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Abstract. Effective assisted living environments must be able to per-
form inferences on how their occupants interact with their environment.
Gaze direction provides strong indications of how people interact with
their surroundings. In this paper, we propose a gaze tracking method that
uses a neural network regressor to estimate gazes from keypoints and in-
tegrates them over time using a moving average mechanism. Our gaze
regression model uses confidence gated units to handle cases of keypoint
occlusion and estimate its own prediction uncertainty. Our temporal ap-
proach for gaze tracking incorporates these prediction uncertainties as
weights in the moving average scheme. Experimental results on a dataset
collected in an assisted living facility demonstrate that our gaze regres-
sion network performs on par with a complex, dataset-specific baseline,
while its uncertainty predictions are highly correlated with the actual an-
gular error of corresponding estimations. Finally, experiments on videos
sequences show that our temporal approach generates more accurate and
stable gaze predictions.

Keywords: Gaze tracking - Neural networks - Assisted living environ-
ments.

1 Introduction

Official prospects from the United Nations (UN) indicate an expected 15% of
the world’s population to be over age 65 by 2050 [18]. As the older population
grows, advances in intelligent medical care systems will prove essential for provid-
ing these individuals with improved quality of life, consequently avoiding costly
medical interventions. In contrast to conventional methods based on sporadic
questionnaires and self-reported outcomes, there is great interest in developing
health-assessment techniques that are cost-effective, unobtrusive, objective, and
informative over longer periods.

Thus, many studies have been attempting to leverage recent advances in
robotics and artificial intelligence for assessment of patterns related to health
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status, such as mobility and Instrumented Activities of Daily Living (IADL)
assessments [19]. Ambient assisted living applications can particularly benefit
from modern computer vision algorithms, as applications on safety, well-being
assessment, and human-machine interaction demonstrate [3, 14].

Yet, to date systems exploiting computer vision for patient activity analy-
sis have been limited to simplistic scenarios [6]. In contrast, as Figs. 1 and 2
illustrate, images acquired from assisted living environments cover a wide scene
where different activities involving multiple people can take place.
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Fig. 1. Overview of our apparent gaze tracking approach. The facial keypoints of each
person in the scene are collected using a pose estimation model [2] and provided as
inputs to a neural network regressor that outputs estimations of their apparent gaze and
its confidence & on each prediction. An uncertainty-weighted moving average scheme
then combines the estimations collected from the last N frames, generating temporally
consistent gaze estimations at each time instant.

Our long-term goal is to exploit video analytics to monitor the overall health
status of patients by observing their behavior in terms of human-human and
human-object interactions. To that end, multiple underlying complex tasks must
be addressed, including: i) human and object detection; ii) human pose estima-
tion; and iii) subjects’ gaze estimation and tracking.

We have introduced in [7] an approach for precise segmentation of individ-
uals and objects of interest in video-streams acquired from assisted living en-
vironments. In conjunction with object detection, gaze direction is crucial to
differentiate relationships between objects and their users (e.g. person with a
book on his/her lap vs. actually reading a book) and classify simple actions (e.g.
watching television, cooking food, socializing).

In [8], we introduced a novel strategy for gaze estimation that relies solely
on the relative positions of facial keypoints to estimate gaze direction. These
features can be extracted using off-the-shelf human pose estimation models such
as [2], with the advantage that a single feature extractor module can be used for
both pose estimation and gaze estimation.
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Fig. 2. Images and layout of the instrumented assisted living facility; in color, the fields
of view of the video cameras.

Operating on a frame-by-frame basis, our network introduced in [3] also out-
puts an estimate of its own uncertainty for each prediction of gaze direction. In
this paper, we build upon that model to provide the following contributions:

— we design an effective framework that temporally integrates gaze estimates
collected at different frames, while leveraging the uncertainty associated with
each estimation;

— for model optimization and evaluation, we augment our previous MoDiPro
dataset [8] with annotations of full video sequences;

— we evaluate different mowving average schemes that utilizes past gaze estima-
tions to adjust current gaze predictions. We evaluate different weighing strate-
gies to correct the current gaze using the gaze uncertainties determined from
the regressor network.

2 Related Work

Many studies exploit human facial features for the estimation of well-being status
[1]. In addition to examples including facial expression recognition [15,22] for
sentiment analysis [10], facial analysis is also commonly used for gaze estimation,
since gaze direction provides valuable information on the interaction between a
person and his/her surrounding environment [21]. Recent studies in this area
included approaches based on the estimation of head orientation by fitting a
3D face model, to estimate both 2D [23] and 3D gaze information [24]. In the
context of human-computer interaction, the work in [13] employs an end-to-end
architecture to track the eyes of a user in real-time using hand-held devices.
Most works and datasets on gaze estimation focus, however, on images with
close-up views of a single subject’s face, acquired through webcams or smart-
phones [9,23]. The GazeFollow dataset introduced in [20] is an exception, con-
taining images of individuals performing actions in relatively unconstrained sce-
narios. In addition to the dataset, the authors introduced a CNN-based archi-
tecture for gaze estimation that combines image saliency with head appearance
analysis. A similar model is introduced in [5], with applicability extended to
scenarios where the subject’s gaze is directed somewhere outside the image.
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Even for humans, it is much easier to estimate the gaze direction of a sub-
ject when a full-view of the subject’s face is available, with the task becoming
significantly harder if only a back view from the subject is available. Yet, the
aforementioned CNN-based approaches for gaze estimation lack the ability of es-
timating the uncertainty associated with their estimations, a limitation inherited
from conventional deep learning models in general [12].

As detailed in Section 3, our gaze estimation model introduced in [3] over-
comes this limitation by exploiting a customized loss function that, based on the
modelling of outputs as corrupted with Gaussian random noise, allows learning a
regression model that also predicts the variance of this noise as a function of the
input [12], without the need for any extra labels. However, both model design
and evaluation using such datasets focus on frame-by-frame scenarios that disre-
gard any available temporal information. From an application perspective, gaze
tracking across longer time periods is crucial for the identification of activities
taking place in an environment of interest.

In contrast to most datasets, the publicly available Gaze360 dataset [11]
contains images and annotations for full video sequences, with 238 subjects in
total and 80 different recordings. Images are acquired in a variety of natural
environments, including indoor and outdoor locations, with variations in lighting
and background.

3 Proposed Approach

Our algorithm uses the method we have previously proposed in [8] to simulta-
neously estimate the gazes of all the people observed at each frame. As Fig. 1
indicates, the gaze estimation method uses a pose estimation model [2] to detect
the anatomical keypoints of all the persons present in the scene. Of the detected
keypoints, we consider only those located in the head (i.e., the nose, eyes, and
ears) of each individual to estimate their corresponding gazes.

Let py . = [} . Ui s Ch.s) represent the horizontal and vertical coordinates
of a keypoint k£ and its corresponding detection confidence value, respectively.
The subscript k € {n, e, a} represents the nose, eyes, and ears features, with the
subscript s € {l,r, (0} encoding the side of the feature points. For each person j in
the scene, we centralize the detected keypoints with respect to the head centroid
h = [#7,,y7], which is computed as the mean coordinates of the head keypoints
for each individual. Then, the obtained relative coordinates are normalized based
on the distance of the farthest keypoint to the centroid. Hence, for each person
we form a feature vector f € R'5 by concatenating the relative vectors f)fg,s =

~J  ad J
[‘rk,s’ yk,s’ Clic,s]
fj — f)j VRN RS BN (1)
n,@’ pe,ra pe,l 9 pa,rvpa,[ .
To account for low-confidence or missing keypoints, for each feature [)i o> the

corresponding coordinate-confidence pairs (i‘i’s, c,jcs) and (g]i’s, c}”) are used as
input to a Confidence Gated Unit (CGU). As described in [8], each CGU is
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composed of two internal units: i) a ReLU unit acting on an input feature g;,
and ii) a sigmoid unit to emulate the behavior of a gate according to a confidence
value ¢;. The outputs of both units are multiplied to generate an adjusted CGU
output ¢;.

The gaze direction is approximated by the vector § = [g,, Gy|, which consists
of the projection onto the image plane of the unit vector centered at the centroid
h7. Our model further incorporates an uncertainty estimation method, which
indicates its level of confidence for each prediction of gaze direction. In terms of
network architecture, this corresponds to an output layer with 3 units: two that
regress the (§z, gy) vector of gaze direction, and an additional unit that outputs
the regression uncertainty o.

To train the network to learn gaze direction, we use a cosine similarity loss
function modified according to [12] to allow uncertainty estimation. Let T be
the set of annotated orientation vectors g, while § corresponds to the estimated
orientation produced by the network and o represents the model’s uncertainty
prediction. Our cost function is then given by

1 exp(—o) —g-§ log o 5
Feol0:®) = 7 2, =5 [l T * 2 )
With this loss function, no additional labels are needed for the model to learn
to predict its own uncertainty. The exp(—o) component is a more numerically
stable representation of %, which encourages the model to output a higher o
when the cosine error is higher. On the other hand, the regularizing component
log(o) helps avoiding an exploding uncertainty prediction.

Following ablative experiments and weight visualization to identify dead
units, we opt for an architecture where the CGU-based input layer is followed
by 2 fully-connected (FC) hidden layers with 10 units each, and the output layer
with 3 units. Thus, the architecture has a total of 283 learnable parameters and
can be summarized as: (10 CGU, 10 FC, 10 FC, 3 FC).

3.1 Temporal Integration

After generating the raw predictions using the regressor network, we employ a
moving average strategy to integrate gaze predictions over multiple frames. Let
g represent the gaze direction vector estimated by the neural network described
above at time t. The refined gaze estimate that incorporates information from
the previous N frames is given by

N ~ ~
~ Zn:O At —nOt—nWt—nGt—n
9t = N - ) (3)
ano Ot—n

where a;_,, are empirically defined weights, ;_,, is a function of the estimated
gaze uncertainty at time ¢ — n, and the forgetting factor w;_,, is given by

N-—-n+1

NN+ 1)]/2° )

Wt—n =
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We consider two forms for the uncertainty weights o¢_,,:

1 1

and &t—n =

()

Ot—n = Oin et
We evaluate four combinations of the parameters above. In our first approach,
which we call Simple MA (or SMA for conciseness), we consider az_,, = 1 and
Gt—p =1forn=0,1,...,N. Our second strategy, Weighed MA (or WMA), uses
an empirically defined weight for the current frame «; = « and identical weights
for previous frames, i.e., a;_, =1 —a forn =1,2,..., N. Finally, the strategies
in which the value of 6;_,, is given by the functions in Eq. (5) are deemed WMA
& L and WMA & e7°.

4 Experiments and Results

We evaluate our method on videos acquired in an assisted living facility situ-
ated in the Galliera Hospital (Genova, Italy), in which the patient, after being
discharged from the hospital, is hosted and monitored for a few days. This fur-
nished apartment contains various sensing systems. Specifically, we utilize the
two video cameras illustrated in Fig. 2, which acquire videos at a resolution of
480 x 270 pixels at 25 frames per second. For more details, we refer the reader
to [4,16,17].

MoDiPro Dataset. Our dataset contains 47 videos captured by Camera 1
with a total of 15,750 frames and 30 videos from Camera 2 with 10,750 frames,
totaling to 26,500 frames in which 22 individuals are observed. Two annotators
manually labelled the gaze directions in each video frame. Annotation Set 1 con-
tains a total of 24,509 observable gazes with at least 2-keypoints, and Annotation
Set 2 has 24,494 observable gazes with at least 2 key-points. Fig. 3 illustrates
the gaze distribution of the two annotation sets for the observable gazes only.
The angle distributions are consistent with how a human viewer would see the
gazes in the video frame. In Camera 1, subjects tended to look vertically, typ-
ically towards objects on the table. In Camera 2, subjects tended to look east,
typically in the direction of the television.

One of the significant challenges in the gaze tracking problem is its inherent
uncertainty. Different viewers looking at the same image or video of a person may
estimate significantly different values for the subject’s gaze. This is evident if we
observe the statistics of the two sets of annotations for the MoDiPro dataset.
Although we observed little bias among the annotations (average difference of
0.08°), the variability was substantial with a standard deviation of 23.30°.

Network training. We use 50% of the videos from each camera for train-
ing, 20% for validation, and 30% for testing. Since frames from the same video
are highly correlated, all frames from a given video sequence are assigned to
the same training, validation, or test set. To combine the two annotation sets
described above into one cohesive set, we calculate the mean gaze vector be-
tween Annotation Sets 1 and 2 as our ground truth. To analyze the effect of
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Fig. 3. Distribution of the annotation datasets for Camera 1 (blue) and Camera 2
(yellow). Left) Annotation Set 1. Right) Annotation Set 2.

human annotation error, we also evaluate our methods on the two annotations
sets separately.

We train our model with 7 different combinations of images from the MoDiPro
and GazeFollow datasets. As summarized in Table 1, models NET#O0-2 are
trained using only images from Camera 1 (Cam1), Camera 2 (Cam?2), and both
cameras. NET#3 corresponds to the model trained only on GazeFollow frames
(GF for shortness) while NET#4-6 are obtained by fine-tuning the pre-trained
NET#3 on the three subsets of MoDiPro frames. All models are trained using
a learning rate of 3 x 1077, batches of 64 samples, and early stopping based on
the validation loss. The results reported in Table 1 correspond to the average
values obtained after train/test on 3 different random splits. The mean column
below is the average of the result from experiments using both camera videos as
training.

4.1 Gaze Regression Performance

Cross-view results obtained by NET#0 on Cam2 and NET#1 on Caml demon-
strate how models trained only on a camera-specific set of images are less robust
to image distortions, with significantly higher angular errors for images captured
by a different camera. Trained on both Caml and Cam2, NET#2 demonstrates
a more consistent performance across views. We can observe a slight decrease
in performance for the camera-specific tests in Caml and Cam?2 of 0.67° and
2.57° respectively, but the performance for the non camera-specific tests improve
dramatically by 41.67° and 23.72° for Caml and Cam?2, respectively.
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Table 1. Mean angular error obtained on three different random splits of train/val/test
sets for each camera across from the merged annotation set.

TRAIN TEST
Model GF Caml1 Cam2 Caml Cam2 Mean
GF-Model 45.82° 76.55° 61.18°
NET#0 v 21.85° 49.75° -
NET#1 v 64.19° 23.46° -
NET#2 v v 22.52° 26.03° 24.28°
NET#3 v 23.29° 25.90° 24.60°
NET#4 v v 19.71° 22.94° -
NET#5 v v 22.40° 23.92° -
NET#6 v v v 2117 23.56° 22.37°

In addition, error comparisons between models NET#0-2 and NET#4-6 demon-
strate that pre-training the model on the GF dataset before fine-tuning on
MoDiPro images leads to consistently lower mean angular errors, with an op-
timal performance of 21.17° for Cam1 and 23.56° for Cam2. This corresponds
to an overall average error 1.91° lower than the model NET#2, which is not
pre-trained on GF, and more than 2.23° improvement over the model NET#3,
which is trained solely on GF. In terms of camera-specific performance, for Caml
optimal performances with errors below 20° are obtained when not training on
Cam?2. On the other hand, predictions for Cam?2 are significantly better when
training is performed using Caml and/or GazeFollow images. We hypothesize
that the distortions characteristic of Cam?2 images easily lead to overfitting,
thus confirms the advantage of training on additional sets of images. As a final
remark we note that overall NET#6, which is pre-trained on GF and further
trained using images from both camera views, provides the best and most stable
result across the two cameras. NET#6 has a mean angle difference across the
two views being 22.37°, compared to NET#2 and #3 being 24.28° and 24.60°
respectively.

Furthermore, Fig. 4 illustrates the high-correlation between uncertainty pre-
dictions and angular error. The figure shows the cumulative mean angular error
versus gaze uncertainty estimations. When looking at gazes with lower predicted
uncertainties, the overall mean angular error is significantly lower. Gaze predic-
tion uncertainties below 0.1 correspond to 80% of the MoD:Pro data. Hence, for
80% of our predictions, the mean angular error is only & 16° compared to over
20° for the entire set.

4.2 Temporal Integration Performance

Experimental results corresponding to different moving average strategies are
summarized in Table 2. The table shows separate results sections for the two
annotation sets and the average and standard deviation of the error over the two
datasets. We compute the average for the two coordinates of the gaze direction
vector separately for each of the methods. The values of the parameters N,
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Fig. 4. Cumulative mean angular error versus predicted uncertainty.

Qy_pn, and G6;_, were determined experimentally. For the Simple MA method,
we observed that values greater than N = 3 led to diminishing returns on the
average angular error across both cameras. For Weighed MA, a value of N = 6
leads to similar behavior, whereas for WMA & % and WMA & WMA & (=),
N = 5. An iteration over the values of « from 0.05 with a step size of 0.05 to
0.95 was performed to find the optimal «. For Simple MA, we found the optimal
value of a = 0.85 and for the remaining methods we use a = 0.60. As the table
indicates, improvements can be seen from using just a simple moving average,
and then again using weighted moving averages. The best improvements are
observed with the Weighted MA, WMA & %, and WMA & e(=7). The relatively
small improvements obtained using the uncertainty estimates can be explained
by the variances of the uncertainties, which are discussed in the next section.

Table 2. Comparison of mean angular errors of the network predictions with the
moving averages for both sets

ANNOTATION SET 1 ANNOTATION SET 2
Caml Cam2 Both|Cam1 Cam?2 Both|Mean|Std. Dev

NET#6 21.54° 22.71° 21.98°[23.64° 25.42° 24.16°[23.24°] 1.23°
Simple MA  21.50° 22.59° 21.87°|23.54° 25.26° 24.11°(23.15°| 1.21°
Weighted MA  21.40° 22.45° 21.73°23.47° 25.22° 23.98°(23.04°| 1.23°
WMA & L 21.47° 22.43° 21.72°|23.52° 25.19° 24.00°|23.06°| 1.22°
WMA & (79 21.42° 22.46° 21.72°|23.47° 25.21° 23.98°|23.04°| 1.22°

Uncertainty Variance Analysis. In this section, we explore the impact
of the uncertainties on the temporal integration method. We hypothesize that
videos with higher uncertainty variances would show larger performance im-
provements. Over extended periods of low uncertainty variance, meaning that
the predicted uncertainties are relatively constant, when we introduce the uncer-
tainties, we are essentially multiplying the raw predictions by a constant factor
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Fig. 5. Average angle error ratio trend across Caml1, Cam?2, and Both for the given
uncertainty variance thresholds .

thus providing no actual impact on the adjusted prediction. Since in our dataset
nearly 80% of the videos show an uncertainty variance of 0.01 or less, our hy-
pothesis suggests that this would lead to a marginal impact of the uncertainties
on overall performance. This can be observed by comparing the performance
obtained by the methods that consider the uncertainty with those that do not
in Table 2. As the table indicates, the differences in angular mean error from
our raw predictions and moving average methods are relatively small.

The greatest impact of incorporating the uncertainties would occur in situa-
tions involving significant fluctuations of the uncertainties. Hence, we conduct an
analysis of the mean angular error as a function of the variance of the uncertainty.
We partition the test video sets according to the variance of the uncertainty and
measure the corresponding angular error for each subset. Fig. 5 illustrates the
results when the variance threshold varies between 0, which is equivalent to the
scenario evaluated in Table 2, to 0.01, which is the highest uncertainty variance
we considered. In the figure, we plot the ratio between the raw mean angu-
lar error and each of the moving average methods. That is, a value less than
one indicates performance gain whereas values above one indicate performance
degradation.

As Fig. 5 indicates, the benefits of the uncertainty-weighed methods increase
at higher variance threshold values. Although the WMA & e~(?) method per-
forms on par or slighlty better than WMA on both cameras for uncertainty vari-
ances under 0.07, the WMA & % method outperforms both methods by more
than 1° at higher variances. This indicates that more sophisticated mechanisms
to incorporate the uncertainties are a promising future research direction.

5 Conclusion

This paper presents a gaze tracking method based solely on facial keypoints de-
tected by a pose estimation model. Our end goal is to assist clinicians in the
assessment of the health status of individuals in assisted living environments,
providing them with automatic reports of patients’ mobility and TADL pat-
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terns. Thus, we plan to combine gaze estimations with a semantic segmentation
model to identify human-human and human-object interactions. Exploring a sin-
gle feature extraction backbone for both pose and gaze estimation also reduces
the complexity of the overall model.

Results obtained on datasets acquired at a real assisted living facility demon-
strate that our method estimates gaze with higher accuracy than a complex
task-specific baseline, without relying on any image features except the relative
positions of facial keypoints. Our proposed model also provides estimations of
uncertainty of its own predictions, and our results demonstrate a high correlation
between predicted uncertainties and actual gaze angular errors.

We then showed that a simple moving average mechanism can be used to
improve the temporal consistency and slightly reduce the estimation error of
the gazes throughout a video sequence. In particular, our experimental results
demonstrate that in scenarios where high gaze estimation uncertainty is present,
moving average methods that leverage the estimated uncertainty can lead to
more significant improvements.
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