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A generic neural network model to estimate populational neural activity for 
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A B S T R A C T   

Background: Robust and continuous neural decoding is crucial for reliable and intuitive neural-machine in
teractions. This study developed a novel generic neural network model that can continuously predict finger 
forces based on decoded populational motoneuron firing activities. 
Method: We implemented convolutional neural networks (CNNs) to learn the mapping from high-density elec
tromyogram (HD-EMG) signals of forearm muscles to populational motoneuron firing frequency. We first 
extracted the spatiotemporal features of EMG energy and frequency maps to improve learning efficiency, given 
that EMG signals are intrinsically stochastic. We then established a generic neural network model by training on 
the populational neuron firing activities of multiple participants. Using a regression model, we continuously 
predicted individual finger forces in real-time. We compared the force prediction performance with two state-of- 
the-art approaches: a neuron-decomposition method and a classic EMG-amplitude method. 
Results: Our results showed that the generic CNN model outperformed the subject-specific neuron-decomposition 
method and the EMG-amplitude method, as demonstrated by a higher correlation coefficient between the 
measured and predicted forces, and a lower force prediction error. In addition, the CNN model revealed more 
stable force prediction performance over time. 
Conclusions: Overall, our approach provides a generic and efficient continuous neural decoding approach for real- 
time and robust human-robot interactions.   

1. Introduction 

1.1. Background 

Neural decoding of individual finger forces is a crucial part of the 
neural machine interface. It enables the control of assistive [1–3] or 
rehabilitative devices [4,5]. Surface electromyography (sEMG) is a 
noninvasive approach to drive such devices [5–8]. In conventional 
myoelectric control, pattern recognition algorithms uses time-domain 
[9] or frequency-domain features of sEMG [10] for discrete gesture 
classifications [11]. These approaches are relatively simple to imple
ment. However, the classification output is limited to a few predefined 
gestures, and the generalizability to different users is also unsatisfactory. 
In parallel, EMG features such as EMG amplitude can be made propor
tional to the movement of robotic devices using regression approaches 
for continous decoding [12–14]. However, sEMG signals are intrinsi
cally unstable due to electrode shifts [15,16] or muscle fatigue [17,18], 
which requires frequent recalibration of model parameters. 

An alternative approach is to perform neuronal population decoding 
based on decomposition of EMG signals [19,20], where the output is 
continuous neuron firings of a number of motor units (MUs) suitable for 
proportional control of assistive devices. Substantial progress has been 
made to extract the MU discharge information from EMG signals via 
different decomposition algorithms [21–28], and the performance tends 
to be more robust for continuous motor intent interpretation than EMG 
amplitude signals [29,30]. Nevertheless, one drawback of such 
approach is the inefficiency in calculating the composite MU firing ac
tivities. During the decomposition process, the spike trains corre
sponding to individual MUs are extracted and then additively merged in 
order to represent the neural population behavior. As a result, the in
formation of individual MUs, obtained in the most time-consuming step 
of the decomposition algorithm, is lost, causing the 
decomposition-based decoding approach to be inefficient for real-time 
implementation. 

Deep neural network models, such as convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), have also been explored 
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for sEMG decoding. Although RNNs are suitable for time-series data, 
because of their lateral connections and optional memory cells [31], 
previous work showed that a two-layer CNN outperforms RNNs for onset 
detection of audio signal processing [32]. In addition, RNNs generally 
have a higher computational load compared to CNNs. Gesture recogni
tion can be achieved using multi-stream CNNs and representation fusion 
based on sEMG features [33], and CNN outperforms traditional classi
fiers [34,35]. Moreover, CNN has been used for inter-subject recognition 
of hand gestures [36,37], which demonstrates the generalizability of 
CNN across subjects. Regression based decoding of wrist movements has 
also been explored recently using CNN [38] that maps EMG activities 
directly to continuous wrist joint kinematics. However, the model needs 
to be trained for individual subjects, because of substantial inter-subject 
variations in the specific relations between EMG features and motor 
output. 

1.2. Research gap and focus of the current study 

Despite the exciting progress in myoelectric based decoding, we still 
lack robust and efficient neural decoding algorithms that can continu
ously interface with assistive robotic hands at individual finger levels. 
To address this gap, we implemented a CNN-based algorithm to 
continuously decode the populational neuron firing activity in real-time 
based on HD-EMG signals. EMG signals are intrinsically stochastic, and 
high spatiotemporal variations have been observed. To address these 
variations, spectrum features are commonly computed prior to the 
neural network inference in neural signal processing [39,40]. Therefore, 
instead of directly using raw EMG signals as the CNN input, we first 
extracted two sets of EMG features, termed energy map (spatiotemporal 
features of EMG amplitude) and frequency spectrum map (spatiotem
poral features of EMG frequency). High-level representations of these 
two features were then extracted by the convolutional layers and fused 
into a representation vector for the estimation of populational neuron 
discharge frequency. These hand-crafted feature calculations allowed us 
to accurately learn the EMG mapping to populational neuron firing ac
tivities in an efficient manner with a relative small dataset. We 
compared the performance of our neural decoding algorithm with two 
state-of-the-art neural decoding approaches: a MU decomposition 
method and a classic EMG amplitude method. One innovation of this 
approach is that we trained the model using motoneuron discharge 
frequency instead of direct force output. This allowed us to establish a 
robust and generic model that is generalizable to different human sub
jects, because EMG features have a more direct relation with neuron 
discharge activity than with force output. The main contribution of the 
study is that we provided a generic, efficient, and real-time neural 
network model for robust and continuous neural decoding, which allows 
intuitive human-robot interactions. 

2. Methods 

2.1. Human participants 

Seven neurologically intact participants (age: 22–34) were recruited. 
All participants gave informed consent via protocols approved by the 
Institutional Review Board of the University of North Carolina at Chapel 
Hill. 

2.2. Data acquisition 

During data acquisition, the participants were seated in a height- 
adjustable chair in front of a desk where their forearms were put on a 
soft foam pad. A pair of stiff form pads were placed on both sides of the 
hands, holding the palm and the back of the hand to reduce unintended 
hand movement and torque transmission from the wrist. 

To measure the individual finger extension forces, the index, middle, 
ring, and pinky fingers were separately secured to four miniature load 

cells (SM-200 N, Interface), sampling at 1000 Hz. In the meantime, an 8 
× 20 HD-EMG electrode array was attached to each participant’s fore
arm to record the activities of the extensor digitorum communis (EDC) 
muscle (Fig. 1). The electrodes were 3 mm in diameter and evenly 
distributed on the electrode array at a distance of 10 mm. The EMG 
signals were amplified with a gain of 1000 and band-pass filtered from 
10 to 900 Hz. The EMG signals were sampled at 2048 Hz using EMG- 
USB2+ (OT Bioelettronica). The participants were asked to follow a 
predefined pseudorandom trajectory ranging from 0% to 40% maximum 
voluntary contraction (MVC) for each finger for 5 min. Both the target 
trajectory and real-time feedback of the actual force were displayed to 
the participants. The recordings for each participant of the index, mid
dle, and ring fingers were conducted in a random order with a 2-min 
interval between trials to alleviate muscle fatigue. The pinky finger 
was excluded due to inevitable co-contractions with other fingers [41, 
42] and overlapped muscle activation distribution [43]. 

2.3. MU discharge time calculation using FastICA 

As a training target for the CNN model, fast independent component 
analysis (FastICA)-based decomposition algorithm [44] was used to 
extract MU discharge activities. Briefly, the discharge timings of the 
MUs were recognized as a convolutive mixture of delta function series in 
EMG signals with additive white noise [24]. After the EMG signals were 
extended and whitened, the decomposition procedure extracted indi
vidual spike trains using the FastICA algorithm based on iterations of the 
fixed point algorithm [45,46]. The output of each iteration of the 
fixed-point algorithm was the source signal and the separation vector. A 
binary spike train of a single MU was further derived from the source 
signal based on a binary classification based on the Kmeans++ algo
rithm. The derived binary spike trains were shortlisted using a modified 
‘Silhouette distance [47]’ measurement [44] by quantifying the classi
fication quality of the source signals. The retained spike trains were 
further merged into a single composite train representing the popula
tional firing frequency of the MU pool. The populational firing frequency 
was then normalized and categorized into target classes ranging from 
0 to 15 for the neural network training, which was a tradeoff between 
the resolution of the estimation and the convergence of the neural 
network with limited data. 0 corresponded to the lowest firing rate, and 
15 corresponded to the highest firing rate. During the normalization, the 
populational firing frequency was divided by the maximum firing fre
quency, and then scaled up to 15. 

2.4. Force estimation using CNN 

Feature calculation for CNN model: The 160-channel HD-EMG re
cordings were first segmented into a sequence of 64-sample (31.25 ms) 
windows with a step of 16-sample (7.81 ms). Two types of features 
(Frequency and Energy maps) were estimated from it (Fig. 2). Frequency 
spectrum map (Fspec) was calculated using Fourier transform (FT) within 
a window for each channel. A Hanning window was applied before the 
FT. The spectrum vector was (window − 2)/2 = 33 in height. 160 spec
trum vectors (one per channel) were calculated within each window, 
leading to a 33 × 160 (height × width) frequency map. Energy map 
(Fengy) was calculated based on the mean square (MS) value of all the 
samples of each channel within the window. The dimension of the en
ergy map was 8 × 20 (height × width), matching the spatial distribution 
of the electrode grid as shown in Fig. 1. 

CNN Model: We implemented a neural network model (detailed in 
Table 1) with two parallel convolutional neural networks before the 
feature fusion and fully connected layers for the output of the popula
tional discharge rate. The two EMG feature maps were fed to two 
separate pathways (Fig. 2). To provide the neural network with more 
contextual information for the estimation of populational neuronal fir
ings, we combined the energy maps and frequency maps from five 
consecutive windows. This resulted in the dimensions of the two 
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features to be Fengy ∈ RT×H×W and Fspec ∈ RN×M×T. We processed the 
dimension arrangement of the two features in different ways so that the 
neural network can inspect the data in multiple aspects. Specifically, 

Fengy had a height (H) and width (W) of eight pixels and 20 pixels 
respectively, covering the EDC muscle by the electrode array. The third 
dimension of Fengy was the depth in time (T), where T = 5 consecutive 
windows. Similarly, Fspec had a height (M) of 33 frequencies, and a width 
(T) of 5 consecutive windows, because the spectrum vectors from five 
windows were concatenated over time to form one frequency spectrum 
map. The third dimension of Fspec was the depth of the number of 
channels (N), where N = 160 EMG channels (see Table 2). 

The upper pathway of the network (as in Fig. 1) extracted the in
formation from the energy map feature. Convolutional kernels in each 
layer were able to explore the shape of the activated area and the change 
in the EMG amplitude in each channel. The depth dimension provided 
the information of changes in five energy maps varied over time.The 
lower pathway of the network extracted the information from the fre
quency spectrum feature. The height and width of the kernels in the 
lower CNN pathway covered the frequencies and time of the frequency 
map respectively, which enabled the exploration of the changes in fre
quencies at different time scales. As neuron firing spikes could arrive at 
different timings among channels, the CNN kernel explored the 
temporal-frequency relation among channels. By passing through four 

Fig. 1. Experimental setup for HD-EMG and force signal acquisition.  

Fig. 2. Diagram of the proposed CNN model. DP in yellow circle represents the data processing module. Modules with diamond shapes denotes the evaluation 
metrics used, where ‘CorrCoef’ denotes the correlation coefficient evaluation and ‘RMSE’ denotes the root mean square error evaluation. Data from different par
ticipants are represented in different color of the hand profiles. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 1 
Convolutional neural network structure.  

Input Feature Fengy ∈ RT×H×W Fspec ∈ RN×M×T 

CNN module Energy map 
information extractor 

Frequency spectrum map 
information extractor 

Parallel CNN 
structure 

L#1 Conv-10@2 × 6 Conv-160@6 × 2 
2 Maxpool Maxpool 
3 Conv-20@2 × 4 Conv-320@6 × 2 
4 Maxpool Maxpool 
5 Conv-40@2 × 2 Conv-640@3 × 3 
6 Maxpool Maxpool 
7 Conv-80@2 × 2 Conv-1280@2 × 2 
8 Maxpool Maxpool 
9 FC-256 FC-1024 
10 – FC-512  
11 FC-256 
12 Dropout  
13 FC-16 (Output discharge frequency) 

Note: The number after ‘Conv’ denotes the number of convolutional kernels in 
each convolutional layer, while the numbers after ‘@’ denotes the shape of the 
kernel in that layer. The ReLU activation function was added after each fully 
connected layer and each convolutional layer before Maxpool. The number after 
‘FC’ denotes the number of neurons in the fully connected layer. ‘L#’ denotes 
layer number. Number of total trainable parameters in the proposed convolu
tional neural network structure: 8,345,886. 

Table 2 
Details of the CNN parameters.  

# of 
trials 

# of trials for 
training 

#of trials for 
validation 

# trials for 
Testing 

Learning 
Rate 

210 150 30 30 3e-4  
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convolutional layers, the high-level representation of the engery and 
frequency spectrum map feature was extracted. Both high-level repre
sentations were viewed as representation vectors, which were passed 
through one or two local fully connected layers, and concatenated into a 
fusion representation vector. Dropout (p = 0.5) [48] was applied before 
the output layer to prevent overfitting. The estimated discharge fre
quency was obtained at the output layer. 

Model Training and Validation: We randomly chose one participant 
as validation and a different participant as testing out of the seven 
participants. The training data were from the five remaining partici
pants. In the training session, the preprocessed features from the five 
participants were shuffled both in time and participant before fed to the 
neural network. The shuffle was made among the features along 
different timestamps in the trials and in different subjects. In the eval
uation session, including the validation and the final testing, the features 
were fed to the model in their original chronological order, generating a 
new estimation every 16 samples (7.81 ms). The training of the neural 
network was optimized by the Adam optimizer [49] at a learning rate of 
3e-4. 

In the validation session, only the correlation coefficient between the 
predicted force and the measured force was used. The validation was 
performed every 500 iterations by evaluating the performance of the 
model on three 75-s segments randomly chosen from three 5-min index, 
middle, and ring finger trials of the validating participant. The number 
of iterations of the final model selected was determined by the highest 
arithmetic mean of the three correlation coefficients among all valida
tion sessions. After the training session has reached the maximum 
number of iterations, the neural network model at the number of iter
ations with highest correlation coefficient value was used to determine 
the network parameters. The network training session took 8 h, and the 
procedure was repeated seven times, until all the participants were used 
as a testing participant. 

Force Estimation: The estimated populational firing frequency was 
smoothed by a moving average filter of 0.5-s windows with 0.1-s moving 
steps. A linear regression model initialized with the first 25 s of data was 
used to predict the forces based on the firing frequency. The correlation 
coefficient and root mean square error (RMSE) between the predicted 
force and the measured force were used in the testing session to evaluate 
the force estimation performance. Note that the RMSE was not used 
during the validation session to finalize the network model parameters. 

2.5. Force estimation using FastICA 

Although MU decomposition was performed offline for neural 
network training, MU firing activities needed to be obtained in real-time 
for force estimation. We then performed online FastICA decomposition 
based on an earlier study [44]. A multivariate linear regression model 
[50] was initialized with the first 25-s of the data, and was applied to the 
subsequent MU firing activities for force estimation. 

2.6. Force estimation using EMG amplitude 

The root mean square (RMS) values were calculated using the same 
windowing method for each channel and averaged across all channels. A 
linear regression model was also initialized with the first 25 s of the data. 
To reduce computation time and limit the influence of channels with low 
signal-to-noise ratio, only 60 channels with the highest RMS values 
within the first 25 s were used for both the FastICA and EMG amplitude 
methods [51,52]. 

2.7. Statistical measure 

Repeated measures analysis of variance (ANOVA) was performed on 
the dependent variables. A significance level α was set as 0.05. A post 
hoc analysis was conducted using Bonferroni adjustment when neces
sary. As the correlation coefficient values were close to 1 and had an 

upper limit of 1, arcsine square root transformation [53] was used prior 
to ANOVA to ensure normality of residuals. 

3. Results 

The implemented neural network is computationally efficient with 
inference time of 4.26 ms (Table 3), including the time to compute the 
frequency spectrum map and the energy map. This delay is well below 
the acceptable loop delay (100–150 ms) for real-time control of assistive 
devices [54]. 

Fig. 3 shows an exemplar trial of real-time and continuous force 
predictions using the three methods. The measured force was considered 
as the ground truth for subsequent evaluations. The EMG amplitude 
method was the least accurate one among the three methods. This is 
more evident at the end of the force estimation due to a drift of the EMG 
amplitude. The real-time prediction by CNN and FastICA was more 
stable over time than the EMG amplitude method. 

Fig. 4 illustrates the overall results of correlation coefficients and 
mean square error (RMSE) of the three methods. The CNN model 
revealed the best performance, with the highest correlation coefficients 
and the lowest RMSE. The difference in the correlation coefficients was 
significant (F(2,12) = 19.655, p < 0.001) across the methods. The post 
hoc comparison showed that the correlation coefficients of the CNN 
model (0.92) were significantly higher (p < 0.01) than that of the Fas
tICA method (0.86), and that of the EMG amplitude-based method (p <
0.01). The difference in the RMSE results was also significant (F(2,12) =
6.715, p = 0.011). The RMSE results were 5.0% (CNN), 5.6% (FastICA 
method), and 7.6% (EMG amplitude method), respectively. 

Fig. 5 (A) shows the correlation coefficients grouped by different 
fingers. The two-way (method × finger) ANOVA indicated that both the 
method (F(2,12) = 19.655, p < 0.001) and the finger (F(2,12) = 9.147, p 
= 0.004) was significant, with no interaction. The post hoc comparison 
revealed that the CNN model was significantly higher than the FastICA 
method (p < 0.01) and the EMG amplitude-based method (p < 0.01). 
Significant differences among fingers only appeared between the index 
and ring fingers (p < 0.05). 

Fig. 5 (B) depicts the RMSE grouped by different fingers. The ANOVA 
showed that both method (F(2,12) = 6.715, p = 0.035) and finger (F 
(2,12) = 8.126, p = 0.006) had significant effects on the RMSE, with no 
significant interaction. The post hoc revealed a significant difference 
among fingers between the index and ring fingers (p < 0.05). 

We also quantified the stability of the force estimation over time. The 
first 25-s segment of each 5-min trial was used to initialize the linear 
regression for all the three methods, and thus was not included for the 
analysis. The remaining 275-s of data were divided into four segments, 
resulting in four 68.75-s segments, where the correlation coefficients 
and RMSE were calculated separately for each segment. 

Fig. 6 illustrates the correlation coefficients over different time seg
ments. The two-way (method × segment) ANOVA showed a significant 
interaction (F(6,36) = 7.967, p < 0.001). The post hoc comparison 
revealed that there were no significant differences in correlation co
efficients among the three methods in segment 2 (p > 0.05), but the CNN 
model was higher than the FastICA method from segments 3 to 5 (11%, 
p < 0.05; 14.1%, p < 0.01; 19.4%, p < 0.001). The CNN model was also 

Table 3 
Computation time.  

Approach CNN FastICA- 
online 

FastICA- 
offline 

EMG 

Time 4.26 ms (62.5 
ms) 

60 ms (1 s) 15 s (1 s) 0.38 ms (0.5 
s) 

Note: The table denotes time in the format: calculation time (required window 
length of the HD-EMG segment for computation). The computation time was 
based on a PC with Intel Core i7-6700@3.4 GHz, NVIDIA GTX 1080, and 24 GB 
of memory. 
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Fig. 3. Example of force prediction of individual fingers in real-time using the CNN model, the FastICA method, and the EMG amplitude method.  

Fig. 4. (A) Overall correlation coefficient results of the three methods averaged across all fingers. (B) Overall RMSE results of the three methods across all fingers. 
The error bar represents standard error. *, p < 0.05. **, p < 0.01. 

Fig. 5. (A) The Correlation coefficient results of different fingers across all subjects. (B) The RMSE results of different fingers across all subjects. The error bar 
represents standard error. *, p < 0.05. **, p < 0.01. 

Fig. 6. The correlation coefficient results across all subjects over four segments. 
Time stamps in the label are rounded to the nearest integer. The error bar 
represents standard error. *, p < 0.05. **, p < 0.01. ***, p < 0.001. 

Fig. 7. The RMSE results across all subjects over four segments. Timestamps in 
the label are rounded to the nearest integer. The error bar represents standard 
error. *, p < 0.05. 
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higher than the EMG amplitude-based method from segments 4 to 5 
(11.8%, p < 0.001; 16.3%, p < 0.001). 

Fig. 7 shows the RMSE over different time segments. The ANOVA 
showed a significant interaction (F(6,36) = 4.819, p = 0.001). The dif
ferences among the three methods were not significant in segment 2 (p 
> 0.05). There were no significant differences among four segments of 
the CNN model in RMSE (all p > 0.05), indicating a relatively stable and 
robust estimation performance. In contrast, the RMSE of the FastICA 
method and the EMG amplitude method increased significantly from 
segment 2 to segment 5 (p < 0.05). 

4. Discussion 

In this study, we performed populational neural decoding in real- 
time based on CNNs without obtaining individual motor unit informa
tion as in spike sorting. We first extracted two types of features from the 
HD-EMG signals, energy map feature and frequency spectrum map 
feature. These features were learned by the CNNs to extract high-level 
representations, and were used to predict the populational neuronal 
firing frequency. The estimated force output from the CNN model was 
compared with two state-of-the-art methods: FastICA-based decompo
sition and conventional EMG-amplitude-based approaches. We found 
that the CNN model outperformed the FastICA method and the EMG 
amplitude method as indicated by a higher correlation coefficient, a 
lower RMSE, and a more robust prediction performance over time. The 
results can provide a generic, computationally efficient, and real-time 
neural network model for continuous neural decoding. The outcomes 
can facilitate intuitive and robust human-machine interactions. Our 
CNN based neural decoding method has several advantages compared 
with existing approaches. 

Decoding accuracy: The CNN model is more accurate even though 
it is trained on a dataset from a pool of subjects, while the FastICA and 
EMG methods only performed subject-specific decoding. The current 
decomposition algorithms [19,55] are relatively accurate but with 
certain levels of decomposition errors. We developed several processes 
to facilitate the CNN model training to improve decoding performance. 
First, the offline decomposition method was used to obtain the firing 
frequency for the training. Second, we filtered the results of the offline 
decomposition algorithm by evaluating the performance of correlation 
coefficients with force. If the correlation coefficient was lower than 0.70 
for a single fragment, all the decomposition results in the data fragment 
would not be used as the CNN training target. Lastly, the validation 
session served as a guidance during the training process. As a result, the 
chosen number of iterations with the highest validation performance has 
the learned parameters from the most accurate firing events. 

Computational Efficiency: The proposed approach is also consid
ered efficient regarding the computational load. The calculation to sort 
individual spike trains was not needed, and the direct output was 
populational firing frequency, making the algorithm more straightfor
ward and applicable in real-time. The decomposition approach first 
extracts individual MU spike trains, and the spike trains are then addi
tively merged to predict motor output. In the process, the information of 
individual MUs is lost and thus is considered inefficient. The output of 
the CNN model was the populational firing frequency, which can be 
directly used for multiple finger force prediction tasks. Besides, FastICA 
method required 1 s of data to perform the separation matrix multipli
cation, and the EMG amplitude method also needed 0.5-s of data for 
reliable predictions. In contrast, the CNN method only needed two 
contextual windows in advance for prediction. The algorithm was 
capable of calculating the prediction procedure starting from feature 
preprocessing and output discharge frequency within the interval be
tween two predictions. As a result, the algorithm was practical for real- 
time estimation. Given the accuracy and robustness over time in the 
force estimation, the generic model is efficient because one can directly 
apply the trained model to new subjects, without recalibration of the 
model parameters frequently. 

The feasibility of neural decoding without spike sorting has been 
demonstrated mainly in intracortical recordings [56,57]. In the spike 
sorting approach for intracortical recordings, the human intervention, 
which is lengthy and repetitive, is required to manually identify the 
waveform snippet categories. In addition, the shape of the waveforms 
from neuronal sources may change over time, and the categories may 
not be distinguishable to each other anymore. An alternative approach is 
to perform adaptive thresholding to estimate the collective activities 
from a population of neurons, which possesses long-term stability and 
robustness against noise on individual neurons. The conceptual frame
work of our study is similar to decoding without spike sorting, which 
estimates the populational neuronal activity from EMG recordings with 
a mixture of signals from multiple sources. 

Generalizability: The trained CNN model has high generalizability. 
The estimation of the finger forces or joint angle from the EMG signals is 
not straightforward, which requires a subject-dependent transformation 
from the neural populational firing activity. However, the relation be
tween EMG signals and the neuron firing rate is direct. Our study has 
demonstrated that the EDC activation patterns learned by the CNN 
model from different subjects maintain inter-subject similarity, and thus 
the approach can be applied to a larger group of new users with mini
mum adjustment in the model parameters, even though the placement of 
the HD-EMG electrode array was not consistent across individuals or 
optimized for the CNN model. Moreover, the output of the CNN model 
was populational decoding of neuronal activities instead of force output 
directly. Therefore, it is possible that this approach can be applied 
directly to other decoding tasks such as prediction of finger joint angles, 
which can be derived based on the populational coding. 

The CNN model trained in our study is a generic model that is viable 
for potential data from new subjects. The validation session not only 
guided the performance of discharge frequency for finger-specific pre
dictions but also examined the expected inter-subject performance. The 
data used for validation were from the sixth participant, which was 
different from the training participants and the final testing participant. 
Therefore, the trained CNN model under this process was considered 
applicable for unknown new subjects. A previous study [58,59] showed 
that, via a similar MU decomposition method, the derived discharge 
frequency could be used to predict the finger joint angle with a 
second-order polynomial regression, providing high prediction accu
racy. Because the presented CNN model was trained on the composite 
discharge trains, the algorithm could be used directly for joint kinematic 
prediction. On the other hand, if the CNN model was trained on the 
measured force, the extra layers of transformation from firing events to 
the force output would make it unable to generalize neither to the joint 
angle prediction task nor in a cross-subject manner. However, there is 
high heterogeneity in clinical populations, due to differences in the 
severity of impairment. In such circumstances, an initial fine-tuning of 
the model parameters may be needed for specific users. Further study is 
needed to investigate the model generalizability in clinical populations. 

Robust Decoding: We also observed stable performance in the CNN 
decoder over time as shown in Figs. 6 and 7. In contrast, the EMG 
amplitude approach showed progressive decline of performance, mainly 
due to variations in EMG signals over time, and a more moderate decline 
was observed in the FastICA approach. With weight-sharing kernels 
moving from left to right and from top to bottom, the CNN worked well 
in detecting the distribution or shape of the muscle activation even with 
small displacement of the 2D electrode array during electrode place
ment. The Maxpool layers further improved this image translation 
invariance property for stable decoding performance. It was achieved by 
reporting the maximum output within a rectangular neighborhood in 
the representation map from the previous layer, which improved the 
robustness of the output representation relatively to small translations of 
the input. 

Limitations and Future Directions: Although the CNN model was 
relatively accurate regarding single finger force prediction, the current 
model has not been evaluated on concurrent prediction of multi-finger 
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forces. Current assistive and rehabilitation robotic hands have fully ar
ticulated fingers, and it is necessary to independently drive individual 
digits. In addition, only isometric finger forces were decoded in the 
current study. Given that the decoding is performed in real-time after the 
model is trained, in future studies, we plan to evaluate this approach on 
finger force and finger joint angle prediction interchangeably using the 
same model. Lastly, the actual evaluation of robotic control was not 
performed in the current study. We plan to use the decoded output to 
continuously control a physical robotic hand when performing 
dexterous finger movement tasks in real-time. 

5. Conclusion 

This study presented a populational neural decoding scheme on HD- 
EMG signals using CNN. The decoding was performed without spike 
sorting and can be performed in real-time for individual finger force 
prediction. Two spatiotemporal related EMG energy and frequency 
features were extracted, and were fed to the CNN model for populational 
discharge frequency estimation. The CNN model demonstrated high 
generalizability to data from new subjects by training the CNN model on 
populational neuronal firing activities. The results of the force estima
tion evaluation demonstrated that the CNN model also showed robust 
performance over time compared with other decoding methods, and this 
can avoid frequent model recalibration during long-term use. The out
comes of our study can provide a generic and efficient CNN model for 
continuous and real-time neural decoding, which can lead to intuitive 
and robust human-machine interactions. 
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activity detection in electromyograms recorded during periodic movements, 
Comput. Biol. Med. 47 (2014) 93–103, https://doi.org/10.1016/J. 
COMPBIOMED.2014.01.013. 

[17] T. Moritani, M. Muro, A. Nagata, Intramuscular and surface electromyogram 
changes during muscle fatigue, J. Appl. Physiol. 60 (1986) 1179–1185, https://doi. 
org/10.1152/jappl.1986.60.4.1179. 

[18] Y. Zheng, X. Hu, Interference removal from electromyography based on 
independent component analysis, IEEE Trans. Neural Syst. Rehabil. Eng. 27 (2019) 
887–894, https://doi.org/10.1109/TNSRE.2019.2910387. 

[19] Y. Zheng, X. Hu, Real-time isometric finger extension force estimation based on 
motor unit discharge information, J. Neural. Eng. 16 (2019), 066006, https://doi. 
org/10.1007/s10439-020-02557-2. 

[20] R. Merletti, A. Botter, A. Troiano, E. Merlo, M.A. Minetto, Technology and 
instrumentation for detection and conditioning of the surface electromyographic 
signal: state of the art, Clin. Biomech. 24 (2009) 122–134. 

[21] A. Holobar, D. Zazula, Multichannel blind source separation using convolution 
kernel compensation, IEEE Trans. Signal Process. 55 (2007) 4487–4496. 

[22] R.S. LeFever, C.J. De Luca, A procedure for decomposing the myoelectric signal 
into its constituent action potentials— Part I: technique, theory, and 
implementation, IEEE Trans. Biomed. Eng. BME- 29 (1982) 149–157, https://doi. 
org/10.1109/TBME.1982.324881. 

[23] Y. Ning, X. Zhu, S. Zhu, Y. Zhang, Surface EMG decomposition based on K-means 
clustering and convolution kernel compensation, IEEE J. Biomed. Heal. 
Informatics. 19 (2015) 471–477, https://doi.org/10.1109/JBHI.2014.2328497. 

[24] M. Chen, P. Zhou, A novel framework based on FastICA for high density surface 
EMG decomposition, IEEE Trans. Neural Syst. Rehabil. Eng. 24 (2016) 117–127. 

[25] M.D. Twardowski, S.H. Roy, Z. Li, P. Contessa, G. De Luca, J.C. Kline, Motor unit 
drive: a neural interface for real-time upper limb prosthetic control, J. Neural. Eng. 
16 (2019) 16012, https://doi.org/10.1088/1741-2552/aaeb0f. 

[26] V. Glaser, A. Holobar, D. Zazula, Real-time motor unit identification from high- 
density surface EMG, IEEE Trans. Neural Syst. Rehabil. Eng. 21 (2013) 949–958, 
https://doi.org/10.1109/TNSRE.2013.2247631. 

[27] Y. Ning, N. Dias, X. Li, J. Jie, J. Li, Y. Zhang, Improve computational efficiency and 
estimation accuracy of multi-channel surface EMG decomposition via 
dimensionality reduction, Comput. Biol. Med. 112 (2019), 103372, https://doi. 
org/10.1016/J.COMPBIOMED.2019.103372. 

[28] Y. Zheng, X. Hu, Adaptive real-time decomposition of electromyogram during 
sustained muscle activation: a simulation study, IEEE Trans. Biomed. Eng. 69 
(2022) 645–653, https://doi.org/10.1109/TBME.2021.3102947. 

[29] Y. Zheng, X. Hu, Concurrent prediction of finger forces based on source separation 
and classification of neuron discharge information, Int. J. Neural Syst. 31 (2021), 
2150010, https://doi.org/10.1142/S0129065721500106. 

[30] C. Dai, Y. Cao, X. Hu, Prediction of individual finger forces based on decoded 
motoneuron activities, Ann. Biomed. Eng. 47 (2019) 1357–1368, https://doi.org/ 
10.1007/s10439-019-02240-1. 

[31] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997) 
1735–1780. 
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