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Finger Force Estimation Using Motor Unit
Discharges Across Forearm Postures

Noah Rubin, Yang Zheng

Abstract—Background: Myoelectric- based decoding
has gained popularity in upper- limb neural-machine
interfaces. Motor unit (MU) firings decomposed from
surface electromyographic (EMG) signals can represent
motor intent, but EMG properties at different arm config-
urations can change due to electrode shift and differing
neuromuscular states. This study investigated whether iso-
metric fingertip force estimation using MU firings is ro-
bust to forearm rotations from a neutral to either a fully
pronated or supinated posture. Methods: We extracted MU
information from high- density EMG of the extensor dig-
itorum communis in two ways: (1) Decomposed EMG in
all three postures (MU-AllIPost); and (2) Decomposed EMG
in neutral posture (MU-Neu), and extracted MUs (separa-
tion matrix) were applied to other postures. Populational
MU firing frequency estimated forces scaled to subjects’
maximum voluntary contraction (MVC) using a regression
analysis. The results were compared with the conventional
EMG-amplitude method. Results: We found largely similar
root-mean-square errors (RMSE) for the two MU-methods,
indicating that MU decomposition was robust to postural
differences. MU-methods demonstrated lower RMSE in the
ring (EMG = 6.23, MU-AllIPost = 5.72, MU-Neu = 5.64%
MVC) and pinky (EMG = 6.12, MU-AllIPost = 4.95, MU-Neu =
5.36% MVC) fingers, with mixed results in the middle finger
(EMG = 5.47, MU-AllPost = 5.52, MU-Neu = 6.19% MVC).
Conclusion: Our results suggest that MU firings can be
extracted reliably with little influence from forearm posture,
highlighting its potential as an alternative decoding scheme
for robust and continuous control of assistive devices.

Index Terms—Biosignal processing, Finger force estima-
tion, Forearm posture, Motor unit decomposition, Neural
decoding.
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[. INTRODUCTION

N RECENT decades, neural-machine interfaces have ad-
I vanced with promise to assist and rehabilitate individuals
with motor impairments by decoding user intent to control
assistive devices [1]. Different techniques have been developed
to record activity at varying levels of the nervous system. Elec-
troencephalography [2], electrocorticography [3], and intracorti-
cal arrays [4] allow brain- machine interfaces, while peripheral
nerve implants [5] and surface electromyography (EMG) [6]
enable communication from the peripheral nervous system. The
EMG signal reflects the summation [7] of motor unit action
potentials (MUAPs) from a number of motor units (MUs) (each a
motor neuron and all the muscle fibers it innervates), considered
the smallest independent control units of muscle activation [8].
The EMG- amplitude signal gives a global measure of activation,
and historically has been employed widely in myoelectric con-
trol of assistive robots in the upper limb [9], [10], as it provides
a noninvasive, easy-to-implement input signal.

Current state-of-the-art commercial devices frequently use
time/frequency features of EMG to classify user intent into dis-
crete gestures via pattern recognition [11]-[13]. Further efforts
have combined gestures for simultaneous actuation [ 14], but this
relates control of independent degrees of freedom, constraining
the available workspace. Additionally, as design of assistive
robotic hands continues advancing with multi-finger control to
mimic a biological hand, maintaining high classification accu-
racies becomes challenging. Alternatively, continuous decoding
schemes may allow more dexterous control than pattern recog-
nition. Recent studies have employed neural network- [15], [16],
regression- [17], and physiologically- based models [18], [19]
to enable continuous and simultaneous control. Concurrently,
blind source separation techniques have been developed to de-
compose EMG into individual MU firing activities [20]-[24].
Populational MU firing frequency has been demonstrated as an
accurate continuous control input signal to approximate motor
output via neural drive [25] using the firing frequency of the
summation of firing events of multiple MUs [26].

All the above-mentioned decoding schemes rely on EMG
signals. However, EMG signals easily degrade due to multiple
factors, such as background noise [27], motion artifacts [28],
and crosstalk between adjacent muscles [29]. In addition, EMG
properties can vary substantially at different arm configurations.
For example, electrode shift of 1 cm relative to skin [30] and
across forearm orientations [31] can significantly increase
pattern classification error. Furthermore, voluntary activation

0018-9294 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81


https://orcid.org/0000-0001-9118-8333
https://orcid.org/0000-0002-8565-5940
mailto:xiaogang@unc.edu
https://doi.org/10.1109/TBME.2022.3153448

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123

124

125
126
127
128

129

130
131
132
133
134

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 00, NO. 00, 2022

[32] and capacity of force generation [33] can vary with arm
posture, imposing interference to motor intent decoding. Using
populational MU firing frequency, it is currently unclear how
well fingertip force prediction generalizes to multiple forearm
postures. Across the range of forearm rotational postures,
the electrode-muscle interface may change the MUAPs
significantly, making it difficult to accurately identify MUAP
trains consistently. As the field progresses towards control
in more realistic settings, it is necessary to test whether MU
decomposition is robust to postural effects on EMG signals. In
our study, we asked two primary questions:

1) Is force prediction via populational MU firings robust to
arm postural effect?

2) Does populational MU firing frequency outperform
EMG-amplitude in force prediction of isometric finger
extension across the forearm’s range of rotational motion?

Specifically, we asked able-bodied subjects to produce iso-
lated isometric finger extension while their forearm was main-
tained in three different postures: fully pronated, neutral, and
fully supinated, spanning its range of motion. We first quantified
the shift of spatial activation patterns of the finger extensor
muscles at these forearm postures using high- density EMG
activation maps. We then compared force prediction perfor-
mance of MU- and EMG-based methods in all postures. To
test the robustness of MU decomposition to postural effect, we
extracted MU activities in real-time in two methods: First, MU
decomposition was performed only in the neutral posture using
an independent component analysis (ICA) algorithm [34], and
extracted MU information (i.e., separation matrix) was applied
directly to EMG obtained in the other two postures (MU-Neu).
Second, MUs were decomposed from EMG in all postures
(MU- AllPost). We then calculated the populational MU firing
frequency of each MU method and employed regression analysis
to estimate individual fingertip forces. As a comparison, we
used EMG-amplitude, after a channel-refinement procedure to
remove cross-talk, to estimate individual fingertip forces. Our
results suggest MU decomposition is robust to postural effects on
electrode shift, muscular states, and neural activation. Overall,
the outcomes from this study further highlight the potential of
MU decomposition as an alternative neural decoding scheme for
continuous control of assistive robotic hands.

[l. METHODS
A. Subject Recruitment

Seven healthy subjects (5 males, 2 females, 20-35 years of
age) without any history of neurological or muscular disorders
participated in this study. All provided informed consent of
protocols approved by the local Institutional Review Board.

B. Data Acquisition

Each subject was seated in an adjustable experimental chair
with their right forearm resting on a foam pad. Their right wrist
was secured between two padded boards attached to the table
and overlaid with Velcro straps for fixation. Each finger was
fixed to 3D-printed attachments against a load cell measuring
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Fig. 1. Experimental Setup. (a) High- density EMG arrays were placed
along the extensor digitorum communis. Reference and common ground
electrode straps were placed on the wrist and elbow, respectively, with
each finger strapped to a load cell measuring finger force outputs. Load
cells were attached to a support system that rotated the wrist between
a fully pronated, neutral, and fully supinated postures. Only the neutral
posture is shown as an example. (b) One repetition (7 total per trial) of
the force trajectory provided via visual feedback.

force output (SM- 200N, Interface, Scottsdale, AZ, 1 kHz). Ad-
ditional Velcro straps fixed fingers to the load cells for accurate
measurement of isometric extension forces (Fig. 1(a)). Supports
connecting the load cell to the table allowed for modular rotation
of the forearm into all postures tested.

Two or three 8x8 electrode arrays (128-192 channels) of high-
density EMG electrodes with a 10 mm inter-electrode distance
and 3 mm electrode diameter (OT Bioelettronica, Torino, Italy)
was used to record EMG (Fig. 1(a)) and accommodate different
forearm sizes. The EMG pads were adhered along the extensor
digitorum communis while the subject’s wrist rested at neutral.
This muscle was chosen due to its superficial location for reason-
able signal quality and involvement in multiple digit actuation
in finger extension, a vital functionality for dexterous object
manipulation. EMG data were acquired via monopolar channel
recording with a reference electrode on the wrist and common
ground at the elbow. Data were sampled with a gain of 1000 and
filtered between 10- 900 Hz via the EMG- USB2 + system (OT
Bioelettronica, Torino, Italy, 2048 Hz).

The experiment was conducted in three blocks corresponding
to three postures (random order). Within each posture, the index,
middle, ring, and pinky fingers were tested in separate trials,
giving twelve trials in total (3 postures x 4 fingers). Before each
set of trials in a posture, subjects first conducted their maximum
voluntary contraction (MVC) for each finger in a random order.
Then in the same order, for each finger, subjects followed a
force trajectory varying from 0-50% MVC for a duration of 18-
seconds (Fig. 1(b)) that repeated 7 times to maximize the pool
of recruited MUs, with 5-seconds of rest between repetitions.
This force trajectory was chosen to test each model’s ability
to modulate with dynamic states of neural activation, as would
be observed in real- world activities. 30-seconds of rest was
provided between different finger trials within a posture, and 5-
minutes of rest between different posture blocks.

C. Data Processing

1) EMG Channel Selection: All analysis described below
was conducted for each finger independently. To adequately
capture relevant muscle activity across postures for channel
selection, an automated procedure removed signal interference
[35] from the EMG signals (see Fig. S2 for examples), the
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root-mean- square (RMS) for each EMG channel within an entire
trial was calculated, and the RMS across the three trials from
each posture was averaged. Informed visual inspection was used
to remove any dead channels, as conducted in [36] (up to 10 for
each subject, often at the edge of an array due to poor contact, as
seenin Figure S1 as an example). Thereafter only the 85 channels
with the highest average RMS were used for further analysis. We
chose 85 as a reasonable value based on prior work that showed
compartmentalization of individual finger activation [37], and
success in force and joint angle prediction in one forearm posture
with a static selection of 64 channels [38], [39]. Because a prior
simulation study on forearm flexor muscle activation showed no
significant difference in MU decomposition accuracy between
using 44, 54, and 64 channels [40], we increased the channel
threshold from 64 to 85 to account for a potentially larger
distribution of muscle activity across all postures in preliminary
observations.

2) Comparing Muscle Activity Between Conditions: To
quantify the distribution of muscle activity and compare between
postures and fingers, for each trial, the geometric centroid of the
muscle activity was calculated (1). While different distributions
may result in the same centroid location, we used this metric be-
cause the distribution did not drastically change across postures
(Fig.3). The x & y axes were defined along the medial-lateral and
proximal-distal directions along the pads, respectively, with the
origin at the most medial and proximal channel. As conducted in
[37], [41], we computed the centroid coordinates for each axis
C, and C, as follows:

2P CiRMS;

Y CiyRMS;
S % RMS,

S¥ RMS, )

z y» Yy

where C;; and C;, are the i channel’s geometric location (in
mm) from the respective medial-lateral and proximal-distal axes
origins, and RMS; is the root-mean-square voltage of the i
channel.

The magnitude of the Euclidean distance between the
pronated and neutral centroids and the neutral and supinated
centroids were calculated, and no significant differences were
observed (using a paired t-test, after checking for normality
via the Shapiro-Wilk test [42], p = 0.51, 0.35, 0.54, 0.79 for
the index, middle, ring, and pinky fingers respectively). To
summarize shifts in activity across the forearm’s rotational range
of motion, these magnitudes were summed.

3) Force Prediction:

a) Data Segmentation: EMG data from the first repe-
tition within every trial (EMGi) was exclusively used for the
initial offline MU decomposition (see Supplementary Materials
for details). The MU- AllPost method included independent
decompositions of EMGi in the neutral, pronated, and supinated
postures, resulting in three sets of separation vectors w,,, w,, and
wj, respectively. Thereafter, unique MUs from w,,, w;,, and w,
were retained. Alternatively, the MU-Neu method decomposed
MUs from EMG; only in the neutral posture (Fig. 2(a)), and
the separation vectors were directly applied to EMG; in the
other two postures. For regression model training/testing, the
remaining 6 repetitions in a trial were split and concatenated with
corresponding repetition numbers from trials for each posture.

This gave six data blocks, each including EMG and force data
from all postures. A 6-fold cross- validation was then performed
(five training, one testing) to evaluate models’ performances. By
comparing the MU-AllPost and MU-Neu methods, we deter-
mined whether MUs decomposed from EMG of a single posture
could perform equivalently to those decomposed in each posture
when estimating force output in all postures.

b) Force Estimation Using Neural Drive: Force data
was low-pass filtered (4th order Butterworth [43], 2 Hz cutoff)
and normalized to each trial’s respective MVC for estimation.
To mimic an environment suitable to later implement controller
updates during a real-time acquisition, an online analysis was
conducted, where EMG was band-pass filtered 5-500 Hz [43],
extended, and whitened in 1-second increments, as conducted
in [44]. Separation vectors w of remaining MUSs after offline
decomposition were then applied to each increment to gather
respective source signals, and MU spike trains were extracted
(Fig. 2(b)) [44]. There is potential recruitment of MUs activating
non-targeted fingers or inclusion of unreliable source signals for
force prediction. Rather than using all remaining active MUs for
the final trained model, we conducted a refinement procedure
to improve force estimation for the targeted finger, (Fig. 2(c)):
firing rates (FRs) of individual MUs (0.5-second window, 0.1-
second step size as done in [45]) were calculated, smoothed with
a Kalman filter [46], and linearly regressed to the corresponding
finger’s force level, because the firing frequency associated with
a particular finger should correlate with its motor output. Up
to 10 MUs with the highest coefficients of determination (R?)
were kept. The cumulative spike train of 10 MUs is sufficient
to represent the common synaptic input to motor neurons, an
indirect measure of effective neural drive [47], and prevents
inclusion of MUs with poor force estimation performance. The
final trained model fit refined MU FRs to force via multiple
linear regression as follows:

(1) =Z%FR]' ) +b @

where F{(t) and FR(t) are respectively the force and smoothed
FR of the jth MU at time ¢, a; is the jth MU’s fit coefficient, and
b is the fit y-intercept.

Separation vectors of the refined MUs were then applied to
identically processed EMG in the test set; spike trains were
extracted, and smoothed FRs were input into the trained model
to estimate force. Negative estimates of force were set to zero;
while it is possible flexors were active at higher forces, we only
recorded finger extensors during the task.

c) Force Estimation Using EMG-Amplitude: EMG
training sets were filtered and channel refinements were also
performed to only include channels recording isolated activation
of the targeted finger. The same moving window (0.5-second,
0.1-second step size) computed the RMS of EMG and an identi-
cal Kalman filter [46] as in the neural drive calculation smoothed
the computed result. The smoothed RMS of each channel was
then linearly regressed to force from the entire training set. To
control comparisons between the EMG-and MU-based methods,
the 10 channels with the highest R? values were kept. The
average smoothed RMS of these channels was linearly regressed
to force to create a trained model to predict force across all
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Training MU Force Estimation Model. (a) EMG in the first repetition of a trial (EMG;) in neutral, pronated, and supinated postures were each

decomposed offline (see Supplementary Materials) into sets of separation vectors w,, w,, wg, respectively. Each vector in the set corresponds to a
given jth MU. The MU- AllPost method used wy,, w,,, wg, while the MU- Neu method only used w,, in force estimation. (b) After offline decomposition,
in the training set (for brevity one of five data blocks is shown), separation vectors (in this case, wy;) were applied online using a moving window
(red dashed box) extended and whitened EMG, Zy i, unmixing MU information into a source signal s; ¢ain. Peak detection via K-means clustering
converted this signal into a MU spike train, and a moving window across each spike train calculated MU FRs. (c) Representative spike trains of
excluded (black) and refined (red) MUs. Individual MU FRs (thin dashed lines) were linearly regressed to force (solid black line). The 10 MUs with
the highest R? values (red, Refined set) were kept. (d) Refined MU FRs were used in multiple linear regression to force, giving the trained model
estimation (thick dashed line). For visual brevity, one repetition from a single posture in the training set is displayed.

postures. The 10 refined channels were identically processed
in EMG from the test set and input into the trained model to
estimate finger force. Negative estimates of force were again set
to zero. The root-mean- square error (RMSE) between predicted
and actual force levels of the test set was calculated to evaluate
model performance.

4) Statistical and Residual Analysis: A significance
threshold of @ = 0.05 was used for all statistical tests, and
all data were first checked for normality (Shapiro-Wilk test
[42]) prior to conducting parametric tests. For each finger, a
paired t-test compared EMG activity shifts between postures
(i.e., the shift magnitude from neutral to pronated and neutral
to supinated postures). To compare shifts between fingers, a
one- way analysis of variance (ANOVA) tested for significant
differences in the summed magnitudes across postures. Perfor-
mances between the EMG, MU- AllPost, and MU- Neu methods
were analyzed for each finger independently. Data were tested

for sphericity (Mauchly’s test [48]), and a repeated measures
ANOVA between methods determined significant differences. If
significant differences were observed above, multiple pairwise
comparisons with a Bonferroni correction were conducted. In
addition to statistical analysis of overall RMSE, residual analysis
of the regression was conducted to quantify performance across
force levels (see supplementary material for details).

Ill. RESULTS
A. Muscle Activity Across Postures

To illustrate muscle activity in each trial, Fig. 3 shows
representative heat maps across trials for subject 1, overlaid with
the geometric centroid of muscle activation. The index finger had
two distinct areas of activation distally and slightly proximally
relative to the midline of the pads. Prior work has shown one
distinct peak of activation during isolated index finger extension
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Medial-Lateral (cm)
Supinated Neutral Pronated

Middle
Proximal-Distal (cm)

Ring

Fig. 3. Representative heat maps (subject 1) of muscle activation
across each finger and posture. Muscle activation was normalized to
the EMG channel with the highest RMS within each trial. The overlaid
red circles indicate the geometric centroid of muscle activation.

[37], [49], [50], suggesting subjects may have had more coac-
tivation with other fingers in this study. Markedly, the middle
finger had concentrated activation in the most proximal region.
The ring and pinky fingers had the highest activity slightly
proximally and centrally with wide distributed activity across
the pads. While activation regions for each finger were consistent
across subjects, the relative shift in the centroid between postures
varied (Fig. S3). For each finger in the medial-lateral direction,
across the range of motion (i.e., from pronated to a neutral
and neutral to a supinated posture) the centroid shifted in the
same direction for 3-4 subjects, while the direction switched
at the neutral posture for others. More specifically, subjects 1
and 5’s centroids shifted medially across the range of motion
in all fingers except for neutral to supinated in the pinky and
pronated to neutral in the middle finger, respectively. Opposing
this, subject4 and 6’s centroid shifted laterally and then medially,
except for pronated to neutral for the index finger of subject 6.
In contrast, subject 2’s centroid always shifted medially from
pronated to neutral and then the direction switched laterally
from neutral to supinated. Subjects 3 and 7 exhibited more varied
medial- lateral shifts across all conditions. In the proximal- distal
direction, shifts were more consistent across subjects, but still
differed across fingers. Index finger activity shifted proximally
for all but subject 6 from pronated to neutral and subjects 3-6
from neutral to supinated. In the middle finger, activity in all but
subject 3 shifted distally from pronated to neutral, with more
variation when moving to a supinated posture. The ring finger
consistently had proximal shifts across the range of motion,
except for subjects 6-7 moving to neutral and 4 moving to
supinated. In the pinky, subjects 1, 2, 4, and 6 shifted the same
direction across the range of motion, but in this case there was
variation in which direction across subjects.

Resulting data on shifts in muscle activity were found to have
a normal distribution. Even though there was large variation in
the direction of shift for the muscle activation centroids across
the range of motion, no significant differences in the magnitude
of shifts from a neutral to either pronated or supinated postures
were observed (p = 0.36, 0.95, 0.59, 0.67 for the index, middle,
ring, and pinky fingers respectively). Thus, we summed the cen-
troid shift magnitude across the range of motion to summarize
changes in the activity distribution (Fig. 4). The index finger
had the largest mean magnitude shift across subjects (2.66 +
0.93 cm), followed by the ring (2.24 £ 1.00 cm), pinky (1.42 £+
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Fig. 4. Boxplot of the magnitude of Euclidean shift in the muscle
activity’s geometric centroid across the range of motion (pronated to
neutral to supinated) for all subjects. Overlaid black dots indicate sample
means (xp < 0.05, «x p < 0.01).
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Fig. 5. Force estimation evaluation. After model training, refined MUs’

firings and refined EMG channels’ RMS activity were employed to
predict force across all postures in the test set (subject 2, ring finger
displayed as representative example). For visual brevity, half of the test
set is shown.

0.65 cm), and middle fingers (1.11 &£ 0.45 cm). The index finger
had a significantly greater shift magnitude than the middle (p =
0.006) and pinky (p = 0.032) fingers.

B. Force Prediction Performance

Fig. 5 shows representative force predictions for the EMG-
and MU-based methods in a test set from subject 2’s ring finger.
Note the same refined EMG channels and MUs were used when
testing across all postures. The EMG-amplitude method (dashed,
purple line) underestimated force at high effort levels (black line)
in the neutral and pronated postures. The MU- Neu (red line)
and MU- AllPost (dashed, green line) methods outperformed
the EMG method at mid-range force levels (10-30% MVC), and
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Fig. 6. Estimation error across fingers for each method. The distribu-
tion across subjects is shown (boxplot) and overlaid with the average
error (black dot) in test sets (xp < 0.01, xxp < 0.0001).

TABLE |
STATISTICAL COMPARISONS BETWEEN METHODS

Finger
Index Middle Ring Pinky
e L B
M%IYIZSI;ZS . <0.0001 <0.0001 <0.0001
ﬁ%i]‘; <0.0001 <0.0001 <0.0001
M[fvfzui‘;t vs <0.01 >0.99 0.10

Bold values indicate statistically significant differences.
« = 0.05 and the critical F-statistic is 3.23.

quickly adjusted to changes in force. Both EMG-and MU-based
methods had varied performance at zero force across postures,
with better performance in pronated and supinated postures
compared to neutral in this case. Notably, except for peak
forces in neutral, the MU-Neu and MU-AllPost methods had
similar trajectories throughout the exemplar trial. For all three
methods employed, regression tended to overestimate low forces
and underestimate high forces produced (see Supplementary
Materials), resulting in a slight proportional bias. Markedly,
however, MU- based methods possessed less severe bias than
the EMG method, and the MU-AIIPost and MU-Neu methods
maintained similar trends in prediction across force levels.

To summarize model performances, Fig. 6 shows the RMSE
of each method across fingers averaged across subjects, and
Table I summarizes statistical comparisons. Performance across
methods were found to be normally distributed with sphericity.
No significant differences were observed in RMSE between
methods in the index finger (Zrrrg = 5.36, Tyru— AliPost =
5.05, Z py—New = 5.18% MVC). In all other fingers, significant
differences in performance occurred between the EMG and both
MU- based methods. The MU-based methods were significantly
worse in the middle finger (Tgyrg = 547, Typu—Aupost =
5.52, Zp7—New = 6.19%MVC), but with only a 0.05% RMSE
difference in sample means between the EMG and MU- AllPost
method. Notably, MU- based methods performed significantly
better than the EMG- amplitude method in both the ring (Z gy
= 6.23, Tpmu—AlPost = 572, Ty -—New = 5.64%MVC) and
pinky (Zpma = 6.12, Tyu-aupost = 495, Tyu-New =

5.36%MVC) fingers, but no significant difference was observed
between the MU- based methods in either finger.

Performances for each subject are depicted in Fig. S5. Across
most conditions, both EMG- and MU-based methods had RMSE
values ranging from 4-10%. In the index finger, all methods
had similar performance in subjects 2 and 4-7, with slightly
better performance in EMG for subject 3 and slightly worse
only for subject 1. All methods in the middle finger had varied
performance across subjects. Unexpectedly, EMG outperformed
MU- based methods in subjects 2, 4, and 6. However, both
MU- based methods outperformed EMG in subjects 3 and 7,
while in subjects 1 and 5 the MU- AllPost method outperformed
EMG. In the ring finger, MU- based methods outperformed
EMG in 5 subjects, with similar performance in subject 1 and
slightly worse performance in subject 5. In the pinky, MU- based
methods consistently outperformed EMG- amplitude methods
in all subjects except for similar performance to the MU-Neu
method in subject 2. Most notably, in the index, ring, and pinky
fingers no significant differences were observed between the
MU-Neu and MU-AIlIPost methods (Table I), but unexpectedly
significant differences were observed in the middle finger (p <
0.01). Upon further inspection, individually only subjects 1 and 5
displayed significant differences (paired t-tests on the 6-folds, «
=0.05), whereas similar performance in the MU-based methods
was seen in the other five subjects (Fig. S5).

IV. DISCUSSION

This study compared force estimation accuracy using conven-
tional EMG-amplitude and MU discharges decomposed from
high-density EMG of finger extensors at different forearm rota-
tional angles spanning the range of motion. Our results revealed
MU firing information (separation matrix) obtained in one posi-
tion can be used to reliably extract MU information at different
postures, as indicated by similar performance between the two
MU methods. For most subjects and two of four fingers, MU
methods outperformed (and if not, performed similarly with
few exceptions) EMG-amplitude predicting isometric finger
extension force across the range of a forearm’s rotational angle.
These outcomes further support use of MU discharges as an
alternative input signal for assistive device control.

Across subjects, we observed varied results in the middle, sim-
ilar performance in the index, and better performance with MUs
in the ring and pinky fingers. Unexpectedly, the EMG-amplitude
method outperformed MUs in 3 subjects for the middle finger.
One potential explanation for these higher performances of the
EMG-amplitude method is the isolation of the middle relative to
other fingers. Earlier studies have led the hypothesis that finger
muscles are compartmentalized into subunits [51], [52], and
in a prior analysis involving high-density EMG during finger
extension, the middle finger had the most distinct region of
activation when compared to concurrent activation of all fingers
[37]. This coincides with our study, as the spatial distribution of
activation of the middle finger was most proximal and localized
relative to other fingers (Fig. 3). Furthermore, the centroid of
the muscle activation did not change substantially across all
three postural conditions relative to other fingers (Fig. 4, S1).
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In tandem with a localized region of activation, another study
quantifying crosstalk between EMG recorded during individual
finger extension observed the least amount of crosstalk during
middle finger activation compared to other fingers [53]. Given
the concentrated, isolated activation for this finger, refined chan-
nels were likely well-isolated to the middle finger compartment
in all postures, which could afford a robust prediction with EMG-
amplitude compared to other fingers. In less controlled settings
involving simultaneous finger actuations, recorded EMG may
not be as well-isolated, potentially degrading performance of
the EMG method.

In the index finger, no significant difference between the
EMG, MU-AllPost, and MU-Neu methods were observed.
While not as isolated as the middle finger, the index finger
also recruits less non-targeted fingers in voluntary single-digit
activation [54]. Relative to other fingers, we observed a larger
activation distribution across the pad and notably a higher cen-
troid shift magnitude across postures (Fig. 4). While prior work
has shown improved performance compared to traditional EMG
in this finger in single postures [55], it is possible the neural
strategy for muscle activation across postures differed, and thus
different MUs were recruited at these positions, degrading the
correlation of refined MUs for all postures and leading to com-
parable performance between the methods. However, for the
ring and pinky fingers, the MU-based methods outperformed
the EMG method for most subjects. Correspondingly, recent
work predicting force with sequential activation of multiple
fingers also showed the largest improvement in performance
with MU-based compared to EMG-amplitude methods in the
ring and pinky fingers activating concurrently [25]. Unlike the
index and middle fingers, the muscle compartments of the
ring and pinky are not as anatomically separated [56]. Hence,
we observed similar regions of activation during these trials
across postures compared to other fingers (Fig. 3). Additionally,
greater enslavement (co-activation of non-targeted fingers) in
these fingers has been documented [54], [57], [58]. Indeed,
during our experiment subjects consistently reported having
difficulty isolating these fingers. Even though the territory of a
MU (region of innervated muscle fibers) is frequently localized
[59], relating individual MUs to activation of individual fingers,
the neural drive to MUs for isometric finger extension is often
not well-isolated. There is often short-term synchronization [60]
and high levels of common synaptic input to MUs between
muscle compartments in the delta band [61], which is hypoth-
esized to correlate with force modulation [26]. Furthermore,
in individual finger extension, spillover of MU recruitment to
non-targeted fingers occurs, with greater force production in the
ring and pinky compared to the index and middle fingers [62],
[63]. Therefore, since the ring and pinky compartments have
less independent neural drive and close anatomical proximity,
refined channels likely contained activity related to different
fingers’ force production. Instead, by conducting our refinement
procedure to predict force at the MU-level, we better isolated
activation related to force for a single digit. Hence, while EMG
outperformed MUs only in a few cases for the most isolated
(middle) finger, MUs outperformed EMG in the least isolated
trials. In contexts requiring dexterous finger manipulation across

multiple arm configurations, the potential for MUs to outperform
EMG as a continuous control input signal may become more
pronounced.

We also tested whether MU decomposition is robust to dif-
ferent arm postures by using MUs decomposed from EMG
recorded only in the neutral posture (MU-Neu) to predict force
output across all postures, and we compared this to using MUs
decomposed from EMG recorded in all postures (MU-AllPost).
Impressively, in most fingers and subjects the MU methods
performed similarly. Given the consistent source signal across
postures (Fig. 2B) and modulation of force prediction for the
MU-Neu method in all conditions (Fig. 5), separation vectors
from MU-Neu could identify MUs from EMG recorded in other
postures, which can sufficiently represent neural drive to the
muscle [47]. In future studies involving multiple arm postures,
initial decomposition may only be needed from one position.

This study revealed MU decomposition of individual finger
extensors is robust to forearm rotation, providing a novel ap-
plication in force prediction. However, the investigation was
limited in certain aspects. Subject-specific channel selection
may improve computational efficiency or performance in trans-
lation to real-time control settings. Data were also constrained
to a specific periodic trajectory. More variation between trained
and tested models are needed to ensure robustness across all
conditions of force prediction. More advanced refinement in the
MU-based models could also be employed by adding weight to
the most reliable MUs that are consistently better predictors of
the control goal. Tests were also conducted at discretized states in
isometric conditions. Prior work has decomposed MUs for myo-
electric control with both finger flexion and extension [55] and in
dynamic conditions [36], [64], [65], giving opportunity to work
towards neural drive estimation with concurrent, dynamic actua-
tion of the wrist and fingers flexing and extending. Additionally,
we only observed postural effects on activation distribution of
EMG. Dynamic motion may further affect recorded MUAPs,
and studying captured MUAPS’ properties across postures could
further quantify MU decomposition’s robustness.

V. CONCLUSION

In summary, we showed MU discharges accurately predicted
individual isometric finger extension force with the forearm at
three rotational postures spanning its range of motion. Over-
all, MU discharges outperformed conventional EMG-amplitude
across postures in fingers with less isolated activation. Addition-
ally, MU information decomposed in one posture sufficiently
predicted force output across the entire range of motion. Further
testing may offer more robust control input signals to neural-
machine interfaces in dexterous functional tasks.
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