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Finger Force Estimation Using Motor Unit
Discharges Across Forearm Postures
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Abstract—Background: Myoelectric- based decoding4
has gained popularity in upper- limb neural-machine5
interfaces. Motor unit (MU) firings decomposed from6
surface electromyographic (EMG) signals can represent7
motor intent, but EMG properties at different arm config-8
urations can change due to electrode shift and differing9
neuromuscular states. This study investigated whether iso-10
metric fingertip force estimation using MU firings is ro-11
bust to forearm rotations from a neutral to either a fully12
pronated or supinated posture. Methods: We extracted MU13
information from high- density EMG of the extensor dig-14
itorum communis in two ways: (1) Decomposed EMG in15
all three postures (MU-AllPost); and (2) Decomposed EMG16
in neutral posture (MU-Neu), and extracted MUs (separa-17
tion matrix) were applied to other postures. Populational18
MU firing frequency estimated forces scaled to subjects’19
maximum voluntary contraction (MVC) using a regression20
analysis. The results were compared with the conventional21
EMG-amplitude method. Results: We found largely similar22
root-mean-square errors (RMSE) for the two MU-methods,23
indicating that MU decomposition was robust to postural24
differences. MU-methods demonstrated lower RMSE in the25
ring (EMG = 6.23, MU-AllPost = 5.72, MU-Neu = 5.64%26
MVC) and pinky (EMG = 6.12, MU-AllPost = 4.95, MU-Neu =27
5.36% MVC) fingers, with mixed results in the middle finger28
(EMG = 5.47, MU-AllPost = 5.52, MU-Neu = 6.19% MVC).29
Conclusion: Our results suggest that MU firings can be30
extracted reliably with little influence from forearm posture,31
highlighting its potential as an alternative decoding scheme32
for robust and continuous control of assistive devices.33

Index Terms—Biosignal processing, Finger force estima-34
tion, Forearm posture, Motor unit decomposition, Neural35
decoding.36
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I. INTRODUCTION 37

IN RECENT decades, neural-machine interfaces have ad- 38

vanced with promise to assist and rehabilitate individuals 39

with motor impairments by decoding user intent to control 40

assistive devices [1]. Different techniques have been developed 41

to record activity at varying levels of the nervous system. Elec- 42

troencephalography [2], electrocorticography [3], and intracorti- 43

cal arrays [4] allow brain- machine interfaces, while peripheral 44

nerve implants [5] and surface electromyography (EMG) [6] 45

enable communication from the peripheral nervous system. The 46

EMG signal reflects the summation [7] of motor unit action 47

potentials (MUAPs) from a number of motor units (MUs) (each a 48

motor neuron and all the muscle fibers it innervates), considered 49

the smallest independent control units of muscle activation [8]. 50

The EMG- amplitude signal gives a global measure of activation, 51

and historically has been employed widely in myoelectric con- 52

trol of assistive robots in the upper limb [9], [10], as it provides 53

a noninvasive, easy-to-implement input signal. 54

Current state-of-the-art commercial devices frequently use 55

time/frequency features of EMG to classify user intent into dis- 56

crete gestures via pattern recognition [11]–[13]. Further efforts 57

have combined gestures for simultaneous actuation [14], but this 58

relates control of independent degrees of freedom, constraining 59

the available workspace. Additionally, as design of assistive 60

robotic hands continues advancing with multi-finger control to 61

mimic a biological hand, maintaining high classification accu- 62

racies becomes challenging. Alternatively, continuous decoding 63

schemes may allow more dexterous control than pattern recog- 64

nition. Recent studies have employed neural network- [15], [16], 65

regression- [17], and physiologically- based models [18], [19] 66

to enable continuous and simultaneous control. Concurrently, 67

blind source separation techniques have been developed to de- 68

compose EMG into individual MU firing activities [20]–[24]. 69

Populational MU firing frequency has been demonstrated as an 70

accurate continuous control input signal to approximate motor 71

output via neural drive [25] using the firing frequency of the 72

summation of firing events of multiple MUs [26]. 73

All the above-mentioned decoding schemes rely on EMG 74

signals. However, EMG signals easily degrade due to multiple 75

factors, such as background noise [27], motion artifacts [28], 76

and crosstalk between adjacent muscles [29]. In addition, EMG 77

properties can vary substantially at different arm configurations. 78

For example, electrode shift of 1 cm relative to skin [30] and 79

across forearm orientations [31] can significantly increase 80

pattern classification error. Furthermore, voluntary activation 81
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[32] and capacity of force generation [33] can vary with arm82

posture, imposing interference to motor intent decoding. Using83

populational MU firing frequency, it is currently unclear how84

well fingertip force prediction generalizes to multiple forearm85

postures. Across the range of forearm rotational postures,86

the electrode-muscle interface may change the MUAPs87

significantly, making it difficult to accurately identify MUAP88

trains consistently. As the field progresses towards control89

in more realistic settings, it is necessary to test whether MU90

decomposition is robust to postural effects on EMG signals. In91

our study, we asked two primary questions:92

1) Is force prediction via populational MU firings robust to93

arm postural effect?94

2) Does populational MU firing frequency outperform95

EMG-amplitude in force prediction of isometric finger96

extension across the forearm’s range of rotational motion?97

Specifically, we asked able-bodied subjects to produce iso-98

lated isometric finger extension while their forearm was main-99

tained in three different postures: fully pronated, neutral, and100

fully supinated, spanning its range of motion. We first quantified101

the shift of spatial activation patterns of the finger extensor102

muscles at these forearm postures using high- density EMG103

activation maps. We then compared force prediction perfor-104

mance of MU- and EMG-based methods in all postures. To105

test the robustness of MU decomposition to postural effect, we106

extracted MU activities in real-time in two methods: First, MU107

decomposition was performed only in the neutral posture using108

an independent component analysis (ICA) algorithm [34], and109

extracted MU information (i.e., separation matrix) was applied110

directly to EMG obtained in the other two postures (MU-Neu).111

Second, MUs were decomposed from EMG in all postures112

(MU- AllPost). We then calculated the populational MU firing113

frequency of each MU method and employed regression analysis114

to estimate individual fingertip forces. As a comparison, we115

used EMG-amplitude, after a channel-refinement procedure to116

remove cross-talk, to estimate individual fingertip forces. Our117

results suggest MU decomposition is robust to postural effects on118

electrode shift, muscular states, and neural activation. Overall,119

the outcomes from this study further highlight the potential of120

MU decomposition as an alternative neural decoding scheme for121

continuous control of assistive robotic hands.122

II. METHODS123

A. Subject Recruitment124

Seven healthy subjects (5 males, 2 females, 20-35 years of125

age) without any history of neurological or muscular disorders126

participated in this study. All provided informed consent of127

protocols approved by the local Institutional Review Board.128

B. Data Acquisition129

Each subject was seated in an adjustable experimental chair130

with their right forearm resting on a foam pad. Their right wrist131

was secured between two padded boards attached to the table132

and overlaid with Velcro straps for fixation. Each finger was133

fixed to 3D-printed attachments against a load cell measuring134

Fig. 1. Experimental Setup. (a) High- density EMG arrays were placed
along the extensor digitorum communis. Reference and common ground
electrode straps were placed on the wrist and elbow, respectively, with
each finger strapped to a load cell measuring finger force outputs. Load
cells were attached to a support system that rotated the wrist between
a fully pronated, neutral, and fully supinated postures. Only the neutral
posture is shown as an example. (b) One repetition (7 total per trial) of
the force trajectory provided via visual feedback.

force output (SM- 200N, Interface, Scottsdale, AZ, 1 kHz). Ad- 135

ditional Velcro straps fixed fingers to the load cells for accurate 136

measurement of isometric extension forces (Fig. 1(a)). Supports 137

connecting the load cell to the table allowed for modular rotation 138

of the forearm into all postures tested. 139

Two or three 8x8 electrode arrays (128-192 channels) of high- 140

density EMG electrodes with a 10 mm inter-electrode distance 141

and 3 mm electrode diameter (OT Bioelettronica, Torino, Italy) 142

was used to record EMG (Fig. 1(a)) and accommodate different 143

forearm sizes. The EMG pads were adhered along the extensor 144

digitorum communis while the subject’s wrist rested at neutral. 145

This muscle was chosen due to its superficial location for reason- 146

able signal quality and involvement in multiple digit actuation 147

in finger extension, a vital functionality for dexterous object 148

manipulation. EMG data were acquired via monopolar channel 149

recording with a reference electrode on the wrist and common 150

ground at the elbow. Data were sampled with a gain of 1000 and 151

filtered between 10- 900 Hz via the EMG- USB2 + system (OT 152

Bioelettronica, Torino, Italy, 2048 Hz). 153

The experiment was conducted in three blocks corresponding 154

to three postures (random order). Within each posture, the index, 155

middle, ring, and pinky fingers were tested in separate trials, 156

giving twelve trials in total (3 postures × 4 fingers). Before each 157

set of trials in a posture, subjects first conducted their maximum 158

voluntary contraction (MVC) for each finger in a random order. 159

Then in the same order, for each finger, subjects followed a 160

force trajectory varying from 0-50% MVC for a duration of 18- 161

seconds (Fig. 1(b)) that repeated 7 times to maximize the pool 162

of recruited MUs, with 5-seconds of rest between repetitions. 163

This force trajectory was chosen to test each model’s ability 164

to modulate with dynamic states of neural activation, as would 165

be observed in real- world activities. 30-seconds of rest was 166

provided between different finger trials within a posture, and 5- 167

minutes of rest between different posture blocks. 168

C. Data Processing 169

1) EMG Channel Selection: All analysis described below 170

was conducted for each finger independently. To adequately 171

capture relevant muscle activity across postures for channel 172

selection, an automated procedure removed signal interference 173

[35] from the EMG signals (see Fig. S2 for examples), the 174
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root-mean- square (RMS) for each EMG channel within an entire175

trial was calculated, and the RMS across the three trials from176

each posture was averaged. Informed visual inspection was used177

to remove any dead channels, as conducted in [36] (up to 10 for178

each subject, often at the edge of an array due to poor contact, as179

seen in Figure S1 as an example). Thereafter only the 85 channels180

with the highest average RMS were used for further analysis. We181

chose 85 as a reasonable value based on prior work that showed182

compartmentalization of individual finger activation [37], and183

success in force and joint angle prediction in one forearm posture184

with a static selection of 64 channels [38], [39]. Because a prior185

simulation study on forearm flexor muscle activation showed no186

significant difference in MU decomposition accuracy between187

using 44, 54, and 64 channels [40], we increased the channel188

threshold from 64 to 85 to account for a potentially larger189

distribution of muscle activity across all postures in preliminary190

observations.191

2) Comparing Muscle Activity Between Conditions: To192

quantify the distribution of muscle activity and compare between193

postures and fingers, for each trial, the geometric centroid of the194

muscle activity was calculated (1). While different distributions195

may result in the same centroid location, we used this metric be-196

cause the distribution did not drastically change across postures197

(Fig. 3). The x & y axes were defined along the medial-lateral and198

proximal-distal directions along the pads, respectively, with the199

origin at the most medial and proximal channel. As conducted in200

[37], [41], we computed the centroid coordinates for each axis201

Cx and Cy as follows:202

Cx =

∑85
i CixRMSi∑85

i RMSi

, Cy =

∑85
i CiyRMSi∑85

i RMSi

(1)

where Cix and Ciy are the ith channel’s geometric location (in203

mm) from the respective medial-lateral and proximal-distal axes204

origins, and RMSi is the root-mean-square voltage of the ith205

channel.206

The magnitude of the Euclidean distance between the207

pronated and neutral centroids and the neutral and supinated208

centroids were calculated, and no significant differences were209

observed (using a paired t-test, after checking for normality210

via the Shapiro-Wilk test [42], p = 0.51, 0.35, 0.54, 0.79 for211

the index, middle, ring, and pinky fingers respectively). To212

summarize shifts in activity across the forearm’s rotational range213

of motion, these magnitudes were summed.214

3) Force Prediction:215

a) Data Segmentation: EMG data from the first repe-216

tition within every trial (EMGi) was exclusively used for the217

initial offline MU decomposition (see Supplementary Materials218

for details). The MU- AllPost method included independent219

decompositions of EMGi in the neutral, pronated, and supinated220

postures, resulting in three sets of separation vectors wn, wp, and221

ws, respectively. Thereafter, unique MUs from wn, wp, and ws222

were retained. Alternatively, the MU-Neu method decomposed223

MUs from EMGi only in the neutral posture (Fig. 2(a)), and224

the separation vectors were directly applied to EMGi in the225

other two postures. For regression model training/testing, the226

remaining 6 repetitions in a trial were split and concatenated with227

corresponding repetition numbers from trials for each posture.228

This gave six data blocks, each including EMG and force data 229

from all postures. A 6-fold cross- validation was then performed 230

(five training, one testing) to evaluate models’ performances. By 231

comparing the MU-AllPost and MU-Neu methods, we deter- 232

mined whether MUs decomposed from EMG of a single posture 233

could perform equivalently to those decomposed in each posture 234

when estimating force output in all postures. 235

b) Force Estimation Using Neural Drive: Force data 236

was low-pass filtered (4th order Butterworth [43], 2 Hz cutoff) 237

and normalized to each trial’s respective MVC for estimation. 238

To mimic an environment suitable to later implement controller 239

updates during a real-time acquisition, an online analysis was 240

conducted, where EMG was band-pass filtered 5-500 Hz [43], 241

extended, and whitened in 1-second increments, as conducted 242

in [44]. Separation vectors w of remaining MUs after offline 243

decomposition were then applied to each increment to gather 244

respective source signals, and MU spike trains were extracted 245

(Fig. 2(b)) [44]. There is potential recruitment of MUs activating 246

non-targeted fingers or inclusion of unreliable source signals for 247

force prediction. Rather than using all remaining active MUs for 248

the final trained model, we conducted a refinement procedure 249

to improve force estimation for the targeted finger, (Fig. 2(c)): 250

firing rates (FRs) of individual MUs (0.5-second window, 0.1- 251

second step size as done in [45]) were calculated, smoothed with 252

a Kalman filter [46], and linearly regressed to the corresponding 253

finger’s force level, because the firing frequency associated with 254

a particular finger should correlate with its motor output. Up 255

to 10 MUs with the highest coefficients of determination (R2) 256

were kept. The cumulative spike train of 10 MUs is sufficient 257

to represent the common synaptic input to motor neurons, an 258

indirect measure of effective neural drive [47], and prevents 259

inclusion of MUs with poor force estimation performance. The 260

final trained model fit refined MU FRs to force via multiple 261

linear regression as follows: 262

F (t) =
∑

j

ajFRj (t) + b (2)

where F(t) and FRj(t) are respectively the force and smoothed 263

FR of the jth MU at time t, aj is the jth MU’s fit coefficient, and 264

b is the fit y-intercept. 265

Separation vectors of the refined MUs were then applied to 266

identically processed EMG in the test set; spike trains were 267

extracted, and smoothed FRs were input into the trained model 268

to estimate force. Negative estimates of force were set to zero; 269

while it is possible flexors were active at higher forces, we only 270

recorded finger extensors during the task. 271

c) Force Estimation Using EMG-Amplitude: EMG 272

training sets were filtered and channel refinements were also 273

performed to only include channels recording isolated activation 274

of the targeted finger. The same moving window (0.5-second, 275

0.1-second step size) computed the RMS of EMG and an identi- 276

cal Kalman filter [46] as in the neural drive calculation smoothed 277

the computed result. The smoothed RMS of each channel was 278

then linearly regressed to force from the entire training set. To 279

control comparisons between the EMG-and MU-based methods, 280

the 10 channels with the highest R2 values were kept. The 281

average smoothed RMS of these channels was linearly regressed 282

to force to create a trained model to predict force across all 283
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Fig. 2. Training MU Force Estimation Model. (a) EMG in the first repetition of a trial (EMGi) in neutral, pronated, and supinated postures were each
decomposed offline (see Supplementary Materials) into sets of separation vectors wn, wp, ws, respectively. Each vector in the set corresponds to a
given jth MU. The MU- AllPost method used wn, wp, ws, while the MU- Neu method only used wn in force estimation. (b) After offline decomposition,
in the training set (for brevity one of five data blocks is shown), separation vectors (in this case, wnj) were applied online using a moving window
(red dashed box) extended and whitened EMG, Ztrain, unmixing MU information into a source signal sj˙train. Peak detection via K-means clustering
converted this signal into a MU spike train, and a moving window across each spike train calculated MU FRs. (c) Representative spike trains of
excluded (black) and refined (red) MUs. Individual MU FRs (thin dashed lines) were linearly regressed to force (solid black line). The 10 MUs with
the highest R2 values (red, Refined set) were kept. (d) Refined MU FRs were used in multiple linear regression to force, giving the trained model
estimation (thick dashed line). For visual brevity, one repetition from a single posture in the training set is displayed.

postures. The 10 refined channels were identically processed284

in EMG from the test set and input into the trained model to285

estimate finger force. Negative estimates of force were again set286

to zero. The root-mean- square error (RMSE) between predicted287

and actual force levels of the test set was calculated to evaluate288

model performance.289

4) Statistical and Residual Analysis: A significance290

threshold of α = 0.05 was used for all statistical tests, and291

all data were first checked for normality (Shapiro-Wilk test292

[42]) prior to conducting parametric tests. For each finger, a293

paired t-test compared EMG activity shifts between postures294

(i.e., the shift magnitude from neutral to pronated and neutral295

to supinated postures). To compare shifts between fingers, a296

one- way analysis of variance (ANOVA) tested for significant297

differences in the summed magnitudes across postures. Perfor-298

mances between the EMG, MU- AllPost, and MU- Neu methods299

were analyzed for each finger independently. Data were tested300

for sphericity (Mauchly’s test [48]), and a repeated measures 301

ANOVA between methods determined significant differences. If 302

significant differences were observed above, multiple pairwise 303

comparisons with a Bonferroni correction were conducted. In 304

addition to statistical analysis of overall RMSE, residual analysis 305

of the regression was conducted to quantify performance across 306

force levels (see supplementary material for details). 307

III. RESULTS 308

A. Muscle Activity Across Postures 309

To illustrate muscle activity in each trial, Fig. 3 shows 310

representative heat maps across trials for subject 1, overlaid with 311

the geometric centroid of muscle activation. The index finger had 312

two distinct areas of activation distally and slightly proximally 313

relative to the midline of the pads. Prior work has shown one 314

distinct peak of activation during isolated index finger extension 315
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Fig. 3. Representative heat maps (subject 1) of muscle activation
across each finger and posture. Muscle activation was normalized to
the EMG channel with the highest RMS within each trial. The overlaid
red circles indicate the geometric centroid of muscle activation.

[37], [49], [50], suggesting subjects may have had more coac-316

tivation with other fingers in this study. Markedly, the middle317

finger had concentrated activation in the most proximal region.318

The ring and pinky fingers had the highest activity slightly319

proximally and centrally with wide distributed activity across320

the pads. While activation regions for each finger were consistent321

across subjects, the relative shift in the centroid between postures322

varied (Fig. S3). For each finger in the medial-lateral direction,323

across the range of motion (i.e., from pronated to a neutral324

and neutral to a supinated posture) the centroid shifted in the325

same direction for 3-4 subjects, while the direction switched326

at the neutral posture for others. More specifically, subjects 1327

and 5’s centroids shifted medially across the range of motion328

in all fingers except for neutral to supinated in the pinky and329

pronated to neutral in the middle finger, respectively. Opposing330

this, subject 4 and 6’s centroid shifted laterally and then medially,331

except for pronated to neutral for the index finger of subject 6.332

In contrast, subject 2’s centroid always shifted medially from333

pronated to neutral and then the direction switched laterally334

from neutral to supinated. Subjects 3 and 7 exhibited more varied335

medial- lateral shifts across all conditions. In the proximal- distal336

direction, shifts were more consistent across subjects, but still337

differed across fingers. Index finger activity shifted proximally338

for all but subject 6 from pronated to neutral and subjects 3-6339

from neutral to supinated. In the middle finger, activity in all but340

subject 3 shifted distally from pronated to neutral, with more341

variation when moving to a supinated posture. The ring finger342

consistently had proximal shifts across the range of motion,343

except for subjects 6-7 moving to neutral and 4 moving to344

supinated. In the pinky, subjects 1, 2, 4, and 6 shifted the same345

direction across the range of motion, but in this case there was346

variation in which direction across subjects.347

Resulting data on shifts in muscle activity were found to have348

a normal distribution. Even though there was large variation in349

the direction of shift for the muscle activation centroids across350

the range of motion, no significant differences in the magnitude351

of shifts from a neutral to either pronated or supinated postures352

were observed (p = 0.36, 0.95, 0.59, 0.67 for the index, middle,353

ring, and pinky fingers respectively). Thus, we summed the cen-354

troid shift magnitude across the range of motion to summarize355

changes in the activity distribution (Fig. 4). The index finger356

had the largest mean magnitude shift across subjects (2.66 ±357

0.93 cm), followed by the ring (2.24 ± 1.00 cm), pinky (1.42 ±358

Fig. 4. Boxplot of the magnitude of Euclidean shift in the muscle
activity’s geometric centroid across the range of motion (pronated to
neutral to supinated) for all subjects. Overlaid black dots indicate sample
means (∗p < 0.05, ∗∗ p < 0.01).

Fig. 5. Force estimation evaluation. After model training, refined MUs’
firings and refined EMG channels’ RMS activity were employed to
predict force across all postures in the test set (subject 2, ring finger
displayed as representative example). For visual brevity, half of the test
set is shown.

0.65 cm), and middle fingers (1.11 ± 0.45 cm). The index finger 359

had a significantly greater shift magnitude than the middle (p = 360

0.006) and pinky (p = 0.032) fingers. 361

B. Force Prediction Performance 362

Fig. 5 shows representative force predictions for the EMG- 363

and MU-based methods in a test set from subject 2’s ring finger. 364

Note the same refined EMG channels and MUs were used when 365

testing across all postures. The EMG-amplitude method (dashed, 366

purple line) underestimated force at high effort levels (black line) 367

in the neutral and pronated postures. The MU- Neu (red line) 368

and MU- AllPost (dashed, green line) methods outperformed 369

the EMG method at mid-range force levels (10-30% MVC), and 370
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Fig. 6. Estimation error across fingers for each method. The distribu-
tion across subjects is shown (boxplot) and overlaid with the average
error (black dot) in test sets (∗p < 0.01, ∗∗p < 0.0001).

TABLE I
STATISTICAL COMPARISONS BETWEEN METHODS

Bold values indicate statistically significant differences.
α = 0.05 and the critical F-statistic is 3.23.

quickly adjusted to changes in force. Both EMG-and MU-based371

methods had varied performance at zero force across postures,372

with better performance in pronated and supinated postures373

compared to neutral in this case. Notably, except for peak374

forces in neutral, the MU-Neu and MU-AllPost methods had375

similar trajectories throughout the exemplar trial. For all three376

methods employed, regression tended to overestimate low forces377

and underestimate high forces produced (see Supplementary378

Materials), resulting in a slight proportional bias. Markedly,379

however, MU- based methods possessed less severe bias than380

the EMG method, and the MU-AllPost and MU-Neu methods381

maintained similar trends in prediction across force levels.382

To summarize model performances, Fig. 6 shows the RMSE383

of each method across fingers averaged across subjects, and384

Table I summarizes statistical comparisons. Performance across385

methods were found to be normally distributed with sphericity.386

No significant differences were observed in RMSE between387

methods in the index finger (x̄EMG = 5.36, x̄MU−AllPost =388

5.05, x̄MU−Neu = 5.18% MVC). In all other fingers, significant389

differences in performance occurred between the EMG and both390

MU- based methods. The MU-based methods were significantly391

worse in the middle finger (x̄EMG = 5.47, x̄MU−AllPost =392

5.52, x̄MU−Neu = 6.19%MVC), but with only a 0.05% RMSE393

difference in sample means between the EMG and MU- AllPost394

method. Notably, MU- based methods performed significantly395

better than the EMG- amplitude method in both the ring (x̄EMG396

= 6.23, x̄MU−AllPost = 5.72, x̄MU−Neu = 5.64%MVC) and397

pinky (x̄EMG = 6.12, x̄MU−AllPost = 4.95, x̄MU−Neu =398

5.36%MVC) fingers, but no significant difference was observed 399

between the MU- based methods in either finger. 400

Performances for each subject are depicted in Fig. S5. Across 401

most conditions, both EMG- and MU-based methods had RMSE 402

values ranging from 4-10%. In the index finger, all methods 403

had similar performance in subjects 2 and 4-7, with slightly 404

better performance in EMG for subject 3 and slightly worse 405

only for subject 1. All methods in the middle finger had varied 406

performance across subjects. Unexpectedly, EMG outperformed 407

MU- based methods in subjects 2, 4, and 6. However, both 408

MU- based methods outperformed EMG in subjects 3 and 7, 409

while in subjects 1 and 5 the MU- AllPost method outperformed 410

EMG. In the ring finger, MU- based methods outperformed 411

EMG in 5 subjects, with similar performance in subject 1 and 412

slightly worse performance in subject 5. In the pinky, MU- based 413

methods consistently outperformed EMG- amplitude methods 414

in all subjects except for similar performance to the MU-Neu 415

method in subject 2. Most notably, in the index, ring, and pinky 416

fingers no significant differences were observed between the 417

MU-Neu and MU-AllPost methods (Table I), but unexpectedly 418

significant differences were observed in the middle finger (p < 419

0.01). Upon further inspection, individually only subjects 1 and 5 420

displayed significant differences (paired t-tests on the 6-folds, α 421

= 0.05), whereas similar performance in the MU-based methods 422

was seen in the other five subjects (Fig. S5). 423

IV. DISCUSSION 424

This study compared force estimation accuracy using conven- 425

tional EMG-amplitude and MU discharges decomposed from 426

high-density EMG of finger extensors at different forearm rota- 427

tional angles spanning the range of motion. Our results revealed 428

MU firing information (separation matrix) obtained in one posi- 429

tion can be used to reliably extract MU information at different 430

postures, as indicated by similar performance between the two 431

MU methods. For most subjects and two of four fingers, MU 432

methods outperformed (and if not, performed similarly with 433

few exceptions) EMG-amplitude predicting isometric finger 434

extension force across the range of a forearm’s rotational angle. 435

These outcomes further support use of MU discharges as an 436

alternative input signal for assistive device control. 437

Across subjects, we observed varied results in the middle, sim- 438

ilar performance in the index, and better performance with MUs 439

in the ring and pinky fingers. Unexpectedly, the EMG-amplitude 440

method outperformed MUs in 3 subjects for the middle finger. 441

One potential explanation for these higher performances of the 442

EMG-amplitude method is the isolation of the middle relative to 443

other fingers. Earlier studies have led the hypothesis that finger 444

muscles are compartmentalized into subunits [51], [52], and 445

in a prior analysis involving high-density EMG during finger 446

extension, the middle finger had the most distinct region of 447

activation when compared to concurrent activation of all fingers 448

[37]. This coincides with our study, as the spatial distribution of 449

activation of the middle finger was most proximal and localized 450

relative to other fingers (Fig. 3). Furthermore, the centroid of 451

the muscle activation did not change substantially across all 452

three postural conditions relative to other fingers (Fig. 4, S1). 453
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In tandem with a localized region of activation, another study454

quantifying crosstalk between EMG recorded during individual455

finger extension observed the least amount of crosstalk during456

middle finger activation compared to other fingers [53]. Given457

the concentrated, isolated activation for this finger, refined chan-458

nels were likely well-isolated to the middle finger compartment459

in all postures, which could afford a robust prediction with EMG-460

amplitude compared to other fingers. In less controlled settings461

involving simultaneous finger actuations, recorded EMG may462

not be as well-isolated, potentially degrading performance of463

the EMG method.464

In the index finger, no significant difference between the465

EMG, MU-AllPost, and MU-Neu methods were observed.466

While not as isolated as the middle finger, the index finger467

also recruits less non-targeted fingers in voluntary single-digit468

activation [54]. Relative to other fingers, we observed a larger469

activation distribution across the pad and notably a higher cen-470

troid shift magnitude across postures (Fig. 4). While prior work471

has shown improved performance compared to traditional EMG472

in this finger in single postures [55], it is possible the neural473

strategy for muscle activation across postures differed, and thus474

different MUs were recruited at these positions, degrading the475

correlation of refined MUs for all postures and leading to com-476

parable performance between the methods. However, for the477

ring and pinky fingers, the MU-based methods outperformed478

the EMG method for most subjects. Correspondingly, recent479

work predicting force with sequential activation of multiple480

fingers also showed the largest improvement in performance481

with MU-based compared to EMG-amplitude methods in the482

ring and pinky fingers activating concurrently [25]. Unlike the483

index and middle fingers, the muscle compartments of the484

ring and pinky are not as anatomically separated [56]. Hence,485

we observed similar regions of activation during these trials486

across postures compared to other fingers (Fig. 3). Additionally,487

greater enslavement (co-activation of non-targeted fingers) in488

these fingers has been documented [54], [57], [58]. Indeed,489

during our experiment subjects consistently reported having490

difficulty isolating these fingers. Even though the territory of a491

MU (region of innervated muscle fibers) is frequently localized492

[59], relating individual MUs to activation of individual fingers,493

the neural drive to MUs for isometric finger extension is often494

not well-isolated. There is often short-term synchronization [60]495

and high levels of common synaptic input to MUs between496

muscle compartments in the delta band [61], which is hypoth-497

esized to correlate with force modulation [26]. Furthermore,498

in individual finger extension, spillover of MU recruitment to499

non-targeted fingers occurs, with greater force production in the500

ring and pinky compared to the index and middle fingers [62],501

[63]. Therefore, since the ring and pinky compartments have502

less independent neural drive and close anatomical proximity,503

refined channels likely contained activity related to different504

fingers’ force production. Instead, by conducting our refinement505

procedure to predict force at the MU-level, we better isolated506

activation related to force for a single digit. Hence, while EMG507

outperformed MUs only in a few cases for the most isolated508

(middle) finger, MUs outperformed EMG in the least isolated509

trials. In contexts requiring dexterous finger manipulation across510

multiple arm configurations, the potential for MUs to outperform 511

EMG as a continuous control input signal may become more 512

pronounced. 513

We also tested whether MU decomposition is robust to dif- 514

ferent arm postures by using MUs decomposed from EMG 515

recorded only in the neutral posture (MU-Neu) to predict force 516

output across all postures, and we compared this to using MUs 517

decomposed from EMG recorded in all postures (MU-AllPost). 518

Impressively, in most fingers and subjects the MU methods 519

performed similarly. Given the consistent source signal across 520

postures (Fig. 2B) and modulation of force prediction for the 521

MU-Neu method in all conditions (Fig. 5), separation vectors 522

from MU-Neu could identify MUs from EMG recorded in other 523

postures, which can sufficiently represent neural drive to the 524

muscle [47]. In future studies involving multiple arm postures, 525

initial decomposition may only be needed from one position. 526

This study revealed MU decomposition of individual finger 527

extensors is robust to forearm rotation, providing a novel ap- 528

plication in force prediction. However, the investigation was 529

limited in certain aspects. Subject-specific channel selection 530

may improve computational efficiency or performance in trans- 531

lation to real-time control settings. Data were also constrained 532

to a specific periodic trajectory. More variation between trained 533

and tested models are needed to ensure robustness across all 534

conditions of force prediction. More advanced refinement in the 535

MU-based models could also be employed by adding weight to 536

the most reliable MUs that are consistently better predictors of 537

the control goal. Tests were also conducted at discretized states in 538

isometric conditions. Prior work has decomposed MUs for myo- 539

electric control with both finger flexion and extension [55] and in 540

dynamic conditions [36], [64], [65], giving opportunity to work 541

towards neural drive estimation with concurrent, dynamic actua- 542

tion of the wrist and fingers flexing and extending. Additionally, 543

we only observed postural effects on activation distribution of 544

EMG. Dynamic motion may further affect recorded MUAPs, 545

and studying captured MUAPs’ properties across postures could 546

further quantify MU decomposition’s robustness. 547

V. CONCLUSION 548

In summary, we showed MU discharges accurately predicted 549

individual isometric finger extension force with the forearm at 550

three rotational postures spanning its range of motion. Over- 551

all, MU discharges outperformed conventional EMG-amplitude 552

across postures in fingers with less isolated activation. Addition- 553

ally, MU information decomposed in one posture sufficiently 554

predicted force output across the entire range of motion. Further 555

testing may offer more robust control input signals to neural- 556

machine interfaces in dexterous functional tasks. 557
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