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Abstract

This study presents a constitutive material model for describing nonlinear and hysteretic
responses of plant tissues subjected to mechanical loadings. The nonlinear and hysteretic
response is associated with the viscoelastic nature of the constituents and microstructural
changes of plant tissues during loadings. In order to incorporate the effect of microstructural
changes on the macroscopic response of plant tissue, we assume that as the tissue is deformed, an
additional micromechanism arises affecting the mechanical response of the tissues. The plant
tissue is assumed to consist of two networks, the initial network which is associated with an
original reference configuration and the new network that is formed during the deformation. The
newly formed network has a new natural configuration. The responses obtained from the
proposed model are compared with available experimental data of plant tissues. The model is
easily extended to incorporate responses of different tissues, i.e., outer strengthening skin and
inner soft core, in determining the overall nonlinear behaviors of the plant stems, which are
composite materials. Thus, we can examine the contributions of different constituents in the

plant tissues on their macroscopic mechanical responses.



Introduction

Plant stems compose of various constituents and arrangements of microstructural morphologies
that are well integrated, forming hierarchical structures. Their unique hierarchical structures,
which are developed during growth, allow them to perform multiple functions, such as adaptation
to various environmental and mechanical conditions for survivability and reproduction, load
bearing to different mechanical stimuli (i.e., wind, touch and rain), self-regulating energy from
multiple sources (sun-light, water, mineral), self-healing of damage tissues, etc. Detailed
discussions of the hierarchical structures of plant stems can be found in Niklas (1992), Speck and
Burgert (2011) and Brulé et al. (2016).

In this study, we focus our attention on the mechanical response of plant tissues particularly
on their nonlinear and hysteretic responses that are observed at the macroscopic scale.
Understanding the mechanical response of plant stems is often done by performing laboratory
testing under different boundary conditions, such as bending, tension, compression, twisting,
buckling, etc. Information on the overall elastic modulus, stiffness, failure load- and mechanism
are typically recorded and correlated to the morphologies of the stems (Gibson (2012), Robertson
et al. (2017), Robertson et al. (2016), Gomez et al. (2017), Gomez et al. (2018), Shah et al. (2017)).
The macroscopic responses of plant stems under mechanical loadings, often reported in terms of
stress-strain relations, are a manifestation of continuous changes and interactions of different
microstructural morphologies and constituents within the stems. It is also noted that the living
plant’s responses to mechanical loadings will involve multiple enzymes and biochemical processes,
in addition to the physical microstructural changes. For example in their study Park and Cosgrove
(2012) mentioned that a digestion of enzymes between cellulose microfibers should influence the

mechanical behaviors of the cell walls. In this study we focus mainly on capturing the overall



(macroscopic) mechanical response of plant tissues due to the net effect of changes in the
microstructural morphologies. Our aim is not on incorporating the precise microstructural models,
instead we are considering a phenomenological approach with internal state variables to
incorporate microstructural evolution which can be directly correlated to macroscopic
experimental tests discussed above. Within the phenomenological approach, the internal state
variable can still incorporate the physical information of the microstructural changes.

There have been several experimental studies on investigating changes in the
microstructures of plant tissues under mechanical loadings. Burgert (2006) discussed that the
mechanical response of plant cell walls is strongly correlated to the cellulose micro-fibril
orientations and to the interaction between cellulose fibers and soft matrix. When subjected to a
mechanical loading, the fibers in the cell walls tend to reorient themselves in order to adjust their
stiffness and toughness to the external stimulus. It has also been shown that different fiber
orientations distinguish the flexible and stiff cell walls in young and adult woods, respectively
(Lindstrom et al. (1998), Lichtenegger et al. (1999)). Scanning electron microscopy and X-ray
scattering measurements indicate that straining the cell walls induces microstructural changes,
such as reorientations of micro-fibril angles and fiber-matrix separations, which at the macroscopic
scale are translated to nonlinear and inelastic stress-strain relations (Kohler and Spatz 2002). The
extent of fiber reorientations and fiber-matrix separations depends on the amount of straining
induced on the cell walls. It should be noted that most of the microscopic measurements were done
postmortem, and thus detailed evolutions of the physical changes in the microstructures during
mechanical loadings are largely unexplored.

The process of microstructural changes dissipates energy, which at the macroscopic scale

is observed by a hysteretic response. The microstructural changes often result in a permanent set



if upon removal of the external stimuli the material does not regain its original microstructures.
For examples, several studies suggested that sliding between fibers or a fiber-matrix separation
results in permanent microstructural changes, and hence permanent deformations. Koéhler and
Spatz (2002) showed that the permanent deformation in cell walls due to a tensile loading is
associated with the changes in the fiber angle orientation from its original orientation. Plant tissues
also exhibit viscoelastic responses when subjected to mechanical loadings, e.g., Salmen (1984);
Spatz et al. (1999); Kohler and Spatz (2002); Speck and Spatz (2003), Kerstens et al. (2001);
Hogan and Niklas (2004); Hayot et al. (2012), and Lee et al. (2019). These viscoelastic responses
are associated with the polymer building blocks of the fibers and matrix, i.e., cellulose,
hemicellulose, and lignin, with long chain and multiple network microstructures. Their
macromolecular networks lead to viscoelastic behaviors when they are subjected to mechanical
loadings. In living tissues, the existence of fluid can also amplify the viscoelastic response of the
stems. An experimental study by Salmen (1984) indicated that woods tested along and across the
fiber directions experienced different viscoelastic responses, with more pronounced response in
the across fiber direction. The lignin matrix dominates the mechanical response of woods when
they are loaded across the fiber axis, while loading along the fiber axis is dominated by the fiber
behaviors. This indicates that the lignin shows more pronounced viscoelastic response compared
to the cellulose fibers. Kohler and Spatz (2002) tested a sclerenchyma tissue under several loading-
unloading cycles at different rates. They observed that the energy loss in the hysteretic loops
depends on the loading rates, which is not surprising considering the viscoelastic nature of the
biological tissue. The energy loss was modeled with dry and viscous frictions since considering
the viscous friction alone was not sufficient in quantitatively predicting the amount of the energy

loss. They discussed that the hysteretic inelastic deformations were related to breaking and



reforming of hydrogen bonds between the cellulose fibrils. When the bonds break during loading,
viscous flow occurred in the matrix, and unloading caused formations of new bonding, and hence
new fibril configurations. However, it is not clear what mechanisms were associated with the dry
friction as this component was added to match the experimental data.

There have been several approaches in modeling the nonlinear inelastic response of plant
cell walls. Fratzl et al. (2004) and Altaner and Jarvis (2008) considered a ‘molecular Velcro’ model
to describe a stick-slip mechanism between the cellulose micro-fibril and hemicellulose matrix.
During loadings, combined normal and shear strains induced detachments of the cellulose fibrils
from the matrix and sliding between micro-fibrils. Upon unloading, the cellulose fibrils were
reattached to the matrix, but slipping was unrecoverable, leading to inelastic deformations. The
model, however, did not account for possible reorientation of fibril angles due to loading, and the
quality of the model in capturing unloading and possible reloading stages has not been assessed.
Navi et al. (1995) and Navi and Sedighi-Gilani (2004) used a micromechanics approach to
incorporate the elastic moduli of cellulose fibrils, lignin matrix, and fibril reorientations in
explaining the nonlinear inelastic response of cell walls. They assumed that increasing the tensile
force decreased the microfibril angles as they oriented towards the loading direction and damaged
the surrounding matrix. The orientation of microfibrils towards loading axis caused stiffening
behaviors and damage in the matrix resulted in permanent deformation. However, the model did
not capture the possible hysteretic loops of the unloading-reloading paths nor included the time-
dependent behaviors. Borodulina et al. (2015) proposed a micromechanics model that incorporates
a linear elastic behavior of cellulose microfibril and an elastic-plastic behavior of matrix,
comprising of lignin and hemicellulose. The tensile load induced microfibril reorientations. The

proposed approach was capable in capturing the nonlinear hysteretic response of the fibers and the



effect of microfibril angles on the overall deformations. Trivaudey et al. (2015) proposed a
constitutive model for describing a nonlinear tensile behavior of hemp fibers. The model
incorporated the viscoelastic response, microfibril reorientation, and shear induced crystallization
of the amorphous components. The model showed its ability in capturing the creep and nonlinear
tensile behaviors of the tested specimens. This approach is based on several hypotheses made in
describing the nonlinear mechanical response of plant tissues, which may be applicable for specific
tissues. In order to gain confident in the material parameters and hypotheses discussed in the model,
it will require extensive testing at the microscopic scale and/or the ability to track continuous
changes of the microstructures during testing; otherwise the approach can be seen as mainly curve
fitting parameters. Unfortunately, the authors did not present a complete hysteretic response to
further examine the validity of their model and hypotheses. Another micromechanical model
proposed to describe the nonlinear inelastic response of plant tissues in by Pieczywek and Zdunek
(2014). The authors modeled detailed cell wall geometries of the onion epidermis tissue and
incorporating elastic-plastic constitutive model for the cell wall. The model is shown capable in
capturing the loading response; however there have been no discussion on the unloading-reloading
response to further examine the model. Similar to the approach in Pieczywek and Zdunek (2014),
Singh et al. (2013) and Zhu and Melrose (2003) modeled plant cell walls with honeycomb lattice
structures and used hyperelastic constitutive models to describe the overall nonlinear response of
cell walls. Using hyperelastic constitutive model will not allow for capturing the hysteretic
response and possible permanent deformation.

To our knowledge, there has not been any phenomenological model used to describe
nonlinear, hysteretic, time-dependent, and inelastic response of plant tissues. There are several

nonlinear, time-dependent, and inelastic phenomenological models formulated for polymers and



metals. These phenomenological models often have large numbers of material parameters which
require multiple mechanical testing to calibrate them. Some of them involve parameters that are
specifically applied for polymers or metals, e.g., burger vector, chain entanglement, etc., making
it difficult to use the models for plant tissues.

In summary, experimental tests on various plant tissues show nonlinear, hysteretic,
inelastic and time-dependent mechanical behaviors at the macroscopic scale. Limited microscopic
measurements indicate that multiple microstructural changes can take place, depending on the
loading types and histories. The loading-unloading of the cell wall imposes reorientations of the
microfibril angles between the initial orientation and the loading axis. These microfibril
reorientations induce deformations and stresses to the surrounding matrix, and it is also possible
for the microfibrils to undergo elongation and failure. Both cellulose microfibrils and matrix are
polymers with long chain and multiple network microstructures. When subjected to mechanical
loadings they exhibit viscoelastic behaviors due to the rearrangements of the long macromolecular
chains. Depending on the extent of loadings and characteristics of macromolecular networks,
irreversible changes in the macromolecular networks of the microfibrils and matrix can occur,
leading to a macroscopic permanent set. As discussed above, several microstructurally motivated
models have been proposed to describe the nonlinear hysteretic responses of plant tissues under
mechanical loadings. Some of these micromechanically motivated models are based on specific
hypotheses which might be applicable for specific tissues under certain loading conditions. Some
other micromechanically motivated models consider only one or a few mechanisms, neglecting
other possible mechanisms. In addition, most of these models mainly capture the nonlinear
responses during loading without discussing the hysteretic response and possible formation of

permanent deformations. It might be possible to formulate micromechanics models that



incorporate precise physical mechanisms associated to the nonlinear hysteretic responses when the
continuous evolution of the microstructures due to loadings can be measured experimentally.

The motivation of this study is to be able to capture a complete nonlinear hysteretic and
time-dependent response and predict permanent deformations of plant tissues subjected to various
histories of loading, e.g., ramp, creep, cyclic, etc. We consider a constitutive model that includes
the effect of microstructural changes in describing the macroscopic response of the tissues. The
main highlight of the model is that it has a few material parameters that can be calibrated easily
from available macroscopic experimental data. As will be shown later, the material parameters in
the constitutive model have physical representations, i.e., stiffness and viscosity. The model treats
the plant tissue as a homogenized medium, and the net effect of possible microstructural changes,
such as fibril reorientations, viscoelastic behaviors of fibers and matrix, possible sliding between
fibers and fiber-matrix, etc., is incorporated through introducing an internal state variable. It is
noted that in many biomechanics studies of plant tissues, several mechanical properties, such as
elastic modulus, yield stress, failure deformation, etc., are obtained from testing tissues at a
relatively large scale, which are inherently phenomenological properties determined by treating
the plant tissues as homogenized bodies. Furthermore, our motivation in predicting the overall
nonlinear hysteretic and time-dependent response is to be able to understand structural failure
(lodging) in plant stems under mechanical loading, such as wind at different speeds and multiple
cycles. Such an understanding can eventually help plant breeders in selecting lodging resistant

variants.



A constitutive model for nonlinear hysteretic and time-dependent responses of plant tissues

This section discusses a new constitutive material model of plant tissues undergoing
microstructural changes. In deriving the model, we adopt a multiple natural configuration approach.
The natural configuration is considered when the material is under a stress-free state. We consider
the plant tissues as being composed of two microstructural networks, the original network and the
new network formed due to prescribing mechanical loadings. For an illustration purpose, Figure
1a depicts an example of a macroscopic stress-strain of a plant tissues under a mechanical loading,
i.e., uniaxial tension. The overall deformations of the plant tissues are attributed to the
deformations of the cell walls. At its initial stage, it is assumed that the cell wall is under stress-
and strain free conditions'. When an applied loading is relatively small, the stress-strain shows a
nearly linear response and upon unloading — given a sufficient recovery time — the response returns
to the initial stress-strain free stage. The macroscopic response at this state of loading is associated
with a specific microstructural morphology of the cell wall (original network), referred as an initial
configuration. Figure 1b illustrates a cartoon of a simplified cell-wall microstructure at several
scales, at an initial configuration?. Corresponding to the initial microstructural configuration, the
tissue has overall (homogenized) mechanical and physical properties, i.e., modulus of elasticity,
viscosity, permeability, etc. Prescribing a relatively large mechanical loading can induce
significant changes in the microstructural morphology of the cell walls, e.g., fiber reorientation,
realignment of macromolecular network, matrix damage, fiber breaking, etc. At this stage it is

assumed that a new network is being formed. When upon removal of the load a permanent

! The cell wall can be under stresses, for example from a turgor pressure, even when the external mechanical loading
is absent. In this study, the initial configuration is attributed to a configuration at which the mechanical loading is
initially prescribed.

2 This illustration is not meant to describe precise microstructural morphologies, as the real morphologies and their
changes due to loadings are far more complex than the ones illustrated in the figure. The figure is used to motivate
the idea of a microstructural changes in describing the macroscopic nonlinear hysteretic response of plant cell wall.
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deformation is observed, it is said that the tissue has a different microstructural configuration
(intermediate state) than the one of the initial configuration. A different microstructural
configuration at this intermediate state will yield to different overall mechanical and physical
properties than the ones at the initial configuration. We further assume that there is a final
configuration, at which a complete microstructural change has taken place (no further changes are
possible, all tissue is comprised of the newly formed network). At this final configuration, the
tissue has the associated mechanical and physical properties that may differ than the properties at
the initial and intermediate configurations. For example, experimental studies have indicated that
the elastic modulus of a cell wall depends on the microfibril angle and experimental studies have
also suggested that deformations induce reorientations of microfibril angle. Thus, as the
microstructural morphology of the cell wall changes with loading, its mechanical and physical
properties also change. Prescribing continuous loading will then induce continuous microstructural
changes. In order to incorporate the effect of continuous microstructural evolution on the
macroscopic response of plant tissue, we introduce an internal state variable « that accounts for
the net microstructural changes between the two configurations®. The value of « is between 0 and
1, referring to the initial and final configurations, respectively. When o=0, the cell wall has an
initial microstructural morphology (original network); for o=1 the cell wall has the final
microstructural morphology (new network); and when 0 < <1 the cell wall has a combination

of initial and final microstructural morphologies with « indicates a fraction of the new network

3 The microstructural changes in plant tissue due to mechanical loadings are often associated with multiple
mechanisms and the internal state variable ¢ is used to quantify the fraction of net changes. However, in case a single
dominant mechanism associated with the mechanical loading can be identified, e.g., microfibril orientation, the
parameter o now has a physical measure which quantifies changes in the microfibril orientation from the initial
orientation & (o=0) to the maximum orientation, i.e., loading axis in case tension is prescribed (a=1). Thus, the
microfibril orientation can only occur between these two orientations. Changes in the internal state variable o will
depend on the extent of prescribed mechanical loadings, which will be discussed later.
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being formed. We will examine whether this proposition can give a reasonable approximation in
describing the nonlinear and hysteretic response of plant cell wall.

We derive the constitutive model from a thermodynamics of a continuous body. We adopt
the theory of multiple natural configurations that has been used to model responses of materials
undergoing microstructural changes, e.g., (Rajagopal and Wineman (1992); Rajagopal and
Srinivasa (2004); de Tommasi et al. (2006) and (2010); Muliana et al. (2016); Xing et al. (2017);
Yuan et al. (2017); Song et al. (2018) and (2019)). In the de Tommasi et al. (2010), the authors
considered damage and self-healing in spider silks by taking into account breaking of the hydrogen
bonds, as the internal state variable, in the materials that lead to softening and reforming of the
bonds in case of healing. Since we are relying on data in literature, which use the engineering
stress-strain measures, to examine the quality of our model, we present the model in terms of the
engineering stress-strain measure. Here we present a one-dimensional model since the currently
available data in literature mainly report stress-strain along the loading axis. However, the model
is general and was derived for multiaxial cases. Appendix A briefly summarizes a three-
dimensional model representation. In the three-dimensional model, there are additional material
parameters which can only be calibrated by performing multi-axial experimental tests.

Consider a plant tissue comprising of two networks, and each network has a distinct
microstructure. Initially the tissue consists of one network (the original network) and as the
deformation takes place microstructural changes occur and a new network is being formed. These
networks have their own “natural configuration”. Each network has two distinct energy storage
mechanisms and a dissipation mechanism, we refer to the elastic component (N) for the one that

can only store energy and viscoelastic (7)) component for the one that can store and dissipate energy.
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The Gibbs free energy is of the form G = G(o,,0,, ) , and the Helmholtz free energy and its rates

arc.
oG oG
=G-—o0,-——o0 1
4 9, % oo, N (1)
. 0G . d| oG d| oG
V=—"—""a———F|— Oy —— | =— |On (2)
oa  dt\ do, dt\ oo,

We assume that the elastic and viscoelastic components produce the same strain. The ‘reversible’

strain g, is written as:
E = gV = gN (3 )

Within the viscoelastic part, we have the elastic recovery and dissipative parts:

g, =& +é&f “4)
where
P LR L R (5)
oo, dt\ 0o,

The total strain in the body is assumed to be the superposition of the reversible viscoelastic strain
and the permanent strain due to the microstructural change:
E=¢,te,=¢,tag,, (6)

where the permanent strain is assumed to be proportional to microstructural change, and ¢__ is the

max

maximum permanent strain. The overdot in Eqgs. (2) and (5) denotes the time derivative. It is also
noted that the stress is an additive decomposition of the elastic and viscoelastic parts: o =0, + 0, .
Next, we define the rate of the mechanical dissipation:
g=0E—y (7
Substituting Egs. (2)-(6) into Eq. (7) gives:
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We consider the following form of the Gibbs potential:

ac, +(1—a)0'5]_(0¢(7§, +(1—a)a§,] ©)
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The above potential gives the following constitutive equations for the elastic and viscoelastic parts:

_0G _aoy N (l-a)o,

Ey = 10
! ooy ENf E,, (19
1—
8V=65+$;’=—8—G+g;’:ao-”+( a)GV+g{f (11)
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gl o & Iz (12)
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From Egs. (9)-(12) we can see that there are three material parameters involved, which are moduli
for the elastic and viscoelastic parts and viscosity for the viscoelastic part. They are referred as

E,,E,, u, respectively. These material parameters evolve with the mechanical loading. Thus,

with regards to the initial and final microstructural configurations, we have the following material

parameters: £, ,

EV

[

iy, By By, pt, . Equation (9) represents the stored energy from the elastic

and viscoelastic responses. Recall the mechanical dissipation in Eq. (8), and with the Gibbs

potential in Eq. (9), we have:

2 2 2 2
F=c¢ 8G=08max+L I _ % J{ On _ On J (13)

" o 2E, 2E, ) (2E, 2E,

Equation (13) is the driving force for the microstructural changes. It is noted that it is necessary

for the rate of mechanical dissipation in Eq. (8) to be non-negative and that Fa > 0.
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In many cases, experimental data pertinent to the time-dependent response of plant tissues

are not being reported. In order to capture the nonlinear hysteretic response, in absence of the

viscous dissipation, we can reduce the above model by eliminating &, (letting

1 1-
_ -2, M =0). Thus, according to Egs. (3)-(4) and (9)-(10), the reversible part of the
ﬂi ltlf ﬂ()
model reduced to an elastic response with a modulus of elasticity as a material parameter. The only

stress involved is o and the elastic moduli at the initial and final configurations become

E,=E, +E,, andE, = E, +E,,, respectively. Thus, the Gibbs potential in Eq. (9) reduces to:

G(a,a)z—(ggz +(1_2‘2)0 } (14)
! 0

The parameters £, and £, are the material stiffness at the initial configuration (@ =0) and final

configuration ( a =1), respectively. Following a standard procedure in imposing the

thermodynamics relations, the rate of the mechanical dissipation is

E=o0¢

p—g—Gdza(é—ée)——d (15)

a oa
where the reversible strain, defined as the superposition of elastic strains of the two configurations,

can be derived from the Gibbs free energy:

1_
ge:_a_GZEJr( —a)o (16)
oo E, E

o

It is seen in Eq. (16) that at the intermediate state, the elastic modulus E; is given as

(1-a)
E

o

+ . The rate of dissipation associated with the microstructural changes are

l_a
E E

expressed in Eq. (15). The term o (6‘ — ée) is related to the permanent strain due to microstructural
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changes. As discussed above, we need to satisfy the constraint £ >0, and we also need to define

the evolution of the microstructural changes due to the deformation. These will be discussed later
during the material characterization from available experimental data.

Finally, the total energy dissipation is defined as:

W, = &dt>0 (17)

Material Parameter Characterization from Experimental Data
In this section we discuss the determination of material parameters in the above model from the
nonlinear hysteretic response of plant tissues. For this purpose, we first used data of wet wood
tissue of spruce (Picea abies), provided by Burgert (2006). The data were discussed for time-
independent response, thus we eliminate the viscous dissipation part and use the Gibbs potential
given in Eq. (14). Before we proceed with the material parameter characterization, we need to
identify the relation between the evolution of the microstructural changes and the deformation.
Figure 2 shows the hysteretic response of the tested wet wood tissue of spruce. It is seen that
multiple loading-unloading cycles lead to a sequence of permanent deformations, which are
associated with changes in the microstructures of the plants. While these changes can occur at
multiple scales, the proposed approach considers the net effect of the microstructural changes. The
unloading-reloading cycles also show significant hysteretic loops.

The material modulus at the initial configuration (original network), E,, is calibrated by
taking the slope the initial loading (zero stress-strain), while the modulus at the final configuration

(new network) E, is calibrated at the maximum unloading strain, where a complete

microstructural change has taken place, @ =1 . It is assumed that the permanent strain is

proportional to the extent of microstructural change o :
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)= A (18)
where ¢ is the maximum remanent strain, as depicted in Figure 2. The value for ¢ is
calculated by using the maximum strain minus the reversible part of the strain at the maximum
load. The calibration results for the wet wood tissue of spruce are £, =1.189GPa, E, =1.757GPa

ande_  =13.65% . From Egs. (16) and (18), the strain is given as:

g=ao-+(1_a)o-+ag (19)

E, K

The rate of energy dissipation in Eq. (15) can now be written as:

. 0G . . 0G . .
=0 ——a=0s_oa—a=Fa 20
5 O-p aa O_max 8& ( )

where F is the driving force for the microstructural changes due to mechanical loading. The

expression of F'is:

1 1
F =Ggmax—a—G=68max+0'2 - (21)
oat 2E, 2E,

Since at the initial stage (« =0 and o =0), the microstructural changes have not yet taken place

and F=0. Also from Eq. (19), the microstructural change is explicitly expressed as:

O
“TE
A= (22)
7_7+gmax
E, E,

Now in order to examine the relation between the driving force F and microstructural

changes «, we plot the outer loop of the hysteretic response, shown in Figure 3. Once the

max

parameters E,,E,, ¢, have been determined, the experimental plot of /- can be constructed from

Egs. (21) and (22). It is seen in Figure 3(bottom) we can form a relationship between F-a. We then
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mathematically describe the F-a relationship. This can be done by picking suitable functions to
capture the entire F-arelationship from the outer loop in Figure 3(bottom). An alternative
approach is to use a weighted superposition of kernels of the Preisach-Krasnoselskii operator,
which is described in Mayergoyz (1986), (2003). The Preisach-Krasnoselskii approach describes
a phenomenological hysteretic model of any physical behavior. In this study, we consider the
Preisach-Krasnoselskii operator and need to determine number of hysteron used in the operator,
in which we use the outer loop data of the F-« curve. The number of hysteron describes the
smoothness of the response, as discussed in Appendix B. In this study the number of hysteron
N=5050 is used. The material parameters are summarized in Table 1. When suitable mathematical
functions are used to describe the F-a curve, we can also capture the overall hysteretic response,
as discussed in Appendix C.

The hysteretic response of a plant cell wall with microstructural changes is then determined
from Egs. (19) and (21), and F-a relationship through the use of the Preisach-Krasnoselskii
operator. Finally, we show the prediction of the stress-strain hysteretic response of a wet wood
tissue of spruce (Picea abies), tested by Burgert (2006), in Figure 4. Overall the model that
incorporate a continuous evolution of the microstructure with deformations is capable of capturing
the entire hysteretic response.

We also test the approach using a hysteretic response of a different plant tissue. We
consider an isolated sclerenchyma tissue of Aristolochia macrophylla tested by Koéhler and Spatz
(2002). The same procedure as discussed above is used to calibrate the material parameters in the
model, which are listed in Table 1. Figure 5 shows the simulation results for isolated sclerenchyma
tissue of Aristolochia macrophylla. For both cyclic and quasi static responses, the model gives a

reasonably good prediction compared to the experimental result.
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Investigation of the Effect of Viscoelasticity on the Hysteretic Response

Koéhler and Spatz (2002) discussed the viscoelastic effect in the overall hysteretic response of the

isolated sclerenchyma tissue of Aristolochia macrophylla. The time-dependence is shown by the

variation in the amount of energy dissipation with loading rates. However, they did not provide

detailed time-dependent responses, e.g., creep, stress relaxation, etc., which makes it difficult, or

impossible, to calibrate the parameters needed for the viscoelastic response (£, ,E,, 1 ). As we

can see from Egs. (9) and (10), when & =0, the constitutive relations become:

o —_ oG _a0N+(1—a)0'N
Y 0o, Ey E,,
_0G _ao, N (l-a)o,

oo, E, E

8V
Vo

(23)

Together with the kinematic condition shown in Eq. (3) and equilibrium conditionc =0, + 0, ,

the reversible strain derived from Eq. (23) can be written as follow:

(Ey+E,)e, =0

where
1 _a (-a
E, E, E,
1 a (-2
EN ENf ENu

24)

(25)

The calibration of elastic moduli of the original network and newly formed network for time-

independent constitutive relation shown in Eq. (24) were discussed in previous section. From Eq.

(25), the elastic modulus at the initial state (E, +E,)|,.,=E, =E,, +E,, ; at final state,

(Ey+E,)|,.=E, =Ey +E, . The values for E, and E, are depicted in Table 1. For the
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I 1 1 o
purpose of a qualitative study, we take £, =E, = EEU andE, =E, = EE . For the viscosity

parameter /£, we set the characteristic timez =2000s, hence we have u, =7E,, and u, =7E,, .

The above material parameters E,,,E,,, 1, E . E,,

, M, can be easily determined if we have the
experimental data reported in time-domain at the initial and final configurations, see previous work
of Muliana et al. (2016) and Song et al. (2019).

The relation between the microstructural change o and driving force F for the time-
dependent model is assumed to be the same as the one from the time-independent model, which
can be determined by examining the outerloop of the time-independent hysteresis loop, as
discussed in the previous section.

A qualitative study for the effect of viscoelasticity on the hysteresis behavior is depicted in
Figure 6. The loading stress cycles between 0MPa and 80MPa, and energy dissipations per cycle
are calculated for different loading rates. The left figure in Figure 6 shows the energy dissipation
for the first three cycles. As we can see from the figure, the energy dissipation of the first cycle is
significantly larger than the second and third cycles. The reason for a higher energy dissipation for
the first cycle is because more pronounced microstructural changes and time-dependent effect
occur during first cycle, therefore more energy are dissipated. As reloading continues, the response
is closer to the relaxed stage and microstructural changes vary between the reloading-unloading
strains (1.8-4.8%), and hence smaller energy dissipation is seen. Thus, it can be seen that there are

two sources of energy dissipation, which are from the microstructural changes and the viscous

effect. Figure 8 shows time-dependent hysteresis responses of cycles 1-3, respectively, at loading

rate 6 =1x10°MPa /s . As we can see from Figure 7(a), more deformation occurs during first

cycle, which leads to more pronounced energy dissipation, as shown in Figure 6(left). From Figure
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7(b) and (c), we can see that the shapes of the hysteresis loop for cycle 2 and cycle 3 are almost
the same, which means the response reaches the steady-state. The right figure of Figure 6 shows
the ratio between the dissipated energy and stored energy for the third cycle. Initially the energy
dissipation increases with stress rate, then after reaching a peak, energy dissipation decreases with
increasing stress rate. The relation between the energy dissipation and stress rate depicted in Figure
6 shows that the model can capture the same trend as the experimental result reported in Figures 4
and 5 of Kdhler and Spatz (2002). The time-dependent model adequately describes the effect of
viscoelasticity on the hysteresis response.

A simulation for creep responses using the time-dependent model is depicted in Figure 8.
Two stress levels, 40MPa (left) and 80MPa (right), are considered in this analysis. The loading
stress is held for 1 hour. From Figure 8, we can see that the time-dependent model is capable of
generating a creep-recovery curve similar to a typical linear viscoelastic material. However, unlike
a linear viscoelastic material, the instantaneous deformations shown in Figure 8 during loading
and unloading are not the same. The difference in the instantaneous deformations is attributed to
the continuous microstructural changes during creep. Comparing the left figure of Figure 9 to the
right figure, we can see that the difference in the instantaneous deformations during loading and
unloading is more obvious for the larger stress, indicating more microstructural changes occur at
80MPa. Figure 8 clearly presents the two sources of an energy dissipation: the dissipation due to

a microstructural change and the dissipation due to a viscoelastic effect.

Predicting Nonlinear Hysteretic Responses of Plant Stems
Plant stems are composites comprised of multiple constituents with different microstructural

morphologies. In a simplistic way, they can be considered as composites having outer
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strengthening tissue and inner core. The outer strengthening tissue consists of collenchyma,
parenchyma, and sclerenchyma while the inner core comprises of phloem, xylem bundles,
interfascicular parenchyma and pith (Kohler and Spatz 2002). We can predict the overall response
of composites by incorporating different responses of the constituents and amount of the
constituents in the composites, i.e., using a micromechanics model. We assume the stems as
composites comprising of two different constituents (Figure 9), i.e., outer strengthening tissue and
inner core, as tested by Kohler and Spatz (2002).

Similar to the simulation of individual plant tissues discussed above, we assume both the
outer ring and inner core experience different microstructural changes when subjected to external

stimuli. For a composite with two constituents, the Gibbs potential of the stem is written as:

2 1_ 2 2 1_ 2
G(C’al’abapaz):(l—c) _[0!10'1 +( 262')0-1 J ps _(Zon-z +( 2aE2)O-2 } (26)
27 20

lo

where
¢: Volume fraction of the inner core tissue

o,,0, : Independent variables represent stresses applied on the outer skin and inner core,

respectively.

E

lo>

E,, :Moduli of the outer strengthening tissue at ¢, =0 (initial state) and ¢, =1(complete

microstructural change), respectively.

E

»ins B, :Moduli of the inner core tissue at a, = 0anda, =1, respectively.
Following Eq. (20), the rate of energy dissipation for the stem is written as:

oG . 0G .

o -—g 27
da, ' Oa, ° 7

fz(l—c)o] (él —éle)+00'2 (é2 —éze)—

The elastic strains for the outer skin and inner core tissues are:
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(28)

and we also assumed that

E =&, T E ™ ‘c’:l - ‘9'1@ = a.lglmax (29)
&) T &) TUEy T E T E, TUE,

From Egs. (28) and (29), the strains for the outer strengthening skin and inner core are:

a,0, + (l_al)gl}

E E

81 = alglmax +
Lf lo

(30)

a,0, " (1—&2)0'2
E E

82 = a282max +
2f 20

Substituting Eqs. (28) and (29) into Eq. (27), the rate of energy dissipation for the stem is:

oG | . oG | . . .
E= [(l—c)oqglmax —a}al +(CO'282max —ajaz =(1-¢)Fa, +cF,a, (31)

1 2
where F, and F, are the driving forces for microstructural changes of the outer skin tissue and

inner core tissue, respectively, which are:

E = O-I‘:c"lmax + O-12 [L_L]

2E, 2E,
(32)
1 1
E) = 008500 +0, -
2E,, 2E,,
The microstructural changes of the outer skin and inner core are:
o o
&~ Efl &~ Eiz
o = b g = 20 (33)
O-l O-l 0-2 0-2
— =t glmax _7+82max
Elf Elo E2f EZO

22



For stems with a structure shown in Figure 9, the following kinematic and equilibrium equations

for the axial loading are considered:

&=&=¢ (34)
o=(1-c¢)o, +co,
From Egs. (30) and (34) the constitutive equation for the stalk is:
1- 1-
( C) n C c=o+ a, ( C)glmax + CHCE) max (35)
a, +1—a1 a, +1—0{2 a, +1—0{1 a, +1—a2
Elf Elo E2f E20 Elf Eln Ezf E20

Figure 11 shows the stress-strain behaviors of the outer strengthening and inner core tissues
of Aristolochia macrophylla stem. The experimental data are obtained from Kohler and Spatz
(2002). For each of the outer and inner core tissues, material parameters are determined from the
stress-strain in Figure 10. The corresponding driving force and microstructural changes for the
outer strengthening and inner core tissues are obtained from Egs. (32) and (33), as depicted in
Figure 11. The material parameters are listed in Table 1. Figure 12 presents a prediction of a
nonlinear response of Aristolochia macrophylla stem. The volume fraction of the inner core is
determined by varying its value to give the best result of the overall response of the stem. In this
study, the volume fraction of 0.6 is chosen. Figure 13 shows the simulation of cyclic response for
Aristolochia macrophylla stem, where input stress is varied between 0 MPa and 16 MPa. For

comparison, the hysteretic responses of the outer skins and inner core are also shown.

Conclusions
We have modeled a nonlinear hysteretic response of plant tissues and stems subjected to cyclic
mechanical loadings. We formulated a constitutive model, based on thermodynamics and

continuum mechanics, by taking into account the net effect of microstructural changes in
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describing the macroscopic response of the cell wall. The model treats the cell wall as a
homogenized medium, and the effect of microstructural changes is incorporated through an
internal state variable. A typical experimental test in understanding the biomechanics of plants is
obtained by testing tissues at a relatively large scale, which are inherently treating the plant tissues
as homogenized bodies. The proposed model correlates well with the typical experimental tests
since the detailed processes or information of the microstructural aspects that influence the
macroscopic response of plant tissues are often not available, and only the net effect is being
accounted for. The model assumed that prescribing a mechanical loading to plant tissues alter the
microstructures of tissues from the initial configuration (original network) to the final
configuration (complete changes of microstructures, or new network). At these two extreme
configurations, the plant tissues have different mechanical and physical properties associated with
the two networks. At any intermediate loading stage, the macroscopic response of the plant tissues
is due to a combined effect of the initial and final microstructures. The model also accounts for an
energy dissipation, which are due to the viscoelastic effect and microstructural changes. We have
compared the responses obtained from the proposed model to several available nonlinear hysteretic
responses of plant tissues. Overall, the model shows a good correlation with experimental data.
One of the advantages of the model is that it has relatively small numbers of material parameters
that can be easily calibrated from the macroscopic experimental data. The material parameters
have physical interpretation instead of mainly for curve fitting purposes. The model also
incorporates gradual microstructural changes during various loading histories.

We have also demonstrated that the proposed approach can be extended easily to include
responses of different tissues in the plant stem in predicting the overall mechanical response of the

stem. This will be useful for examining the contributions of different constituents in the plant stem
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on their macroscopic mechanical response, which can shed light into understanding deformation

mechanisms in plant stem.
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Table 1 Material Parameters for different tissue

Tissue type E, (GPa) Er(GPa) Emax (%) N
Wet wood tissue of spruce (Picea abies) 1.189 1.757 13.65 5050
Isolated sclerenchyma tissue of Aristolochia 3.542 4.984 4.24 5050
macrophylla

Outer strengthening tissue of Aristolochia 1.552 1.552 291 5050
macrophylla

Inner core tissue of Aristolochia macrophylla 0.262 0.262 8.37 5050
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Appendix A

A general multi-axial constitutive model that can be used for describing anisotropic response of
materials is discussed here. To calibrate the properties in the multi-axial model, experimental
tests beyond a simple uniaxial test are required. The Gibbs free energy is expressed in terms of

stress tensor comprising elastic (V) and viscoelastic (V) components, G = G(6,,06,,,«)and the
total strain tensor is given as:

£E=¢g, +¢g, (A.1)
where ¢, =g, =¢,, g, =¢; +¢,and g, is the permanent strain tensor. The elastic strains are

oG

. oG :
determined from ¢, =——— and g, = ———. The total stress is6 =06, +0, . The rate of the

06, oo,
mechanical dissipation is given as:

o, G
oa O«

§=6V9i+6ép—g—gd=§[,+(c jd=§D+Fad (A.2)

For a general multi-axial response, the Gibbs free energy can be expressed as:
G(5,.6y.0)=—|aS/6, 6, +(1-a)S}6,6, |-| aS|6 0, +(1-a)S\0, 0, | (A3)
where S/,S!,,S/,S!, are fourth order tensors associated with the compliance of the materials. The

components of the above tensors should be determined from experiments, which will indicate the
isotropy or anisotropy nature of the materials. The rate of the mechanical dissipation associated

with the delayed response is given as:
é,=aK’e,.06, +(1-a)K'o, 5, (A.4)

where K’ and K’ are fourth order tensors associated with the inverse viscosity of the materials.
Finally, the elastic and viscoelastic strain tensors can be determined from the Gibbs energy

in Eq. (A.3) and the rate of the dissipative strain can be obtained from Eq. (A.4):
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g, =a28/6, +(1-a)2S)0, (A.5)
g, =a28)o, +(1-a)2S\ 0, (A.6)
& =a2K’e, +(1-a)2K'o, (A7)

The driving force for the microstructural changes is now given as:

oe : _ , A
F,=¢ 6015) +8/6,6,-S,6,6,+S/6,6,-S,0,.0, (A.8)

The function for & ,(«)can be formed based on available experimental data, as discussed above.

An example of a multi-axial response for isotropic polymers, obtained from the proposed approach,

can be found in Song et al. (2019).
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Appendix B

The parametric study for the parameter N is shown in this section. Fig. B1 below depicts the
Preisach-Krasnoselskii operator used in this study, where F, ., and F,, ., are the two
thresholds for the driving force (Doraiswamy et al. (2011); Xing et al. (2017)). Fig. B1 (left) shows

a hysteron element used in the Preisach model, where F,, ., and F, , ., indicate the thresholds

for i" hysteron. During loading, when the driving force F > F|

Jorwara » the hysteron switches ‘on” and
gives an output of Ae . Similarly, during unloading, when the driving force F<F} , ., the

hysteron is switched ‘off’. In the right figure, each cross mark represents a hysteron element; the

shadowed area indicates the hysterons triggered on under current loading history. The total number

+1).

side

1
of hysteron can be related to the hysteron on each side N, through N = ENside x (N,

Figure B1 Basic hysteron element (left); Preisach-Krasnoselskii operator (right).

In the parametric study shown in Fig. B2 below, we choose N, =20,50,100,200, respectively.

From Fig. B2, we can see that the value of N does not influence the shape of the hysteresis loop.
Parameter N only has an influence on the smoothness of the simulation result. Larger value for N

would decrease zigzags, therefore increase the smoothness of the prediction. However, increasing
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the value for N would also require more computation time. As show in Fig. B2 the responses with
N=5050 and N=20100 do not show a significant variation. In the modeling of spruce tissue, the

value for NV is set to be 5050.
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Figure B2 Parametric study for parameter N
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Appendix C

Besides using the Preisach-Krasnoselskii operator, the relation between driving force F and
microstructural change « can also be simulated by picking suitable mathematical functions. The
F —a plot calibrated form the outerloop of the hysteresis response can be divided into the
following regions:

1. Elastic region.

During loading, if the increase of input stress is smaller than a certain value (as shown in Figure 3
(top)), no microstructural change happens and volume fraction « stays unchanged. In this case, if

the increase of loading stress Ao, < 6MPa, we assume no microstructural change occurs.

2. As shown in Figure 3 (bottom), for loading, after elastic region where « stays unchanged,
the relation between F and « can be simulated by a second-order polynomial function until they
reached a point where a changes linearly with driving force F. For unloading, a second-order
polynomial function is enough to describe the relation between F and « . The parts where relations
between F and « are modeled by second-order polynomial functions are marked in blue in Figure
Cl1. Eq. (C1) and Eq. (C2) below show the second-order polynomial relations between F and «

during the loading and unloading, respectively.

a= kl (F_F;:ading)z (Cl)
a= a* - k2 (F - E:lloading )2 (Cz)
The value for parameters F,, ding F;,Mding and o are marked in Figure 3 (bottom). Values for k,

and k, are calibrated by fitting Eqgs. (C1) and (C2) with outerloop of the F —a plot. In this case,

the value for k; is 7.0 X 1071, and the value for k, is 2.8 x 1071,

3. Linear relation between F and « during loading

41



driving force
8]

Xihresold

6 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

microstructural change

Figure C1 Linear relation between F and « during loading

The red line shown in Fig.B1 is the part where « increase linearly with F. As shown in Fig.B1, it
is assumed that when volume fraction « reached a certain value, &¢presnora, the relation between

F and « can be simulated by a linear function Eq. (C3).

a= athreshold + k3 (F - Ehreshold ) (Cs)

where F, is the driving force corresponding with & through Eq. (24). In this case,

threshold threshold >

is set to be 0.1, and the value for £, calibrated from Fig. Bl isk, =4.4x107".

athreshold
The final modeling result for plant tissue is shown in Fig. C2 below. Fig. C2 shows similar
modeling result with Figure 5, where the relation between « and F is modeled by the Preisach-

Krasnoselskii operator.
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Figure C2 Modeling result for plant tissue
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