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Adaptive Real-Time Decomposition of
Electromyogram During Sustained Muscle
Activation: A Simulation Study

Yang Zheng

Abstract—Objective: Real-time decomposition of elec-
tromyogram (EMG) into constituent motor unit (MU)
activity has shown promising applications in neurophysiol-
ogy and human-machine interactions. Existing decomposi-
tion methods could not accommodate stochastic variations
in EMG signals such as drifts of action potential ampli-
tudes and MU recruitment-derecruitment (rotation) patterns
during long-term recordings. The objective of this study
was to develop an adaptive real-time decomposition ap-
proach suitable for prolonged muscle activation. Methods:
We developed a parallel-double-thread computation algo-
rithm. The backend thread initiated and periodically refined
and updated the MU information (separation matrix) using
independent component analysis and convolution kernel
compensation. The frontend thread performed the real-time
decomposition. We evaluated our algorithm on synthesized
high-density EMG signals, in which MUs were recruited-
derecruited sporadically and MU action potentials ampli-
tude drifted over time. Different signal-to-noise levels were
also simulated. Results: Compared with the decomposition
without the adaptive processes, periodically fine-tuned and
updated separation matrix increased identifiable MU num-
ber by 3-4 fold over 30-minute of signals. The increased
MU number was more prominent at higher signal-to-noise
ratios. The decomposition accuracy also increased by up to
10% with greater improvement observed at higher muscle
contraction levels. Conclusion: The adaptive algorithm can
maintain the decomposition performance over time, allows
us to continuously track the same MUs during sustained
activation, and, at the same time, can add newly recruited

MU information to existing separation matrix. Significance:

Our approach showed robust performance over time, which
has the potential to longitudinally evaluate MU firing and
recruitment properties and improve neural decoding per-
formance for neural-machine interactions.
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[. INTRODUCTION

S AN basis of muscle activation, motor units (MUs)

transform motoneuron firing activities into contractions
of muscle fibers [1]. The forces generated by a muscle largely
depend on the number and the firing rate of active MUs [2],
[3]. Understanding MU activity can provide insight into the
physiological and pathological conditions of the neuromuscular
system [4]-[6]. In neural rehabilitation, population level MU
firing frequency has also been utilized to interface with assistive
devices [7], [8], because the compound firing rate of a number of
MU s reflects the neural drive to the muscles [7], which has been
used to estimate fingertip forces [9], [10] or finger kinematics
[11], [12]. Historically, individual MU activities are captured
through intramuscular electrodes [13], and are extracted using
semi-automatic decomposition algorithms [14], [15]. Because of
the small recording volume, however, intramuscular recordings
can only obtain a limited number of MUs, limiting the ability to
capture populational neural activities.

Alternatively, recent development of multi-channel surface
electromyogram (SEMG) electrodes paired with source sepa-
ration algorithms can separate a large number of MUs (firing
and recruitment patterns) from multi-channel SEMG signals
noninvasively. For example, using an unique 4-channel surface
electrode array, an automatic decomposition method has been
developed based on template-matching of MU action potentials
(MUAPs) [16]. More recently, with the development of high-
density EMG (HD EMG) electrode grid, blind source separation
techniques have been utilized to decompose HD EMG signals.
For instance, the convolution kernel compensation (CKC) [17]
and different independent component analyses (ICA) algorithms
[18]-[23] have been used to extract MU firing activities.

Although widely used in research, these source separation
algorithms are computationally intensive, and the EMG signals
need to be processed offline. To enable real-time decomposition
for neural-machine interface applications, earlier studies have
used sequential two-step calculation approaches to obtain MU
activities in real-time [7], [8], [24], [25]. Typically, the first ini-
tialization step calculates the MU information (separation matrix
or MUAP shape features) offline using an initial segment of
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EMG signals, and the second step then applies the pre-calculated
MU information to newly acquired EMG signals in real-time,
assuming that the separation matrix or MUAP shape features are
preserved in subsequent EMG segments.

However, the sequential two-step approaches have several
limitations when MU information is calculated only in the ini-
tialization step. First, the quality of the initial MU information,
hence the performance of the subsequent real-time decomposi-
tion, are heavily determined by the signal quality of the initial
data segment. A high signal quality is not guaranteed in certain
situations. Second, the initial calculation step cannot capture
newly recruited MUs, especially during sustained muscle con-
tractions. MU rotation, a sporadic recruitment-derecruitment
pattern alternating between MUs, commonly occurs during pro-
longed muscle contractions [26]-[28]. Finally, the validity of the
initial MU information can degrade over time due to variations of
the EMG signals, which can arise from changes in noise level or
MUAP amplitude drift due to a shift of the recording electrodes
relative to the muscles.

To address these limitations, we developed a parallel-double-
thread computation algorithm that can accommodate periodic
and stochastic variations in HD EMG signals during prolonged
muscle contractions. The backend thread first initiated and then
periodically refined and updated the separation matrix using
FastICA and CKC algorithms. The novelty of the backend
thread is twofold. First, the refinement of separation vectors
of previously identified MUs maintained their validity amid
EMG signal variations, thereby accurately tracking the same
MUs over sustained muscle contractions. Second, the update
of separation matrix (extending the dimension of the matrix)
allowed the identification of newly recruited MUs or previous
active MUs that were not identifiable during initialization. The
frontend thread applied the most current separation matrix to
new EMG segments to extract MU activities in a real-time
manner. We evaluated the parallel-double-thread algorithm us-
ing simulated HD EMG signals, since the ground-truth of MU
firing and recruitment activities are known. The MUs were
alternately recruited and derecruited in a stochastic manner
using a MU rotation model. MUAP amplitude of different MUs
drifted over time, and different background noise levels of the
simulated EMG were also simulated. The results showed an
increased number of identified MUs and an improved decom-
position accuracy. Our approach revealed robust performance
over prolonged muscle contractions. The algorithm allowed
longitudinal tracking of MU firing and recruitment properties,
in order to address mechanistic research questions or to perform
clinical assessments. The outcomes could also lead to robust
performance of neural decoding for neural-machine interactions
during long-term recordings.

[l. METHODS
A. Simulated EMG Signals With MU Rotation

To synthesize EMG signals, we used a previously developed
MU pool model [29] to first generate firing activities of indi-
vidual MUs under a pseudorandom neural drive trajectory. We
then developed a MU rotation model such that rotation occurred
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Fig. 1. Accumulated firing time versus probability of ceasing firing
under the RL condition. The probabilities for every 10th MU in the pool
are shown.

randomly between MUs. Finally, we used a convolution model
to generate the HD EMG signals.

1) MU Pool Model: The MU pool model mainly included
the recruitment and rate coding of individual MUs [29]. Briefly,
the recruitment thresholds of MUs varied such that most of
the MUs were recruited at a low neural drive. The number of
recruited MUs was determined by the excitation neural drive
to the MU pool. The shape of the neural drive signal used
here was a series of trapezoids with their plateau levels varying
pseudo-randomly between 10% MVC and 45% MVC. Under
this neural drive profile, 80 MUs were recruited in total. The
mean firing rate of MUs increased linearly with the neural drive
signal before reaching their peak firing rates [29]. The peak firing
rate of MUs was higher with a lower threshold. To simulate the
stochastic nature of the MU firings, the instantaneous firing rate
varied with a coefficient of variation of 0.2.

2) MU Rotation Model: The MU rotation model had the
following key features. First, rotation occurred randomly. For
an active MU, the probability of ceasing firing increased with
the accumulated firing time (i.e., time since recruitment). Sec-
ond, the ceasing firing probability of the fatigue-resistant low-
threshold MUs was lower than that of the fast-fatigable high-
threshold MUs. Third, rotation occurred between MUs with
similar recruitment thresholds.

Based on the first two features, the probability of ceasing firing
for individual MUs was determined by:

P(i) = min(B(e'" Bt — 1), Py . eali7D)
a=(P,/P)/(n—1)

i:172a"'7n7 t>0 (1)

where irepresents the ith MU and indicates the recruitment
order of MUs, n is the total number of MUs in the model, ¢
is the accumulated firing time, which was calculated relative to
the time of recruitment of individual MUs. The probability of
ceasing firing increased exponentially with time until it reached
the maximum (Fig. 1). Awas the MU factor which determined
the probability difference between MUs and was set to 1/3 in this
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study. Bwas the amplitude factor that scaled the amplitude of the
probability of ceasing firing for a specific MU at a specific time,
and was set to 1/200. Rwas the time factor which determined
the increase rate of the probability with time. The maximum
probability of ceasing firing for individual MUs also increased
exponentially with the index number of MUs. P;and P,, were the
maximum probability of the first and the nth MUs, respectively.
More details on the influence of individual parameters on the
probability of ceasing firing are included in Supplementary
Material Section A.

In this study, two combinations of the three constants (R , P,
P,)) were used to simulate two different levels of MU rotation.
At the high rotation (RH) level, R ,P;, and P,, were set to 0.02,
0.05, and 0.2, respectively. At the low rotation (RL) level, R, P;
,and P,, were setto 0.01, 0.01, and 0.1, respectively. Compared
with the RL condition, the rotation occurred more frequently
under the RH condition.

To simulate MU rotation, the spike trains obtained in the MU
pool model were modified by assigning the active or inactive
status to each of the individual MUs. For a given MU, the spikes
within the inactive time window were eliminated. For simplicity,
we prescribed the rotation occurrence within a rotation group
of 2 or 3 MUs, and only one MU discharged at any time. In
addition, a MU can only be selected in one rotation group.
If a rotation happened, the active MU ceased firing and the
other MU in the rotation group started firing (more details in
Supplementary Material B). The MU rotation procedure was
repeated in individual trials so that the rotation situation differed
between trials.

3) Convolution Model: The HD EMG signals can be syn-
thesized using a convolutive mixture [14], [22] between a series
of delta functions (which represented the discharge timings of
MUs) and the corresponding impulse responses (which rep-
resented the motor unit action potentials (MUAP)) (more de-
tails in Supplementary Material C). The MUAP template pool
for individual MUs was obtained from previous experimental
HD EMG data using an 8 x 8 square electrode grid [30],
through a spike triggered average of the EMG signals [31]. Each
simulated MU had 8x 8 MUAP templates, and the templates
were randomly assigned to individual MUs between trials. The
MUAP amplitude varied or scaled randomly for each spike
following a uniform distribution U (0.9, 1.1), in order to simulate
the spike-by-spike variations in the MUAP amplitude during
experiment recordings. The random variation of MUAP ampli-
tude can arise from change of electrode-skin contact resistance
and small displacement between muscle fibers and electrodes
during muscle contractions. In addition, the amplitude also
had a time-dependent drift (either increased or decreased) by
k% over the duration of the trial, considering the sustained
contractions of the muscle fibers. Two levels of amplitude drift
were tested: k € U(20, 40) for the high amplitude (AH) drift
and k € U(2, 10) for the low amplitude (AL) drift.

Lastly, baseline noise was added to the EMG signals. Two
different levels: signal-to-noise ratio (SNR) at 5 dB and 10 dB
were simulated. The SNR was defined as the logarithmic ratio
between the variance of the clean EMG signals and the variance
of white Gaussian noise added to the clean EMG. To this end,

there were 8 conditions: two MU rotation level (RH and RL),
two amplitude drift level (AH and AL) and two baseline noise
levels (SNRS5 and SNR10). In each condition, 10 trials were
simulated, and each trial lasted for 30 minutes. The sampling
rate was 1024 Hz.

B. Basis of Decomposition Algorithm

1) FastlCA-Based Separation Vector Extraction: The
FastICA-based EMG decomposition method was used to extract
the information of MUs. The original EMG signals were first
extended and whitened, resulting in the EMG matrixz. Then,
the FastICA algorithm was performed multiple iterations onz
and each iteration output the information of one MU including
the source signal s, the spike train t, and the separation vector w.
The source signal was calculated by multiplying the extended
and whitened EMG data by the separation vector

s=w'z @

The spike train was obtained via a binary classification of
the peaks in the source signal using the Kmeans++ algorithm
[32]. The separation vectors that corresponded to motion arti-
facts, with poor quality, or were duplicates of other MUs were
removed. More details can be found in previous studies [33],
[34]. The separation vectors of all retained MUs constituted the
separation matrix, which can be applied to new EMG data to
extract spike trains in real-time.

2) CKC-Based Separation Vector Refinement: With pro-
longed muscle contractions, the separation vectors from the
FastICA algorithm may become suboptimal due to the rotation of
MUs and drifts of the MUAP amplitude, resulting in inaccurate
spike detection. Therefore, the separation vectors of previously
identified MUs were refined during an separation matrix up-
dating procedure via the CKC algorithm [17] using new EMG
data (termed CKC-based iteration in the subsequent text, see
Supplementary Material D). The CKC-based iteration has been
used to refine separation vectors previously [23].

3) MUAP Similarity Index: During separation vector refine-
ment, the newly obtained separation vector must correspond
to the same MU of the previously extracted separation vector.
We compared the similarity of the MUAP corresponding to
the two separation vectors obtained at different times to verify
that they belonged to the same MU. Given two MUs with their
MUAPs denoted as x; (t)and y; (t),i= 1,2, ...,m,t=1,...,T,
the similarity of the two MUAP was defined as (termed MUAP
similarity index):

Zi D; Wz‘c_l

> Wi
with Di=3, (:(t) - yi(t))*and W; = 2 ()] + i (£)])*.

It can be regarded as the weighted average of the MUAP
difference across m channels, and it ranged from O to 1. The
constant ¢ was a scaling factor to adjust the weight distribution
between channels with different energy levels. In our prelimi-
nary study, we calculated the MUAP similarity indices of MUs

in the MU pool used to simulate the EMG signals, and ¢ was set
to 4 in this study because it can distinguish different simulated

SI=1 3
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Fig. 2. An illustration of the parallel-double-thread approach. The
backend thread initiates, refines, and updates the separation matrix us-

ing a 25-second window every 3 minutes. B contains separation vectors
of previously identified MUs with some of them refined. B,,c,, contains
separation vectors of newly identified MUs. The real-time frontend
thread extracts MU spikes using a 1-second sliding window with a
0.2-second step. @: apply the separation vectors to EMG signals after
extension and whitening.

MUs appropriately. If the MUAP similarity index was larger
than a threshold (i.e., 0.95), the two MUs were considered as the
same MU.

C. Adaptive Real-Time Decomposition Algorithm

The separation matrix calculation procedures including the
FastICA and CKC iterations were time-consuming and cannot
be performed in real-time. Because MU rotation does not occur
frequently, and the amplitude of MUAP is generally stable within
a short time frame, it is possible to update the separation matrix
and extract the MU firing events in two parallel threads (Fig. 2).
In the backend thread, the initiation, refinement, and update of
separation matrix were performed at intervals of 3 minutes, and
the original matrix then was replaced with the updated separation
matrix in the frontend thread. In the frontend decomposition
thread, firing events of individual MUs were extracted in real-
time by applying the separation vectors to EMG data.

1) Initialization Phase: For each 30-minute trial, the first
25-second segment was used to initialize the separation matrix
with 80 FastICA iterations. The separation vectors correspond-
ing to motion artifacts, poor source signal quality, and duplicates
of other MUs were removed. The separation matrix Bconsisted
of all the retained separation vectors.

After the initialization, the refinement and update of the sep-
aration matrix, using CKC and FastICA, were performed every
3 minutes using the 25-second window (Fig. 2). The updating
interval of 3 min was selected based on an earlier work that
showed stable decomposition performance till approximately
200-240 s of activation [25].

2) Matrix Refinement via CKC-Based lIteration: The
CKC-based refinement procedure was first performed for in-
dividual separation vectors. We utilized the MUAP similarity
index to determine the consistency of the MUs before and after
the refinement, such that the separation vector was updated only
if the refined separation vector corresponded to the same MU as
the original one (more details in Supplementary Material E).

3) Matrix Update via FastICA: After the refinement proce-
dure, the FastICA algorithm was performed on the 25-second
EMG segment with 50 iterations. In addition, to accurately

extract MUAPs of newly identified MUs, only the MUs that had
more than 100 spikes were retained. These retained MUs can
either be previously identified or newly identified. A two-step
method was used to determine whether a newly identified MU
was a duplicate of a previously identified MU, by assessing both
the synchronization level of the spike trains and the similarity of
the MUAP waveforms. If both the synchronization level (80%)
and the similarity (0.95) exceeded a given threshold, the MU
was considered a duplicate MU. More details can be found in
Supplementary Material F. Therefore, the separation vectors of
the previously identified MUs can be updated using the new sep-
aration vectors. In some cases, multiple MUs could be duplicates
of the same MU, and only the one with the highest source signal
quality was used to replace the previously identified MU.

To this end, the separation matrix B contained the sepa-
ration vectors of all previously identified MUs. Some of the
separation vectors were refined using CKC or replaced by the
separation vectors from FastICA. The new MUs were pooled
together and constituted the separation matrix B,e,,. The sep-
aration matrix was updated as B = [B B),¢,,] (Fig.2).

D. Performance Evaluation

The performance evaluation mainly focused on two aspects:
the number of identified MUs and the accuracy of the spike
detection. These two outcome measures were evaluated with and
without the matrix refinement and update procedures (termed
update vs. no update in subsequent text for simplicity). The
number of identified MUs was calculated every time after the
separation matrix was updated. The percentage of MU number
was calculated by normalizing the number of all recruited MUs
for the entire 30-min trial, i.e., 80 MUs. The accuracy of spikes
from the MUs identified in the initialization phase was compared
between the two methods, given that the method without matrix
update could not identify new MUs. Specifically, the accuracy
calculation involved two steps. We first identified the simulated
MUs (ground-truth) corresponding to individual spike trains
decomposed in the offline initialization phase (25 seconds). The
ground-truth were the spike trains used to simulate the EMG sig-
nals. To accomplish that, we calculated the consistency between
the spike train of a given decomposed MU in the initialization
phase and all the MU spike trains used to simulate the EMG.
The spike train with the highest consistency was considered
corresponding to the given simulated MU. The consistency
between two spike trains was calculated as:

2MCOTYL

¢ = 2Meom
My + M,

x 100% “)

where My and Msare the number of spikes in two spike trains
respectively and M,,,is the number of spikes that are synchro-
nized between two spike trains. This procedure was repeated for
all decomposed MUs, and their corresponding true spike trains
were obtained. Second, we calculated the weighted average of
the consistency between MU spike trains obtained via the online
decomposition and their corresponding true spike trains using a
1-minute window with no overlap. The overall decomposition
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Fig. 3.

The simulated neural drive ranging from 0-45% maximum excitatory drive (y-axis), and a representative single channel EMG of the first

and last 1-minute of signals (A). The spike trains used to simulate the EMG signals of a representative trial (B). The spike trains of every 5 MUs are
illustrated. The spikes with gray color are eliminated in the MU rotation procedure. Rotation occurs between two MUs (C) and between three MUs

(D) from the same trial as examples.

accuracy was calculated as the weighted average of the consis-
tency across N number of MUs:

ch

0 — Mi(ict_FMitrue (5)
b (M M)

(l’UE

where C; is the consistency of the ith MU calculated using
Equation (4) between the decomposed spike train and its corre-
sponding true spike train, and d; is the weight of the ith MU.
Mget is the number of decomposed spikes of the ith MU and
M/}™¢is the number of true spikes of the ith MU. Instead of
calculating the arithmetic average, we calculated the weighted
average to balance the influence of MUs with different number
of spikes on the consistency values across all MUs. For example,
when a MU only had one firing spike in a time window and it was
not successfully identified, the consistency of the MU was 0%.
Due to its small weight, its consistency would not significantly
influence the weighted average consistency across all MUs.

Ill. RESULTS
A. MU Rotation

Fig. 3A illustrates the simulated neural drive ranging from
0-45% maximum excitatory input and a representative single
channel EMG of the first and last 1-minute. Fig. 3B illustrates the
spike trains used to simulate the EMG signals of a representative

trial. MU rotation occurred randomly between MUs with similar
recruitment thresholds such as between MUs 3 and 4, and
between MUs 17, 19, and 20 (Fig. 3C and 3D). In addition, the
duration of continuous firing of lower threshold MUs (e.g., MUs
3 and 4) was generally longer compared with higher threshold
MUs (e.g., MUs 17, 19, and 20). The compound firing rate
of all MUs should reflect the neural drive signal to the MU
pool. To verify whether it was still true with MU rotation, the
correlation coefficient between the neural drive signal and the
compound firing rate was calculated for individual trials. The
average correlation coefficient was 0.9810£0.0015 across all
the 40 trials in the RH condition and 0.9819+0.0018 across all
the 40 trials in the RL condition.

B. Identified MU Number

One major goal of updating the separation matrix was to
identify more MUs. Fig. 4A illustrates the number of identified
MUs over time in different simulated conditions. For all the
conditions, only approximate 13% MUs can be identified during
the initialization phase. With separation matrix update every 3
minutes, the number of identified MUs increased initially and
then plateaued at a level where approximate 45% MUs can be
identified. The numbers of identified MUs of the Ist minute
and the 28" minute were compared between the decomposition
methods with and without matrix updates. The two-way ANOVA
showed that the Method had a significant influence on the MU
number (F(1,9) = 4446.74, p < 0.001) across all conditions.
Namely, matrix update significantly increased the number of
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Fig. 4. Box-plots of the % number of identified active MUs across all
10 trials over time for individual conditions when the separation matrix
was updated every 3 minutes (A). The number of MUs without update
did not change and was equal to the number of MUs of the initialization
phase. The MU number was normalized by the number of all recruited
MUs in the entire trial which was consistent across trials and conditions.
MU number with trials that had the same SNR level (B), rotation level
(RH vs. RL) (C), and MUAP amplitude drift level (AH vs. AL) (D) grouped
together, respectively. The error bars represent the standard error.

identified MUs. We also observed a significant interaction be-
tween Method and SNR level (F(1,9) = 4.087, p = 0.047) as
shown in Fig. 4B. However, there was no significant interaction
between Method and Rotation level (F(1,9) = 3.574, p = 0.063),
nor between Method and MUAP amplitude drift (F(1,9) =2.241,
p = 0.139) as shown in Figs. 4C and 4D.

The time needed to extract the spikes of individual MUs for
each 1-second window should be less than 0.2 seconds to satisfy
real-time processing. As expected, the results showed that the
calculation time for each 1-second window depended on the
identified MU number. It first increased and then plateaued, and
the calculation time at the end of the trials was approximately
0.06 seconds (Supplementary Material G), which was consistent
across trials. For some data segments, the calculation time was
longer compared with adjacent segments. However, the calcu-
lation time was well below 0.1 seconds.

C. Spike Detection Accuracy

MU rotation and MUAP amplitude drift can influence the
accuracy of the decomposition. The separation matrix update
method could maintain decomposition performance despite of
these interferences. Fig. 5 shows the true spike train and the spike
trains obtained with and without separation matrix updates. The
results of the initial 11.5-minute segment from a representative
MU are illustrated in Fig.s 5A and 5B. Both methods had high
accuracy within the first 8 minutes. Beyond that, the accuracy
of the method without matrix update decreased gradually. With

matrix update, the accuracy also decreased and was comparable
with the other method between the 8" and 9™ minute. However,
when the separation matrix was updated after the 9" minute,
the accuracy was consistently higher. Figs.5C and 5D illustrate
the results of a different MU. Both methods had poor accu-
racy before the 21 minute. Without matrix update, the initial
separation vector failed to detect spikes of the MU. On the
contrary, with matrix update between 215 and 22" minute, the
accuracy increased to 50%. The second update of the matrix
between 24" and 25" minute further increased the accuracy to
above 90%. These representative results indicated that the ma-
trix update method could improve the decomposition accuracy
over time.

Fig. 6 illustrates the average accuracy over time across 10 tri-
als for individual conditions. In general, the accuracy decreased
from the initial high level and fluctuated throughout the trials.
The accuracy was relatively low between 20-25 seconds due to
high neural drive as shown in Fig. 3A. In most cases, the accuracy
obtained with matrix update was higher than without matrix
update. Furthermore, both methods showed higher accuracy at
the SNR10 condition than the SNRS condition. The degree of
improvement with matrix update was smaller at the RH level
compared with the RL level. To further quantify the influence
of different factors on decomposition accuracy, the accuracy
was averaged across time for individual trials (Fig. 7). The
ANOVA showed that the Method had a significant influence
on the accuracy (F(1,9) = 98.39, p < 0.001). We also found
a significant interaction between Method and the Rotation level
(F(1,9) =7.173, p=0.009) as shown in Fig. 7C. However, there
was no significant interaction between Method and SNR level
(F(1,9) = 3.167, p = 0.079), nor between Method and MUAP
amplitude drift (F(1,9) = 0.002, p = 0.961) as shown in Figs.7B
and 7D. Further pairwise comparison with Holm—Bonferroni
correction showed that updating the separation matrix improved
the accuracy in 7 conditions (p < 0.05). However, in the
SNR10-RH-AH condition, the improvement was not significant
(p > 0.05).

IV. DISCUSSION

The objective of this study was to develop an adaptive
real-time MU decomposition algorithm. We implemented a
parallel-double-thread computation algorithm, with the frontend
thread performing real-time decomposition and the backend
thread performing separation matrix updates at fixed intervals.
The separation matrix updates were designed to alleviate per-
formance degradation of MU decomposition caused by MU
rotation (sporadic recruitment-derecruitment) and MUAP am-
plitude drift during prolonged muscle contractions. The novel
backend algorithm can periodically update separation vectors
of previously identified MUs, which can maintain their validity
amid EMG variations and allow the possibility to continuously
track the same MUs during sustained activation. The update of
separation matrix can also extend the dimension of the matrix,
which allowed the identification of newly recruited MUs or ac-
tive MUs that were not identified during initialization. Because
the ground-truth of MU firing activities from experimental EMG
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Fig. 6. The overall decomposition accuracy over time across 10 trials

for individual conditions. The shaded region represents the standard
error of accuracy across MUs in each trial at a given time.

recordings is typically unknown, we utilized synthesized EMG
signals to evaluate the performance of our method. Compared
with conventional real-time decomposition, the results showed
that our adaptive decomposition method can identify a larger
number of MUs over time, including some newly recruited MUs.
In addition, updating the separation vectors of MUs identified
earlier improved the decomposition accuracy, compared with the
conventional method where the separation vectors were fixed
over time. These results demonstrated the robust performance
of the adaptive approach, which has the potential to improve
the performance of neural decoding for applications such as
myoelectric continuous control of assistive devices.

To mimic sporadic MU de-recruitment and recruitment during
prolonged muscle contractions, we developed a stochastic MU
rotation model. The MU rotation model can reflect the physio-
logical regulation of MU activities qualitatively [26]-[28]. The
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Fig. 7. Spike detection accuracy averaged across time for individual
trials in individual conditions (A). Average accuracy in trials with the
same SNR level (B), rotation level (C), and MUAP amplitude drift level
(D), respectively. The error bars represent the standard error. %, p <
0.05. #*, p < 0.01.

rotation can occur randomly with the probability determined
by the accumulated firing time and the recruitment thresholds
of MUs. However, the selection of the absolute value of the
probability was arbitrary, mainly due to a lack of systematic
investigation from experimental studies. Nonetheless, the gen-
eral stochastic MU rotation behavior was simulated, and the
compound firing rate with MU rotation had a high correlation
with the neural drive signal to the MU pool. This was mainly
because the rotation was prescribed to occur between MUs with
similar recruitment thresholds, and the firing rate properties of
these MUs were also similar. This MU rotation model allows
us to evaluate the performance of our separation matrix update
method, and has the potential to be utilized in other scenarios
where periodic MU recruitment-derecruitment activity needs to
be considered.
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In all the simulated conditions, the number of identified
MUs increased significantly when the separation matrix was
updated. Specifically, the initialization phase can only identify
approximately 13% of the total MUs. With updated separation
matrix over time, however, almost 50% of the total MUs can
be identified at the end of the trial. With successive matrix
update, the number of MUs first increased and then plateaued.
The plateau can arise from the fact that the algorithm could not
identify all the MUs in the current matrix update configuration,
such as the current number of FastICA iterations. These results
demonstrated the potential of our method to identify newly
recruited MUs when MU rotation occurs. This is critical because
the inability to identify newly recruited MUs could lead to
decomposition performance degradation over prolonged muscle
contractions. For example, the muscle contraction level could be
underestimated, when some of the initially identified MUs cease
firing and the newly recruited MUs are not identified. This could
partly explain the increase of the force estimation error over time
without updating the MU pool [25].

With matrix update, the separation vectors of some previously
identified MUs could be fine-tuned to improve the accuracy as
shown in Fig. 7. The separation vectors before and after the
alternation should correspond to the same MU, in order to track
the activity of a specific MU continuously. In the current study,
the MUAP similarity index was used to determine whether two
separation vectors obtained from different EMG data segments
represented the same MU. The MUAP similarity index was
effective to ensure consistency of the MU before and after
separation vector update, because the accuracy would decrease
dramatically if the updated separation vector was assigned to
a different MU. The selection of the threshold value for the
MUAP similarity index was largely based on our preliminary
testing. Decreasing the threshold could increase the possibility
of the separation vectors being updated, which can potentially
further improve the accuracy. However, during experiment, the
MUAP templates may not be accurately estimated due to a lack
of firing events, or two distinct MUs may show similar shapes.
Therefore, an adaptive adjustment procedure might be needed
to identify the optimal threshold. Other measures may also be
needed to determine whether two separation vectors belong to
the same MU.

Updating the separation vector of MUs was a random
process. During each matrix update, not all the MUs can
obtain a new separation vector. This could partly explain the
results that the accuracy improvement averaged across MUs
(Fig. 6 and 7) was smaller compared with the representative
MUs shown in Fig. 5. However, a statistically significant
improvement in decomposition accuracy was observed with
updated separation matrix, compared with the method without
update. In addition, the results showed that the MU rotation
level had a significant influence on the degree of accuracy
improvement, in that more frequent rotation could reduce the
performance improvement from the matrix update procedures.
This indicates that the matrix updating interval needs to be
shortened when the rotation occurred more frequently. In
Figs. 5C and 5D, the matrix update method showed its ability to
obtain an accurate separation vector for a specific MU when the

initial separation vector was inaccurate, which demonstrated
a self-correcting capability for the separation matrix of the
adaptive decomposition method. This is important for real-time
neural decoding of sustained muscle contractions, during
which the overall decomposition accuracy is maintained at a
reasonable level to ensure accurate motor intent detection.

We also observed that the decomposition accuracy near the
end (25-30 min) of the trial was similar regardless of whether
the separation matrix was updated or not. As shown in Fig. 3A,
the level of neural drive near the end (25-30 min) was similar
to that of the initialization phase (first 25 seconds). As a result,
the MU recruitment between these two periods were similar,
and the separation matrix obtained from the initialization phase
could extract spikes near the end of the trial at a similar accuracy
level compared with that of the initialization phase. In contrast,
the performance difference was larger during the middle (10-25
min) of the trial, mainly because the level of neural drive was
higher compared to the initial period. At a higher level of neural
drive, more MUs were recruited, resulting in a degraded de-
composition performance without the matrix update. The results
demonstrated the effectiveness of the matrix update method
on maintaining the decomposition performance despite of MU
recruitment-decruitment patterns, especially when new MUs
were recruited.

One limitation of the current study was that our separation ma-
trix update method was only tested on simulated EMG signals.
The main advantage of simulated data is that the ground-truth
of the MU activities are known, which allowed us to investigate
the performance (identifiable MU number and spike detection
accuracy) of our method. In future studies, we plan to evaluate
our adaptive decomposition method using experimental EMG
recordings. Because the ground-truth of MU activities is not
available, the evaluation of the real-time force estimation perfor-
mance with and without matrix update can be used to investigate
the effectiveness of our method. Another limitation was that our
MU simulation did not include firing rate decline over sustained
activation due to fatigue or potentiation, which was observed
frequently in experiments. However, we expect that our adaptive
algorithm can still capture the reduced firing rate of active MUs,
given that firing rate variation is often accompanied by MUAP
amplitude variations, and our matrix update procedures demon-
strated robust decomposition performance in this scenario.

In addition, certain algorithm parameters, such as the mini-
mum number of spikes needed to extract the MUAP, the MUAP
similarity index threshold, and the threshold of spike synchro-
nization level, were selected mainly based on the preliminary
test. The optimal selection of these parameters should be inves-
tigated in future studies. The parameter selection depends on the
degree of the MUAP amplitude drift and the frequency of MU
rotation. For example, a higher rate of amplitude drift and a more
frequent MU rotation possibly need a smaller update interval.

During prolonged muscle contractions, besides MUAP ampli-
tude drift, other non-stationarities can also occur, such as MUAP
shape variations. In the study, only MUAP amplitude drift was
considered mainly because the drift of the MUAP amplitude was
believed to be one major factor that affects the decomposition
performance. Our results demonstrated that the matrix update
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algorithm can improve the decomposition performance regard-
less of the level of amplitude drift. Even though the MUAP
shape was not varied in the current study, we would expect that
the algorithm is not sensitive to MUAP shape variation, because
the update of the separation matrix periodically re-calculate the
separation vectors corresponding to the local optimal solution.
However, more realistic biophysical-based EMG models [35],
[36] are needed to simulate variations of MUAP shape, in order
to assess the algorithm performance more comprehensively.

V. CONCLUSION

We developed an adaptive real-time MU decomposition
method based on a parallel-double-thread calculation, in order to
accommodate sporadic MU recruitment-derecruitment patterns
and MUAP amplitude drift over sustained muscle activations.
By updating the separation matrix periodically, our method was
capable of identifying a large number of MUs and improving
the accuracy of the identified MUs despite of MU rotation and
MUAP amplitude drift during long-term muscle contractions.
Further development of our method can potentially improve
the performance of the neural-machine interface systems that
utilize MU discharge information to control assistive or rehabil-
itative devices. In addition, the MU rotation model developed
in our study can be used to mimic sporadic recruitment and
de-recruitment patterns of MUs, which can be integrated into
the original MU pool model for the simulation of long-term MU
activation.
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