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Abstract 

 
This study presents a constitutive material model for describing nonlinear and hysteretic 

responses of plant tissues subjected to mechanical loadings. The nonlinear and hysteretic 

response is associated with the viscoelastic nature of the constituents and microstructural 

changes of plant tissues during loadings. In order to incorporate the effect of microstructural 

changes on the macroscopic response of plant tissue, we assume that as the tissue is deformed, an 

additional micromechanism arises affecting the mechanical response of the tissues. The plant 

tissue is assumed to consist of two networks, the initial network which is associated with an 

original reference configuration and the new network that is formed during the deformation. The 

newly formed network has a new natural configuration. The responses obtained from the 

proposed model are compared with available experimental data of plant tissues. The model is 

easily extended to incorporate responses of different tissues, i.e., outer strengthening skin and 

inner soft core, in determining the overall nonlinear behaviors of the plant stems, which are 

composite materials. Thus, we can examine the contributions of different constituents in the 

plant tissues on their macroscopic mechanical responses. 

They assumed that a microstructural change occurs at some stage of deformation 
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Introduction 

Plant stems compose of various constituents and arrangements of microstructural morphologies 

that are well integrated, forming hierarchical structures. Their unique hierarchical structures, 

which are developed during growth, allow them to perform multiple functions, such as adaptation 

to various environmental and mechanical conditions for survivability and reproduction, load 

bearing to different mechanical stimuli (i.e., wind, touch and rain), self-regulating energy from 

multiple sources (sun-light, water, mineral), self-healing of damage tissues, etc. Detailed 

discussions of the hierarchical structures of plant stems can be found in Niklas (1992), Speck and 

Burgert (2011) and Brulé et al. (2016). 

 In this study, we focus our attention on the mechanical response of plant tissues particularly 

on their nonlinear and hysteretic responses that are observed at the macroscopic scale. 

Understanding the mechanical response of plant stems is often done by performing laboratory 

testing under different boundary conditions, such as bending, tension, compression, twisting, 

buckling, etc. Information on the overall elastic modulus, stiffness, failure load- and mechanism 

are typically recorded and correlated to the morphologies of the stems (Gibson (2012), Robertson 

et al. (2017), Robertson et al. (2016), Gomez et al. (2017), Gomez et al. (2018), Shah et al. (2017)). 

The macroscopic responses of plant stems under mechanical loadings, often reported in terms of 

stress-strain relations, are a manifestation of continuous changes and interactions of different 

microstructural morphologies and constituents within the stems. It is also noted that the living 

plant’s responses to mechanical loadings will involve multiple enzymes and biochemical processes, 

in addition to the physical microstructural changes. For example in their study Park and Cosgrove 

(2012) mentioned that a digestion of enzymes between cellulose microfibers should influence the 

mechanical behaviors of the cell walls. In this study we focus mainly on capturing the overall 
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(macroscopic) mechanical response of plant tissues due to the net effect of changes in the 

microstructural morphologies. Our aim is not on incorporating the precise microstructural models, 

instead we are considering a phenomenological approach with internal state variables to 

incorporate microstructural evolution which can be directly correlated to macroscopic 

experimental tests discussed above. Within the phenomenological approach, the internal state 

variable can still incorporate the physical information of the microstructural changes.  

 There have been several experimental studies on investigating changes in the 

microstructures of plant tissues under mechanical loadings. Burgert (2006) discussed that the 

mechanical response of plant cell walls is strongly correlated to the cellulose micro-fibril 

orientations and to the interaction between cellulose fibers and soft matrix. When subjected to a 

mechanical loading, the fibers in the cell walls tend to reorient themselves in order to adjust their 

stiffness and toughness to the external stimulus. It has also been shown that different fiber 

orientations distinguish the flexible and stiff cell walls in young and adult woods, respectively 

(Lindström et al. (1998), Lichtenegger et al. (1999)). Scanning electron microscopy and X-ray 

scattering measurements indicate that straining the cell walls induces microstructural changes, 

such as reorientations of micro-fibril angles and fiber-matrix separations, which at the macroscopic 

scale are translated to nonlinear and inelastic stress-strain relations (Köhler and Spatz 2002). The 

extent of fiber reorientations and fiber-matrix separations depends on the amount of straining 

induced on the cell walls. It should be noted that most of the microscopic measurements were done 

postmortem, and thus detailed evolutions of the physical changes in the microstructures during 

mechanical loadings are largely unexplored. 

 The process of microstructural changes dissipates energy, which at the macroscopic scale 

is observed by a hysteretic response. The microstructural changes often result in a permanent set 
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if upon removal of the external stimuli the material does not regain its original microstructures. 

For examples, several studies suggested that sliding between fibers or a fiber-matrix separation 

results in permanent microstructural changes, and hence permanent deformations. Köhler and 

Spatz (2002) showed that the permanent deformation in cell walls due to a tensile loading is 

associated with the changes in the fiber angle orientation from its original orientation. Plant tissues 

also exhibit viscoelastic responses when subjected to mechanical loadings, e.g., Salmen (1984); 

Spatz et al. (1999); Köhler and Spatz (2002); Speck and Spatz (2003), Kerstens et al. (2001); 

Hogan and Niklas (2004); Hayot et al. (2012), and Lee et al. (2019). These viscoelastic responses 

are associated with the polymer building blocks of the fibers and matrix, i.e., cellulose, 

hemicellulose, and lignin, with long chain and multiple network microstructures. Their 

macromolecular networks lead to viscoelastic behaviors when they are subjected to mechanical 

loadings. In living tissues, the existence of fluid can also amplify the viscoelastic response of the 

stems. An experimental study by Salmen (1984) indicated that woods tested along and across the 

fiber directions experienced different viscoelastic responses, with more pronounced response in 

the across fiber direction. The lignin matrix dominates the mechanical response of woods when 

they are loaded across the fiber axis, while loading along the fiber axis is dominated by the fiber 

behaviors. This indicates that the lignin shows more pronounced viscoelastic response compared 

to the cellulose fibers. Köhler and Spatz (2002) tested a sclerenchyma tissue under several loading-

unloading cycles at different rates. They observed that the energy loss in the hysteretic loops 

depends on the loading rates, which is not surprising considering the viscoelastic nature of the 

biological tissue. The energy loss was modeled with dry and viscous frictions since considering 

the viscous friction alone was not sufficient in quantitatively predicting the amount of the energy 

loss. They discussed that the hysteretic inelastic deformations were related to breaking and 
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reforming of hydrogen bonds between the cellulose fibrils. When the bonds break during loading, 

viscous flow occurred in the matrix, and unloading caused formations of new bonding, and hence 

new fibril configurations. However, it is not clear what mechanisms were associated with the dry 

friction as this component was added to match the experimental data.   

 There have been several approaches in modeling the nonlinear inelastic response of plant 

cell walls. Fratzl et al. (2004) and Altaner and Jarvis (2008) considered a ‘molecular Velcro’ model 

to describe a stick-slip mechanism between the cellulose micro-fibril and hemicellulose matrix. 

During loadings, combined normal and shear strains induced detachments of the cellulose fibrils 

from the matrix and sliding between micro-fibrils. Upon unloading, the cellulose fibrils were 

reattached to the matrix, but slipping was unrecoverable, leading to inelastic deformations. The 

model, however, did not account for possible reorientation of fibril angles due to loading, and the 

quality of the model in capturing unloading and possible reloading stages has not been assessed. 

Navi et al. (1995) and Navi and Sedighi-Gilani (2004) used a micromechanics approach to 

incorporate the elastic moduli of cellulose fibrils, lignin matrix, and fibril reorientations in 

explaining the nonlinear inelastic response of cell walls. They assumed that increasing the tensile 

force decreased the microfibril angles as they oriented towards the loading direction and damaged 

the surrounding matrix. The orientation of microfibrils towards loading axis caused stiffening 

behaviors and damage in the matrix resulted in permanent deformation. However, the model did 

not capture the possible hysteretic loops of the unloading-reloading paths nor included the time-

dependent behaviors. Borodulina et al. (2015) proposed a micromechanics model that incorporates 

a linear elastic behavior of cellulose microfibril and an elastic-plastic behavior of matrix, 

comprising of lignin and hemicellulose. The tensile load induced microfibril reorientations. The 

proposed approach was capable in capturing the nonlinear hysteretic response of the fibers and the 
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effect of microfibril angles on the overall deformations. Trivaudey et al. (2015) proposed a 

constitutive model for describing a nonlinear tensile behavior of hemp fibers. The model 

incorporated the viscoelastic response, microfibril reorientation, and shear induced crystallization 

of the amorphous components. The model showed its ability in capturing the creep and nonlinear 

tensile behaviors of the tested specimens. This approach is based on several hypotheses made in 

describing the nonlinear mechanical response of plant tissues, which may be applicable for specific 

tissues. In order to gain confident in the material parameters and hypotheses discussed in the model, 

it will require extensive testing at the microscopic scale and/or the ability to track continuous 

changes of the microstructures during testing; otherwise the approach can be seen as mainly curve 

fitting parameters. Unfortunately, the authors did not present a complete hysteretic response to 

further examine the validity of their model and hypotheses. Another micromechanical model 

proposed to describe the nonlinear inelastic response of plant tissues in by Pieczywek and Zdunek 

(2014). The authors modeled detailed cell wall geometries of the onion epidermis tissue and 

incorporating elastic-plastic constitutive model for the cell wall. The model is shown capable in 

capturing the loading response; however there have been no discussion on the unloading-reloading 

response to further examine the model. Similar to the approach in Pieczywek and Zdunek (2014), 

Singh et al. (2013) and Zhu and Melrose (2003) modeled plant cell walls with honeycomb lattice 

structures and used hyperelastic constitutive models to describe the overall nonlinear response of 

cell walls. Using hyperelastic constitutive model will not allow for capturing the hysteretic 

response and possible permanent deformation.  

 To our knowledge, there has not been any phenomenological model used to describe 

nonlinear, hysteretic, time-dependent, and inelastic response of plant tissues. There are several 

nonlinear, time-dependent, and inelastic phenomenological models formulated for polymers and 
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metals. These phenomenological models often have large numbers of material parameters which 

require multiple mechanical testing to calibrate them. Some of them involve parameters that are 

specifically applied for polymers or metals, e.g., burger vector, chain entanglement, etc., making 

it difficult to use the models for plant tissues. 

 In summary, experimental tests on various plant tissues show nonlinear, hysteretic, 

inelastic and time-dependent mechanical behaviors at the macroscopic scale. Limited microscopic 

measurements indicate that multiple microstructural changes can take place, depending on the 

loading types and histories. The loading-unloading of the cell wall imposes reorientations of the 

microfibril angles between the initial orientation and the loading axis. These microfibril 

reorientations induce deformations and stresses to the surrounding matrix, and it is also possible 

for the microfibrils to undergo elongation and failure. Both cellulose microfibrils and matrix are 

polymers with long chain and multiple network microstructures. When subjected to mechanical 

loadings they exhibit viscoelastic behaviors due to the rearrangements of the long macromolecular 

chains. Depending on the extent of loadings and characteristics of macromolecular networks, 

irreversible changes in the macromolecular networks of the microfibrils and matrix can occur, 

leading to a macroscopic permanent set. As discussed above, several microstructurally motivated 

models have been proposed to describe the nonlinear hysteretic responses of plant tissues under 

mechanical loadings. Some of these micromechanically motivated models are based on specific 

hypotheses which might be applicable for specific tissues under certain loading conditions. Some 

other micromechanically motivated models consider only one or a few mechanisms, neglecting 

other possible mechanisms. In addition, most of these models mainly capture the nonlinear 

responses during loading without discussing the hysteretic response and possible formation of 

permanent deformations. It might be possible to formulate micromechanics models that 
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incorporate precise physical mechanisms associated to the nonlinear hysteretic responses when the 

continuous evolution of the microstructures due to loadings can be measured experimentally.   

The motivation of this study is to be able to capture a complete nonlinear hysteretic and 

time-dependent response and predict permanent deformations of plant tissues subjected to various 

histories of loading, e.g., ramp, creep, cyclic, etc. We consider a constitutive model that includes 

the effect of microstructural changes in describing the macroscopic response of the tissues. The 

main highlight of the model is that it has a few material parameters that can be calibrated easily 

from available macroscopic experimental data. As will be shown later, the material parameters in 

the constitutive model have physical representations, i.e., stiffness and viscosity. The model treats 

the plant tissue as a homogenized medium, and the net effect of possible microstructural changes, 

such as fibril reorientations, viscoelastic behaviors of fibers and matrix, possible sliding between 

fibers and fiber-matrix, etc., is incorporated through introducing an internal state variable. It is 

noted that in many biomechanics studies of plant tissues, several mechanical properties, such as 

elastic modulus, yield stress, failure deformation, etc., are obtained from testing tissues at a 

relatively large scale, which are inherently phenomenological properties determined by treating 

the plant tissues as homogenized bodies. Furthermore, our motivation in predicting the overall 

nonlinear hysteretic and time-dependent response is to be able to understand structural failure 

(lodging) in plant stems under mechanical loading, such as wind at different speeds and multiple 

cycles. Such an understanding can eventually help plant breeders in selecting lodging resistant 

variants. 
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A constitutive model for nonlinear hysteretic and time-dependent responses of plant tissues 

This section discusses a new constitutive material model of plant tissues undergoing 

microstructural changes. In deriving the model, we adopt a multiple natural configuration approach. 

The natural configuration is considered when the material is under a stress-free state. We consider 

the plant tissues as being composed of two microstructural networks, the original network and the 

new network formed due to prescribing mechanical loadings. For an illustration purpose, Figure 

1a depicts an example of a macroscopic stress-strain of a plant tissues under a mechanical loading, 

i.e., uniaxial tension. The overall deformations of the plant tissues are attributed to the 

deformations of the cell walls. At its initial stage, it is assumed that the cell wall is under stress- 

and strain free conditions1. When an applied loading is relatively small, the stress-strain shows a 

nearly linear response and upon unloading – given a sufficient recovery time – the response returns 

to the initial stress-strain free stage. The macroscopic response at this state of loading is associated 

with a specific microstructural morphology of the cell wall (original network), referred as an initial 

configuration. Figure 1b illustrates a cartoon of a simplified cell-wall microstructure at several 

scales, at an initial configuration2. Corresponding to the initial microstructural configuration, the 

tissue has overall (homogenized) mechanical and physical properties, i.e., modulus of elasticity, 

viscosity, permeability, etc. Prescribing a relatively large mechanical loading can induce 

significant changes in the microstructural morphology of the cell walls, e.g., fiber reorientation, 

realignment of macromolecular network, matrix damage, fiber breaking, etc. At this stage it is 

assumed that a new network is being formed. When upon removal of the load a permanent 

                                                           
1 The cell wall can be under stresses, for example from a turgor pressure, even when the external mechanical loading 
is absent. In this study, the initial configuration is attributed to a configuration at which the mechanical loading is 
initially prescribed. 
2 This illustration is not meant to describe precise microstructural morphologies, as the real morphologies and their 
changes due to loadings are far more complex than the ones illustrated in the figure. The figure is used to motivate 
the idea of a microstructural changes in describing the macroscopic nonlinear hysteretic response of plant cell wall. 
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deformation is observed, it is said that the tissue has a different microstructural configuration 

(intermediate state) than the one of the initial configuration. A different microstructural 

configuration at this intermediate state will yield to different overall mechanical and physical 

properties than the ones at the initial configuration. We further assume that there is a final 

configuration, at which a complete microstructural change has taken place (no further changes are 

possible, all tissue is comprised of the newly formed network). At this final configuration, the 

tissue has the associated mechanical and physical properties that may differ than the properties at 

the initial and intermediate configurations. For example, experimental studies have indicated that 

the elastic modulus of a cell wall depends on the microfibril angle and experimental studies have 

also suggested that deformations induce reorientations of microfibril angle. Thus, as the 

microstructural morphology of the cell wall changes with loading, its mechanical and physical 

properties also change. Prescribing continuous loading will then induce continuous microstructural 

changes. In order to incorporate the effect of continuous microstructural evolution on the 

macroscopic response of plant tissue, we introduce an internal state variable α that accounts for 

the net microstructural changes between the two configurations3. The value of α is between 0 and 

1, referring to the initial and final configurations, respectively. When α=0, the cell wall has an 

initial microstructural morphology (original network); for α=1 the cell wall has the final 

microstructural morphology (new network); and when 0 1α< <  the cell wall has a combination 

of initial and final microstructural morphologies with α indicates a fraction of the new network 

                                                           
3  The microstructural changes in plant tissue due to mechanical loadings are often associated with multiple 
mechanisms and the internal state variable α is used to quantify the fraction of net changes. However, in case a single 
dominant mechanism associated with the mechanical loading can be identified, e.g., microfibril orientation, the 
parameter α now has a physical measure which quantifies changes in the microfibril orientation from the initial 
orientation θ0 (α=0) to the maximum orientation, i.e., loading axis in case tension is prescribed (α=1). Thus, the 
microfibril orientation can only occur between these two orientations. Changes in the internal state variable α will 
depend on the extent of prescribed mechanical loadings, which will be discussed later. 
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being formed. We will examine whether this proposition can give a reasonable approximation in 

describing the nonlinear and hysteretic response of plant cell wall. 

 We derive the constitutive model from a thermodynamics of a continuous body. We adopt 

the theory of multiple natural configurations that has been used to model responses of materials 

undergoing microstructural changes, e.g., (Rajagopal and Wineman (1992); Rajagopal and 

Srinivasa (2004); de Tommasi et al. (2006) and (2010); Muliana et al. (2016); Xing et al. (2017); 

Yuan et al. (2017); Song et al. (2018) and (2019)). In the de Tommasi et al. (2010), the authors 

considered damage and self-healing in spider silks by taking into account breaking of the hydrogen 

bonds, as the internal state variable, in the materials that lead to softening and reforming of the 

bonds in case of healing. Since we are relying on data in literature, which use the engineering 

stress-strain measures, to examine the quality of our model, we present the model in terms of the 

engineering stress-strain measure. Here we present a one-dimensional model since the currently 

available data in literature mainly report stress-strain along the loading axis. However, the model 

is general and was derived for multiaxial cases. Appendix A briefly summarizes a three-

dimensional model representation. In the three-dimensional model, there are additional material 

parameters which can only be calibrated by performing multi-axial experimental tests.  

 Consider a plant tissue comprising of two networks, and each network has a distinct 

microstructure. Initially the tissue consists of one network (the original network) and as the 

deformation takes place microstructural changes occur and a new network is being formed. These 

networks have their own “natural configuration”. Each network has two distinct energy storage 

mechanisms and a dissipation mechanism, we refer to the elastic component (N) for the one that 

can only store energy and viscoelastic (V) component for the one that can store and dissipate energy. 
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The Gibbs free energy is of the form ( , , )V NG G σ σ α= , and the Helmholtz free energy and its rates 

are: 

 V N
V N

G GGψ σ σ
σ σ

∂ ∂
= − −

∂ ∂
  (1) 

 V N
V N

G d G d G
dt dt

ψ α σ σ
α σ σ

   ∂ ∂ ∂
= − −   ∂ ∂ ∂   

   (2) 

We assume that the elastic and viscoelastic components produce the same strain. The ‘reversible’ 

strain eε  is written as: 

 e V Nε ε ε= =  (3) 

Within the viscoelastic part, we have the elastic recovery and dissipative parts: 

 e d
V V Vε ε ε= +  (4) 

where   

 e e d
V V e V

V V

G d G
dt

ε ε ε ε
σ σ

 ∂ ∂
= − → = − = − ∂ ∂ 

    (5) 

The total strain in the body is assumed to be the superposition of the reversible viscoelastic strain 

and the permanent strain due to the microstructural change: 

 maxe p eε ε ε ε αε= + = +  (6) 

where the permanent strain is assumed to be proportional to microstructural change, and maxε is the 

maximum permanent strain. The overdot in Eqs. (2) and (5) denotes the time derivative. It is also 

noted that the stress is an additive decomposition of the elastic and viscoelastic parts: N Vσ σ σ= + . 

 Next, we define the rate of the mechanical dissipation: 

 ξ σε ψ= −   (7) 

Substituting Eqs. (2)-(6) into Eq. (7) gives: 
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 ( ) ( ) max
d d

V p V N p V V
G Gξ σ ε ε ε σ ε ε α σ ε σε α
α α

∂ ∂ = − − + − − = + − ∂ ∂ 
        (8) 

We consider the following form of the Gibbs potential: 

 ( ) ( )2 22 21 1
( , , )

2 2 2 2
V NV N

V N
Vf Vo Nf No

G
E E E E

α σ α σασ ασσ σ α
   − −

= − + − +      
   

 (9) 

The above potential gives the following constitutive equations for the elastic and viscoelastic parts: 

 (1 )N N
N

N Nf No

G
E E

ασ α σε
σ

−∂
= − = +

∂
 (10) 

 
(1 )e d d dV V

V V V V V
V Vf Vo

G
E E

ασ α σε ε ε ε ε
σ

−∂
= + = − + = + +

∂
 (11) 

 1d
V V

f o

α αε σ
µ µ

 −
= +  

 
  (12) 

From Eqs. (9)-(12) we can see that there are three material parameters involved, which are moduli 

for the elastic and viscoelastic parts and viscosity for the viscoelastic part. They are referred as

, ,N VE E µ , respectively. These material parameters evolve with the mechanical loading. Thus, 

with regards to the initial and final microstructural configurations, we have the following material 

parameters: , , , , ,No Vo o Nf Vf fE E E Eµ µ . Equation (9) represents the stored energy from the elastic 

and viscoelastic responses. Recall the mechanical dissipation in Eq. (8), and with the Gibbs 

potential in Eq. (9), we have: 

 
2 22 2

max max 2 2 2 2
N ND D

Df Do Nf No

GF
E E E E

σ σσ σσε σε
α

   ∂
= − = + − + −      ∂    

 (13) 

Equation (13) is the driving force for the microstructural changes. It is noted that it is necessary 

for the rate of mechanical dissipation in Eq. (8) to be non-negative and that 0Fα ≥ .  
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 In many cases, experimental data pertinent to the time-dependent response of plant tissues 

are not being reported. In order to capture the nonlinear hysteretic response, in absence of the 

viscous dissipation, we can reduce the above model by eliminating v
Dε  (letting

1 (1 ) 0
i f o

α α
µ µ µ

−
= + = ). Thus, according to Eqs. (3)-(4) and (9)-(10), the reversible part of the 

model reduced to an elastic response with a modulus of elasticity as a material parameter. The only 

stress involved is σ and the elastic moduli at the initial and final configurations become

o Vo NoE E E= +  and f Vf NfE E E= + , respectively. Thus, the Gibbs potential in Eq. (9) reduces to: 

 
( ) 22 1

( , )
2 2f o

G
E E

α σασα σ
 −

= − +  
 

  (14) 

The parameters oE and fE are the material stiffness at the initial configuration (α =0) and final 

configuration ( α =1), respectively. Following a standard procedure in imposing the 

thermodynamics relations, the rate of the mechanical dissipation is 

 ( )p e
G Gξ σε α σ ε ε α
α α

∂ ∂
= − = − −

∂ ∂
      (15) 

where the reversible strain, defined as the superposition of elastic strains of the two configurations, 

can be derived from the Gibbs free energy: 

 ( )1
e

f o

G
E E

α σασε
σ

−∂
= − = +

∂
 (16) 

It is seen in Eq. (16) that at the intermediate state, the elastic modulus Ei is given as 

( )11

i f oE E E
αα −

= + . The rate of dissipation associated with the microstructural changes are 

expressed in Eq. (15). The term ( )eσ ε ε−  is related to the permanent strain due to microstructural 
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changes. As discussed above, we need to satisfy the constraint 0ξ ≥ , and we also need to define 

the evolution of the microstructural changes due to the deformation. These will be discussed later 

during the material characterization from available experimental data. 

 Finally, the total energy dissipation is defined as: 

 0dW dtξ= ≥∫  (17) 

 

Material Parameter Characterization from Experimental Data 

In this section we discuss the determination of material parameters in the above model from the 

nonlinear hysteretic response of plant tissues. For this purpose, we first used data of wet wood 

tissue of spruce (Picea abies), provided by Burgert (2006). The data were discussed for time-

independent response, thus we eliminate the viscous dissipation part and use the Gibbs potential 

given in Eq. (14). Before we proceed with the material parameter characterization, we need to 

identify the relation between the evolution of the microstructural changes and the deformation. 

Figure 2 shows the hysteretic response of the tested wet wood tissue of spruce. It is seen that 

multiple loading-unloading cycles lead to a sequence of permanent deformations, which are 

associated with changes in the microstructures of the plants. While these changes can occur at 

multiple scales, the proposed approach considers the net effect of the microstructural changes. The 

unloading-reloading cycles also show significant hysteretic loops.  

  The material modulus at the initial configuration (original network), Eo, is calibrated by 

taking the slope the initial loading (zero stress-strain), while the modulus at the final configuration 

(new network) fE is calibrated at the maximum unloading strain, where a complete 

microstructural change has taken place, 1α ≈ . It is assumed that the permanent strain is 

proportional to the extent of microstructural changeα : 
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 ( )max maxe eε ε αε ε ε αε− = → − =    (18) 

where maxε  is the maximum remanent strain, as depicted in Figure 2. The value for maxε  is 

calculated by using the maximum strain minus the reversible part of the strain at the maximum 

load. The calibration results for the wet wood tissue of spruce are 1.189oE GPa= , 1.757fE GPa=

and max 13.65%ε = . From Eqs. (16) and (18), the strain is given as: 

 ( )
max

1

f oE E
α σασε αε

−
= + +  (19) 

The rate of energy dissipation in Eq. (15) can now be written as: 

 maxp
G G Fξ σε α σε α α α
α α

∂ ∂
= − = − =

∂ ∂
      (20) 

where F is the driving force for the microstructural changes due to mechanical loading. The 

expression of F is: 

 2 1 1
2 2ax

o
max

f
m

GF
E E

σε σε σ
α

 ∂
= − = + −  ∂  

 (21) 

Since at the initial stage (α =0 and σ =0), the microstructural changes have not yet taken place 

and F=0. Also from Eq. (19), the microstructural change is explicitly expressed as: 

 o

f
max

o

E

E E

σε
α σ σ ε

−
=

− +
 (22) 

 Now in order to examine the relation between the driving force F and microstructural 

changes α, we plot the outer loop of the hysteretic response, shown in Figure 3. Once the 

parameters max, ,o fE E ε have been determined, the experimental plot of F-α can be constructed from 

Eqs. (21) and (22). It is seen in Figure 3(bottom) we can form a relationship between F-α. We then 
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mathematically describe the F-α relationship. This can be done by picking suitable functions to 

capture the entire F-α relationship from the outer loop in Figure 3(bottom). An alternative 

approach is to use a weighted superposition of kernels of the Preisach-Krasnoselskii operator, 

which is described in Mayergoyz (1986), (2003). The Preisach-Krasnoselskii approach describes 

a phenomenological hysteretic model of any physical behavior. In this study, we consider the 

Preisach-Krasnoselskii operator and need to determine number of hysteron used in the operator, 

in which we use the outer loop data of the F-α curve. The number of hysteron describes the 

smoothness of the response, as discussed in Appendix B. In this study the number of hysteron 

N=5050 is used. The material parameters are summarized in Table 1. When suitable mathematical 

functions are used to describe the F-α curve, we can also capture the overall hysteretic response, 

as discussed in Appendix C. 

 The hysteretic response of a plant cell wall with microstructural changes is then determined 

from Eqs. (19) and (21), and F-α relationship through the use of the Preisach-Krasnoselskii 

operator. Finally, we show the prediction of the stress-strain hysteretic response of a wet wood 

tissue of spruce (Picea abies), tested by Burgert (2006), in Figure 4. Overall the model that 

incorporate a continuous evolution of the microstructure with deformations is capable of capturing 

the entire hysteretic response.  

 We also test the approach using a hysteretic response of a different plant tissue. We 

consider an isolated sclerenchyma tissue of Aristolochia macrophylla tested by Köhler and Spatz 

(2002). The same procedure as discussed above is used to calibrate the material parameters in the 

model, which are listed in Table 1. Figure 5 shows the simulation results for isolated sclerenchyma 

tissue of Aristolochia macrophylla. For both cyclic and quasi static responses, the model gives a 

reasonably good prediction compared to the experimental result.  
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Investigation of the Effect of Viscoelasticity on the Hysteretic Response 

Köhler and Spatz (2002) discussed the viscoelastic effect in the overall hysteretic response of the 

isolated sclerenchyma tissue of Aristolochia macrophylla. The time-dependence is shown by the 

variation in the amount of energy dissipation with loading rates. However, they did not provide 

detailed time-dependent responses, e.g., creep, stress relaxation, etc., which makes it difficult, or 

impossible, to calibrate the parameters needed for the viscoelastic response ( , ,N VE E µ ). As we 

can see from Eqs. (9) and (10), when 0d
Vε = , the constitutive relations become: 

 

(1 )

(1 )

N N
N

N Nf No

V V
V

V Vf Vo

G
E E

G
E E

ασ α σε
σ

ασ α σε
σ

−∂
= − = +

∂

−∂
= − = +

∂

 (23) 

Together with the kinematic condition shown in Eq. (3) and equilibrium condition N Vσ σ σ= + , 

the reversible strain derived from Eq. (23) can be written as follow: 

 ( )N V eE E ε σ+ =  (24) 

where 

 

1 (1 )

1 (1 )
V Vf Vo

N Nf No

E E E

E E E

α α

α α

−
= +

−
= +

  (25) 

The calibration of elastic moduli of the original network and newly formed network for time-

independent constitutive relation shown in Eq. (24) were discussed in previous section. From Eq. 

(25), the elastic modulus at the initial state ( ) 0|N V o No VoE E E E Eα =+ = = + ; at final state, 

( ) 1|N V f Nf VfE E E E Eα =+ = = + . The values for oE  and fE  are depicted in Table 1. For the 
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purpose of a qualitative study, we take 1
2No Vo oE E E= = and 1

2Nf Vf fE E E= = . For the viscosity 

parameter µ , we set the characteristic time 2000sτ = , hence we have o VoEµ τ=  and f VfEµ τ= . 

The above material parameters , , , , ,No Vo o Nf Vf fE E E Eµ µ can be easily determined if we have the 

experimental data reported in time-domain at the initial and final configurations, see previous work 

of Muliana et al. (2016) and Song et al. (2019).  

 The relation between the microstructural change α and driving force F for the time-

dependent model is assumed to be the same as the one from the time-independent model, which 

can be determined by examining the outerloop of the time-independent hysteresis loop, as 

discussed in the previous section. 

 A qualitative study for the effect of viscoelasticity on the hysteresis behavior is depicted in 

Figure 6. The loading stress cycles between 0MPa and 80MPa, and energy dissipations per cycle 

are calculated for different loading rates. The left figure in Figure 6 shows the energy dissipation 

for the first three cycles. As we can see from the figure, the energy dissipation of the first cycle is 

significantly larger than the second and third cycles. The reason for a higher energy dissipation for 

the first cycle is because more pronounced microstructural changes and time-dependent effect 

occur during first cycle, therefore more energy are dissipated. As reloading continues, the response 

is closer to the relaxed stage and microstructural changes vary between the reloading-unloading 

strains (1.8-4.8%), and hence smaller energy dissipation is seen. Thus, it can be seen that there are 

two sources of energy dissipation, which are from the microstructural changes and the viscous 

effect. Figure 8 shows time-dependent hysteresis responses of cycles 1-3, respectively, at loading 

rate 21 10 /MPa sσ −= × . As we can see from Figure 7(a), more deformation occurs during first 

cycle, which leads to more pronounced energy dissipation, as shown in Figure 6(left). From Figure 
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7(b) and (c), we can see that the shapes of the hysteresis loop for cycle 2 and cycle 3 are almost 

the same, which means the response reaches the steady-state. The right figure of Figure 6 shows 

the ratio between the dissipated energy and stored energy for the third cycle. Initially the energy 

dissipation increases with stress rate, then after reaching a peak, energy dissipation decreases with 

increasing stress rate. The relation between the energy dissipation and stress rate depicted in Figure 

6 shows that the model can capture the same trend as the experimental result reported in Figures 4 

and 5 of Köhler and Spatz (2002). The time-dependent model adequately describes the effect of 

viscoelasticity on the hysteresis response.  

 A simulation for creep responses using the time-dependent model is depicted in Figure 8. 

Two stress levels, 40MPa (left) and 80MPa (right), are considered in this analysis. The loading 

stress is held for 1 hour. From Figure 8, we can see that the time-dependent model is capable of 

generating a creep-recovery curve similar to a typical linear viscoelastic material. However, unlike 

a linear viscoelastic material, the instantaneous deformations shown in Figure 8 during loading 

and unloading are not the same. The difference in the instantaneous deformations is attributed to 

the continuous microstructural changes during creep. Comparing the left figure of Figure 9 to the 

right figure, we can see that the difference in the instantaneous deformations during loading and 

unloading is more obvious for the larger stress, indicating more microstructural changes occur at 

80MPa. Figure 8 clearly presents the two sources of an energy dissipation: the dissipation due to 

a microstructural change and the dissipation due to a viscoelastic effect. 

 

Predicting Nonlinear Hysteretic Responses of Plant Stems 

Plant stems are composites comprised of multiple constituents with different microstructural 

morphologies. In a simplistic way, they can be considered as composites having outer 
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strengthening tissue and inner core. The outer strengthening tissue consists of collenchyma, 

parenchyma, and sclerenchyma while the inner core comprises of phloem, xylem bundles, 

interfascicular parenchyma and pith (Köhler and Spatz 2002). We can predict the overall response 

of composites by incorporating different responses of the constituents and amount of the 

constituents in the composites, i.e., using a micromechanics model. We assume the stems as 

composites comprising of two different constituents (Figure 9), i.e., outer strengthening tissue and 

inner core, as tested by Köhler and Spatz (2002).   

 Similar to the simulation of individual plant tissues discussed above, we assume both the 

outer ring and inner core experience different microstructural changes when subjected to external 

stimuli. For a composite with two constituents, the Gibbs potential of the stem is written as: 

 ( ) ( ) ( )2 22 2
1 1 2 21 1 2 2

1 2 1 2
1 1 2 2

1 1
( , , , , ) 1

2 2 2 2f o f o

G c c c
E E E E

α σ α σα σ α σα α σ σ
      − −

= − − + + − +                  
  (26) 

where 

:c  Volume fraction of the inner core tissue 

1 2, :σ σ Independent variables represent stresses applied on the outer skin and inner core, 

respectively.  

1 1, :o fE E Moduli of the outer strengthening tissue at 1 0α = (initial state) and 1 1α = (complete 

microstructural change), respectively. 

2 2, :in fE E Moduli of the inner core tissue at 2 0α = and 2 1α = , respectively. 

 Following Eq. (20), the rate of energy dissipation for the stem is written as: 

 ( ) ( ) ( )1 1 1 2 2 2 1 2
1 2

1 e e
G Gc cξ σ ε ε σ ε ε α α
α α

∂ ∂
= − − + − − −

∂ ∂
       (27) 

The elastic strains for the outer skin and inner core tissues are: 
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( ) ( ) ( )
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e
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E E
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α σα σε
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α σα σε
σ
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∂   
 −∂
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 (28) 

and we also assumed that 

 1 1 1 1max 1 1 1 1max

2 2 2 2max 2 2 2 2max

e e

e e

ε ε α ε ε ε α ε
ε ε α ε ε ε α ε

− = → − =
− = → − =

  

  

 (29) 

From Eqs. (28) and (29), the strains for the outer strengthening skin and inner core are: 

 

( )

( )

1 11 1
1 1 1max

1

2 22 2
2 2

1

2
2max

2

1

1

f o

of

E E

E E

α σα σε α ε

α σα σε α ε

 −
= + + 

  
 −

= + + 
  

 (30) 

Substituting Eqs. (28) and (29) into Eq. (27), the rate of energy dissipation for the stem is: 

 ( ) ( )1 1max 1 2 2max 2 1 1 2 2
1 2

1 1G Gc c c F cFξ σ ε α σ ε α α α
α α

   ∂ ∂
= − − + − = − +  ∂ ∂   

     (31) 

where 1F  and 2F  are the driving forces for microstructural changes of the outer skin tissue and 

inner core tissue, respectively, which are:  

 

2
1 1max 1

1 1

2
2 2ma 2

2

1

2 x
2
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 (32) 

The microstructural changes of the outer skin and inner core are: 

 

1 2
1 2

1 2
1

1 2

1 1 2 2

1 2 2
1 2

;           
max max

o o

f o f o

E E

E E E E

σ σε ε
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− −
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− + − +
 (33) 
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For stems with a structure shown in Figure 9, the following kinematic and equilibrium equations 

for the axial loading are considered: 

 ( )
1 2

1 21 c c
ε ε ε
σ σ σ

= =
= − +

 (34) 

From Eqs. (30) and (34) the constitutive equation for the stalk is: 

 ( ) ( )1 1max 2 2max

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1
1 1 1 1

f o f o f o f o

c c cc

E E E E E E E E

α ε α εε σα α α α α α α α

 
 − − + = + +

− − − − + + + + 
 

 (35) 

 Figure 11 shows the stress-strain behaviors of the outer strengthening and inner core tissues 

of Aristolochia macrophylla stem. The experimental data are obtained from Köhler and Spatz 

(2002). For each of the outer and inner core tissues, material parameters are determined from the 

stress-strain in Figure 10. The corresponding driving force and microstructural changes for the 

outer strengthening and inner core tissues are obtained from Eqs. (32) and (33), as depicted in 

Figure 11. The material parameters are listed in Table 1. Figure 12 presents a prediction of a 

nonlinear response of Aristolochia macrophylla stem. The volume fraction of the inner core is 

determined by varying its value to give the best result of the overall response of the stem. In this 

study, the volume fraction of 0.6 is chosen. Figure 13 shows the simulation of cyclic response for 

Aristolochia macrophylla stem, where input stress is varied between 0 MPa and 16 MPa. For 

comparison, the hysteretic responses of the outer skins and inner core are also shown.  

 

Conclusions 

We have modeled a nonlinear hysteretic response of plant tissues and stems subjected to cyclic 

mechanical loadings. We formulated a constitutive model, based on thermodynamics and 

continuum mechanics, by taking into account the net effect of microstructural changes in 
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describing the macroscopic response of the cell wall. The model treats the cell wall as a 

homogenized medium, and the effect of microstructural changes is incorporated through an 

internal state variable. A typical experimental test in understanding the biomechanics of plants is 

obtained by testing tissues at a relatively large scale, which are inherently treating the plant tissues 

as homogenized bodies. The proposed model correlates well with the typical experimental tests 

since the detailed processes or information of the microstructural aspects that influence the 

macroscopic response of plant tissues are often not available, and only the net effect is being 

accounted for. The model assumed that prescribing a mechanical loading to plant tissues alter the 

microstructures of tissues from the initial configuration (original network) to the final 

configuration (complete changes of microstructures, or new network). At these two extreme 

configurations, the plant tissues have different mechanical and physical properties associated with 

the two networks. At any intermediate loading stage, the macroscopic response of the plant tissues 

is due to a combined effect of the initial and final microstructures. The model also accounts for an 

energy dissipation, which are due to the viscoelastic effect and microstructural changes. We have 

compared the responses obtained from the proposed model to several available nonlinear hysteretic 

responses of plant tissues. Overall, the model shows a good correlation with experimental data. 

One of the advantages of the model is that it has relatively small numbers of material parameters 

that can be easily calibrated from the macroscopic experimental data. The material parameters 

have physical interpretation instead of mainly for curve fitting purposes. The model also 

incorporates gradual microstructural changes during various loading histories. 

 We have also demonstrated that the proposed approach can be extended easily to include 

responses of different tissues in the plant stem in predicting the overall mechanical response of the 

stem. This will be useful for examining the contributions of different constituents in the plant stem 
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on their macroscopic mechanical response, which can shed light into understanding deformation 

mechanisms in plant stem.  
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Table 1 Material Parameters for different tissue 

Tissue type Eo (GPa)          Ef (GPa)           εmax (%)         N 
Wet wood tissue of spruce (Picea abies) 

Isolated sclerenchyma tissue of Aristolochia 
macrophylla 

Outer strengthening tissue of Aristolochia 
macrophylla 

Inner core tissue of Aristolochia macrophylla 

1.189              1.757              13.65          5050  
3.542              4.984                4.24           5050  

 
1.552              1.552               2.91           5050 

 
0.262              0.262               8.37           5050 
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Figures: 
 
 

 
Figure 1 A schematic representation of a nonlinear hysteretic response and the motivation of 

microstructural changes 

 

 
Figure 2 Calibration of material parameters oE , fE and maxε from experimental data on wet 

wood tissue of spruce (Burgert 2006) 
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Figure 3 Outer loop of the hysteretic response (top) and its corresponding driving force and 

microstructural changes (bottom) 

 

 
Figure 4 Modeling result of wet wood tissue of spruce 
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Figure 5 Simulation results for isolated sclerenchyma tissue of Aristolochia macrophylla. Left: 

cyclic response. Right: Quasi static response. 

 
Figure 6 Quantitative study for the effect of viscoelasticity on hysteresis behavior  
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Figure 7 Time-dependent hysteresis response at stress rate 21 10 /MPa sσ −= ×  

 

 
Figure 8 Creep responses generated by time-dependent model 
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Figure 9 Structure of plant tissue (stalk) 

 

 
Figure 10 Simulation of strain-stress responses for outer skin and inner core of the Aristolochia 

macrophylla stem. Left: simulation for outer skin tissue. Right: simulation for inner core. 
Experimental data are obtained from Köhler and Spatz (2002) 

 

 
Figure 11 Relation between driving force and microstructural change for Aristolochia 

macrophylla tissue 
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Figure 12 Response of the Aristolochia macrophylla stem with inner core volume fraction of 0.6 
 

 
Figure 13 Simulation for the cyclic response of Aristolochia macrophylla stem
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Appendix A 

A general multi-axial constitutive model that can be used for describing anisotropic response of 

materials is discussed here. To calibrate the properties in the multi-axial model, experimental 

tests beyond a simple uniaxial test are required. The Gibbs free energy is expressed in terms of 

stress tensor comprising elastic (N) and viscoelastic (V) components, ( , , )V NG G α= σ σ and the 

total strain tensor is given as: 

 e p= +ε ε ε  (A.1) 

where e V N= =ε ε ε , e v
V V V= +ε ε ε and pε is the permanent strain tensor. The elastic strains are 

determined from N
N

G∂
= −

∂
ε

σ
 and e

V
V

G∂
= −

∂
ε

σ
. The total stress is N V= +σ σ σ . The rate of the 

mechanical dissipation is given as: 

 d P
V V p D D

G G Fαξ α ξ α ξ α
α α α

∂∂ ∂ = + − = + − = + ∂ ∂ ∂ 
εσ ε σε σ     (A.2) 

For a general multi-axial response, the Gibbs free energy can be expressed as: 

( , , ) . (1 ) . . (1 ) .f i f i
V N V V V V V V N N N N N NG α α α α α   = − + − − + −   σ σ S σ σ S σ σ S σ σ S σ σ   (A.3) 

where , , ,f i f i
V V N NS S S S  are fourth order tensors associated with the compliance of the materials. The 

components of the above tensors should be determined from experiments, which will indicate the 

isotropy or anisotropy nature of the materials. The rate of the mechanical dissipation associated 

with the delayed response is given as: 

 . (1 ) .f i
D V V V Vξ α α= + −K σ σ K σ σ  (A.4) 

where fK and iK are fourth order tensors associated with the inverse viscosity of the materials. 

Finally, the elastic and viscoelastic strain tensors can be determined from the Gibbs energy 

in Eq. (A.3) and the rate of the dissipative strain can be obtained from Eq. (A.4): 
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                                                  2 (1 )2f i
V V V V Vα α= + −ε S σ S σ                                               (A.5)  

                                                   2 (1 )2f i
N N N N Nα α= + −ε S σ S σ                                            (A.6) 

 2 (1 )2d f i
V V Vα α= + −ε K σ K σ  (A.7) 

The driving force for the microstructural changes is now given as: 

 . . . .p f i f i
V V V V V V N N N N N NFα α

∂
= + − + −

∂

ε
σ S σ σ S σ σ S σ σ S σ σ   (A.8) 

The function for ( )p αε can be formed based on available experimental data, as discussed above. 

An example of a multi-axial response for isotropic polymers, obtained from the proposed approach, 

can be found in Song et al. (2019). 
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Appendix B 

The parametric study for the parameter N is shown in this section. Fig. B1 below depicts the 

Preisach-Krasnoselskii operator used in this study, where forwardF  and backwardF are the two 

thresholds for the driving force (Doraiswamy et al. (2011); Xing et al. (2017)). Fig. B1 (left) shows 

a hysteron element used in the Preisach model, where i
forwardF  and i

backwardF  indicate the thresholds 

for thi hysteron. During loading, when the driving force i
forwardF F> , the hysteron switches ‘on’ and 

gives an output of α∆ . Similarly, during unloading, when the driving force i
backwardF F< , the 

hysteron is switched ‘off’. In the right figure, each cross mark represents a hysteron element; the 

shadowed area indicates the hysterons triggered on under current loading history. The total number 

of hysteron can be related to the hysteron on each side sideN  through 1 ( 1)
2 side sideN N N= × + .  

 
Figure B1 Basic hysteron element (left); Preisach-Krasnoselskii operator (right). 

 

In the parametric study shown in Fig. B2 below, we choose 20,50,100,200sideN = , respectively. 

From Fig. B2, we can see that the value of N does not influence the shape of the hysteresis loop. 

Parameter N only has an influence on the smoothness of the simulation result. Larger value for N 

would decrease zigzags, therefore increase the smoothness of the prediction. However, increasing 
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the value for N would also require more computation time. As show in Fig. B2 the responses with 

N=5050 and N=20100 do not show a significant variation. In the modeling of spruce tissue, the 

value for N is set to be 5050. 
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Figure B2 Parametric study for parameter N 
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Appendix C 

Besides using the Preisach-Krasnoselskii operator, the relation between driving force F and 

microstructural change α can also be simulated by picking suitable mathematical functions. The 

F α− plot calibrated form the outerloop of the hysteresis response can be divided into the 

following regions: 

1. Elastic region. 

During loading, if the increase of input stress is smaller than a certain value (as shown in Figure 3 

(top)), no microstructural change happens and volume fraction α stays unchanged. In this case, if 

the increase of loading stress 6loading MPaσ∆ ≤ , we assume no microstructural change occurs. 

2. As shown in Figure 3 (bottom), for loading, after elastic region where α stays unchanged, 

the relation between F and α can be simulated by a second-order polynomial function until they 

reached a point where α changes linearly with driving force F. For unloading, a second-order 

polynomial function is enough to describe the relation between F andα . The parts where relations 

between F and α are modeled by second-order polynomial functions are marked in blue in Figure 

C1. Eq. (C1) and Eq. (C2) below show the second-order polynomial relations between F and α  

during the loading and unloading, respectively. 

 * 2
1( )loadingk F Fα = −  (C1) 

 * * 2
2 ( )unloadingk F Fα α= − −  (C2) 

The value for parameters *
loadingF , *

unloadingF  and *α are marked in Figure 3 (bottom). Values for 1k  

and 2k  are calibrated by fitting Eqs. (C1) and (C2) with outerloop of the F α− plot.  In this case, 

the value for 𝑘𝑘1 is 7.0 × 10−14, and the value for 𝑘𝑘2 is 2.8 × 10−14. 

3. Linear relation between F and α during loading 
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Figure C1 Linear relation between F and α during loading 

 
The red line shown in Fig.B1 is the part where α  increase linearly with F. As shown in Fig.B1, it 

is assumed that when volume fraction α reached a certain value, 𝛼𝛼𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜, the relation between 

F and α can be simulated by a linear function Eq. (C3). 

 ( )3threshold thresholdk F Fα α= + −  (C3) 

where thresholdF is the driving force corresponding with thresholdα , through Eq. (24). In this case, 

thresholdα is set to be 0.1, and the value for 3k calibrated from Fig. B1 is 7
3 4.4 10k −= × . 

 The final modeling result for plant tissue is shown in Fig. C2 below. Fig. C2 shows similar 

modeling result with Figure 5, where the relation between α and F is modeled by the Preisach-

Krasnoselskii operator. 

 
Figure C2 Modeling result for plant tissue 
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