 to 10, unstable regions grow and the number of bi-stable 893 

structures diminishes. Also detected are some tri-stable structures near θ0 = 0. If nodal magnets are arranged 894 

in the attractive or repulsive pattern, magneto-Kresling truss structures with zero initial rotation angle are 895 

rotationally symmetric. Once a second stable state appears in the anti-clockwise folded shape, there must be 896 

a third one in the clockwise region with the same vertical displacement and energy. Thus,  θ0 = 0 structures 897 

are always mono-stable or tri-stable. 898 

 899 

NOTE 4. MULTI-STABILITY DIAGRAMS OF MAGNETO-KRESLING TRUSS 900 

STRUCTURES WITH TOP AND BOTTOM MAGNETS ARRANGED IN A PURELY 901 

REPULSIVE PATTERN 902 

If the magnetic dipoles on the bottom layer are all along [0, 0, -1] direction, while top-layer ones are along 903 

[0, 0, 1] direction, there would be a purely repulsive magnetic force between the two plates. Supplemental 904 

Figure 5 shows the multi-stability diagram for this case, again with R = 90 mm, m2 = 0.785 A2⋅m4 and k = 905 

26.56 N/m. Unlike the attractive layout in NOTE 2, unstable structures only appear when n = 4 with purely 906 

repulsive interactions. For n = 6, 8 and 10, two bi-stable bands (shade of yellow) in the figure intersect with 907 

each other and generate tri-stability (shade of orange) in the shared region extending from θ0 = 0 to higher θ0 908 

configurations. The number of tri-stable cases increases with n. Examining Supplementary Figure 3, 4, 5 and 909 

Fig. 9 in the main text, it is evident that the purely repulsive arrangement of the magnets yields the broadest 910 

tri-stable region for each value of n, compared to purely attractive or alternating magnet arrangements.  911 

 912 
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NOTE 5. DAMPED FREE VIBRATION TESTS OF A TRI-STABLE MAGNETO-913 

KRESLING TRUSS STRUCTURE 914 

To show states S0(0.00011h0, 0.073º), S1(-0.68h0, 50.78º), and S2(-0.79h0, -124.49º) we detected for the 915 

magneto-Kresling truss structure with (h0, θ0) = (107.80 mm, 29.66º) in section 3.2.2 are stable states the 916 

structure can rest at under a small perturbation when there is no external force applied, we performed 917 

numerical integrations using the Fourth Order Runge-Kutta method to simulate the dynamic response after 918 

releasing the structure at a position very close to the stable state with zero initial velocity. The equations of 919 

motion for this 2-DOF system are, 920 

𝑚�̈� + 𝑐<�̇� + 𝐹&(𝑢,φ) = 𝐹=4>75?% (A1) 

𝛪φ̈+ 𝑐φφ̇+ 𝑇&(𝑢,φ) = 0 (A2) 

where m is the mass of the top plate, m = 120 g. I is its moment of inertia, I = mR2. Fz (u, φ) and Tz (u, φ) are 921 

the total resistance force along z-axis and torque about z-axis of the system undergoing deformation (u, φ) at 922 

time t, respectively, which were defined in section 2.2. Damping coefficient cu was set to 1.85 N/(m/s) such 923 

that the damping ratio for the first mode (calculated at S0) is 0.4. cφ was set to cu⋅R2. We selected a large 924 

damping ratio for the purpose of obtaining a stable system in a short period of time. To bound the response 925 

in the domain of our interest, we introduced a penalty function Fpenalty to the RHS of Eqn. (A1) and assumed 926 

perfect elastic collision at steric barrier u = -0.8h0. The penalty function has the form, 927 

𝐹=4>75?% = u
−𝑘=(𝑢 + 0.8ℎ,),			𝑢 ≤ −0.8ℎ,
															0,														𝑢 > −0.8ℎ,

 928 

This penalty function can be considered as a soft repulsion between the two plates, modeled by a one-sided 929 

harmonic potential with stiffness kp = 5 kN/m. The structure was released at 10 mm above and 5º (anti-930 

clockwise) away from each stable state. The displacement time histories and the trajectories of the dynamic 931 

responses are shown in the left and right panels of Supplemental Figure 6, respectively. The time step was 932 

0.001s. In 5-s time integration, all systems ended up in the target states. 933 

 934 
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NOTE 6. LINEAR CONFORMATIONAL CHANGE PATHWAY FOR A SPECIFIC 935 

OCTAGON-BASED MAGNETO-KRESLING TRUSS STRUCTURE TO REALIZE 936 

ENERGY STORAGE937 

With n = 8, R = 90 mm, m2 = 0.785 A2⋅m4, k = 26.56 N/m and alternate magnet layout in Fig. 3 (c), we find 938 

the structure with initial configuration (h0, θ0) = (86.47 mm, 50.75º) has the maximum normalized energy 939 

storage capacity of ΔEmax = 2.25. Supplemental Figure 7 depicts a pathway from the stable state S0 (u, φ) = 940 

(-0.077h0, 5.67º) near the origin to the second stable state S1(-0.76h0, -141.60º) with relatively high potential 941 

energy on its axial force, torque and energy landscape using white dashed lines. It is the shortest path 942 

generated from linear interpolation between the two states. With prescribed axial force and torque applied to 943 

the top polygon, the structure overcomes an energy barrier of height 4.53 then reaches S1 with 2.25 944 

normalized energy locked at that state as shown in Supplemental Figure 8. SupplementalMovie4 is the 945 

animation of this quasi-static loading process with transient input axial force and torque marked on the left. 946 

We define the energy density as the energy change normalized by the volume change of the magneto-Kresling 947 

truss cylinder when it switches from the first to the second stable state. Thus,  948 

Energy density = 
z{|}~Ä
zÅÇÉÑÖ}

= Ü.Üá×à×â*+

äã+×(â,-åâ,*)
 = 0.297 J/L. 949 

 950 

 951 

  952 
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SUPPLEMENTAL FIGURES 953 

 954 

 955 
Supplemental Figure 1: Changes in the number and region of stable states with increasing magnetic strength m2 956 

for an octagon-based (n = 8) magneto-Kresling truss structure with (a) (h0, θ0) = (110 mm, 20º) and (b) (h0, θ0) = 957 

(110 mm, 30º). Colors show the normalized total potential energy at each stable state. n = 8, R = 90 mm, k = 26.56 958 

N/m and nodal magnets take opposite dipole moment directions as shown in Fig. 3 (c). 959 

  960 
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 961 

 962 

Supplemental Figure 2: Changes in the number and region of stable states with increasing magnetic strength m2 963 

for an octagon-based (n = 8) magneto-Kresling truss structure with (h0, θ0) = (80 mm, 60º). Colors show the 964 

normalized total potential energy at each stable state. n = 8, R = 90 mm, k = 26.56 N/m and nodal magnets take 965 

opposite dipole moment directions as shown in Fig. 3 (c). 966 
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 967 

Supplemental Figure 3: Multi-stability diagrams showing the number of stable states found numerically for 968 

magneto-Kresling truss structures with different initial configurations (h0, θ0) in the domain of interest (u ≥ -0.8h0, 969 

φmin ≤ φ ≤ φmax). Unstable, mono-stable, bi-stable and tri-stable regions illustrate cases with zero, one, two and 970 

three stable states, respectively. Diagrams are made for (a) n = 4, (b) n = 6, (c) n = 8 and (d) n = 10 with R = 90 971 

mm, m2 = 0.785 A2⋅m4 and k = 26.56 N/m. Nodal magnets take an alternate arrangement with all magnetic dipoles 972 

in the top layer in Fig. 3 (c) flipped. 973 

  974 
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 975 

Supplemental Figure 4: Multi-stability diagrams showing the number of stable states found numerically for 976 

magneto-Kresling truss structures with different initial configurations (h0, θ0) in the domain of interest (u ≥ -0.8h0, 977 

φmin ≤ φ ≤ φmax). Unstable, mono-stable, bi-stable and tri-stable regions illustrate cases with zero, one, two and 978 

three stable states, respectively. Diagrams are made for (a) n = 4, (b) n = 6, (c) n = 8 and (d) n = 10 with R = 90 979 

mm, m2 = 0.785 A2⋅m4 and k = 26.56 N/m. Nodal magnets take the attractive arrangement, i.e., all magnets point 980 

upwards. 981 

 982 

 983 

 984 
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 985 

Supplemental Figure 5: Multi-stability diagrams showing the number of stable states found numerically for 986 

magneto-Kresling truss structures with different initial configurations (h0, θ0) in the domain of interest (u ≥ -0.8h0, 987 

φmin ≤ φ ≤ φmax). Unstable, mono-stable, bi-stable and tri-stable regions illustrate cases with zero, one, two and 988 

three stable states, respectively. Diagrams are made for (a) n = 4, (b) n = 6, (c) n = 8 and (d) n = 10 with R = 90 989 

mm, m2 = 0.785 A2⋅m4 and k = 26.56 N/m. Nodal magnets take the repulsive arrangement, i.e., magnets on the top 990 

layer and bottom layer point upwards and downwards, respectively. 991 

 992 

 993 

 994 
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Supplemental Figure 6: Left: Displacement time histories of the system released from 10 mm above and 5º (anti-996 

clockwise) away from stable state S0, S1 and S2 are shown with solid lines in red, blue and green, respectively. 997 

The dashed lines with the same colors show the corresponding stable state positions. The black dotted line marks 998 

the position of assumed steric barrier at u = -0.8h0. Right: Trajectοries of the three damped systems undergoing 999 

free vibration in the (u, φ) space. Color evolves with simulation time. Crosses with the same color scheme as the 1000 

left panel show the starting positions for the three trajectories.  1001 
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 1003 

 1004 

Supplemental Figure 7: (a) Force Fz, (b) torque Tz applied on the top polygon, (c) normalized total potential energy 1005 

E in (u, φ) space for the octagon-based bi-stable magneto-Kresling truss structure with initial configuration (h0, 1006 

θ0) = (86.47 mm, 50.75º). The dashed white line depicts the transition path from stable state S0 to S1 by linear 1007 

interpolation. Only the sign of the force and torque is shown in panel (a) and (b) to highlight locations with zero 1008 

force and zero torque, respectively. Stable states are marked by white crosses. R = 90 mm, k = 26.56 N/m and m2 1009 

= 0.785 A2⋅m4. Nodal magnets take opposite dipole moment directions as shown in Fig. 3 (c). 1010 

  1011 
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 1012 

 1013 

Supplemental Figure 8: Change of the normalized potential energy with the vertical displacement in the switch 1014 

from S0 to S1 along the linear path shown in Supplemental Figure 7. 1015 
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