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Abstract

This paper presents a formulation of fractional viscoelasticity of nonlinear time-dependent
responses of isotropic materials undergoing small deformation gradients. The model considers the
separation of functions of the time-dependent kernel and nonlinear elastic strain measure, which
is stress-dependent. The Riemann-Liouville fractional integral is considered for the time-
dependent kernel function. Characterization of material parameters in the fractional viscoelasticity
model is presented using experimental data on a polymer. The non-uniqueness of the calibrated
material parameters from the fractional power terms is discussed. A numerical method is also
presented to solve the nonlinear fractional viscoelastic constitutive model. The response
characteristics and convergence behaviors of the presented nonlinear fractional viscoelastic
constitutive model are compared to the corresponding nonlinear model derived based on classical
viscoelasticity. The presented nonlinear viscoelastic fractional model is shown capable of
describing multi-axial responses of polymers under various loading histories. The fractional model
has significantly fewer material parameters, which can offer an advantage when a relatively long-
term response of materials is of interest. The model is, however, computationally more expensive
when compared to the classical viscoelastic model based on the Prony series kernel function, which

can hinder its practical use in solving rather complex boundary value problems.
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1. Introduction
Viscoelastic responses of materials when subjected to mechanical stimuli are widely attributed to
polymers and biological tissues. Many if not all materials, ranging from biological, geological, and
engineered materials to processed food, exhibit viscoelastic responses, even at room temperature.
However, in some of these materials, their viscoelastic responses are more pronounced over a
relatively long-time span. As such, they are not considered to exhibit viscoelastic responses when
mvestigated under a relatively short time, which is a common time scale for laboratory
experiments. The characteristics of viscoelastic materials are typically determined by various
parameters, such as viscosity, loss tangent, characteristic of relaxation (or creep) time, relaxation
spectrum, etc. For instance, the viscosity of fluid (e.g., air, water, honey, oil, etc.) is typically less
than 500 Pa-sec, while the viscosity of polymers canvary from 100 to 10° Pa-sec (Caba and Koch
2015, Hammani et al. 2020). This range of viscosity shows pronounced time-dependent responses
of materials in a relatively short time scale (seconds to hours). In contrast to fluid and polymers,
the viscosity of the earth mantle is greater than 10! Pa-sec (Pollitz etal. 2017), resulting in a slow
relaxation behavior for over 10 years. Fused silica glass at room temperature has a viscosity of
10'7-10'8 Pa-sec,indicating a slow relaxation process (Vannoni etal. 2011). This phenomenon can
be seen in panes of stained glass in old churches in Europe that are thicker attheir bottom due to
centuries of a relaxation process from gravitational forces. Structural metals and alloys, such as
brass, steel, aluminum alloy, have loss tangent from 103 to 10¢ at room temperature, indicating
msignificant viscoelastic responses in a short time scale, while the loss tangent of viscoelastic
polymers can vary between 0.1 to more than 1 (Lakes and Quackenbush 1996).

The relaxation process in materials is attributed to the motions of the materials’

microstructures relative to their neighbors. In polymers, sliding between long chains in amorphous



regions has been the source of polymer relaxation, while in metals the relaxation process is
attributed to atom dislocations and/or diffusions. Determining responses of materials under various
time scales has been a subject of interest for both fundamental understanding of the process and
practical reasons. For this purpose, mathematical models have been formulated to describe
viscoelastic responses of materials. Early developments in viscoelasticity considered mechanical
analog models with various arrangements of springs and dashpots, e.g., Maxwell, Kelvin-Voigt,
Burger, standard linear solid (SLS) models. These models however are limited in capturing
responses of materials, particularly when relatively long-term responses are considered. To
overcome this issue, multiple spring-dashpot elements have been considered to capture responses
from experimental investigations. Several viscoelastic models incorporate the mechanisms of
microstructural motions in describing the overall viscoelastic responses of materials [Bergstrom
and Boyce 1998, Li et al. 2016]; while other viscoelastic models are phenomenological based,
which accounts for the net effect of microstructural motions [Green and Rivlin 1957, Schapery
1969, Pipkin and Rogers 1968, Fung 1981, Rajagopal and Srinivasa 2011, Song et al. 2022, etc.].

In a one-dimensional linear viscoelastic phenomenological model, a minimum of three
material parameters are required to describe the overall responses of materials. In this simple linear
viscoelastic model, each material parameter has an underlying physical meaning, e.g.,
instantaneous modulus, relaxed modulus, and characteristic of relaxation time. In many practical
situations, larger numbers of material parameters are required to capture the viscoelastic responses
of materials, even for a linear viscoelastic response. For this reason, several relaxation (or creep)
functions!, also known as memory kernels, i.e. Prony series, rational polynomial form, fractional

power function, etc., have been considered (Blair and Caffyn 1945, Willam and Watts 1970,

1 The time-dependent kernel function must be positive, continuous and an increasing function of timein case of
creep function while a decreasing function of time for the relaxation function.



Findley etal. 1976). Prony series, which consists of several exponential terms that canbe derived
from arrangements of multiple spring and dashpot elements, has been widely used due to its
flexibility in adding terms to capture time-dependent responses over various time scales,
straightforward characterization of material parameters through curve fitting, and fairly easy
numerical implementation for computer simulations. The disadvantages of using the Prony series
are that a large number of parameters from multiple terms do not have a specific physical attribute
that is associated with intrinsic material properties and that there is no uniqueness of the fitted
parameters. In practice, it is often convenient to a prioriset the time parameters for all terms in
the Prony series such that each time parameter can capture responses over a certain time window.

To overcome a large number of material parameters in the Prony series, models based on
fractional calculus [Bagley and Torvik 1983, Adolfsson et al. 2005] have been considered. Models
based on fractional viscoelasticity require few parameters, which can be easily characterized from
experimental data that exhibit power-law behaviors [Bonfanti et al. 2020]. Aswe will discuss later,
fractional viscoelastic models have some limitations in incorporating physical meaning into the
material parameters. Major drawbacks in fractional viscoelasticity are:it is difficult to numerically
implement fractional viscoelastic models and it is computationally expensive [Schmidt and Gaul
2001, Zhang et al. 2020]. Nevertheless, fractional viscoelasticity has beenused to describe a wide
range of linear viscoelastic materials [Bonfanti etal. 2020].

Linear viscoelasticity? often fails to describe responses of materials over a large range of
prescribed external stimuli. Nonlinear viscoelastic models have been formulated to describe time-

dependent responses of elastomers, rubbers, polymers, and biological tissues undergoing large

2 In a linear viscoelastic material, there are two sources of linearity. Alinearized strainmeasureis used, i.e., onlythe
linearterm of the displacement gradients is accounted for. The res ponses are proportionalto theinputs and can be
obtained by superimposing the responses of several differentinputs. In a linear viscoelastic model, the expression
for thetime-dependentstress andstrain isinterchangeable.



deformation gradients [Fung 1981, Bergstrom and Boyce 1998, Muliana et al. 2016], to name a
few examples. A viscoelastic material can undergo small-displacement gradients, in which a
linearized strain measure is sufficient to describe the deformation of the body; however, its
responses may not meet the proportionality and superposition of response. Such material needs to
be treated as a nonlinear viscoelastic material, and several constitutive models have been
formulated for such nonlinear responses, e.g., [Schapery 1969, Drozdov 1999, Song et al. 2019,
Xu et al. 2020]. Like in linear viscoelasticity, when a relatively long-term response is of interest,
these nonlinear viscoelastic models often require a large number of parameters to describe the
time-dependent responses. The use of fractional calculus in nonlinear viscoelasticity has been
limited [Mueller et al. 2011, Mashayekhi et al. 2018, Zhang et al. 2020, Yao etal. 2021].

This study presents a formulation of fractional viscoelasticity of nonlinear time-dependent
responses of polymers undergoing small deformation gradients. We present constitutive relations
for multi-axial responses of isotropic materials. We discuss the characterization of material
parameters in the fractional viscoelasticity model and compare them with the material parameters
from a classical nonlinear viscoelastic model. The classical nonlinear viscoelastic model uses the
Prony series for the time-dependent kernel. We also present a numerical implementation of the
nonlinear fractional viscoelasticity model and assess its computational cost when compared to the
classical nonlinear viscoelastic model. While responses of viscoelastic materials can be adequately
described by both classical and fractional viscoelastic models, the fractional model is particularly
useful when investigating along-term response of materials as it requires a relatively small number
of material parameters. The manuscript is organized as follows. Section two presents constitutive
model formulations, followed by material characterizations in Section three. Section four

discussed a numerical implementation of the model for describing time-dependent responses of



materials under general loading histories. Finally, Section five is dedicated to discussions and

conclusions on the advantage and disadvantages of the use of the fractional viscoelastic model.

2. Constitutive Model Formulation

Pipkin and Rogers (1968) discussed a single integral form of nonlinear viscoelasticity where they
described the viscoelastic response of materials with strong nonlinearity using a nonlinear
integrand function. This model is based on a modified superposition method, where the stress is
expressed in terms of the history of strain. In this study, we adopted the single integral model of

Pipkin and Rogers (1968) and considered expressing the strain in terms of the history of stress

gt)=F [G(t—S)], where € and o are the linearized strain tensor and Cauchy stress tensor,

respectively. The rationale for such a representation is that the stress does not have to be small, but
the expression for the function F in terms of the stress leads to a sufficiently small value for the

strain. The stress cannot be in general expressed in terms of a nonlinear function of the linearized
strain, 6(¢) = G[s(t —S)], as there is the limitation for the function G that can be chosen; it cannot

mvolve any higher-order terms in &. A detailed discussion of such a model can be found in Muliana
et al. (2013).

The general form of a nonlinear viscoelastic integral model is given as

j- Gf[c(s),t—s]ﬁds

2.1
0o(s) ds @D

€= j. d flo(s),t—s]=

s 5=0"
In Eq. (2.1), we consider a separation of functions of the time-dependent kernel and nonlinear

elastic strain measure, which is stress-dependent:

f(a(1),) = D()F (o) (2.2)

Thus, the expression in Eq. (2.1) yields to



dF* (c(s)) 1 9F (6(s)) do

ds :jD(t— )
o

&(t) = jD(t 5) ds (2.3)

06 ds

where D(t) is the fourth-order tensor of a normalized creep function and F (6) is the nonlinear elastic
strain measure, expressed in terms of the Cauchy stress tensor. It is noted that the nonlinear elastic strain

measure should reduce to zero in absence of stresses Fel(O) =0.

For anisotropic material, the nonlinear elastic strain measure can be written as:

Fel(G(S))=—f1(11,12a13)1+f2(11312513)0 2.4

where the functions f; and f, are expressed in terms of the stress invariants, which are

I, =trace(s),1, = %trace(cz ) = %trace(f) . Here the function f; describes the corresponding

lateral deformations and portion of the axial deformation due to loading along with the axial

directions. The function f; does not contribute to any shear deformation. The choice of

il (11,12,13) and f, ([1,[2,13) will be determined from the available experimental data, which

will be discussed in Section 3. When upon linearization F* (G)reduces to a linear elastic response,

Eq. (2.3) leads to a linear viscoelastic response. We further consider two normalized time-

dependent functions B(f) and J(¥) for isotropic materials and Eq. (2.3) becomes:

t t
&) =— [ B(r—s)@dsn | J(t—s) L2000 2.5)

a 3 ds
0 0

It is noted that by using integral by part, an alternative expression of Eq. (2.5) can be obtained,

which can be handy to provide an exact solution or perform numerical integration:



dB(t—s) s)

£(1) = ~B(0) fi(e()I - J T fte(edst s
(2.6)
J(0) f5 (000 (0) + j ‘;"((’ S)) Fr(0()o()ds

where B(0)= J(0)=1. The expression of the integral model m Eq. (2.5) requires the nput history,
i.e., the stress history, to be continuous all time within the integral. The integral model in Eq. (2.6)
can incorporate a general mput history, e.g., in case of a jump discontinuity in describing a creep

response.

When only a one-dimensional response is considered, due to normal stress o(¢), Eq. (2.4)

becomes f(0)=-f; (0') + /1 (0)(7 and hence Eq. (2.5) reduces to:

t
e(t) = j D(t—s)@ds (2.7)

o
where D(¢) is a normalized time-dependent creep function, and D(0)=1. Similarly, when only a

one-dimensional shear loading 7(¢) is considered, the corresponding shear strain from Eq. (2.5) is

t t
d
)= [ J(t-s) [LEO], [ J(—5) D 4 2.8)
a ds - ds
0 0
The next step is to define the forms for the time-dependent kernel functions. To motivate

the discussion, we will start with a one-dimensional response, followed by a multi-axial response.

2.1 One-dimensional response
To define the fractional viscoelastic model utilizing the creep function, we adopt the Riemann-

Liouville fractional mntegral, which is defined as follow:



t

c]f‘f(t)z%a) (t—s)a_lf(s)ds, t>c, aeR, a>0 (2.9

where [’ (0) is the Gamma function. The fractional operators are nonlocal in nature, in which they

account for hereditary information in determining the response characteristics of certain
phenomena. Thus, they are suitable to describe responses of materials with history dependences.
We take ¢=0 and consider g =« -1, Eq. (2.9) becomes:

t

1 I(f—S)ﬂf(s)ds, t>0, feR, >0 (2.10)

B _
0l f(t)_l“(,b’+1)0

The expression in Eq. (2.10) can be used to represent time-dependent strain with a power-law

creep function. Experimental observation on creep responses showed that the creep compliance

can be expressed by a power function of time i.e., AD(¢) = ctP , >0, where C and fare material

parameters, see for example Harper and Weitsman (1985). By adopting the fractional mntegral in

Eq. (2.10), the normalized time-dependent creep function n Eq. (2.7) can now be written as:

_ Dg 5
D(t) = D(0) + TN 2.11)

The creep function in Eq. (2.11) includes a jump discontinuity at time O, which is attributed to the

instantaneous elastic response. Two material parameters D Ji and f need to be calibrated from

experimental tests. It canbe seenin Eq. (2.11) that =0 gives the response of an elastic solid while

[=1 results in the response of a viscous fluid. As has been discussed i the literature [Bonfanti et
al. 2020], it is often necessary to consider more than one power term to capture the entire creep

responses, and thus Eq. (2.11) can be expanded as:



DO=DO)+ S — PP
(1) =D( )+n§mt (2.12)

By substituting Eq. (2.12) mto Eq. (2.7), the one-dimensional strain of a nonlinear fractional

viscoelasticity model is given as:

(2.13)

Dy (t— s) n df(a(s))
D(0 y
&(t)=D( )JF(CT(”)*!;”Z1 r(8,+1) ds

When multiple terms are considered, the lower value of the power £, describes responses at an
early time (short-term response), while the higher value of S, captures responses at a later time
(long-term response). This behavior is similar to the use of the Prony series for the kernel function,

as each parameter in the exponent represents the dominant response ata certain time domain.

2.2 Multi-axial response
The multi-axial responses for the isotropic fractional viscoelastic model are formed by defining

the normalized time-dependent creep functions B(f) and J(¢) as follows:

B(t) = B(0) + ZF((S )5n (2.14)
T 2
J(t)=J(0)+ Zru )m (2.15)

where N and M are numbers of terms in the time-dependent bulk and shear functions, respectively,

and Bs ,0,,J, ,A, are material parameters to be calibrated from experimental data. Using the
n m

creep functions in Egs. (2.14) and (2.15), the time-dependent strain in Eq. (2.5) are rewritten as:

10



&(t) =—B(0) f;(a()I - I Z (15 D6 4
0n=1 (5 +1) ds
(2.16)
J(0) f2(o(t)o(t) + j z 1 (1 — syt ALL2OENSG)]
om= l ) ds

When the expression of the time-dependent strain in Eq. (2.6) is used instead, we have

£(t) =—B(0) f; (o (t)I - j zr G )5 (t— )% £ ((s))dsI +
0 7=l (2.17)

' M
J(O) fr(6(eNot)+ | D A (2 =)' £3(0(5)0(s)ds

G F(lmer 1)

When the second term of Eq. (2.14) and Eq. (2.15) is absent or when we evaluate at time
=0, the strain expression in both Egs. (2.16) and (2.17), noted that B(0)=J(0)=1, reduces to a
nonlinear elastic response,

£(®) = —f1(c(@)I+ f2(o(2))o(?) (2.18)

Linear elastic response for isotropic materials is described by fi(0) = v trace(c); f>(6)= 1+v ,
E E

where E and vare the elastic modulus and Poisson’s ratio, respectively.

3. Material Parameter Characterization and Model Predictions

We now present a discussion on material parameter characterizations in the fractional viscoelastic
model, both for one-dimensional and multi-axial cases, and compare them with the ones
determined from the Prony series of classical viscoelasticity. The one-dimensional response is
used to facilitate the discussion and comparison with the classical viscoelasticity. Responses of

polyoxymethylene (POM) polymer are used. The experimental testis presented in the Appendix.
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3.1 One dimensional material characterization

Consider a simple uniaxial test under two loading histories. One is a ramp loading with a stress
rate ¢ and the other is a creeptest under a constant stress o,. If it is assumed that the ramp loading
is conducted at a relatively fast rate so that the time-dependent effectis insignificant, then from
the ramp loading response, i.e., a stress-strain relation, we can determine the nonlinear function

f (o), which is an elastic strain. To illustrate this idea, consider a material with a characteristic of

creep time 7, and the ramp loading takes place until time #*. At time #*, let say we have stress 0,

) . o 1 . . . .
and its rate 0, thus —% = - If the time #* is small compared to the characteristics of creep time,
o, t

o, t* Lo :
—27,>>1 and —<<1, thus &(*)~ f(o(¢*)) 3. In such a situation, the nonlinear plot of a stress-
o, T,

strain, Fig. 1 top, is not attributed to the stress relaxation (or creep) process. In Fig. 1 top, POM
specimens were subjected to a uniaxial ramp test with constant stress rates of 2.5 MPa/sec and 25
MPa/sec, which show an insignificant effect of loading rates in these ranges of stress rates. The
response under a quasi-static ramp was used to determine f(o (7)) .

POM experiences creep when the stress is held for a period of time, see Fig. 1 bottom.
During a creep experiment, the specimen is ramped to a stress state before the stress is held
constant. The time-dependent material parameters are typically characterized from the creep

portion of the data, which implies that the ramp portion has an insignificant time-dependent

3 Let us definethe normalizedtime history s=s/ T.,andthesecondtermofEq.(2.13) becomes

t*/zt,
D L_S” _af_acz_ ds~0.
o c

0 7, do ds

12



response. For this to be true, it is then necessary to apply the load sufficiently fast during the ramp.
Otherwise, the time-dependent parameters need to be calibrated from the entire loading history.

Considering a jump discontinuity in the stress at an iitial time /=0, the corresponding creep strain
from Eq. (2.2) is &(0,,t)=D(t)f(0,).

For the studied POM polymer, the following function is used to capture the nonlinear

elastic response of the material in Fig. 1 top.
2
f(a)zA(eBVG —1j 3.1)

where 4 and B are the material parameters that need to be determined from the experiment. For
the studied POM, the calibrated values are A=7.5X10_3; B=0.03. It is noted that upon

daf

linearization, Eq. (2.20) reduces to ¢ = T
o

o=ABo = %G , where £=4444 MPa is the elastic

o=0
modulus of the material.

Next, we calibrate material parameters in the time-dependent creep function. For this
purpose, a normalized creep compliance response is obtained from the creep strain data. The creep

test was conducted by ramping the stress with a constant rate of 5 MPa/sec to stress ~30 MPa, and

thus the rise time #*= ~6 sec. The normalized creep compliance is obtained from p(;) = &) | as
£(t%)

shown i Fig. 2. We consider both one power term and two power terms for the normalized time-
dependent function with the calibrated parameters listed in Table 1. It is seen that two power terms
are needed to better capture the entire creep responses, both at early and later creep responses. We
also compare the calibration using the Prony series (shown in Table 2), which is referred to as the
classical viscoelastic model. The fractional viscoelastic model requires fewer numbers of

parameters to be calibrated from experiments when compared to the classical viscoelastic model.
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In both models, there is no uniqueness in the time-dependent material parameters. Table 3 presents
several sets of material parameters in the fractional viscoelastic model that can capture the
experimental data including the calculated root mean square errors when compared to the creep
responses from Trial 1. Figure 3 shows the time-dependent kernel responses from three sets of
material parameters. Likewise, for the classical viscoelastic model different sets of Prony
parameters can be used to describe the time-dependent compliance.

One of the limitations of the fractional viscoelastic kernel is that the material parameters

lack physical meaning. The memory kernel for the creep compliance in Eq. (2.12) has material

parameters Dﬁn whose unit would change with the power value of 4 , e.g., sec”n. and thus no

physical meaning can be attributed to these material parameters. This issue has been discussed in
Bonvanti et al. (2020). In the classical viscoelastic model using a series of exponential functions,
the different exponential terms represent the relative dominant creep/relaxation behavior at
different times. The two parameters in each exponential term are measures of modulus (or
compliance) and time, although they do not represent any intrinsic material properties.

The creep-recovery strain responses in Fig. 1 bottom is now described by:

® { f(o,)D(), 0<t<tg
E =
f(e)[DO)—D(t—tg)], t=tg (3.2)
D D
_ BB P B
D(t)—1+r(1+ﬂl)t 1+r(1+ﬁ2)t 2

where the recovery time #z is the time at which the load is removed. During the experiment, the
load removal was performed at a rate of 10 MPa/sec. The simulation was performed by considering
a step loading and unloading, nstead of carrying out an actual loading history (ramp loading —

hold — ramp unloading — hold).
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3.2 Multi-axial material characterization
To determine the multi-axial material parameters for the isotropic viscoelastic material, uniaxial
tensile test data under two loading histories, which are a quasi-static ramp at a relatively fast rate
and creep at constant stress were used. The axial and lateral displacements were recorded and the
corresponding axial and lateral strains were obtained. Similar to the one-dimensional case, the
responses from the ramp loading were used to determine the nonlinear elastic response while the
creep data were used to calibrate the time-dependent parameters.

Figure 4 illustrates the axial and lateral responses from a quasi-static ramp loading at a fast
rate of 25 MPa/sec. The following functions* are considered for the nonlinear elastic strain

measure in Eq. (2.4):
fi(6) = A{exp(Bq/(Il ) ]—1M—1| (3.3)
1

exp(D 215 )—1

fr(e)=C (3.4)

Four material parameters need to be calibrated from the experiments. The two parameters A and

B in Eq. (3.3) were first determined from the lateral stress-strain plot in Fig. 4, followed by the

determination of C and D in Eq. (3.4) from the axial stress-strain plot. Under a uniaxial tensile
loading, the only nonzero stress is o (¢) = o (%), and hence 7, = o(¢) and I, = O_S(o'(t))z.

The axial and lateral elastic strains are given as:

£yy(0)=¢&33(0)=—4 [exp(BO') - 1] (3.5)
. . . 1 2™ . .
4 Inthelimitof thedenominatorgoingto zero [im = lim — 4 .SinceAlis constant,and atzero
x>0 X x—0 1

stresses, AM0=0.
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&1(0)= —A[exp(Ba)—l]+C[exp(DO')—l] (3.6)

The calibrated material parameters are A= 1.8x10_3; B=0.0365; C= 7.8x10_3; D =0.0345.

;CD=1+V,

Upon linearization, linear elastic material properties can be obtained as AB:% -

which give £=4916 MPa and v=0.32.
The time-dependent parameters are determined from the normalized creep data. As
discussed in the one-dimensional parameter characterization, the lateral and axial creep strains are

determined by considering a step loading, which are given as:

£x2(1) = &33(8) = —f1(0,)B(0) (3.7)
gll(t):_ﬁ(GO)B(t)+f2(00)O_oJ(t) (38)
where By=14— 20 0, Bu s (3.9)

r(1+6) L(1+6,)

J J
JO) =l ph oy P2k (3.10)
C(1+4) C(1+4)

From the lateral creep response (Fig. 5 bottom), the time-dependent function B(f) can be
characterized, followed by the characterization of J(¢) from the axial creep response (Fig. S top).
The calibrated parameters are given in Table 4. Next, the recovery responses are predicted from

the following models:

£0p(1) = &33(t) = —f1(0,)(B(t) - B(t —tg)), t>1p (3.11)

&11(t) = —f1(0)(B() =Bt —1R))+ fo(0,)0, (J(1) - J(t=tg)), t2tp (3.12)

Figure 5 shows the axial and lateral creep-recovery responses under the constant stress of 20 MPa.

During the material calibration process, a step loading and unloading history was considered. The

16



root mean square (RMS) difference between the model prediction and experiment for the axial and

transverse strain responses are 0.0122% and 0.0158%, respectively.

4. Numerical Imple mentation and Structural Analyses

The above analytical models on predicting the creep and recovery strain responses are easily
obtained under a relatively simple loading history. Under a more general loading history and/or
more complex boundary conditions, a general expression of the viscoelastic fractional model,
either from Eq. (2.16) or Eq. (2.17) is required. Depending on the complexities of the nonlinear
elastic functions, loading histories, and boundary conditions, it is not always possible to find exact
solutions to these integral models. In such situations, numerical methods are often sought.

The bottleneck of using fractional viscoelasticity is in performing numerical analyses. In
the classical viscoelasticity that uses the Prony series, a recursive method has been employed to
solve the integral equations that enable carrying the histories from the previous time step [Taylor
et al. 1970, Henriksen 1984, Haj-Ali and Muliana 2004, Petterman and DeSimone 2018]. This
method reduces storage of history variables and computational costs, although it is argued that a
large number of terms in the Prony series can increase computational costs especially for running
large-scale simulations. In fractional viscoelasticity models, numerical integrations are often done
by cumulative approximations that require calculating responses from the initial loading stage
[Schmidt and Gaul 2001, Garra et al. 2017]. This, in fact, tremendously increases the
computational cost even when the fractional viscoelasticity model has much fewer material
parameters compared to the classical viscoelasticity that uses the Prony series. To overcome the
complexities in performing numerical analyses for fractional viscoelasticity, Zhang et al. (2020)

have adopted a recursive approximation, in which they used the Prony series to approximate the

17



fractional derivatives. By doing so, there is a need to determine the parameters in the Prony series,
which might defeat the initial purpose to replace the classical viscoelasticity with fractional
viscoelasticity, although the proposed numerical scheme is computationally efficient and suitable
for large scale simulation. The use of a recursive approach in solving the Caputo derivative was
also used by Yuan and Agrawal (2002), where they used Gauss-Laguerre quadrature for
performing numerical integration. However, this approach suffers from slow convergence when
the integrand is non-smooth.

In this study, we consider using a cumulative approximation to integrate the fractional
viscoelasticity model. We once again started with the one-dimensional case to highlight the
computational procedure and assess the computational cost as compared to the recursive method
used for the classical viscoelasticity. We then perform the numerical integration for the multi-axial
model and use them to simulate various loading histories.

We consider the fractional viscoelasticity model expressed in Eq. (2.17), where for a one-

dimensional case reduces to:

f(o(s))ds 4.1)

LN Dy B(t—s)Pr7!
£, n
e()=D(0)f(c(®)+ -
|2 =

with f(o)is given in Eq. (3.1). The second term of Eq. (4.1) is approximated as

— ﬁn N
'([nzl Dg, ﬂZ;n )) f(o(s))ds = Z (gz Z (T f[a(zk +%Dm (4.2)

where K =¢/At and mid-pont integration is used.
Compared to the classical viscoelasticity using Prony series term for the time-dependent

function, arecursive method is used to integrate the constitutive relation, which is summarized as:
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t Np D N
£0)=DO)f (@) +[ 3~ T f(o()ds = DO (@) + X au () (43)

on=1"n n=1

gn(t) = e g, (1= A0)+ &%(f(a(t)) re M f(o(1-a0) (4.4

Z-I’l
where ¢, (¢) is the history variable for each Prony term that needs to be stored to be used for the

next time step. It is seen that even when storage is needed to store the history variable for each
term in the Prony series, it is not necessary to compute cumulative responses from the beginning
of loading at each time step, unlke the method used n Eq. (4.2). The use of the exponential
function for the time kernel enables to use recursive integration method.

Both integration methods for the classical and fractional viscoelasticity models are
implemented in MATLAB software (R2016b). In both models, a mid-point method is used to
approximate the integration within each time increment. We now compare the accuracy and
computational cost of the two methods. We first consider a creep loading history with a ramp at
constant stress until a rise time #*=1 sec and the stress is 20 MPa, the stress is held constant for the
next 600 minutes (36000 seconds). A convergence study was first performed in determining the
time increment that gives a good approximation of the responses. Figure 6 shows the responses
from the fractional viscoelasticity and classical viscoelasticity models with several time
increments. The computational costs in all cases are given in Table 5. The RMS of the differences
in strain responses from the numerical and analytical solutions is also shown in Fig. 6. The
convergence in using the cumulative approach in integrating the function is quite slow and also
required significantly high computational costs compared to the use of the recursive approach. The
slow convergence and high computational cost in the fractional viscoelastic model can hinder its

practical use when solving a rather complex boundary value problems is needed.
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We also compare the numerical responses from the classical and fractional viscoelastic
. (2 . . .
models under cyclic loading, o(¢)=150sin (%tjMPa , where T is the period of loading. Figure

7 shows the cyclic responses from the two models at different periods. A time increment of 1
second was used for both classical and fractional viscoelasticity models. The RMS of strain
responses obtained from the fractional and classical viscoelastic models for loading under periods
60 sec and 3600 sec are 0.0247% and 0.0235%, respectively.

For the multi-axial case, the model in Eq. (2.17) is now approximated as:

N Bén Op K 8,-1 At
£(t) = —B(0) fi(a(t)I - ’;m]{% (t—t)°" " f (c (zk + TDAtI

< It & 2,1 At At
SO L0+ L E 2 -0y (G(tk +7j]q(tk +7) At

(4.5)

Figure 8 shows the numerical predictions of the creep-recovery responses obtained from the
fractional viscoelastic model. The rate during the loading and unloading ramps was at 5 MPa/sec
and a time mcrement of 1 second was used in the simulation. The RMS between the model
prediction and experiment for the axial and transverse strain responses are 0.0175% and 0.0222%,
respectively.

Finally, we present an analysis of a pressurized cylinder subjected to an inner pressure p(?).
The cylinder has mner and outer radii of 80 mm and 100 mm, respectively. The corresponding
radial and circumferential stresses are:

2 2 2 2
1U)s r, AU r,
o, () = A (1—02} g () = 21E {1+—02J (4.6)

o\ o\

The corresponding radial and circumferential strains are:
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&, (r,1) =—B(0) fi (6(t))1 - j Z S, (t—5)° 7\ £ (a(s))dsl +

0+ n=1 (5 + 1)
t (4.7)
- Al
J(0) f2(e())o,, (r 1) + Of+ Z‘lm% (t=s5)"" " f2(6(5))0,, (7, 8)ds
£0p(r.1) = —=B(0) fi (6()I - j Z S 5 o )% fi(o(s))dsl +
or#=l (4.9)
pr m A, —1
J(0) f2(6(t)ogg(r,t)+ OJ; n%m/% (t—s)™ " fa(6(s))oge(r,s)ds

where the nonlinear functions are given in Egs. (3.3) and (3.4) with the following invariants:

L(r,0) =0, (D) + 0ge(r,0); L(r,0)=2(07, (1) +0gp(r,0))  (410)

We compute the corresponding radial displacement as:

, (r,0) = régg(r,t) = [ £,,(,0)dg @11
0

Figure 9 illustrates the time-dependent radial displacement at the mner surface of the
cylinder under two different pressures 5 and 10 MPa, highlighting the nonlinear viscoelastic
response of the material when compared to a linear viscoelastic response. The radial and
circumferential distributions for the two pressures are shown in Fig. 10, indicating relatively large
stresses beyond a linear viscoelastic response of the material. The temporal and spatial variations

of the radial displacements at the two pressures are depicted in Fig. 11.

5. Discussions and Conclusions
We have presented a fractional integral model for describing the multi-axial nonlinear viscoelastic

response of materials undergoing small deformation gradients. The model is suitable for isotropic
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material behaviors. The model considers the separation of functions of the time-dependent kernel
and nonlinear elastic strain measure. The fractional integral function is used for the normalized
time-dependent kernel. The nonlinear elastic strain measure is stress-dependent and different
functions can be considered for the nonlinear elastic strain measure with a requirement that the
nonlinear elastic strain measure should reduce to zero in absence of stresses. The function for the
nonlinear strain measure can be determined from available experimental data. We use
experimental data on a POM polymer to show the calibration of the material parameters in the
model and validate the model. The experimental data under quasi-static ramp loadings at relatively
fast loading rate, where the time-dependent effect is insignificant, are used to determine the
nonlinear elastic strain measure while the relatively long-term creep data (24 hours or 1440
minutes) are used to determine the parameters in the time-dependent kernel function. Responses
from both axial and lateral deformations are used to characterize the multi-axial response of the
materials. In this study, two terms of fractional power are considered and the material parameters
in these two terms are not unique as multiple parameter combinations canadequately capture the
entire time-dependent response of the materials. In all studies presented here, the RMS differences
of strains obtained from the fractional model and experimental data and also when comparing the
strain predictions from the fractional and classical models are less than 0.025%. The fractional
viscoelastic model requires significantly a smaller number of material parameters (4 parameters)
when compared to the classical viscoelastic model using the Prony parameters (10 parameters),
which is one of the advantages of the fractional viscoelastic model. Although the parameters in the
fractional model are not unique, a smaller number of parameters is particularly useful when trying

to understand time-dependent responses of new materials, examining the implication of short

22



and/or long-term material responses on certain performance characteristics, and designing
materials with desired time-dependent response characteristics.

We also present a numerical integration method to solve the fractional integral model. A
cumulative approximation that requires calculating responses from the initial loading stage and a
mid-point integration are considered to integrate the fractional viscoelasticity model, which
tremendously increases the computational cost even when the fractional viscoelasticity model has
much fewer material parameters compared to the classical viscoelasticity that uses the Prony
series. The cumulative approximation also shows slow convergence behaviors when compared to
the recursive integration method in the classical viscoelasticity model. The slow convergence and
high computational cost in the fractional viscoelastic model can hinder its practical use when

solving a rather complex boundary value problems is needed.
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Tables

Table 1 Time-dependent parameters from one dimensional fractional viscoelastic model

N=1 N=2
Dp, (sec™P) 0.05 0.0262
2 0.25 0.3
Dy, (sec 2 0.02
£ 0.08

Table 2 Prony parameters from one dimensional classical vis coelas tic model

N, 7, (sec) D,
1 10 0.02
2 100 0.1
3 1000 0.13
4 10000 0.31
5 100000 0.66

Table 3 Time-dependent parameters from different trials

Trial 1 Trial 2 Trial 3
Dy (sec Py | 0.0262 0.0262 0.0325
y) 0.3 0.3 0.28
Dp, ( sec ) 0.02 0.01 0.01
6 0.08 0.15 0.15
RMS 0 0.0047 0.0069




Table 4 Time-dependent parameters from multi-axial fractional viscoelastic model

Bs, ( sec 1 ) 0.05
5 0.11
Bs ( sec ) 0.033
5 0.3

J 4 ( sec )

A

J,zg(sec_%)

A

0.025

0.13

0.035

0.29

Table S Computational time (unit is in second)

At (sec) | Fractional Model | Classical Model
0.1 22870.17 0.9826
0.2 5817.83 0.1056
1.0 235.97 0.031
2.0 58.52 0.02
5.0 9.33 0.014
10.0 2.33 0.0139
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Figure 6 Convergence studies from the classical and fractional viscoelasticity models
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Axial creep at 30 MPa

O Axial strain

—model

Axial Strain (%)
=

W pp g
T T w—
uROO0000 0000000

N B .
0 200 400 600 800 1000
Time (min)
Time (min)
0 200 400 600 800 1000
0 1 1 1 1 ]

T T o W (B U A P

TS

O Transverse strain

—model

Transverse strain (%)
o
=

Transverse strain at 30 MPa
-0.8

Figure 8 Multi-axial creep recovery predictions of the nonlinear fractional viscoelastic model
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Appendix Experimental Study on Polyoxyme thylene (POM)

The investigated polyoxymethylene (POM) is Tenac 3010 produced by Asahi Kasei Corporation
(Tokyo, Japan). ISO 3176 type B specimens were injection-molded (Tscharnuter and Muliana
2013). The POM specimens were subjected to uniaxial tensile tests under various histories: quasi-
static ramp loadings with constant strain rates and creepunder constant stresses as well as recovery
tests. Tensile tests at room temperature with constant rates of 2.5 and 25 MPa/sec were performed
using an MTS servohydraulic testing machine. The creep tests were performed using force control
with initial loading at a prescribed force rate. The recovery from monotonic tension was measured
directly on the testing machine. Due to the extensive duration of the recovery, which was
monitored for 2.5 months after 24 and 72 hours of creep, the recovery of the strain associated with
the viscoelastic response was measured on a separate device. Axial and transverse strains were
measured using the digital image correlation system ARAMIS (GOM mbH, Germany. For this
study, the measurement was performed i three-dimensional (3D) mode using 105mm lenses.

Detailed discussion on the experimental tests can be found in Tscharnuter and Muliana (2013).
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