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Abstract 

 
This paper presents a formulation of fractional viscoelasticity of nonlinear time-dependent 

responses of isotropic materials undergoing small deformation gradients. The model considers the 

separation of functions of the time-dependent kernel and nonlinear elastic strain measure, which 

is stress-dependent. The Riemann-Liouville fractional integral is considered for the time-

dependent kernel function. Characterization of material parameters in the fractional viscoelasticity 

model is presented using experimental data on a polymer. The non-uniqueness of the calibrated 

material parameters from the fractional power terms is discussed. A numerical method is also 

presented to solve the nonlinear fractional viscoelastic constitutive model. The response 

characteristics and convergence behaviors of the presented nonlinear fractional viscoelastic 

constitutive model are compared to the corresponding nonlinear model derived based on classical 

viscoelasticity. The presented nonlinear viscoelastic fractional model is shown capable of 

describing multi-axial responses of polymers under various loading histories. The fractional model 

has significantly fewer material parameters, which can offer an advantage when a relatively long-

term response of materials is of interest. The model is, however, computationally more expensive 

when compared to the classical viscoelastic model based on the Prony series kernel function, which 

can hinder its practical use in solving rather complex boundary value problems.  
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1. Introduction 

Viscoelastic responses of materials when subjected to mechanical stimuli are widely attributed to 

polymers and biological tissues. Many if not all materials, ranging from biological, geological, and 

engineered materials to processed food, exhibit viscoelastic responses, even at room temperature. 

However, in some of these materials, their viscoelastic responses are more pronounced over a 

relatively long-time span. As such, they are not considered to exhibit viscoelastic responses when 

investigated under a relatively short time, which is a common time scale for laboratory 

experiments. The characteristics of viscoelastic materials are typically determined by various 

parameters, such as viscosity, loss tangent, characteristic of relaxation (or creep) time, relaxation 

spectrum, etc. For instance, the viscosity of fluid (e.g., air, water, honey, oil, etc.) is typically less 

than 500 Pa-sec, while the viscosity of polymers can vary from 100 to 106 Pa-sec (Caba and Koch 

2015, Hammani et al. 2020). This range of viscosity shows pronounced time-dependent responses 

of materials in a relatively short time scale (seconds to hours). In contrast to fluid and polymers, 

the viscosity of the earth mantle is greater than 1019 Pa-sec (Pollitz et al. 2017), resulting in a slow 

relaxation behavior for over 10 years. Fused silica glass at room temperature has a viscosity of 

1017-1018 Pa-sec, indicating a slow relaxation process (Vannoni et al. 2011). This phenomenon can 

be seen in panes of stained glass in old churches in Europe that are thicker at their bottom due to 

centuries of a relaxation process from gravitational forces. Structural metals and alloys, such as 

brass, steel, aluminum alloy, have loss tangent from 10-3 to 10-6 at room temperature, indicating 

insignificant viscoelastic responses in a short time scale, while the loss tangent of viscoelastic 

polymers can vary between 0.1 to more than 1 (Lakes and Quackenbush 1996).  

 The relaxation process in materials is attributed to the motions of the materials’ 

microstructures relative to their neighbors. In polymers, sliding between long chains in amorphous 
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regions has been the source of polymer relaxation, while in metals the relaxation process is 

attributed to atom dislocations and/or diffusions. Determining responses of materials under various 

time scales has been a subject of interest for both fundamental understanding of the process and 

practical reasons. For this purpose, mathematical models have been formulated to describe 

viscoelastic responses of materials. Early developments in viscoelasticity considered mechanical 

analog models with various arrangements of springs and dashpots, e.g., Maxwell, Kelvin-Voigt , 

Burger, standard linear solid (SLS) models. These models however are limited in capturing 

responses of materials, particularly when relatively long-term responses are considered. To 

overcome this issue, multiple spring-dashpot elements have been considered to capture responses 

from experimental investigations. Several viscoelastic models incorporate the mechanisms of 

microstructural motions in describing the overall viscoelastic responses of materials [Bergstrom 

and Boyce 1998, Li et al. 2016]; while other viscoelastic models are phenomenological based, 

which accounts for the net effect of microstructural motions [Green and Rivlin 1957, Schapery 

1969, Pipkin and Rogers 1968, Fung 1981, Rajagopal and Srinivasa 2011, Song et al. 2022, etc.]. 

 In a one-dimensional linear viscoelastic phenomenological model, a minimum of three 

material parameters are required to describe the overall responses of materials. In this simple linear 

viscoelastic model, each material parameter has an underlying physical meaning, e.g., 

instantaneous modulus, relaxed modulus, and characteristic of relaxation time. In many practical 

situations, larger numbers of material parameters are required to capture the viscoelastic responses 

of materials, even for a linear viscoelastic response. For this reason, several relaxation (or creep) 

functions1, also known as memory kernels, i.e. Prony series, rational polynomial form, fractional 

power function, etc., have been considered (Blair and Caffyn 1945, William and Watts 1970, 

                                              
1 The time-dependent kernel function must be positive, continuous and an increasing function of time in case of 
creep function while a decreasing function of time for the relaxation function. 
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Findley et al. 1976). Prony series, which consists of several exponential terms that can be derived 

from arrangements of multiple spring and dashpot elements, has been widely used due to its 

flexibility in adding terms to capture time-dependent responses over various time scales, 

straightforward characterization of material parameters through curve fitting, and fairly easy 

numerical implementation for computer simulations. The disadvantages of using the Prony series 

are that a large number of parameters from multiple terms do not have a specific physical attribute 

that is associated with intrinsic material properties and that there is no uniqueness of the fitted 

parameters. In practice, it is often convenient to a priori set the time parameters for all terms in 

the Prony series such that each time parameter can capture responses over a certain time window.  

To overcome a large number of material parameters in the Prony series, models based on 

fractional calculus [Bagley and Torvik 1983, Adolfsson et al. 2005] have been considered. Models 

based on fractional viscoelasticity require few parameters, which can be easily characterized from 

experimental data that exhibit power-law behaviors [Bonfanti et al. 2020]. As we will discuss later, 

fractional viscoelastic models have some limitations in incorporating physical meaning into the 

material parameters. Major drawbacks in fractional viscoelasticity are: it is difficult to numerically 

implement fractional viscoelastic models and it is computationally expensive [Schmidt and Gaul 

2001, Zhang et al. 2020]. Nevertheless, fractional viscoelasticity has been used to describe a wide 

range of linear viscoelastic materials [Bonfanti et al. 2020]. 

Linear viscoelasticity2 often fails to describe responses of materials over a large range of 

prescribed external stimuli. Nonlinear viscoelastic models have been formulated to describe time-

dependent responses of elastomers, rubbers, polymers, and biological tissues undergoing large 

                                              
2 In a l inear viscoelastic material, there are two sources of l inearity. A l inearized strain measure is used, i.e., only the 
l inear term of the displacement gradients is accounted for. The responses are proportional to the inputs and can be 
obtained by superimposing the responses of several different inputs. In a l inear viscoelastic model, the expression 
for the time-dependent stress and strain is interchangeable. 
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deformation gradients [Fung 1981, Bergstrom and Boyce 1998, Muliana et al. 2016], to name a 

few examples. A viscoelastic material can undergo small-displacement gradients, in which a 

linearized strain measure is sufficient to describe the deformation of the body; however, its 

responses may not meet the proportionality and superposition of response. Such material needs to 

be treated as a nonlinear viscoelastic material, and several constitutive models have been 

formulated for such nonlinear responses, e.g., [Schapery 1969, Drozdov 1999, Song et al. 2019, 

Xu et al. 2020]. Like in linear viscoelasticity, when a relatively long-term response is of interest, 

these nonlinear viscoelastic models often require a large number of parameters to describe the 

time-dependent responses. The use of fractional calculus in nonlinear viscoelasticity has been 

limited [Mueller et al. 2011, Mashayekhi et al. 2018, Zhang et al. 2020, Yao et al. 2021].  

This study presents a formulation of fractional viscoelasticity of nonlinear time-dependent 

responses of polymers undergoing small deformation gradients. We present constitutive relations 

for multi-axial responses of isotropic materials. We discuss the characterization of material 

parameters in the fractional viscoelasticity model and compare them with the material parameters 

from a classical nonlinear viscoelastic model. The classical nonlinear viscoelastic model uses the 

Prony series for the time-dependent kernel. We also present a numerical implementation of the 

nonlinear fractional viscoelasticity model and assess its computational cost when compared to the 

classical nonlinear viscoelastic model. While responses of viscoelastic materials can be adequately 

described by both classical and fractional viscoelastic models, the fractional model is particularly 

useful when investigating a long-term response of materials as it requires a relatively small number 

of material parameters. The manuscript is organized as follows. Section two presents constitutive 

model formulations, followed by material characterizations in Section three. Section four 

discussed a numerical implementation of the model for describing time-dependent responses of 
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materials under general loading histories. Finally, Section five is dedicated to discussions and 

conclusions on the advantage and disadvantages of the use of the fractional viscoelastic model. 

 

2. Constitutive Model Formulation  

Pipkin and Rogers (1968) discussed a single integral form of nonlinear viscoelasticity where they 

described the viscoelastic response of materials with strong nonlinearity using a nonlinear 

integrand function. This model is based on a modified superposition method, where the stress is 

expressed in terms of the history of strain. In this study, we adopted the single integral model of 

Pipkin and Rogers (1968) and considered expressing the strain in terms of the history of stress 

[ ]( ) ( )t F t s= −ε σ , where ε  and σ are the linearized strain tensor and Cauchy stress tensor, 

respectively. The rationale for such a representation is that the stress does not have to be small, but 

the expression for the function F in terms of the stress leads to a sufficiently small value for the 

strain. The stress cannot be in general expressed in terms of a nonlinear function of the linearized 

strain, [ ]( ) ( )t G t s= −σ ε , as there is the limitation for the function G that can be chosen; it cannot 

involve any higher-order terms in ε . A detailed discussion of such a model can be found in Muliana 

et al. (2013).  

The general form of a nonlinear viscoelastic integral model is given as 

  
0 0

[ ( ), ][ ( ), ]
( )

t t

s s

s t s ds t s ds
s ds− −= =

∂ −
= − =

∂∫ ∫T
f σ σd f σ

σ
ε  (2.1) 

In Eq. (2.1), we consider a separation of functions of the time-dependent kernel and nonlinear 

elastic strain measure, which is stress-dependent: 

 ( ( ), ) ( ) ( )elt t t=f σ D F σ   (2.2)  

Thus, the expression in Eq. (2.1) yields to 
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0 0

( (s)) ( (s))( ) ( ) ( )
t tel eld dt t s ds t s ds

ds ds− −

∂
= − = −

∂∫ ∫
F σ F σ σε D D

σ
                       (2.3) 

where D(t) is the fourth-order tensor of a normalized creep function and ( )elF σ  is the nonlinear elastic 

strain measure, expressed in terms of the Cauchy stress tensor. It is noted that the nonlinear elastic strain 

measure should reduce to zero in absence of stresses (0) 0el =F . 

For an isotropic material, the nonlinear elastic strain measure can be written as: 

( ) ( )1 1 2 3 2 1 2 3( (s)) , , , ,el f I I I f I I I= − +F σ I σ      (2.4) 

where the functions f1 and f2 are expressed in terms of the stress invariants, which are 

( ) ( ) ( )2 3
1 2 3

1 1trace , trace , trace
2 3

I I I= = =σ σ σ . Here the function f1 describes the corresponding 

lateral deformations and portion of the axial deformation due to loading along with the axial 

directions. The function f1 does not contribute to any shear deformation. The choice of 

( )1 1 2 3, ,f I I I  and ( )2 1 2 3, ,f I I I  will be determined from the available experimental data, which 

will be discussed in Section 3. When upon linearization ( )elF σ reduces to a linear elastic response, 

Eq. (2.3) leads to a linear viscoelastic response. We further consider two normalized time-

dependent functions B(t) and J(t) for isotropic materials and Eq. (2.3) becomes: 

[ ]21

0 0

( (s)) (s)( (s))( ) ( ) ( )
t t d fdft B t s ds J t s ds

ds ds− −

= − − + −∫ ∫
σ σσε I     (2.5) 

It is noted that by using integral by part, an alternative expression of Eq. (2.5) can be obtained, 

which can be handy to provide an exact solution or perform numerical integration: 
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1 1
0

2 2
0

( )( ) (0) ( ( )) ( (s))
( )

( )(0) ( ( )) ( ) ( (s)) (s)
( )

t

t

dB t st B f t f ds
d t s

dJ t sJ f t t f ds
d t s

+

+

−
= − − +

−

−
+

−

∫

∫

ε σ I σ I

σ σ σ σ

    (2.6) 

where B(0)= J(0)=1. The expression of the integral model in Eq. (2.5) requires the input history, 

i.e., the stress history, to be continuous all time within the integral. The integral model in Eq. (2.6) 

can incorporate a general input history, e.g., in case of a jump discontinuity in describing a creep 

response.  

When only a one-dimensional response is considered, due to normal stress σ(t), Eq. (2.4) 

becomes ( ) ( )1 2( )f f fσ σ σ σ= − +  and hence Eq. (2.5) reduces to: 

0

( ( ))( ) ( )
t df st D t s ds

ds
σε

−

= −∫       (2.7) 

where D(t) is a normalized time-dependent creep function, and D(0)=1. Similarly, when only a 

one-dimensional shear loading τ(t) is considered, the corresponding shear strain from Eq. (2.5) is 

[ ]2

0 0

( (s)) (s) ( ( ))( ) ( ) ( )
t td f dg st J t s ds J t s ds

ds ds
τ τ τγ

− −

= − = −∫ ∫    (2.8) 

 The next step is to define the forms for the time-dependent kernel functions. To motivate 

the discussion, we will start with a one-dimensional response, followed by a multi-axial response. 

 

2.1 One-dimensional response 

To define the fractional viscoelastic model utilizing the creep function, we adopt the Riemann-

Liouville fractional integral, which is defined as follow: 
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( ) 11( ) ( ) ,    ,   ,   0
( )

t

c t
c

I f t t s f s ds t cαα α α
α

−= − > ∈ >
Γ ∫ 

   (2.9) 

where ( )Γ •  is the Gamma function. The fractional operators are nonlocal in nature, in which they 

account for hereditary information in determining the response characteristics of certain 

phenomena. Thus, they are suitable to describe responses of materials with history dependences. 

We take c=0 and consider 1β α= − , Eq. (2.9) becomes: 

( )0
0

1( ) ( ) ,    0,   ,   0
( 1)

t

tI f t t s f s ds tββ β β
β

= − > ∈ >
Γ + ∫ 

  (2.10) 

The expression in Eq. (2.10) can be used to represent time-dependent strain with a power-law 

creep function. Experimental observation on creep responses showed that the creep compliance 

can be expressed by a power function of time i.e., ( ) , 0D t Ctβ β∆ = > , where C and β are material 

parameters, see for example Harper and Weitsman (1985). By adopting the fractional integral in 

Eq. (2.10), the normalized time-dependent creep function in Eq. (2.7) can now be written as:  

( ) (0)
( 1)
D

D t D tβ β
β

= +
Γ +

      (2.11) 

The creep function in Eq. (2.11) includes a jump discontinuity at time 0, which is attributed to the 

instantaneous elastic response. Two material parameters Dβ  and β need to be calibrated from 

experimental tests. It can be seen in Eq. (2.11) that β=0 gives the response of an elastic solid while 

β=1 results in the response of a viscous fluid. As has been discussed in the literature [Bonfanti et 

al. 2020], it is often necessary to consider more than one power term to capture the entire creep 

responses, and thus Eq. (2.11) can be expanded as: 
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1
( ) (0)

( 1)
n n

N

nn

D
D t D tβ β

β=
= +

Γ +∑      (2.12) 

By substituting Eq. (2.12) into Eq. (2.7), the one-dimensional strain of a nonlinear fractional 

viscoelasticity model is given as: 

( )10

( ) ( ( ))( ) (0) ( ( ))
1

n
n

t N

nn

D t s df st D f t ds
ds

β
β σε σ
β=

−
= +

Γ +∑∫    (2.13) 

When multiple terms are considered, the lower value of the power βn describes responses at an 

early time (short-term response), while the higher value of βn captures responses at a later time 

(long-term response). This behavior is similar to the use of the Prony series for the kernel function, 

as each parameter in the exponent represents the dominant response at a certain time domain. 

 

2.2 Multi-axial response 

The multi-axial responses for the isotropic fractional viscoelastic model are formed by defining 

the normalized time-dependent creep functions B(t) and J(t) as follows: 

1
( ) (0)

( 1)
n n

N

nn

B
B t B tδ δ

δ=
= +

Γ +∑      (2.14) 

1
( ) (0)

( 1)
m m

M

mm

J
J t J tλ λ

λ=
= +

Γ +∑      (2.15) 

where N and M are numbers of terms in the time-dependent bulk and shear functions, respectively, 

and , , ,
n mn mB Jδ λδ λ  are material parameters to be calibrated from experimental data. Using the 

creep functions in Eqs. (2.14) and (2.15), the time-dependent strain in Eq. (2.5) are rewritten as: 
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( )

( )
[ ]

1
1

10

2
2

10

( ( ))( ) (0) ( ( ) ( )
1

( ( )) ( )
(0) ( ( )) ( ) ( )

1

n n

m m

t N

nn
t M

mm

B df st B f t t s ds
ds

J d f s s
J f t t t s ds

ds

δ δ

λ λ

δ

λ

=

=

= − − − +
Γ +

+ −
Γ +

∑∫

∑∫

σε σ I I

σ σ
σ σ

    (2.16) 

When the expression of the time-dependent strain in Eq. (2.6) is used instead, we have 

( )

( )

1
1 1

10

1
2 2

10

( ) (0) ( ( )) ( ) ( (s))
1

(0) ( ( )) ( ) ( ) ( (s)) (s)
1

n n

m m

t N
n

nn

t M
m

mm

B
t B f t t s f ds

J
J f t t t s f ds

δ δ

λ λ

δ
δ

λ
λ

+

+

−

=

−

=

= − − − +
Γ +

+ −
Γ +

∑∫

∑∫

ε σ I σ I

σ σ σ σ

   (2.17) 

 When the second term of Eq. (2.14) and Eq. (2.15) is absent or when we evaluate at time 

t=0, the strain expression in both Eqs. (2.16) and (2.17), noted that B(0)=J(0)=1, reduces to a 

nonlinear elastic response, 

                               1 2( ) ( ( )) ( ( )) ( )t f t f t t= − +ε σ I σ σ                                         (2.18) 

Linear elastic response for isotropic materials is described by 1 2
1( ) ( );   ( )f trace f

E E
ν ν+

= − =σ σ σ , 

where E and ν are the elastic modulus and Poisson’s ratio, respectively.  

 

3. Material Parameter Characterization and Model Predictions 

We now present a discussion on material parameter characterizations in the fractional viscoelastic 

model, both for one-dimensional and multi-axial cases, and compare them with the ones 

determined from the Prony series of classical viscoelasticity. The one-dimensional response is 

used to facilitate the discussion and comparison with the classical viscoelasticity. Responses of 

polyoxymethylene (POM) polymer are used. The experimental test is presented in the Appendix. 
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3.1 One dimensional material characterization 

Consider a simple uniaxial test under two loading histories. One is a ramp loading with a stress 

rate σ  and the other is a creep test under a constant stress σo. If it is assumed that the ramp loading 

is conducted at a relatively fast rate so that the time-dependent effect is insignificant, then from 

the ramp loading response, i.e., a stress-strain relation, we can determine the nonlinear function 

( )f σ , which is an elastic strain. To illustrate this idea, consider a material with a characteristic of 

creep time τc, and the ramp loading takes place until time t*. At time t*, let say we have stress oσ

and its rate oσ , thus 
1
*

o

o t
σ
σ

=


. If the time t* is small compared to the characteristics of creep time, 

1o
c

o

σ
τ

σ
>>



 and 
* 1
c

t
τ

<< , thus ( *) ( ( *))t f tε σ≈ 3. In such a situation, the nonlinear plot of a stress-

strain, Fig. 1 top, is not attributed to the stress relaxation (or creep) process. In Fig. 1 top, POM 

specimens were subjected to a uniaxial ramp test with constant stress rates of 2.5 MPa/sec and 25 

MPa/sec, which show an insignificant effect of loading rates in these ranges of stress rates. The 

response under a quasi-static ramp was used to determine ( ( ))f tσ .  

 POM experiences creep when the stress is held for a period of time, see Fig. 1 bottom. 

During a creep experiment, the specimen is ramped to a stress state before the stress is held 

constant. The time-dependent material parameters are typically characterized from the creep 

portion of the data, which implies that the ramp portion has an insignificant time-dependent 

                                              
3 Let us define the normalized time history ˆ / ,cs s τ= and the second term of Eq. (2.13) becomes 

*/

0

ˆ ˆ 0
ˆ

ct

c
c

t df dD s ds
d ds

τ
σ τ

τ σ
 

− ≈ 
 

∫ . 
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response. For this to be true, it is then necessary to apply the load sufficiently fast during the ramp. 

Otherwise, the time-dependent parameters need to be calibrated from the entire loading history. 

Considering a jump discontinuity in the stress at an initial time t=0, the corresponding creep strain 

from Eq. (2.2) is ( , ) ( ) ( )o ot D t fε σ σ= .  

 For the studied POM polymer, the following function is used to capture the nonlinear 

elastic response of the material in Fig. 1 top.  

                                   ( )
2

1Bf A e σσ
 

= − 
 

                                        (3.1) 

where A and B are the material parameters that need to be determined from the experiment. For 

the studied POM, the calibrated values are  37.5x10 ;  0.03A B−= = . It is noted that upon 

linearization, Eq. (2.20) reduces to 
0

1df AB
d Eσ

ε σ σ σ
σ =

= = = , where E=4444 MPa is the elastic 

modulus of the material. 

Next, we calibrate material parameters in the time-dependent creep function. For this 

purpose, a normalized creep compliance response is obtained from the creep strain data. The creep 

test was conducted by ramping the stress with a constant rate of 5 MPa/sec to stress ~30 MPa, and 

thus the rise time t*= ~6 sec. The normalized creep compliance is obtained from ( )( )
( *)

tD t
t

ε
ε

= , as 

shown in Fig. 2. We consider both one power term and two power terms for the normalized time-

dependent function with the calibrated parameters listed in Table 1. It is seen that two power terms 

are needed to better capture the entire creep responses, both at early and later creep responses. We 

also compare the calibration using the Prony series (shown in Table 2), which is referred to as the 

classical viscoelastic model. The fractional viscoelastic model requires fewer numbers of 

parameters to be calibrated from experiments when compared to the classical viscoelastic model. 
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In both models, there is no uniqueness in the time-dependent material parameters. Table 3 presents 

several sets of material parameters in the fractional viscoelastic model that can capture the 

experimental data including the calculated root mean square errors when compared to the creep 

responses from Trial 1. Figure 3 shows the time-dependent kernel responses from three sets of 

material parameters. Likewise, for the classical viscoelastic model different sets of Prony 

parameters can be used to describe the time-dependent compliance.  

One of the limitations of the fractional viscoelastic kernel is that the material parameters 

lack physical meaning. The memory kernel for the creep compliance in Eq. (2.12) has material 

parameters 
n

Dβ whose unit would change with the power value of nβ , e.g., sec-βn, and thus no 

physical meaning can be attributed to these material parameters. This issue has been discussed in 

Bonvanti et al. (2020). In the classical viscoelastic model using a series of exponential functions, 

the different exponential terms represent the relative dominant creep/relaxation behavior at 

different times. The two parameters in each exponential term are measures of modulus (or 

compliance) and time, although they do not represent any intrinsic material properties.  

The creep-recovery strain responses in Fig. 1 bottom is now described by: 

   [ ]

( ) ( )
1 21 2

1 2

( ) ( ),   0
( )

( ) ( ) ( ) ,   

( ) 1
1 1

o R

o R R

f D t t t
t

f D t D t t t t

D D
D t t tβ ββ β

σ
ε

σ

β β

≤ <
=  − − ≥

= + +
Γ + Γ +

                                        (3.2) 

where the recovery time tR is the time at which the load is removed. During the experiment, the 

load removal was performed at a rate of 10 MPa/sec. The simulation was performed by considering 

a step loading and unloading, instead of carrying out an actual loading history (ramp loading – 

hold – ramp unloading – hold).  
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3.2 Multi-axial material characterization 

To determine the multi-axial material parameters for the isotropic viscoelastic material, uniaxial 

tensile test data under two loading histories, which are a quasi-static ramp at a relatively fast rate 

and creep at constant stress were used. The axial and lateral displacements were recorded and the 

corresponding axial and lateral strains were obtained. Similar to the one-dimensional case, the 

responses from the ramp loading were used to determine the nonlinear elastic response while the 

creep data were used to calibrate the time-dependent parameters. 

 Figure 4 illustrates the axial and lateral responses from a quasi-static ramp loading at a fast 

rate of 25 MPa/sec. The following functions4 are considered for the nonlinear elastic strain 

measure in Eq. (2.4): 

( )2 1
1 1

1
( ) exp 1 If A B I

I
  = −    

σ      (3.3) 

( )2
2

2

exp 2 1
( )

2

D I
f C

I

 −
 =
 
 

σ      (3.4) 

Four material parameters need to be calibrated from the experiments. The two parameters Α and 

Β in Eq. (3.3) were first determined from the lateral stress-strain plot in Fig. 4, followed by the 

determination of C and D in Eq. (3.4) from the axial stress-strain plot. Under a uniaxial tensile 

loading, the only nonzero stress is 11( ) ( )t tσ σ= , and hence 1 ( )I tσ= and ( )22 0.5 ( )I tσ= . 

The axial and lateral elastic strains are given as: 

( )22 33( ) ( ) exp 1A Bε σ ε σ σ= = − −       (3.5)      

                                              
4 In the l imit of the denominator going to zero 

0 0

1lim lim
1

x x

x x

e e
x

λ λλ λ
→ →

−
= =   . Since λ is constant, and at zero 

stresses, λ0=0. 
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( ) [ ]11( ) exp 1 exp( ) 1A B C Dε σ σ σ= − − + −    (3.6) 

The calibrated material parameters are 3 31.8x10 ;  0.0365;  7.8x10 ;  0.0345A B C D− −= = = = . 

Upon linearization, linear elastic material properties can be obtained as 1;  AB CD
E E
ν ν+

= = , 

which give E=4916 MPa and ν =0.32.  

 The time-dependent parameters are determined from the normalized creep data. As 

discussed in the one-dimensional parameter characterization, the lateral and axial creep strains are 

determined by considering a step loading, which are given as: 

22 33 1( ) ( ) ( ) ( )ot t f B tε ε σ= = −       (3.7)  

11 1 2( ) ( ) ( ) ( ) ( )o o ot f B t f J tε σ σ σ= − +       (3.8) 

where   
( ) ( )

1 21 2

1 2
( ) 1

1 1
B B

B t t tδδ δ δ
δ δ

= + +
Γ + Γ +

      (3.9) 

  
( ) ( )

1 21 2

1 2
( ) 1

1 1
J J

J t t tλ λλ λ

λ λ
= + +

Γ + Γ +
     (3.10) 

From the lateral creep response (Fig. 5 bottom), the time-dependent function B(t) can be 

characterized, followed by the characterization of J(t) from the axial creep response (Fig. 5 top). 

The calibrated parameters are given in Table 4. Next, the recovery responses are predicted from 

the following models: 

( )22 33 1( ) ( ) ( ) ( ) ( ) ,   o R Rt t f B t B t t t tε ε σ= = − − − ≥     (3.11)  

( ) ( )11 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ,   o R o o R Rt f B t B t t f J t J t t t tε σ σ σ= − − − + − − ≥  (3.12) 

Figure 5 shows the axial and lateral creep-recovery responses under the constant stress of 20 MPa. 

During the material calibration process, a step loading and unloading history was considered. The 
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root mean square (RMS) difference between the model prediction and experiment for the axial and 

transverse strain responses are 0.0122% and 0.0158%, respectively. 

 

4. Numerical Implementation and Structural Analyses 

The above analytical models on predicting the creep and recovery strain responses are easily 

obtained under a relatively simple loading history. Under a more general loading history and/or 

more complex boundary conditions, a general expression of the viscoelastic fractional model, 

either from Eq. (2.16) or Eq. (2.17) is required. Depending on the complexities of the nonlinear 

elastic functions, loading histories, and boundary conditions, it is not always possible to find exact 

solutions to these integral models. In such situations, numerical methods are often sought.  

 The bottleneck of using fractional viscoelasticity is in performing numerical analyses. In 

the classical viscoelasticity that uses the Prony series, a recursive method has been employed to 

solve the integral equations that enable carrying the histories from the previous time step [Taylor 

et al. 1970, Henriksen 1984, Haj-Ali and Muliana 2004, Petterman and DeSimone 2018]. This 

method reduces storage of history variables and computational costs, although it is argued that a 

large number of terms in the Prony series can increase computational costs especially for running 

large-scale simulations. In fractional viscoelasticity models, numerical integrations are often done 

by cumulative approximations that require calculating responses from the initial loading stage 

[Schmidt and Gaul 2001, Garra et al. 2017]. This, in fact, tremendously increases the 

computational cost even when the fractional viscoelasticity model has much fewer material 

parameters compared to the classical viscoelasticity that uses the Prony series. To overcome the 

complexities in performing numerical analyses for fractional viscoelasticity, Zhang et al. (2020) 

have adopted a recursive approximation, in which they used the Prony series to approximate the 
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fractional derivatives. By doing so, there is a need to determine the parameters in the Prony series, 

which might defeat the initial purpose to replace the classical viscoelasticity with fractional 

viscoelasticity, although the proposed numerical scheme is computationally efficient and suitable 

for large scale simulation. The use of a recursive approach in solving the Caputo derivative was 

also used by Yuan and Agrawal (2002), where they used Gauss-Laguerre quadrature for 

performing numerical integration. However, this approach suffers from slow convergence when 

the integrand is non-smooth. 

 In this study, we consider using a cumulative approximation to integrate the fractional 

viscoelasticity model. We once again started with the one-dimensional case to highlight the 

computational procedure and assess the computational cost as compared to the recursive method 

used for the classical viscoelasticity. We then perform the numerical integration for the multi-axia l 

model and use them to simulate various loading histories. 

We consider the fractional viscoelasticity model expressed in Eq. (2.17), where for a one-

dimensional case reduces to: 

( )

1

10

( )
( ) (0) ( ( )) ( ( ))

1

n
n

t N n

nn

D t s
t D f t f s ds

β
β β

ε σ σ
β

−

=

−
= +

Γ +∑∫    (4.1) 

with ( )f σ is given in Eq. (3.1). The second term of Eq. (4.1) is approximated as 

( ) ( )

1
1

1 1 00

( )
( ( )) ( )

1 1 2

n
n n n

t N N Kn n
k k

n nn n k

D t s D tf s ds t t f t t
β

β β ββ β
σ σ

β β

−
−

= = =

−  ∆  ≈ − + ∆  Γ + Γ +   
∑ ∑ ∑∫   (4.2) 

where /K t t= ∆  and mid-point integration is used. 

 Compared to the classical viscoelasticity using Prony series term for the time-dependent 

function, a recursive method is used to integrate the constitutive relation, which is summarized as: 
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( )/

1 10
( ) (0) ( ( )) ( ( )) (0) ( ( )) ( )

p p
n

N Nt
t sn

n
nn n

Dt D f t e f s ds D f t q tτε σ σ σ
τ

− −

= =
= + = +∑ ∑∫  (4.3) 

( )/ /( ) ( ) ( ( )) ( ( ))
2

n nt tn
n n

n

D tq t e q t t f t e f t tτ τσ σ
τ

−∆ −∆∆
≈ −∆ + + −∆   (4.4) 

where ( )nq t  is the history variable for each Prony term that needs to be stored to be used for the 

next time step. It is seen that even when storage is needed to store the history variable for each 

term in the Prony series, it is not necessary to compute cumulative responses from the beginning 

of loading at each time step, unlike the method used in Eq. (4.2). The use of the exponential 

function for the time kernel enables to use recursive integration method. 

 Both integration methods for the classical and fractional viscoelasticity models are 

implemented in MATLAB software (R2016b). In both models, a mid-point method is used to 

approximate the integration within each time increment. We now compare the accuracy and 

computational cost of the two methods. We first consider a creep loading history with a ramp at 

constant stress until a rise time t*=1 sec and the stress is 20 MPa, the stress is held constant for the 

next 600 minutes (36000 seconds). A convergence study was first performed in determining the 

time increment that gives a good approximation of the responses. Figure 6 shows the responses 

from the fractional viscoelasticity and classical viscoelasticity models with several time 

increments. The computational costs in all cases are given in Table 5. The RMS of the differences 

in strain responses from the numerical and analytical solutions is also shown in Fig. 6. The 

convergence in using the cumulative approach in integrating the function is quite slow and also 

required significantly high computational costs compared to the use of the recursive approach. The 

slow convergence and high computational cost in the fractional viscoelastic model can hinder its 

practical use when solving a rather complex boundary value problems is needed. 
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We also compare the numerical responses from the classical and fractional viscoelastic 

models under cyclic loading, 
2( ) 50sin MPat t
T
πσ  =  

 
, where T is the period of loading. Figure 

7 shows the cyclic responses from the two models at different periods. A time increment of 1 

second was used for both classical and fractional viscoelasticity models. The RMS of strain 

responses obtained from the fractional and classical viscoelastic models for loading under periods 

60 sec and 3600 sec are 0.0247% and 0.0235%, respectively. 

For the multi-axial case, the model in Eq. (2.17) is now approximated as: 

( )
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1
1 1

1 0

1
2 2

1 0

( ) (0) ( ( )) ( )
1 2
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−
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 ∆  ≈ − − − + ∆  Γ +   

 ∆  ∆   + − + + ∆    Γ +     

∑ ∑

∑ ∑

ε σ I σ I

σ σ σ σ

 (4.5) 

Figure 8 shows the numerical predictions of the creep-recovery responses obtained from the 

fractional viscoelastic model. The rate during the loading and unloading ramps was at 5 MPa/sec 

and a time increment of 1 second was used in the simulation. The RMS between the model 

prediction and experiment for the axial and transverse strain responses are 0.0175% and 0.0222%, 

respectively. 

 Finally, we present an analysis of a pressurized cylinder subjected to an inner pressure pi(t). 

The cylinder has inner and outer radii of 80 mm and 100 mm, respectively. The corresponding 

radial and circumferential stresses are: 

  
2 2 2 2

2 2 2 2 2 2
( ) ( )( , ) 1 ;        ( , ) 1i i o i i o

rr
o i o i

p t r r p t r rr t r t
r r r r r rθθσ σ

   
= − = +      − −   

  (4.6) 

The corresponding radial and circumferential strains are: 
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where the nonlinear functions are given in Eqs. (3.3) and (3.4) with the following invariants: 

( )2 2
1 2( , ) ( , ) ( , );    ( , ) 2 ( , ) ( , )rr rrI r t r t r t I r t r t r tθθ θθσ σ σ σ= + = +  (4.10) 

We compute the corresponding radial displacement as: 

0

( , ) ( , ) ( , )
r

r rru r t r r t t dθθε ε ς ς= = ∫      (4.11) 

Figure 9 illustrates the time-dependent radial displacement at the inner surface of the 

cylinder under two different pressures 5 and 10 MPa, highlighting the nonlinear viscoelastic 

response of the material when compared to a linear viscoelastic response. The radial and 

circumferential distributions for the two pressures are shown in Fig. 10, indicating relatively large 

stresses beyond a linear viscoelastic response of the material. The temporal and spatial variations 

of the radial displacements at the two pressures are depicted in Fig. 11.   

 

5. Discussions and Conclusions 

We have presented a fractional integral model for describing the multi-axial nonlinear viscoelastic 

response of materials undergoing small deformation gradients. The model is suitable for isotropic 
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material behaviors. The model considers the separation of functions of the time-dependent kernel 

and nonlinear elastic strain measure. The fractional integral function is used for the normalized 

time-dependent kernel. The nonlinear elastic strain measure is stress-dependent and different 

functions can be considered for the nonlinear elastic strain measure with a requirement that the 

nonlinear elastic strain measure should reduce to zero in absence of stresses. The function for the 

nonlinear strain measure can be determined from available experimental data. We use 

experimental data on a POM polymer to show the calibration of the material parameters in the 

model and validate the model. The experimental data under quasi-static ramp loadings at relatively 

fast loading rate, where the time-dependent effect is insignificant, are used to determine the 

nonlinear elastic strain measure while the relatively long-term creep data (24 hours or 1440 

minutes) are used to determine the parameters in the time-dependent kernel function. Responses 

from both axial and lateral deformations are used to characterize the multi-axial response of the 

materials. In this study, two terms of fractional power are considered and the material parameters 

in these two terms are not unique as multiple parameter combinations can adequately capture the 

entire time-dependent response of the materials. In all studies presented here, the RMS differences 

of strains obtained from the fractional model and experimental data and also when comparing the 

strain predictions from the fractional and classical models are less than 0.025%. The fractional 

viscoelastic model requires significantly a smaller number of material parameters (4 parameters) 

when compared to the classical viscoelastic model using the Prony parameters (10 parameters), 

which is one of the advantages of the fractional viscoelastic model. Although the parameters in the 

fractional model are not unique, a smaller number of parameters is particularly useful when trying 

to understand time-dependent responses of new materials, examining the implication of short 
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and/or long-term material responses on certain performance characteristics, and designing 

materials with desired time-dependent response characteristics.  

 We also present a numerical integration method to solve the fractional integral model. A 

cumulative approximation that requires calculating responses from the initial loading stage and a 

mid-point integration are considered to integrate the fractional viscoelasticity model, which 

tremendously increases the computational cost even when the fractional viscoelasticity model has 

much fewer material parameters compared to the classical viscoelasticity that uses the Prony 

series. The cumulative approximation also shows slow convergence behaviors when compared to 

the recursive integration method in the classical viscoelasticity model. The slow convergence and 

high computational cost in the fractional viscoelastic model can hinder its practical use when 

solving a rather complex boundary value problems is needed.  
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Tables 

Table 1 Time-dependent parameters from one dimensional fractional viscoelastic model 

 N=1 N=2 

1
Dβ  ( 1sec β− ) 

1β  

2
Dβ ( 2sec β− ) 

2β  

0.05 

0.25 
 

 

0.0262 

0.3 

0.02 

0.08 

 

 

Table 2 Prony parameters from one dimensional classical viscoelastic model 

Np (sec)nτ  nD  

1 
2 
3 
4 
5 

10 
100 
1000 
10000 
100000 

0.02 
0.1 
0.13 
0.31 
0.66 

 

 

Table 3 Time-dependent parameters from different trials 

 Trial 1 Trial 2 Trial 3 

1
Dβ  ( 1sec β− ) 

1β  

2
Dβ ( 2sec β− ) 

2β  

0.0262 

0.3 

0.02 

0.08 

0.0262 

0.3 

0.01 

0.15 

0.0325 

0.28 

0.01 

0.15 

RMS 0 0.0047 0.0069 
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Table 4 Time-dependent parameters from multi-axial fractional viscoelastic model 

1
Bδ  ( 1sec δ− ) 

1δ  

2
Bδ ( 2sec δ− ) 

2δ  

0.05 

0.11 

0.033 

0.3 

1
Jλ  ( 1sec λ− ) 

1λ  

2
Jλ ( 2sec λ− ) 

2λ  

0.025 

0.13 

0.035 

0.29 

 

 

Table 5 Computational time (unit is in second) 

∆t (sec) Fractional Model Classical Model 

0.1 
0.2 
1.0 
2.0 
5.0 
10.0 

22870.17 
5817.83 
235.97 
58.52 
9.33 
2.33 

0.9826 
0.1056 
0.031 
0.02 

0.014 
0.0139 
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Figures 

 

 
Figure 1 Quasi-static ramp response of POM at different stress rates (top) and Creep-recovery 

response of POM (bottom) 
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Figure 2 Creep compliance responses for the entire test (top) and at early time (bottom) 
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Figure 3 Time-dependent compliances from three sets of material parameters 

 

 

 

 
Figure 4 Multi-axial response of POM polymer under a uniaxial tension 

 
 

 

 

 



31 
 

 

 

 
Figure 5 Axial and lateral creep responses under an axial stress 20 MPa 
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Figure 6 Convergence studies from the classical and fractional viscoelasticity models 
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Figure 7 Cyclic responses at two different periods 
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Figure 8 Multi-axial creep recovery predictions of the nonlinear fractional viscoelastic model 
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Figure 9 Inner radial displacement responses 
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Figure 10 Spatial distributions of radial and circumferential stresses 
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Figure 11 Spatial variation of radial displacements at two inner pressures at times 1 (dotted line), 

500 (dashed line), and 1000 (solid line) minutes  
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Appendix Experimental Study on Polyoxymethylene (POM) 

 

The investigated polyoxymethylene (POM) is Tenac 3010 produced by Asahi Kasei Corporation 

(Tokyo, Japan). ISO 3176 type B specimens were injection-molded (Tscharnuter and Muliana 

2013). The POM specimens were subjected to uniaxial tensile tests under various histories: quasi-

static ramp loadings with constant strain rates and creep under constant stresses as well as recovery 

tests. Tensile tests at room temperature with constant rates of 2.5 and 25 MPa/sec were performed 

using an MTS servohydraulic testing machine. The creep tests were performed using force control 

with initial loading at a prescribed force rate. The recovery from monotonic tension was measured 

directly on the testing machine. Due to the extensive duration of the recovery, which was 

monitored for 2.5 months after 24 and 72 hours of creep, the recovery of the strain associated with 

the viscoelastic response was measured on a separate device. Axial and transverse strains were 

measured using the digital image correlation system ARAMIS (GOM mbH, Germany. For this 

study, the measurement was performed in three-dimensional (3D) mode using 105mm lenses. 

Detailed discussion on the experimental tests can be found in Tscharnuter and Muliana (2013).  
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Data available on request from the authors. 


