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Abstract
In experiments on behavioral adaptation, hundreds or even thousands of trials per subject are often required in order to accurately
recover the many psychometric functions that characterize adaptation’s time course. More efficient methods for measuring
perceptual changes over time would be beneficial to such efforts. In this article, we propose two methods to adaptively select
the optimal stimuli sequentially in an experiment on adaptation: These are the minimum entropy (ME) method and the match
probability (MP) method. The ME method minimizes the uncertainty about the joint posterior distribution of the function
parameters at each trial and is mathematically equivalent to Zhao, Lesmes, and Lu’s (2019) method, which efficiently measures
time courses of perceptual change by maximizing information gain. The MP method selects the next stimulus that makes the
value of the psychometric function closest to .5—that is, where the probability of choosing either one of the two options for each
stimulus is closest to .5. We extended Zhao et al.’s (2019) work by evaluating the ME method in a new domain (contrast
adaptation) with two simulation studies that compared it to MP and two other methods (i.e., traditional staircase and random
methods), and also explored the optimal block length. ME outperformed the other three methods in general, and using fewer
longer blocks generally produced better parameter recovery than using more shorter blocks.
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The properties of most biological systems, including human
vision, change over time. Many such changes are functionally
significant and take place on a reasonably rapid timescale—
seconds to minutes—that enable them to be studied in the
laboratory. Visual adaptation consists of a number of process-
es acting over this timescale to help the visual system optimize
its performance within a given environment (e.g., Clifford &
Rhodes, 2005). Examples include dark adaptation (e.g., Pugh,
Nikonov, & Lamb, 1999), the development of color afterim-
ages (e.g., Zaidi, Ennis, Cao, & Lee, 2012), and the well-
studied phenomenon of contrast adaptation (e.g., Clifford
et al., 2007). In this latter form of adaptation, visual neurons
reduce their responsiveness following exposure to their pre-
ferred stimuli, which are typically patterns of high and low
luminance, characterized by their ratio, or contrast. Behavioral

measures of perceptual sensitivity and bias show correspond-
ing changes over time, as documented in a long history of
psychophysical experiments.

Whereas many experiments simply measure effects or af-
tereffects of adaptation, others focus on measuring the time
course of the adaptive changes (e.g., Mei, Dong, & Bao, 2017;
Patterson, Wissig, & Kohn, 2013; Pavan, Marotti, &
Campana, 2012). For example, it can be important to charac-
terize the conditions under which adaptation is faster or
slower, or whether certain individuals adapt more slowly or
rapidly. The main challenge to studying the time course of
visual adaptation is that experiments generally take a long
time; repeated observations are required over a large portion
of the time course, which itself can run many minutes. Hence,
efficient methods to measure changes over time may be par-
ticularly valuable in this case.

In a typical psychophysical experiment on adaptation, one
measures perception as a function of small changes in a test
stimulus (a psychometric function), and observes how param-
eters of this function change over time. Stimuli are presented
and responses are made in discrete events called “trials.” In
between trials, observers are exposed to an environment
intended to cause changes in perception and the corresponding
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psychometric function. In contrast adaptation, this adapting
environment is typically a high contrast pattern of stripes
(called a grating) and the test stimulus is another grating
whose properties vary under experimental control. The main
property of the test that is varied corresponds to the x axis of
the psychometric function, and it usually controls task
difficulty—for example the intensity or contrast of the grating.
Fifty to a hundred of trials are often required to estimate the
desired parameters of the psychometric function with reason-
able precision. Multiplying this by the number of time points
required to trace out the time course of adaptation can cause
experiments to take thousands of trials per subject. Here, we
study two newly developed methods for efficiently measuring
the time course of changes in perception.

In the 1970s, a Bayesian adaptive psychometric method
called QUEST (Watson & Pelli, 1983) was developed to effi-
ciently estimate psychometric functions, by placing each trial
at the current most probable estimate of key parameters. A
simpler, earlier technique is the staircase procedure that does
not assume a functional form for the psychometric function
(Cornsweet, 1962; Levitt, 1971). A one-up, one-down stair-
case reduces the stimulus level when the subject’s response is
positive and increases the stimulus level when the response is
negative. Although these earlier approaches are capable of
recovering parameters of a single psychometric function, the
method was recently extended to allow simultaneous efficient
estimation of many functions: The quick contrast sensitivity
function (CSF) method (Lesmes, Lu, Baek, & Albright, 2010)
simultaneously recovers parameters for a family of psycho-
metric curves that vary with the spatial frequency (bar width)
of the grating. The family of curves is called the contrast
sensitivity function, which is a useful measure of visual per-
formance in normal and disease states, and it has a character-
istic functional form (shape). The quick CSF method gains its
efficiency by estimating parameters of this functional form
rather than estimating parameters of individual psychometric
curves directly.

In this study, we propose two similar approaches to effi-
ciently estimate the family of psychometric functions that
specify the time course of adaptive changes. First, we use a
minimum entropy method to adaptively select optimal stimuli
to quickly and accurately recover the time course of adapta-
tion for each subject. This method is inherited from the psy-
chometrics literature onmultidimensional computerized adap-
tive testing (MCAT), which in turn was heavily influenced by
the advances in statistics and information science (Wang &
Chang, 2011). Second, we adopt another commonly used
multivariate adaptive method in CAT, namely the match prob-
ability method, due to its simplicity and efficiency.
Specifically, this method selects the next stimulus such that
the value of psychometric function (i.e., probability of yes/no
judgment or correct/wrong response) is closest to .5. Both
these methods are called multivariate adaptive methods

because multiple target parameters of interest are updated dur-
ing the course of experiment, and all different parameters need
to be recovered precisely.

Given that the time course of visual adaption, like the con-
trast sensitivity function, has a typical form that is character-
ized by a few parameters (asymptote, height, and rate), the
primary goal of our methods is to estimate these key parame-
ters. Take the minimum entropy method as an example, this
method minimizes uncertainty (entropy) about the joint pos-
terior distribution of the key parameters at each trial; this al-
lows it to rapidly shrink the uncertainty with respect to the
entire joint distribution of the unknown parameters. We use
a Bayesian approach that takes into account all the observed
information from preceding trials to update the joint posterior
distribution trial by trial, which increases efficiency. At the
end of the experiment, an expected a posterior (EAP) estimate
is computed to get the point estimates of the key parameters,
resulting in an estimated visual adaption curve.

The idea of using adaptive stimulus selection and a func-
tional form to recover the time course of changes in perception
is not new. The approach first appeared in an abstract (Zhao,
Lesmes, & Lu, 2017) and more recently in a complete article
from the same group (Zhao, Lesmes, & Lu, 2019). Their
method selects stimuli that maximize the information gain in
the next trial, and has been applied to characterize perceptual
sensitivity changes that result from large changes in light lev-
el, a process called dark adaptation. Mathematically, maximiz-
ing the information gain is equivalent to minimizing the en-
tropy of the joint posterior distribution, which makes our pro-
posed minimum entropy method formally very close to this
past work.

Here we build upon the work of Zhao, Lesmes, and Lu
(2019), to carefully evaluate the performance of the min-
imum entropy approach and compare it to the match prob-
ability method and other methods. We do this in two sim-
ulation studies, which also shed light on how optimal
designs vary as a function of the specific shape of the
adaptation time course that is being estimated. In particu-
lar, we extend the minimum entropy method from the
domain of light adaptation to the domain of contrast ad-
aptation, which has a differently shaped psychometric
function than that explored in the previous work. We pro-
vide a different and simplified computational framework
in which the optimal stimuli are determined. In addition,
we consider the easy-to-implement match probability
method as a fast alternative and evaluate its performance
in the domain of contrast adaptation.

The rest of the article is organized as follows. We first
introduce the psychometric functions used in the study,
followed by the Bayesian parameter estimation method (i.e.,
EAP) and the adaptive selection of stimulus. Then we present
two comprehensive simulation studies with detailed designs
and results. A discussion is given in the end.
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Method

Psychometric models

The work here will involve simulated experiments on a form
of contrast adaptation called the tilt aftereffect: Viewing one
grating causes another grating to appear tilted away from it. In
experiments on the tilt aftereffect, observers are generally
asked to indicate whether a test grating appears tilted to the
left or to the right of some standard, and a psychometric func-
tion is formed by computing the percentage of responses in
one direction as a function of the orientation of the test. The
location on the curve that passes through the 50% point is
where the test grating appears the same as the standard, and
is referred to as the “point of subjective equality.” In between
test trials, an adapting grating is shown, and the point of sub-
jective equality evolves over time. The experiments below
simulate effects of a vertical adapting grating on a 45-deg test
grating, conditions that match experiments run in one of the
author’s labs.

The basic task is a yes/no (or two-alternative) judgment,
given at different time points. At each time point, the proba-
bility of choosing “yes” follows the logistic form as follows,

P Y ¼ 1ð Þ ¼ γ þ 1−γ−λð Þ 1

1þ e−β x−α tð Þð Þ ð1Þ

where

α tð Þ ¼ a−be−ct ð2Þ

In Eq. 1, “x” denotes the feature of the stimulus that is
manipulated during the experiment. In the present context,
“x” represents the orientation of a patch of bars. For a fixed
t, Eq. 1 results in an S-shape logistic curve, where β denotes
the slope, γ and λ are the “guessing rates” that shift the as-
ymptotes of the function for small and large values of x. γ can
be considered as the lower asymptote whereas 1 − λ is the
upper asymptote. α(t) is the threshold, also known as the
“point of subjective equality,” which varies as a function of
time t.

The key goal of the experiment is to estimate α(t) as a
function of time points based on subjects’ binary responses
on repeated trials. The trials are grouped into different blocks,
each block lasts 1 or 2 min, and within a block, the value of t
varies from 1 to 60 or 120 with a step size of 3 s (i.e., one trial
will be done at a fixed rate every 3 s). It is assumed that there
are J repeated blocks and T discrete time points (i.e., the

number of trials) within a block. Figure 1 provides an illustra-
tion of the experimental design.

The target function in Eq. 2 takes the exponential form,
where a is the asymptote, b controls its height, and c is the
rate of growth or decay. For this study, we will only consider
the blocks of adaptation where b is positive, but the same
methods could easily be extended to the scenario where “b”
is negative.

In experimental design, we can only vary x, and for the
present example we will consider effects of adaptation on a
diagonal (45-deg) grating, causing x to vary between 41 and
55. For simplicity, we assume γ = λ, and assume b is positive
for now. Given the observed responses (binary), the goal is to
find appropriate x for each value of t (t = 1, 2, . . . , T) to
maximize the estimation precision of person parameters θ =
(a, b, c, β, λ). We later fixed β and λ to be known because
otherwise, the number of trials will be much larger to properly
recover a five-dimensional θ.

Update of α(t): Expected a posteriori (EAP)

The EAP is a Bayesian estimator that finds the posteriormean
as the point estimate of the target parameter. As compared to
maximum likelihood estimator (MLE), EAP takes advantage
of the prior information on the parameters of interest, and
hence it usually yields smaller standard errors than MLE. As
compared to maximum a posteriori (MAP) that finds the pos-
terior mode, EAP is relatively more stable (Wang, 2015).
Moreover, because EAP uses the information from the entire
posterior distribution rather than just its mode, EAP is some-
times more efficient thanMAP. In behavior research, the EAP,
although not explicitly called this name, has been used by
Zhao et al. (2019).

To compute EAP, for a given subject i, the likelihood func-
tion for (ai, bi, ci) can be expressed as

Li yð Þ ¼ ∏ J
j¼1∏

T
t¼1P αi tð Þ;β;λð Þyi; j tð Þ 1−P αi tð Þ;β;λð Þð Þ1−yi; j tð Þ

ð3Þ

where P(αi(t), β, λ) takes the form in Eq. 1; y denotes the
response vector of subject i to the J × T stimuli, and yi, j(t) = 1 if
subject i chooses “yes” at time point t within the jth block and
yi, j(t) = 0 otherwise. Then the EAP estimates of (ai, bi, ci) is

â
EAP

i ¼
∫a ∬Li yð Þπ a; b; cð Þdbdc
h i

da

∭Li yð Þπ a; b; cð Þdadbdc
; ð4Þ

Fig. 1 An illustration of the experimental design.
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b̂
EAP

i ¼
∫b ∬Li yð Þπ a; b; cð Þdadc
h i

db

∭Li yð Þπ a; b; cð Þdadbdc
; ð5Þ

ĉ
EAP

i ¼
∫c ∬Li yð Þπ a; b; cð Þdadb
h i

dc

∭Li yð Þπ a; b; cð Þdadbdc
: ð6Þ

The multiple integrations in Eqs. 4–6 could be done nu-
merically via Monte Carlo integration (e.g., Chen, Wang, Xin,
& Chang, 2017; Tuerlinckx, Rijmen, Verbeke, & De Boeck,
2006; Wang, 2015). Take (4) as an example, sample M data
points (a(m), b(m), c(m)) (m = 1, 2, . . . ,M) from their joint prior

distribution π(a, b, c), then âEAPi ≈ ∑M
m¼1a

mð ÞLi yja mð Þ;b mð Þ;c mð Þð Þ
∑M
m¼1Li yja mð Þ;b mð Þ;c mð Þð Þ ;

the standard error of âEAPi can be computed as

SE âEAPi

� � ¼ ∫ a−âEAPið Þ2 ∬Li yð Þπ a;b;cð Þdbdc½ �da
∭Li yð Þπ a;b;cð Þdadbdc Þ

1=2

≈ ∑M
m¼1 a mð Þ−âEAPið Þ2Li yja mð Þ;b mð Þ;c mð Þð Þ

∑M
m¼1Li yja mð Þ;b mð Þ;c mð Þð Þ

� �1=2
 

.

Efficient matrix programming is implemented in MATLAB,
which makes the computation extremely fast. Details on how
to sample data points (a(m), b(m), c(m)) from π(a, b, c) will be
introduced in the Simulations Studies section.

In addition to the point estimate ofα(t) [i.e., α̂ tð Þ ], wemust
also report the standard error of α̂ tð Þ and the 95% confidence
band of α̂ tð Þ to quantify the uncertainty around the point es-

timates. Because α̂ tð Þ ¼ âEAP−b̂
EAP

e−ĉ
EAPt (the superscript

EAP is dropped hereafter) and it is assumed a, b and c are
independent, according to the delta method,

var α̂ tð Þ
� �

¼ 1 −e−ĉt tb̂e−ĉt
� � var â

� �
0 0

0 var b̂
� �

0

0 0 var ĉ
� �

0
BBB@

1
CCCA

1 −e−ĉt tb̂e−ĉt
� �T

¼ var â
� �

þ e−ĉt
� �2

var b̂
� �

þ tb̂e−ĉt
� �2

var ĉ
� �

:

On this basis, the 95% confidence interval of α̂ tð Þ can be
expressed as:

α̂ tð Þ−1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var α̂ tð Þ
� �r

; α̂ tð Þ þ 1:96�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var α̂ tð Þ
� �r� �

:

Adaptive designs

The main purpose of adaptive design is to select stimuli
that can provide maximal information to quickly recover
each subject’s α(t), or in other words, (a, b, c). Several
adaptive procedures in psychophysical research have
been proposed, and in a review by Leek (2001), he
grouped the methods into three general categories de-
fined by their systems for placing trials along a stimulus

array as well as the estimation procedure. They are (1)
parameter estimation by sequential testing (PEST), which
is an algorithm for threshold searching that changes both
step sizes and direction across a set of trials (Hall, 1981),
(2) maximum likelihood procedures, and (3) staircase
procedures. Most recently, Lesmes et al. (2015) proposed
Bayesian adaptive estimation of CSF based on the idea
of minimizing the expected entropy (e.g., Cobo-Lewis,
1996; Kujala & Lukka, 2006). Similar to Lesmes et al.
(2015), the same Bayesian method will be adopted here,
but the target function is not CSF but rather the time-
series of perceptual adaptation function in Eq. 2.

Not that in addition to psychophysical research, adaptive
design has also been used for cognitive modeling and
psychometrics research. In the former context, Cavagnaro
et al. (2010) studied a mutual information based approach to
model discrimination in cognitive science (Cavagnaro,
Myung, Pitt, & Kujala, 2010; Cavagnaro, Pitt, & Myung,
2011; Myung, Cavagnaro, & Pitt, 2013). In the latter context,
the continuous entropy method (Wang & Chang, 2011) was
studied in multidimensional adaptive achievement tests.

Minimum entropy (ME) method Shannon entropy measures
the uncertainty inherent in the distribution of a random vari-
able (Shannon, 1948). When the random variable follows a
continuous distribution, Shannon entropy becomes continu-
ous entropy. In Bayesian framework, each target parameter
is considered as a random variable, hence the uncertainty of
the parameter (or parameter vector) is quantified by the entro-
py of its posterior density.

During adaptive stimulus selection, to maximize the esti-
mation precision of the target parameters, the next adminis-
tered stimulus should be the one that can minimize the uncer-
tainty of the parameter estimates. This is the principle idea of
the ME method, which intends to select the next stimulus to
minimize the expected entropy (and hence uncertainty) of the
posterior density of the target parameters. The ME method is
specifically described as follows. Denote the posterior distri-
bution of (a, b, c) after (k–1) trials as

p a; b; cjyk−1� � ¼ L yk−1ja;b;cð Þπ a;b;cð Þ
∭L yk−1ja;b;cð Þπ a;b;cð Þdadbdc, then the corre-

sponding posterior continuous entropy becomes

H p a; b; cjyk−1� �� �
¼ ∫p a; b; cjyk−1� �

log
1

p a; b; cjyk−1ð Þ
� �

d a; b; cð Þ ð7Þ

where a three-dimensional integration is taken over the
distribution of (a, b, c).

Then, the predicted (or expected) posterior continuous en-
tropy after administering the kth stimulus is,
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Ek H p a; b; cjyk−1; yk� �� �	 

¼ ∑1

y¼0 H p a; b; cjyk−1; yk ¼ y
� �� �	 


P yk ¼ yjyk−1� �	 

¼ ∑1

y¼0 ∫p a; b; cjyk−1; yk ¼ y
� �

log
1

p a; b; cjyk−1; yk ¼ yð Þ
� �

d a; b; cð Þ
� �

� ∫P yk ¼ yja; b; c� �
p a; b; cjyk−1� �

d
�
a; b; c

�h i

ð8Þ

Hence, the next stimulus to be selected is the one with
orientation that can minimize Eq. 8 (i.e., Ek[H(p(a, b, c| y

k −

1, yk))]). In brief, the adaptive design intends to effectively
stimulate the next trial that is most informative for the subject,
and it helps avoid large regions of the stimulus space that are
less likely to be useful to the experiment. The detailed steps
and simplified strategies for the calculation of the MEmethod
are provided in Appendix A.

Match probability (MP) method The MP method selects the
next stimulus (i.e., the kth stimulus) that makes the probability
of yes/no judgement (i.e., Eq. 1) closest to .5. More formally,
this method selects the stimulus with orientation (x) that min-
imizes the following formula:

γ þ 1−γ−λð Þ 1

1þ e−β x−α tð Þð Þ


 �
� 0:5

����
���� ð9Þ

where α(t) are evaluated at â; b̂; ĉ
� �

in practice, and â, b̂,
and ĉ refer to the current estimates, which are obtained on the
basis of the subject’s responses on the previous k–1 stimuli.
Thus, the performance ofMPwill be affected by the closeness
of α̂ tð Þ to α(t), especially in the initial stage of the experiment.
Because there is no response history yet when selecting the
first stimulus, the MP method randomly selects the first stim-
ulus from the set of stimuli with medium-sized orientations
(e.g., x’ = 47:0.25:49 if the entire orientation space is x =
41:0.25:55)1 as in the ME method.

Note that under the assumption of γ = λ, the MP method is
equivalent to selecting the stimulus with the orientation (x)
closest to α(t) (i.e., formula [9] reduces to |x −α(t)|), which
is very similar to the “match-b” (b stands for item difficulty)
item selection criterion in CAT (Chang & Ying, 1999; Cheng,
2008). The MP method also bears close resemblance to the
QUEST method in which the next trial is placed at the current
most probable estimate of parameters (Watson & Pelli, 1983).

One-up, one-down staircase (UD) method We compare the
Bayesian approach and MP method to a relatively simple
adaptive method, the one-up, one-down staircase (UD), which
proceeds with two steps: (1) in the first block, T stimuli are
sequentially selected for each subject via the simple random
sampling with replacement (i.e., random method) from the

range of x = 41:0.25:55. (2) For the subsequent repeated
blocks, the selection of the stimulus assigned to the current
subject at time point t solely depends upon his/her response to
the stimulus presented to him/her at the same time point within
the previous block. That is, if subject i chooses “yes” at time
point t within the jth block (i.e., yi, j(t) = 1), the stimulus
assigned to him/her at time point t within the (j+1)th block
will be more “difficult”2 (e.g., xi, j(t + 1) = xi, j(t) − 0.25, if xi,
j(t) > 41, and xi, j(t + 1) = xi, j(t) otherwise); otherwise, the stimu-
lus will be “easier” (e.g., xi, j(t + 1) = xi, j(t) + 0.25 if xi, j(t) < 55,
and xi, j(t + 1) = xi, j(t) otherwise).

Please note that the adaptation scheme in the UD method
only depends on the subject’s response to the stimulus pre-
sented at exactly the same time point in a previous block, thus
it can be considered as a local adaptive scheme. In contrast,
the ME and MP methods are global adaptive approaches be-
cause they select the optimal stimulus from the entire stimulus
space each time. Therefore, the ME and MP methods are
theoretically better than the UD method. For the two global
adaptive methods, despite of the simplicity of MP, ME has
many advantages, for instance: (1) ME is more general than
MP because it is not only suitable for dichotomous responses
but also suitable for polytomous responses; (2) unlikeMP,ME
does not rely on the interim estimates to select the next stim-
ulus, so it is not directly affected by interim estimation preci-
sion; and (3) ME can make full use of prior information [i.e.,
π(a, b, c)] if informative priors are available. The performance
of the above methods will be carefully evaluated through sim-
ulation studies.

The random method (denoted as RM) will be used as a
baseline reference method. Random selection is performed
by simple random sampling with replacement of stimulus
from the range of x = 41:0.25:55 throughout the experiment.
It is germane to note that the first block of stimuli from the UD
method are indeed selected from the random method.

Simulation studies

Simulation Study 1

The primary objective of this study is to compare the three
adaptive stimulus selection methods (i.e., ME, MP and UD
methods) in the context of the time-course of perceptual ad-
aptation under different conditions. The random method
served as a baseline for comparison throughout the simula-
tions. Similar to the fixed-length termination rule in CAT,
we fixed the total number of trials to be 200 (i.e., Z = 200)
here. Then the two important factors, the number of trials
within each block (T) and the number of repeated blocks (J),

1 The expression x = x1: x2: x3 throughout this article refers to an array starting
at x1, with a step size of x2 and a final value of x3.

2 Note that smaller x value means the stimulus is more difficult because it
implies smaller value of probability P(Y = 1).
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were manipulated to form two experimental conditions: (1) 40
trials per block and 5 blocks (i.e., T = 40 and J = 5); (2) 20
trials per block and 10 blocks (i.e., T = 20 and J = 10).
Moreover, when comparing the same stimulus selection
methods under both conditions, the simulation details and
procedures were identical except for the manipulated factors
to ensure fairest comparison. The entire simulation process
was implemented using 64-bit MATLAB 2013a (The
Mathworks, Inc., 2013), and all codes ran on a ThinkPad
laptop equipped with i7-7500U CPU (2.70GHz and
2.90 GHz duo processors), 16 GB RAM and 64-bit operating
system. Note that the source codes for this study are available
at “https://sites.uw.edu/pmetrics/publications-and-source-
code” for interested readers’ reference.

Generation of stimulus pool and subjects

The orientation of stimulus was varied from 41 to 55 with a
step size of 0.25 (i.e., x = 41:0.25:55), resulting in 57 stimuli
in total (R = 57). For each subject, the same stimuli can be re-
selected an unlimited number of times during the experiment.
The subjects’ parameters θ = (a, b, c) were sampled from the
entire space, such that a = 46:0.5:50, b = 1:0.25:3, and c =
0.01:0.01:0.1, thereby resulting in 810 (9×9×10) possible
combinations of (a, b, c). For each possible combination of
(a, b, c), only one subject was simulated for simplicity.
Accordingly, a total of 810 subjects (N = 810) were generated
in this study.

Experimental procedures

For each condition, the experimental procedures proceed with
four main steps. First, a stimulus was selected from the stim-
ulus pool using the method’s stimulus selection approach.
Second, the response of the current subject to the selected
stimulus was simulated by directly comparing the probability
in Eq. 1 with a random number between 0 and 1. To make a
strictly fair comparison among the stimulus selection
methods, we pre-generated a response matrix of size N-by-Z
(810-by-200 here) and extracted the corresponding response
for the specific subject and trial when needed. Thirdly, the
EAP method was employed to update estimates of the person
parameters θ = (a, b, c) sequentially based on his/her response
history. Finally, the experiment was ended when the pre-fixed
number of trials had been reached.

Remarks

Because the 810 combinations of (a, b, c) mentioned above
cover the entire regions of the three-dimensional space, they
were also considered as the M (M = 810) data points (a(m),
b(m), c(m)) (m = 1, 2, . . . , M) sampled from prior distribution
π(a, b, c), which would then be used for implementing EAP

estimation and ME selection method. Additionally, we
adopted uniform prior3 for π(a(m), b(m), c(m)) in Eq. (A2) (see
Appendix A). As we alluded to above, β, γ and λ in Eq. 1
were fixed throughout the experiment, that is, β = 2 and
γ = λ = 0.05.

Evaluation criteria

For each condition, three types of criteria were used to evalu-
ate the performance of each stimulus selection method, which,
respectively reflect (1) person parameter recovery, (2) stimu-
lus pool usage, and (3) computation efficiency.

Person parameter recovery The evaluation indicators in this
category include bias, relative bias, mean squared error
(MSE), mean standard error of estimate (Mean_SE), and mean
area formed by the two curves of α(t) (Mean_Area). With
respect to the last criterion, one curve is characterized by the

estimated value θ̂ ¼ â; b̂; ĉ
� �

and the other by the true value
θ = (a, b, c) in a two-dimensional space with the time of tth
trial (val(t)) on the x-axis and α(t) on the y-axis. They are
computed as follows:

Biasd ¼ 1

N
∑N

i¼1 θ̂id−θid
� �

Relative Biasd ¼ 1

N
∑N

i¼1

θ̂id−θid
� �

θid

MSEd ¼ 1

N
∑N

i¼1 θ̂id−θid
� �2

Mean SEd ¼ 1

N
∑N

i¼1SE^θid

Mean Area ¼ 1

N
∑N

i¼1 ∫tutl âi−b̂ie−ĉit
� �

− ai−bie−citð Þ
����

����dt

 �

where θ̂id and θid represent the final estimated and true
values of the ith subject on the dth dimension, respectively.

SEθ̂id
indicates the standard error for estimate θ̂id. tl =

min(val(t)) and tu =max(val(t)) (t = 1, 2, . . . , T)4.
As for the Mean_Area index, it is the area between the true

and estimated curves. Figure 2 provides an illustration of the
index under two scenarios: (1) The two curves do not inter-
sect, and (2) the two curves have only one intersection.

Moreover, a trend line that depicts the change in the mean
error of α(t) over the time points was also plotted, where the
mean error of α(t) (i.e., Mean_Errort) is given by

3 This prior is uniform over the range of values selected for a, b, and c in the
experiment; that is, a ~ U(46, 50), b ~ U(1, 3), and c ~ U(0.01, 0.1).
4 θ̂id here represents the final parameter estimate after all trials, rather
than the trial-by-trial parameter estimate.
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Mean Errort ¼ 1

N
∑N

i¼1 α̂i tð Þ−αi tð Þ
� �

¼ 1

N
∑N

i¼1 âi−b̂ie−ĉit
� �

− ai−bie−citð Þ
� �

Stimulus pool usage The number of times each stimulus gets
selected (i.e., stimulus frequency) was used to reflect the uni-
formity of stimulus pool usage resulted from different stimu-
lus selection methods.

Computation efficiency It is evaluated by computing the av-
erage time for selecting each stimulus (Mean_Time)

Mean Time ¼ 1

N
1

J
1

T
∑N

i¼1∑
J
j¼1∑

T
t¼1Time Usedijt;

where Time _ Usedijt denotes the time used for selecting
the stimulus at time point t within the jth block for the ith
subject, and it is measured in seconds. For all evaluation indi-
cators, values closer to zero indicate better the performance of
the stimulus selection method.

Fig. 2 Graphical illustration of the calculation of the Mean_Area index (the shaded areas are computed).

Fig. 3 Mean error of α(t) averaged across all subjects.
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Fig. 4 Estimates and 95% confidence intervals of α̂ tð Þ for subjects #401 and #248.

Fig. 5 True values of α(t) for subject #401 and subject #248 under two conditions.
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Results

Results regarding the parameter recovery

Table 1 provides the Bias, Relative Bias,MSE, Mean_SE, and
Mean_Area results for different stimulus selection methods

under different conditions. Note that the first four indicators
quantify the recovery of each parameter separately, whereas
the last one is indicator of overall recovery. The following
points can be observed: (1) The bias values obtained by all
methods under both conditions were very close to 0, and the
relative bias values of the b and c parameters were more

Fig. 6 Numbers of times each stimulus was selected.

Fig. 7 Graphical illustration of the experimental design for Study 2.
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deviated from 0 than those of the a parameter. (2) In terms of
all remaining indicators, the two global adaptivemethods (i.e.,
ME and MP) consistently performed the best as expected, and
the UD method performed slightly better than the random
method. (3) As to the two global adaptive methods, ME
worked slightly better than MP under the longer block condi-
tion, whereas the performance of the two methods are almost
indistinguishable under the shorter block condition. This is
mainly because the stimuli selected by the two methods under
the latter condition were very similar, resulting in a .986 cor-
relation of stimulus frequency between the two methods.
Under the former condition, due to the relatively larger bias
between α̂ tð Þ to α(t), the stimuli selected by MP tended to be
slightly different from those selected by ME, resulting in a
.845 correlation of stimulus frequency between the two
methods. (4) All the Mean_Area values resulted from the lon-
ger block condition were smaller, implying that using fewer
long blocks produced better overall recovery than using more
short blocks. (5) Bias, MSE, and Mean_SE are all scale-sen-
sitive, and therefore they cannot be compared directly across
the three parameters.

Furthermore, in addition to evaluating the recovery per
parameter, we are also interested in the recovery of α(t).
Figure 3, which plots the mean error of α(t) averaged across
all subjects as a function of time point, provides additional
evidence that ME was superior to the other three methods
from a whole perspective.

Figure 4 shows the estimates and 95% confidence intervals
of α̂ tð Þ of two representative subjects (i.e., #401 and #248) for
different methods under both conditions. Note that the results
for the random method are not presented in this figure, due to
space limits. As is shown, even for the same subject, the three
methods performed differently under the two manipulated
conditions. In particular, for subject #401, the ME method
had satisfactory confidence band and smallest area value when
there are five blocks of 40 stimuli each, whereas it had larger
area value than the MP method and a relatively wider confi-
dence band in the second condition. Moreover, the three
methods showed different performance for different subjects
under the same condition. For example, in the first condition,
the ME method worked best for subject #401, but performed
the worst for the other subject. Overall, the ME method gen-
erated the narrowest confidence band, and in most cases, the
true curve of α(t) lay within the band. However, some level of
variabilities indeed emerges from Fig. 4.

One theme cutting across Fig. 4 is that the confidence band
gets narrower as val(t) increases. This is because

var α̂ tð Þð Þ ¼ w1var âð Þ þ w2var b̂
� �þ w3var ĉð Þ, where w1 =

1, w2 ¼ e−ĉt
� �2

and w3 ¼ tb̂e−ĉt
� �2

, and as val(t) goes to in-

finity, both the weights for var b̂
� �

and var ĉð Þ (i.e., w2 and w3)
approach zero. Moreover, the variance of ĉ (i.e., var ĉð Þ ) was
small in the current situation, var âð Þ would predominantly

determine the total variance size [var α̂ tð Þð Þ ] when the val(t)
reached 120 or 60. According to this reasoning, the increas-
ingly narrower confidence band in the upper-left subgraph of
Fig. 4 indicates that the var âð Þ of subject #401 from the ME
method is relatively small. In fact, the ME estimates (standard

errors) of â, b̂, and ĉ for subject #401 in the “T = 40, J = 5”
condition were 48.017 (0.091), 2.892 (0.164), and 0.045
(0.007), and their counterparts in the “T = 20, J = 10” condi-
tion were 48.318 (0.261), 2.842 (0.226), and 0.034 (0.008),
respectively.

Figure 5 helps us further understand the impact of different
experiment conditions on the recovery of α(t). Remember that
a = 48 denotes the asymptote of α(t), and the dash-dotted line
representing subject #401 approaches the asymptote when T =
40. By comparison, the dash-dotted line has certain distance
from the asymptote when T = 20, thereby the a parameter may
not be accurately recovered in spite of more repeated blocks.
This phenomenon is also true for most of subjects with other
combinations of (a, b, c) (including subject #248),5 which is
the reason why all MSE and Mean_SE results on a parameter
from the “T = 40, J = 5” condition were smaller than those
from the “T = 20, J = 10” condition (see Table 1).

Results regarding the stimulus pool usage

Figure 6 presents the numbers of times each stimulus was
used. As is shown, the ME and MP methods produced very
similar results (i.e., the most unbalanced stimulus pool usage),
the random method generated the most balanced use, and the
UDmethod was in-between. In addition, it was found that 29/
28 stimuli (about half of the total number of stimuli) in the
stimulus pool were never used by the ME/MP method under
both conditions, whereas all of the stimuli were used in the
other two methods. Taking the MEmethod as an example, the
29 unused stimuli were all distributed at both ends; they were
Stimuli 1 through 9 (x = 41:0.25:43) and Stimuli 38 through
57 (x = 50.25:0.25:55); however, Stimuli 20 through 36 with
medium-sized orientations (x = 45.75:0.25:49.75) for the “T =
40, J = 5” condition, and Stimuli 19 through 36 (x =
45.50:0.25:49.75) for the “T = 20, J = 10” condition were
used more than 5,000 times.

Another interesting observation from Fig. 6 is that both
the ME and MP methods showed a jagged up–down pat-
tern, in particular under the “T = 40, J = 5” condition.
Given the similar performance of the ME and MP methods,
the explanation for stimulus usage pattern is for the MP
method as an example. As we alluded to earlier, the MP
method boils down to selecting the stimulus with the

5 The ME estimates (standard errors) of â, b̂ and ĉ in the “T = 40, J = 5”
condition were 47.575 (0.189), 1.127 (0.194) and 0.081 (0.025), and
their counterparts in the “T = 20, J = 10” condition were 48.145 (0.461),
1.465 (0.420) and 0.041 (0.024).
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orientation (x) closest to α(t). If using the true values of (a,
b, c) to compute α(t) and find the closest x, then across all
810 simulees, the frequencies for stimuli 20 through 35 are
5,662, 12,248, 5,662, 12,248, 5,662, 12,339, 5,759,
12,298, 5,686, 12,194, 5,512, 11,921, 5,102, 11,410,
4,255, and 10,290, respectively, which matches closely to
the pattern shown in Fig. 6. Although α̂ tð Þ s instead of
α(t)s are actually used in the MP method, the same stimu-
lus usage pattern emerges. In fact, the stimulus usage pat-
tern depends on the simulee population distribution (we
used a uniform distribution in the simulation study), the
block design, and the step size of stimulus’ orientation.

Results regarding the computation efficiency

As to all stimulus selection methods, the average times for
selecting each stimulus (i.e., Mean_Time) were acceptable
for instantaneous stimulus selection. For example, the more

computationally intensive method (i.e., ME) took only 0.003s
and 0.004s under “T = 40, J = 5” condition and “T = 20, J =
10” condition, respectively.

Simulation Study 2

In Study 1, four stimulus selection methods (i.e., ME,MP, UD
and RM) were compared on the basis of the entire group of
subjects (usually termed an unconditional study in adaptive
design research) under two experimental conditions, corre-
sponding to study designs. However, the two designs may
not be optimal for every individual. For instance, individuals
with lower c parameters (e.g., 0.01 and 0.02) may need even
longer blocks. Thus, the primary objective of these simula-
tions was two-fold: First, the performance of the three
methods (i.e., ME, UD, and RM) were evaluated conditioning
on a set of unique combinations of the parameters (a, b, c) that
may be sensitive to the block design. Because the MP method
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Fig. 8 Mean_Area results of different stimulus selection methods under different conditions for all representative points.
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performed slightly worse than the ME method from simula-
tion study, it is no longer considered in Study 2. This makes
the work a conditional study in the terminology of adaptive
design research. Second, more experimental conditions with
varying combinations of number of trials within each block
(T) and number of blocks (J) were considered to explore what
the optimal block length was. Specifically, this study differs
from Study 1 in the following aspects:

1. Generation of subjects. Nine representative combinations
(or points) were obtained first by fixing a parameter at a
medium level (i.e., a = 48) and, respectively varying b and
c parameters at three levels of low, medium, and high (i.e.,
b = 1, 2, and 3; c = 0.01, 0.04, and 0.08). Then, a sample
of 900 subjects was generated, with 100 subjects at each
particular point. Note that generating 100 subjects at the
same point could be considered as 100 replications at the
point.

2. Experimental conditions. In addition to the two experi-
mental conditions discussed earlier, another condition of

50 trials per block and four blocks (T = 50, J = 4) was
added to this study. The experimental design of this study
is graphically illustrated in Fig. 7.

3. Evaluation criteria. The evaluation criteria presented in
Study 1 were adapted to this conditional study by calcu-
lating them at each of the nine particular points.

Figure 8 shows the Mean_Area results of the different
methods under three conditions at nine particular points. The
ME method was again consistently superior to the other two
methods. Specifically, the ME method produced smaller esti-
mation errors than the other two methods in all scenarios. On
the other hand, by comparing the results of all methods at all
points across different conditions (i.e., conditions “T = 20, J =
10” through “T = 50, J = 4”), one can notice that the “T = 50, J
= 4” condition indeed improved the overall recovery for some
particular points and/or methods in terms of Mean_Area. For
instance, for theMEmethod, increasing the number of trials to
50 within each block worked best among the three conditions
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Fig. 9 Conditional MSE results of the ME method for all representative points under different conditions.
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for points 2 through 6;6 and for points (48, 2, 0.08) and (48, 1,
0.04), all methods had the best performance in the “T = 50, J =
4” condition. To sum up, on the basis of the results of all nine
particular points, it is strongly recommended to use “T = 40, J
= 5” or “T = 50, J = 4” as the experimental condition if the
total number of trials was fixed at 200.

Figure 9 summarizes the conditional MSE values of the
best-performing method (i.e., the ME method) for the nine
hypothetical subjects under three conditions. Several interest-
ing observations from the figure merit illustration: (1) Except
for the first subject (48, 1, 0.01), the MSE values of the a
parameter for the other eight subjects monotonically de-
creased as the number of trials within each block (T) increased
from 20 to 50, and the degree of such decrement became
smaller when the c parameter increased, regardless of the val-
ue of the b parameter. In other words, for medium- and large-

sized b parameters (b = 2 and 3) combined with a small c
parameter (c = 0.01), increasing the value of T had the greatest
benefit in improving the estimation accuracy of a parameter.
This result could be explained in conjunction with Fig. 7:
First, longer blocks implied that the α(t) values grow to their
asymptotes; hence, the a parameter could be recovered more
accurately. Second, the three lines in each of the subgraphs in
Fig. 7 indicated that the larger the c parameter, the smaller the
difference in the distance ofα(t) from the asymptote across the
three conditions. (2) As compared to the a parameter, with a
wider range of values, the b parameter possessed larger MSE
values for subjects with medium- and large-sized c parameters
(c = 0.04 and 0.08), especially under the latter two conditions.
This indicated that the a parameter was easier to recover than
the b parameter under these conditions. (3) TheMSE values of
the c parameter for all subjects and conditions were very
small, mainly because the c parameter itself has relatively
small values; thus, the differences among them could be
ignored.

6 The five points refer to (48, 1, 0.04), (48, 1, 0.08), (48, 2, 0.01), (48, 2, 0.04),
and (48, 2, 0.08).

Fig. 10 Trial-by-trial parameter estimates and their 95% confidence intervals, averaged across 100 replications for three selected subjects under the “T =
40, J = 5” condition.
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Following the study of Zhao, Lesmes, and Lu (2019),
we also plotted the trial-by-trial parameter estimates of a,
b, and c parameters and their 95% confidence intervals for
three selected subjects with medium-sized a and b param-
eters [i.e., subject (48, 2, 0.01), subject (48, 2, 0.04), and
subject (48, 2, 0.08)] in Figs. 10 and 11. These two figures
depict only the results for the ME method under the “T =
40, J = 5” condition and the “T = 50, J = 4” condition,
respectively. As expected, the parameter estimates (dash–
dotted lines) were closer to the true parameter values (solid
lines) as the number of trials increased. Moreover, the de-
creasing width of the confidence band (grey shaded areas)
implied increased estimation accuracy of person parame-
ters as more data came in.

Relating to Fig. 10, we also plotted the trial-by-trial param-
eter estimates and their 95% confidence intervals for a single
replication in Fig. 12. As expected, the confidence intervals
became narrower when more trials were added, albeit with
slightly more fluctuation than in Fig. 10. Moreover, the

interim point estimate of each parameter moved closer to its
true value when more trials were added, with only a few ex-
ceptions, such as the a parameter for the first selected subject
and the b parameter for all three selected subjects. However,
the slight departures from the true values toward later stages of
the experiment were so small that they are unlikely to affect
the recovery of α(t). The observation also implies that a
variable-length approach may be preferred, to stop the exper-
iment when the estimation precision is adequate. Hence, not
only will the experiment be more efficient, but also the exper-
iment will be terminated before the estimation worsens.

In addition, because 100 replications were conducted at
each true point of (a, b, c), the standard deviation (SD) of the
100 estimates of each parameter was also calculated for all
points and conditions. The results show that the ME method
had smaller SD values of a and b parameters than the other
two methods at most of the points under all conditions (the
difference in the SD values on c parameter among different
methods was negligible), indicating that the ME method was

Fig. 11 Trial-by-trial parameter estimates and their 95% confidence intervals, averaged across 100 replications for three selected subjects under the “T =
50, J = 4” condition.
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more robust (against randomness introduced by probabilistic
responses) than the other two methods as a whole. Due to
limited space, the complete SD results are not presented here,
but they are available from the authors upon request.

Discussion

Our main aim was to evaluate two multivariate adaptive
methods (i.e., the ME and MP methods) for efficiently esti-
mating the time-course of perceptual adaptation and to thor-
oughly evaluate their performance through simulation studies.
Detailed calculation steps and simplification strategies for the

MEmethod (see Appendix A for details) are also provided for
interested researchers. In simulation studies, the ME method
was compared with the MP method and two other methods
(i.e., UD and random methods) under varying experimental
conditions (or block designs).

The two studies showed that the ME method not only as a
whole performs the best in terms of overall recovery (see
Table 1), but also consistently works the best in terms of re-
covery at specific points after reducing the random errors7 (see
Fig. 8). Moreover, ME exhibits satisfactory computation effi-
ciency in selecting the stimulus, making it an overall superior
stimulus selection method for recovering the time-course
function. These results agree with prior work of Zhao,
Lesmes and Lu (2019) who first showed the superiority of
adaptive methods assuming a functional form of the time
course of perceptual change. We extended their results to a
new domain, simulations of contrast adaptation, and com-
pared the new methods to both traditional staircases and ran-
dom stimulus selection.

7 For subject #248 (a = 48, b = 1, c = 0.04), the ME method had the largest
Mean_Area among all methods under the “40 trials per block and 5 blocks”
condition (see the lower-left subgraph of Fig. 4). However, after reducing the
random errors by replicating 100 times at the same point, ME performed the
best under the same condition (see the middle three bars of Fig. 8).

Fig. 12 Trial-by-trial parameter estimates and their 95% confidence intervals of a single replication for three selected subjects under the “T = 40, J = 5”
condition.
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In this research, we assumed there are 57 stimuli in the
stimulus pool, which are generated by varying the orientation
of stimulus from 41 to 55 with a step size of 0.25. If we
decreased the step size from 0.25 to 0.125 (which would result
in 113 stimuli in total), there would be some decline in the
correlation of stimulus frequency between ME and MP
methods, especially in the “T = 40, J = 5” condition. This is
because when the stimulus becomes more fine-grained, the
stimuli selected by the two methods will be more different.
As to the three block designs discussed in Study 2, moreover,
the block designs with relatively more trials per block and
fewer blocks (i.e., 40 trials per block and 5 blocks, 50 trials
per block and 4 blocks) produce better parameter recovery,
and therefore they should be preferred when designing the
experiment. In addition, among the three key parameters of
the psychometric function considered, the asymptote parame-
ter (i.e., a parameter) is the easiest to recover in general.

The present research could be extended in multiple direc-
tions. First of all, the continuous entropy method (i.e., ME)
and the match probability method (i.e., MP), two of the com-
monly used adaptive selectionmethods inMCATscenario, are
migrated here to efficiently measure the time-course of

adaptive changes in perception. Naturally, an interesting
follow-up study is to investigate whether other proven-to-be-
effective adaptive selection methods in MCAT can also be
applied to the perception adaptation experiments. These
methods include, for instance, D-optimality (Segall, 1996)
and A-optimality (van der Linden, 1999) based on Fisher in-
formation, the Kullback–Leibler criterion (Veldkamp & van
der Linden, 2002), and mutual information (Mulder & van der
Linden, 2010). Moreover, even though our simulation study
focuses on designs with a fixed number of trials, another par-
allel simulation study could be conducted to evaluate savings
of trials using adaptive termination procedures. For example,
the experiment could terminate when the precision of (a, b, c),
quantified by the generalized standard error (e.g., Wang,
Chang, & Boughton, 2013), is below a certain cutoff. Our
preliminary result shows that, for the 40 trials-by-5 blocks
design, the ME method could save up to about 50% of trials,
as compared to the random selection method.

Second, the joint prior distribution of the key parameters
[i.e., π(a, b, c)] is required in the implementation of both the
ME method and EAP estimation. Therefore, selecting appro-
priate prior π(a, b, c) is important for the success of the

Table 1 Results of person parameter recovery for different stimulus selection methods under different conditions

Index Method T = 40, J = 5 T = 20, J = 10

a b c a b c

Bias ME – 0.002 – 0.002 – 4.826e-5 0.004 0.004 – 2.467e-4

MP 0.001 – 0.004 – 1.859e-5 0.004 0.001 – 3.794e-4

UD – 0.002 – 0.004 7.277e-4 0.004 0.009 – 5.999e-4

RM 0.006 – 0.003 7.765e-5 0.005 0.008 3.455e-4

Relative_
Bias

ME – 1.966e-5 0.032 0.177 1.411e-4 0.037 0.251

MP 4.430e-5 0.032 0.199 1.389e-4 0.036 0.250

UD 1.288e-5 0.087 0.466 1.567e-4 0.083 0.426

RM 1.911e-4 0.089 0.468 1.778e-4 0.092 0.469

MSE ME 0.031 0.107 2.916e-4 0.115 0.118 3.665e-4

MP 0.037 0.103 3.326e-4 0.106 0.113 3.783e-4

UD 0.111 0.288 6.101e-4 0.173 0.250 6.393e-4

RM 0.129 0.291 6.335e-4 0.177 0.280 6.708e-4

Mean_SE ME 0.144 0.326 0.0156 0.280 0.326 0.0177

MP 0.150 0.329 0.0157 0.285 0.328 0.0180

UD 0.317 0.535 0.0246 0.393 0.491 0.0242

RM 0.340 0.543 0.0251 0.415 0.527 0.0251

Mean_Area ME 9.691 14.917a

MP 10.096 14.796a

UD 25.595 25.729a

RM 26.819 28.617a

The best results among the three methods are in boldface. ME = minimum entropy method, MP = match probability method (i.e., select next stimulus
that makes P(Y = 1) closest to 0.5), UD = one-up, one-down staircase method, RM = random method. MSE = mean squared error, Mean_SE = mean
standard error of estimate, Mean_Area = mean area formed by two curves. aTo make the results under both conditions comparable, the Mean_Area
values for the “T = 20, J = 10” condition are calculated on the basis of interval [min(1:3:120), max(1:3:120)] (i.e., [1, 118]) as in the “T = 40, J = 5”
condition.
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method. In this article, we adopt the non-information prior
(i.e., uniform prior) and assume the prior is uniform over the
range of values selected for these parameters in the
experiment—that is, a ~ U(46, 50), b ~ U(1, 3) and c ~
U(0.01, 0.1). Thus, another line of research worth considering
is to determine π(a, b, c) in other appropriate ways—that is,
how to provide informative priors, if possible.

Third, we use Monte Carlo integration to approximate the
three-dimensional integrals in ME and EAP. However, for
higher dimensional scenarios, the population distribution
[i.e., π(a, b, c)] from which the target parameters are drawn
may be particularly complicated, making it impossible to sam-
ple directly from π(a, b, c). In such cases, one alternative ap-
proach could be rejection sampling, where π(a, b, c) is consid-
ered as the target distribution and a proposal distribution q(a,
b, c) that is more easily sampled from is selected such that
π(a, b, c) ≤ c × q(a, b, c) where c is a constant.

Fourth, in our simulations, we only consider three
block designs under the premise that the total number of
trials is fixed at 200. To explore the optimal block length
more accurately, more block designs (e.g., “T = 100, J =
2” and “T = 200, J = 1”) should be discussed in future
studies. According to our findings—using fewer longer
blocks produce better parameter recovery than using more
shorter blocks—does this mean that the “100 trials per
block and 2 blocks” design will perform better than the
designs with 40 (50) trials per block and 5 (4) blocks?
Moreover, just like the variable length MCAT in which
the test stops when the measurement precision is deemed
adequate, stopping rules could also be combined with the
ME method to adaptively determine the optimal block
design in the future.

Additionally, in this research we fix some parameters (i.e.,
β = 2 and γ = λ = 0.05) instead of estimating them, and as-
sume they are the same for all time points. If these parameters
are allowed to be freely estimated, then new challenges may

emerge and the current ME method may need further
modifications.

Last but not the least, this article only considers the scenar-
io in which the b parameter value is positive (i.e., α(t) in Eq. 2
is a “growth” curve). In addition to the “growth” curve, how-
ever, in the real experiment we will simultaneously measure
the “decay” curve. Thus, the experiment case in which the b
value is negative should also be studied in the future so that
the complete “growth and decay” curves can be characterized.
Fortunately, the methodology presented in this article can be
used to characterize the “decay” curve in a straightforward
manner.
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Appendix A: Detailed calculation steps
and simplified calculation strategies for ME
method

The integral terms in Eq. 8 can also be calculated nu-
merically by using Monte Carlo integration. More spe-
cifically, the posterior predictive probability

P yk ¼ yjyk−1� � ¼ ∫P yk ¼ yja; b; c� �
L yk−1ja; b; c� �

π a; b; cð Þd a; b; cð Þ
∫L yk−1ja; b; cð Þπ a; b; cð Þd a; b; cð Þ ≈

∑M
m¼1P yk ¼ yja mð Þ; b mð Þ; c mð Þ

� �
L yk−1ja mð Þ; b mð Þ; c mð Þ
� �

∑M
m¼1L yk−1ja mð Þ; b mð Þ; c mð Þ

� � ; #

ðA1Þ

and the posterior continuous entropy after k trials

H p a; b; cjyk−1; yk ¼ y
� �� �

¼ ∫
L yk−1; yk ¼ yja; b; c
� �
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where

L yk−1; yk ¼ y; a mð Þ; b mð Þ; c mð Þ
� �
¼ L yk−1ja mð Þjb mð Þjc mð Þ

� �
P yk ¼ yja mð Þjb mð Þjc mð Þ
� �

; #ðA3Þ

and π(a(m), b(m), c(m)) is the prior probability of data point
(a(m), b(m), c(m)).

Several details deserve further elaboration when
implementing the ME method: (1) the first stimulus can be
randomly selected from the set of stimuli with medium-sized
orientations (e.g., x’ = 47:0.25:49 if the entire orientation
space is x = 41:0.25:55). (2) The computation of Eq. 8 could
be much faster if the interim steps are stored. Specifically, for
both L(yk − 1| a(m)| b(m)| c(m)) and P(yk = y| a(m)| b(m)| c(m)) (m =
1, 2, . . . , M) because L(yk − 1| a(m)| b(m)| c(m)) = L(yk − 2| a(m)|
b(m)| c(m))P(yk − 1| a(m)| b(m)| c(m)), the currently calculated like-
lihood value based on yk − 2can be saved and used for the
calculation of the next likelihood, hence greatly reducing the
computation cost. A similar strategy can be applied to calcu-
late P(yk = y| a(m)| b(m)| c(m)) because this probability evaluated
at time point t within the jth block is equivalent to that evalu-
ated at the same time point within the (j+1)th block. (3) Matrix
operations inMATLAB can be used to efficiently calculate the
above formula.
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