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Background: Robust and continuous neural decoding is crucial for reliable and intuitive neural-machine in-
teractions. This study developed a novel generic neural network model that can continuously predict finger
forces based on decoded populational motoneuron firing activities.

Method: We implemented convolutional neural networks (CNNs) to learn the mapping from high-density elec-
tromyogram (HD-EMG) signals of forearm muscles to populational motoneuron firing frequency. We first
extracted the spatiotemporal features of EMG energy and frequency maps to improve learning efficiency, given
that EMG signals are intrinsically stochastic. We then established a generic neural network model by training on
the populational neuron firing activities of multiple participants. Using a regression model, we continuously
predicted individual finger forces in real-time. We compared the force prediction performance with two state-of-
the-art approaches: a neuron-decomposition method and a classic EMG-amplitude method.

Results: Our results showed that the generic CNN model outperformed the subject-specific neuron-decomposition
method and the EMG-amplitude method, as demonstrated by a higher correlation coefficient between the
measured and predicted forces, and a lower force prediction error. In addition, the CNN model revealed more
stable force prediction performance over time.

Conclusions: Overall, our approach provides a generic and efficient continuous neural decoding approach for real-
time and robust human-robot interactions.

1. Introduction An alternative approach is to perform neuronal population decoding
based on decomposition of EMG signals [19,20], where the output is
continuous neuron firings of a number of motor units (MUs) suitable for

proportional control of assistive devices. Substantial progress has been

1.1. Background

Neural decoding of individual finger forces is a crucial part of the
neural machine interface. It enables the control of assistive [1-3] or
rehabilitative devices [4,5]. Surface electromyography (SEMG) is a
noninvasive approach to drive such devices [5-8]. In conventional
myoelectric control, pattern recognition algorithms uses time-domain
[9] or frequency-domain features of SEMG [10] for discrete gesture
classifications [11]. These approaches are relatively simple to imple-
ment. However, the classification output is limited to a few predefined
gestures, and the generalizability to different users is also unsatisfactory.
In parallel, EMG features such as EMG amplitude can be made propor-
tional to the movement of robotic devices using regression approaches
for continous decoding [12-14]. However, sEMG signals are intrinsi-
cally unstable due to electrode shifts [15,16] or muscle fatigue [17,18],
which requires frequent recalibration of model parameters.

made to extract the MU discharge information from EMG signals via
different decomposition algorithms [21-28], and the performance tends
to be more robust for continuous motor intent interpretation than EMG
amplitude signals [29,30]. Nevertheless, one drawback of such
approach is the inefficiency in calculating the composite MU firing ac-
tivities. During the decomposition process, the spike trains corre-
sponding to individual MUs are extracted and then additively merged in
order to represent the neural population behavior. As a result, the in-
formation of individual MUs, obtained in the most time-consuming step
of the decomposition algorithm, is lost, causing the
decomposition-based decoding approach to be inefficient for real-time
implementation.

Deep neural network models, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), have also been explored
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for SEMG decoding. Although RNNs are suitable for time-series data,
because of their lateral connections and optional memory cells [31],
previous work showed that a two-layer CNN outperforms RNNs for onset
detection of audio signal processing [32]. In addition, RNNs generally
have a higher computational load compared to CNNs. Gesture recogni-
tion can be achieved using multi-stream CNNs and representation fusion
based on sEMG features [33], and CNN outperforms traditional classi-
fiers [34,35]. Moreover, CNN has been used for inter-subject recognition
of hand gestures [36,37], which demonstrates the generalizability of
CNN across subjects. Regression based decoding of wrist movements has
also been explored recently using CNN [38] that maps EMG activities
directly to continuous wrist joint kinematics. However, the model needs
to be trained for individual subjects, because of substantial inter-subject
variations in the specific relations between EMG features and motor
output.

1.2. Research gap and focus of the current study

Despite the exciting progress in myoelectric based decoding, we still
lack robust and efficient neural decoding algorithms that can continu-
ously interface with assistive robotic hands at individual finger levels.
To address this gap, we implemented a CNN-based algorithm to
continuously decode the populational neuron firing activity in real-time
based on HD-EMG signals. EMG signals are intrinsically stochastic, and
high spatiotemporal variations have been observed. To address these
variations, spectrum features are commonly computed prior to the
neural network inference in neural signal processing [39,40]. Therefore,
instead of directly using raw EMG signals as the CNN input, we first
extracted two sets of EMG features, termed energy map (spatiotemporal
features of EMG amplitude) and frequency spectrum map (spatiotem-
poral features of EMG frequency). High-level representations of these
two features were then extracted by the convolutional layers and fused
into a representation vector for the estimation of populational neuron
discharge frequency. These hand-crafted feature calculations allowed us
to accurately learn the EMG mapping to populational neuron firing ac-
tivities in an efficient manner with a relative small dataset. We
compared the performance of our neural decoding algorithm with two
state-of-the-art neural decoding approaches: a MU decomposition
method and a classic EMG amplitude method. One innovation of this
approach is that we trained the model using motoneuron discharge
frequency instead of direct force output. This allowed us to establish a
robust and generic model that is generalizable to different human sub-
jects, because EMG features have a more direct relation with neuron
discharge activity than with force output. The main contribution of the
study is that we provided a generic, efficient, and real-time neural
network model for robust and continuous neural decoding, which allows
intuitive human-robot interactions.

2. Methods
2.1. Human participants

Seven neurologically intact participants (age: 22-34) were recruited.
All participants gave informed consent via protocols approved by the
Institutional Review Board of the University of North Carolina at Chapel
Hill.

2.2. Data acquisition

During data acquisition, the participants were seated in a height-
adjustable chair in front of a desk where their forearms were put on a
soft foam pad. A pair of stiff form pads were placed on both sides of the
hands, holding the palm and the back of the hand to reduce unintended
hand movement and torque transmission from the wrist.

To measure the individual finger extension forces, the index, middle,
ring, and pinky fingers were separately secured to four miniature load
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cells (SM-200 N, Interface), sampling at 1000 Hz. In the meantime, an 8
x 20 HD-EMG electrode array was attached to each participant’s fore-
arm to record the activities of the extensor digitorum communis (EDC)
muscle (Fig. 1). The electrodes were 3 mm in diameter and evenly
distributed on the electrode array at a distance of 10 mm. The EMG
signals were amplified with a gain of 1000 and band-pass filtered from
10 to 900 Hz. The EMG signals were sampled at 2048 Hz using EMG-
USB2+ (OT Bioelettronica). The participants were asked to follow a
predefined pseudorandom trajectory ranging from 0% to 40% maximum
voluntary contraction (MVC) for each finger for 5 min. Both the target
trajectory and real-time feedback of the actual force were displayed to
the participants. The recordings for each participant of the index, mid-
dle, and ring fingers were conducted in a random order with a 2-min
interval between trials to alleviate muscle fatigue. The pinky finger
was excluded due to inevitable co-contractions with other fingers [41,
42] and overlapped muscle activation distribution [43].

2.3. MU discharge time calculation using FastICA

As a training target for the CNN model, fast independent component
analysis (FastICA)-based decomposition algorithm [44] was used to
extract MU discharge activities. Briefly, the discharge timings of the
MUs were recognized as a convolutive mixture of delta function series in
EMG signals with additive white noise [24]. After the EMG signals were
extended and whitened, the decomposition procedure extracted indi-
vidual spike trains using the FastICA algorithm based on iterations of the
fixed point algorithm [45,46]. The output of each iteration of the
fixed-point algorithm was the source signal and the separation vector. A
binary spike train of a single MU was further derived from the source
signal based on a binary classification based on the Kmeans++ algo-
rithm. The derived binary spike trains were shortlisted using a modified
‘Silhouette distance [47]" measurement [44] by quantifying the classi-
fication quality of the source signals. The retained spike trains were
further merged into a single composite train representing the popula-
tional firing frequency of the MU pool. The populational firing frequency
was then normalized and categorized into target classes ranging from
0 to 15 for the neural network training, which was a tradeoff between
the resolution of the estimation and the convergence of the neural
network with limited data. O corresponded to the lowest firing rate, and
15 corresponded to the highest firing rate. During the normalization, the
populational firing frequency was divided by the maximum firing fre-
quency, and then scaled up to 15.

2.4. Force estimation using CNN

Feature calculation for CNN model: The 160-channel HD-EMG re-
cordings were first segmented into a sequence of 64-sample (31.25 ms)
windows with a step of 16-sample (7.81 ms). Two types of features
(Frequency and Energy maps) were estimated from it (Fig. 2). Frequency
spectrum map (Fg.c) was calculated using Fourier transform (FT) within
a window for each channel. A Hanning window was applied before the
FT. The spectrum vector was (window —2)/2 = 33 in height. 160 spec-
trum vectors (one per channel) were calculated within each window,
leading to a 33 x 160 (height x width) frequency map. Energy map
(Fengy) was calculated based on the mean square (MS) value of all the
samples of each channel within the window. The dimension of the en-
ergy map was 8 x 20 (height x width), matching the spatial distribution
of the electrode grid as shown in Fig. 1.

CNN Model: We implemented a neural network model (detailed in
Table 1) with two parallel convolutional neural networks before the
feature fusion and fully connected layers for the output of the popula-
tional discharge rate. The two EMG feature maps were fed to two
separate pathways (Fig. 2). To provide the neural network with more
contextual information for the estimation of populational neuronal fir-
ings, we combined the energy maps and frequency maps from five
consecutive windows. This resulted in the dimensions of the two
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Fig. 1. Experimental setup for HD-EMG and force signal acquisition.
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Fig. 2. Diagram of the proposed CNN model. DP in yellow circle represents the data processing module. Modules with diamond shapes denotes the evaluation
metrics used, where ‘CorrCoef” denotes the correlation coefficient evaluation and ‘RMSE’ denotes the root mean square error evaluation. Data from different par-
ticipants are represented in different color of the hand profiles. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)

Table 1

Convolutional neural network structure.

Input Feature

Few c RTXHXW

Fspec c RNxMxT

CNN module

Energy map
information extractor

Frequency spectrum map
information extractor

Parallel CNN L#1 Conv-10@2 x 6 Conv-160@6 x 2
structure 2 Maxpool Maxpool

3 Conv-20@2 x 4 Conv-320@6 x 2
4 Maxpool Maxpool
5 Conv-40@2 x 2 Conv-640@3 x 3
6 Maxpool Maxpool
7 Conv-80@2 x 2 Conv-1280@2 x 2
8 Maxpool Maxpool
9 FC-256 FC-1024
10 - FC-512
11 FC-256

12 Dropout
13 FC-16 (Output discharge frequency)

Note: The number after ‘Conv’ denotes the number of convolutional kernels in
each convolutional layer, while the numbers after ‘@’ denotes the shape of the
kernel in that layer. The ReLU activation function was added after each fully
connected layer and each convolutional layer before Maxpool. The number after
‘FC’ denotes the number of neurons in the fully connected layer. ‘L#’ denotes
layer number. Number of total trainable parameters in the proposed convolu-
tional neural network structure: 8,345,886.

features to be Feng € RV and Fge € RVM<T. We processed the
dimension arrangement of the two features in different ways so that the
neural network can inspect the data in multiple aspects. Specifically,

Table 2

Details of the CNN parameters.
# of # of trials for #of trials for # trials for Learning
trials training validation Testing Rate
210 150 30 30 3e-4

Fengy had a height (H) and width (W) of eight pixels and 20 pixels
respectively, covering the EDC muscle by the electrode array. The third
dimension of F,,g, was the depth in time (T), where T = 5 consecutive
windows. Similarly, Fg. had a height (M) of 33 frequencies, and a width
(T) of 5 consecutive windows, because the spectrum vectors from five
windows were concatenated over time to form one frequency spectrum
map. The third dimension of Fy. was the depth of the number of
channels (N), where N = 160 EMG channels (see Table 2).

The upper pathway of the network (as in Fig. 1) extracted the in-
formation from the energy map feature. Convolutional kernels in each
layer were able to explore the shape of the activated area and the change
in the EMG amplitude in each channel. The depth dimension provided
the information of changes in five energy maps varied over time.The
lower pathway of the network extracted the information from the fre-
quency spectrum feature. The height and width of the kernels in the
lower CNN pathway covered the frequencies and time of the frequency
map respectively, which enabled the exploration of the changes in fre-
quencies at different time scales. As neuron firing spikes could arrive at
different timings among channels, the CNN kernel explored the
temporal-frequency relation among channels. By passing through four
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convolutional layers, the high-level representation of the engery and
frequency spectrum map feature was extracted. Both high-level repre-
sentations were viewed as representation vectors, which were passed
through one or two local fully connected layers, and concatenated into a
fusion representation vector. Dropout (p = 0.5) [48] was applied before
the output layer to prevent overfitting. The estimated discharge fre-
quency was obtained at the output layer.

Model Training and Validation: We randomly chose one participant
as validation and a different participant as testing out of the seven
participants. The training data were from the five remaining partici-
pants. In the training session, the preprocessed features from the five
participants were shuffled both in time and participant before fed to the
neural network. The shuffle was made among the features along
different timestamps in the trials and in different subjects. In the eval-
uation session, including the validation and the final testing, the features
were fed to the model in their original chronological order, generating a
new estimation every 16 samples (7.81 ms). The training of the neural
network was optimized by the Adam optimizer [49] at a learning rate of
3e-4.

In the validation session, only the correlation coefficient between the
predicted force and the measured force was used. The validation was
performed every 500 iterations by evaluating the performance of the
model on three 75-s segments randomly chosen from three 5-min index,
middle, and ring finger trials of the validating participant. The number
of iterations of the final model selected was determined by the highest
arithmetic mean of the three correlation coefficients among all valida-
tion sessions. After the training session has reached the maximum
number of iterations, the neural network model at the number of iter-
ations with highest correlation coefficient value was used to determine
the network parameters. The network training session took 8 h, and the
procedure was repeated seven times, until all the participants were used
as a testing participant.

Force Estimation: The estimated populational firing frequency was
smoothed by a moving average filter of 0.5-s windows with 0.1-s moving
steps. A linear regression model initialized with the first 25 s of data was
used to predict the forces based on the firing frequency. The correlation
coefficient and root mean square error (RMSE) between the predicted
force and the measured force were used in the testing session to evaluate
the force estimation performance. Note that the RMSE was not used
during the validation session to finalize the network model parameters.

2.5. Force estimation using FastICA

Although MU decomposition was performed offline for neural
network training, MU firing activities needed to be obtained in real-time
for force estimation. We then performed online FastICA decomposition
based on an earlier study [44]. A multivariate linear regression model
[50] was initialized with the first 25-s of the data, and was applied to the
subsequent MU firing activities for force estimation.

2.6. Force estimation using EMG amplitude

The root mean square (RMS) values were calculated using the same
windowing method for each channel and averaged across all channels. A
linear regression model was also initialized with the first 25 s of the data.
To reduce computation time and limit the influence of channels with low
signal-to-noise ratio, only 60 channels with the highest RMS values
within the first 25 s were used for both the FastICA and EMG amplitude
methods [51,52].

2.7. Statistical measure

Repeated measures analysis of variance (ANOVA) was performed on
the dependent variables. A significance level o was set as 0.05. A post
hoc analysis was conducted using Bonferroni adjustment when neces-
sary. As the correlation coefficient values were close to 1 and had an
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upper limit of 1, arcsine square root transformation [53] was used prior
to ANOVA to ensure normality of residuals.

3. Results

The implemented neural network is computationally efficient with
inference time of 4.26 ms (Table 3), including the time to compute the
frequency spectrum map and the energy map. This delay is well below
the acceptable loop delay (100-150 ms) for real-time control of assistive
devices [54].

Fig. 3 shows an exemplar trial of real-time and continuous force
predictions using the three methods. The measured force was considered
as the ground truth for subsequent evaluations. The EMG amplitude
method was the least accurate one among the three methods. This is
more evident at the end of the force estimation due to a drift of the EMG
amplitude. The real-time prediction by CNN and FastICA was more
stable over time than the EMG amplitude method.

Fig. 4 illustrates the overall results of correlation coefficients and
mean square error (RMSE) of the three methods. The CNN model
revealed the best performance, with the highest correlation coefficients
and the lowest RMSE. The difference in the correlation coefficients was
significant (F(2,12) = 19.655, p < 0.001) across the methods. The post
hoc comparison showed that the correlation coefficients of the CNN
model (0.92) were significantly higher (p < 0.01) than that of the Fas-
tICA method (0.86), and that of the EMG amplitude-based method (p <
0.01). The difference in the RMSE results was also significant (F(2,12) =
6.715, p = 0.011). The RMSE results were 5.0% (CNN), 5.6% (FastICA
method), and 7.6% (EMG amplitude method), respectively.

Fig. 5 (A) shows the correlation coefficients grouped by different
fingers. The two-way (method x finger) ANOVA indicated that both the
method (F(2,12) = 19.655, p < 0.001) and the finger (F(2,12) = 9.147, p
= 0.004) was significant, with no interaction. The post hoc comparison
revealed that the CNN model was significantly higher than the FastICA
method (p < 0.01) and the EMG amplitude-based method (p < 0.01).
Significant differences among fingers only appeared between the index
and ring fingers (p < 0.05).

Fig. 5 (B) depicts the RMSE grouped by different fingers. The ANOVA
showed that both method (F(2,12) = 6.715, p = 0.035) and finger (F
(2,12) = 8.126, p = 0.006) had significant effects on the RMSE, with no
significant interaction. The post hoc revealed a significant difference
among fingers between the index and ring fingers (p < 0.05).

We also quantified the stability of the force estimation over time. The
first 25-s segment of each 5-min trial was used to initialize the linear
regression for all the three methods, and thus was not included for the
analysis. The remaining 275-s of data were divided into four segments,
resulting in four 68.75-s segments, where the correlation coefficients
and RMSE were calculated separately for each segment.

Fig. 6 illustrates the correlation coefficients over different time seg-
ments. The two-way (method x segment) ANOVA showed a significant
interaction (F(6,36) = 7.967, p < 0.001). The post hoc comparison
revealed that there were no significant differences in correlation co-
efficients among the three methods in segment 2 (p > 0.05), but the CNN
model was higher than the FastICA method from segments 3 to 5 (11%,
p < 0.05; 14.1%, p < 0.01; 19.4%, p < 0.001). The CNN model was also

Table 3
Computation time.
Approach  CNN FastICA- FastICA- EMG
online offline
Time 4.26 ms (62.5 60 ms (1 s) 15s(1s) 0.38 ms (0.5

ms) s)

Note: The table denotes time in the format: calculation time (required window
length of the HD-EMG segment for computation). The computation time was
based on a PC with Intel Core i7-6700@3.4 GHz, NVIDIA GTX 1080, and 24 GB
of memory.
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higher than the EMG amplitude-based method from segments 4 to 5
(11.8%, p < 0.001; 16.3%, p < 0.001).

Fig. 7 shows the RMSE over different time segments. The ANOVA
showed a significant interaction (F(6,36) = 4.819, p = 0.001). The dif-
ferences among the three methods were not significant in segment 2 (p
> 0.05). There were no significant differences among four segments of
the CNN model in RMSE (all p > 0.05), indicating a relatively stable and
robust estimation performance. In contrast, the RMSE of the FastICA
method and the EMG amplitude method increased significantly from
segment 2 to segment 5 (p < 0.05).

4. Discussion

In this study, we performed populational neural decoding in real-
time based on CNNs without obtaining individual motor unit informa-
tion as in spike sorting. We first extracted two types of features from the
HD-EMG signals, energy map feature and frequency spectrum map
feature. These features were learned by the CNNs to extract high-level
representations, and were used to predict the populational neuronal
firing frequency. The estimated force output from the CNN model was
compared with two state-of-the-art methods: FastICA-based decompo-
sition and conventional EMG-amplitude-based approaches. We found
that the CNN model outperformed the FastICA method and the EMG
amplitude method as indicated by a higher correlation coefficient, a
lower RMSE, and a more robust prediction performance over time. The
results can provide a generic, computationally efficient, and real-time
neural network model for continuous neural decoding. The outcomes
can facilitate intuitive and robust human-machine interactions. Our
CNN based neural decoding method has several advantages compared
with existing approaches.

Decoding accuracy: The CNN model is more accurate even though
it is trained on a dataset from a pool of subjects, while the FastICA and
EMG methods only performed subject-specific decoding. The current
decomposition algorithms [19,55] are relatively accurate but with
certain levels of decomposition errors. We developed several processes
to facilitate the CNN model training to improve decoding performance.
First, the offline decomposition method was used to obtain the firing
frequency for the training. Second, we filtered the results of the offline
decomposition algorithm by evaluating the performance of correlation
coefficients with force. If the correlation coefficient was lower than 0.70
for a single fragment, all the decomposition results in the data fragment
would not be used as the CNN training target. Lastly, the validation
session served as a guidance during the training process. As a result, the
chosen number of iterations with the highest validation performance has
the learned parameters from the most accurate firing events.

Computational Efficiency: The proposed approach is also consid-
ered efficient regarding the computational load. The calculation to sort
individual spike trains was not needed, and the direct output was
populational firing frequency, making the algorithm more straightfor-
ward and applicable in real-time. The decomposition approach first
extracts individual MU spike trains, and the spike trains are then addi-
tively merged to predict motor output. In the process, the information of
individual MUs is lost and thus is considered inefficient. The output of
the CNN model was the populational firing frequency, which can be
directly used for multiple finger force prediction tasks. Besides, FastICA
method required 1 s of data to perform the separation matrix multipli-
cation, and the EMG amplitude method also needed 0.5-s of data for
reliable predictions. In contrast, the CNN method only needed two
contextual windows in advance for prediction. The algorithm was
capable of calculating the prediction procedure starting from feature
preprocessing and output discharge frequency within the interval be-
tween two predictions. As a result, the algorithm was practical for real-
time estimation. Given the accuracy and robustness over time in the
force estimation, the generic model is efficient because one can directly
apply the trained model to new subjects, without recalibration of the
model parameters frequently.
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The feasibility of neural decoding without spike sorting has been
demonstrated mainly in intracortical recordings [56,57]. In the spike
sorting approach for intracortical recordings, the human intervention,
which is lengthy and repetitive, is required to manually identify the
waveform snippet categories. In addition, the shape of the waveforms
from neuronal sources may change over time, and the categories may
not be distinguishable to each other anymore. An alternative approach is
to perform adaptive thresholding to estimate the collective activities
from a population of neurons, which possesses long-term stability and
robustness against noise on individual neurons. The conceptual frame-
work of our study is similar to decoding without spike sorting, which
estimates the populational neuronal activity from EMG recordings with
a mixture of signals from multiple sources.

Generalizability: The trained CNN model has high generalizability.
The estimation of the finger forces or joint angle from the EMG signals is
not straightforward, which requires a subject-dependent transformation
from the neural populational firing activity. However, the relation be-
tween EMG signals and the neuron firing rate is direct. Our study has
demonstrated that the EDC activation patterns learned by the CNN
model from different subjects maintain inter-subject similarity, and thus
the approach can be applied to a larger group of new users with mini-
mum adjustment in the model parameters, even though the placement of
the HD-EMG electrode array was not consistent across individuals or
optimized for the CNN model. Moreover, the output of the CNN model
was populational decoding of neuronal activities instead of force output
directly. Therefore, it is possible that this approach can be applied
directly to other decoding tasks such as prediction of finger joint angles,
which can be derived based on the populational coding.

The CNN model trained in our study is a generic model that is viable
for potential data from new subjects. The validation session not only
guided the performance of discharge frequency for finger-specific pre-
dictions but also examined the expected inter-subject performance. The
data used for validation were from the sixth participant, which was
different from the training participants and the final testing participant.
Therefore, the trained CNN model under this process was considered
applicable for unknown new subjects. A previous study [58,59] showed
that, via a similar MU decomposition method, the derived discharge
frequency could be used to predict the finger joint angle with a
second-order polynomial regression, providing high prediction accu-
racy. Because the presented CNN model was trained on the composite
discharge trains, the algorithm could be used directly for joint kinematic
prediction. On the other hand, if the CNN model was trained on the
measured force, the extra layers of transformation from firing events to
the force output would make it unable to generalize neither to the joint
angle prediction task nor in a cross-subject manner. However, there is
high heterogeneity in clinical populations, due to differences in the
severity of impairment. In such circumstances, an initial fine-tuning of
the model parameters may be needed for specific users. Further study is
needed to investigate the model generalizability in clinical populations.

Robust Decoding: We also observed stable performance in the CNN
decoder over time as shown in Figs. 6 and 7. In contrast, the EMG
amplitude approach showed progressive decline of performance, mainly
due to variations in EMG signals over time, and a more moderate decline
was observed in the FastICA approach. With weight-sharing kernels
moving from left to right and from top to bottom, the CNN worked well
in detecting the distribution or shape of the muscle activation even with
small displacement of the 2D electrode array during electrode place-
ment. The Maxpool layers further improved this image translation
invariance property for stable decoding performance. It was achieved by
reporting the maximum output within a rectangular neighborhood in
the representation map from the previous layer, which improved the
robustness of the output representation relatively to small translations of
the input.

Limitations and Future Directions: Although the CNN model was
relatively accurate regarding single finger force prediction, the current
model has not been evaluated on concurrent prediction of multi-finger
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forces. Current assistive and rehabilitation robotic hands have fully ar-
ticulated fingers, and it is necessary to independently drive individual
digits. In addition, only isometric finger forces were decoded in the
current study. Given that the decoding is performed in real-time after the
model is trained, in future studies, we plan to evaluate this approach on
finger force and finger joint angle prediction interchangeably using the
same model. Lastly, the actual evaluation of robotic control was not
performed in the current study. We plan to use the decoded output to
continuously control a physical robotic hand when performing
dexterous finger movement tasks in real-time.

5. Conclusion

This study presented a populational neural decoding scheme on HD-
EMG signals using CNN. The decoding was performed without spike
sorting and can be performed in real-time for individual finger force
prediction. Two spatiotemporal related EMG energy and frequency
features were extracted, and were fed to the CNN model for populational
discharge frequency estimation. The CNN model demonstrated high
generalizability to data from new subjects by training the CNN model on
populational neuronal firing activities. The results of the force estima-
tion evaluation demonstrated that the CNN model also showed robust
performance over time compared with other decoding methods, and this
can avoid frequent model recalibration during long-term use. The out-
comes of our study can provide a generic and efficient CNN model for
continuous and real-time neural decoding, which can lead to intuitive
and robust human-machine interactions.
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