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Abstract. Time-dependent simulations of ice sheets require
two equations to be solved: the mass transport equation, de-
rived from the conservation of mass, and the stress balance
equation, derived from the conservation of momentum. The
mass transport equation controls the advection of ice from
the interior of the ice sheet towards its periphery, thereby
changing its geometry. Because it is based on an advection
equation, a stabilization scheme needs to be employed when
solved using the finite-element method. Several stabilization
schemes exist in the finite-element method framework, but
their respective accuracy and robustness have not yet been
systematically assessed for glaciological applications. Here,
we compare classical schemes used in the context of the
finite-element method: (i) artificial diffusion, (ii) streamline
upwinding, (iii) streamline upwind Petrov—Galerkin, (iv) dis-
continuous Galerkin, and (v) flux-corrected transport. We
also look at the stress balance equation, which is responsible
for computing the ice velocity that “advects” the ice down-
stream. To improve the velocity computation accuracy, the
ice-sheet modeling community employs several sub-element
parameterizations of physical processes at the grounding
line, the point where the grounded ice starts to float onto the
ocean. Here, we introduce a new sub-element parameteriza-
tion for the driving stress, the force that drives the ice-sheet
flow. We analyze the response of each stabilization scheme
by running transient simulations forced by ice-shelf basal
melt. The simulations are based on an idealized ice-sheet ge-
ometry for which there is no influence of bedrock topogra-
phy. We also perform transient simulations of the Amundsen
Sea Embayment, West Antarctica, where real bedrock and
surface elevations are employed. In both idealized and real

ice-sheet experiments, stabilization schemes based on arti-
ficial diffusion lead systematically to a bias towards more
mass loss in comparison to the other schemes and therefore
should be avoided or employed with a sufficiently high mesh
resolution in the vicinity of the grounding line. We also run
diagnostic simulations to assess the accuracy of the driving
stress parameterization, which, in combination with an ad-
equate parameterization for basal stress, provides improved
numerical convergence in ice speed computations and more
accurate results.

1 Introduction

Numerical modeling is routinely used to understand the past
and future behavior of the ice sheets in response to the evo-
lution of the climate (e.g., Ritz et al., 2015; DeConto and
Pollard, 2016; Aschwanden et al., 2019; Goelzer et al., 2020;
Seroussi et al., 2020). As is always the case with numerical
models, one needs to minimize biases, numerical artifacts,
or poor numerical convergence due to the choice of numer-
ical scheme. It is therefore critical for the numerical solu-
tion to converge to the “true solution” regardless of the nu-
merical scheme employed, and that the model is not overly
sensitive to the mesh resolution (e.g., Szab6é and Babuska,
1991, p. 4). One of the governing equations in ice-sheet nu-
merical modeling is the mass transport equation, an advec-
tion equation derived from the conservation of mass that pre-
scribes the evolution of the ice-sheet geometry (e.g., Cuffey
and Paterson, 2010, p. 333). Another governing equation is
the stress balance equation, a set of equations that describes
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the ice velocity over the entire ice sheet. This velocity field
is used to “advect” the ice mass over time. These govern-
ing equations are often solved using numerical methods such
as the finite-element method (FEM), widely employed in
the ice-sheet modeling community (e.g., Larour et al., 2012;
Gagliardini et al., 2013; Gudmundsson, 2020). As with any
numerical method, several schemes exist to solve these equa-
tions within FEM in order to achieve stability, accuracy, and
low computational cost, the desired properties of any numer-
ical method (see, for example, Szabé and Babuska, 1991,
Chapter 1).

It is well known that the discretization of advection-
dominated equations by the traditional finite-element method
leads to numerical instabilities and spurious oscilla-
tions (e.g., John et al., 2018). The mass transport equation
therefore needs to be stabilized when solved using FEM. The
choice of an adequate stabilization scheme is crucial to sim-
ulate the main characteristics of ice-sheet dynamics without
introducing numerical artifacts in the solution, such as os-
cillations, non-physical diffusion, or poor numerical conver-
gence (see, e.g., John and Schmeyer, 2008). While some sta-
bilization techniques may have good properties for some spe-
cific applications, they may not be appropriate for others.

The finite-element method’s literature presents a large
number of stabilization schemes, with different levels of
complexity and accuracy (Codina, 1998; Franca et al., 2006;
John and Schmeyer, 2008). The simplest schemes are based
on adding an artificial diffusive-type term, turning the advec-
tion equation into an advection—diffusion equation (LeVeque,
1992, p. 118). This approach is equivalent to the upwind dif-
ferencing employed in the finite-difference method (Kelly
et al., 1980; Selmin, 1993). While this method leads to
a more stable formulation, the downside is the reduced
accuracy especially in regions where the solution is not
smooth or presents steep gradients (Brooks and Hughes,
1982; Donea, 1984b). Other schemes are based on counter-
balancing the terms in the finite-element formulation, such
that the numerical diffusion vanishes (Brooks and Hughes,
1982). A popular method is the streamline upwind Petrov—
Galerkin (SUPG), but the accuracy and stability of this
scheme rely on the definition of the stabilization parameter,
which is problem-dependent (Almeida and Silva, 1997; Co-
dina, 2000; Knopp et al., 2002; Bochev et al., 2004; John
and Schmeyer, 2008; Burman, 2010). Alternatively, a discon-
tinuous Galerkin (DG) formulation, a finite-volume-inspired
scheme, produces accurate results in advection-dominated
flows (Cockburn, 1998, 1999). However, its implementation
requires specific data structures to handle (computational)
nodes and (geometric) vertices of the mesh (e.g., Calle et al.,
2005; Devloo et al., 2007). Also, the increased number of de-
grees of freedom introduced by this method may reduce the
computational performance. Most recently, finite-element-
oriented flux-correction schemes have been proposed as a
promising alternative (Kuzmin and Turek, 2002; Kuzmin
et al., 2003). These schemes manipulate the discretized al-
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gebraic system in order to add anti-diffusive terms without
compromising numerical stability. All the schemes described
above have been applied to a number of physical prob-
lems (e.g., Reed and Hill, 1973; Jameson, 1995; John and
Schmeyer, 2008; Ngo et al., 2015; Watanabe and Kolditz,
2015; Diddens, 2017; Hansen et al., 2019). However, the per-
formance of these schemes has not been evaluated in a sys-
tematic way for ice-sheet simulations.

The stress balance is another critical component of tran-
sient models. For simplified stress balance equations, such
as the shallow shelf approximation (MacAyeal, 1989) or
Blatter—Pattyn’s higher-order models (Blatter, 1995), the
right-hand side is a function of the ice surface gradient (Cuf-
fey and Paterson, 2010, p. 295). Usually, in finite-element-
based ice-sheet models, gradients are assumed to be con-
tinuous within each element. This is a reasonable assump-
tion for most of the ice-sheet domain, except at the ground-
ing line, the point where ice detaches from the underlying
bedrock and starts to float over the ocean. From a numeri-
cal simulation point of view, the grounding line represents a
discontinuity of several physical processes (e.g., basal fric-
tion, basal melt), and the accuracy of its dynamics requires
a fine mesh resolution (Durand et al., 2009; Pattyn et al.,
2012, 2013; Cornford et al., 2013). Sub-element parameteri-
zations of such physical processes are commonly employed
to improve numerical convergence of the ice velocity compu-
tation (Seroussi et al., 2014a; Feldmann et al., 2014; Corn-
ford et al., 2016; Seroussi and Morlighem, 2018). In most
basal friction parameterizations, for instance, the grounding
line is free to evolve within the elements. Generally, in such
a situation, the models assume the ice thickness to be con-
tinuous at the grounding line!. This assumption implies that,
for the grounded part of the element crossed by the ground-
ing line, the ice surface is a function of both bedrock el-
evation and ice thickness, while, for the floating part, the
ice surface is obtained by the hydrostatic floatation only,
which only depends on the ice thickness. This makes the
gradient of the ice surface and the resulting driving stress
discontinuous within the elements containing the ground-
ing line. While there exist comparison studies for basal fric-
tion and basal melt parameterizations (e.g., Seroussi et al.,
2014a; Seroussi and Morlighem, 2018), little attention has
been given to the sub-element parameterization of the driv-
ing stress in the context of the finite-element method. To the
best of our knowledge, only studies based on finite-volume
and finite-difference methods use driving stress parameteri-
zations (Cornford et al., 2013; Feldmann et al., 2014).

In this context, the present paper aims to (i) assess the re-
sponse of different stabilization schemes in transient simu-
lations subject to ice-shelf basal melt and changes in basal
friction, and (ii) develop and assess a sub-element parame-

IThis is a consequence of the finite-element discretization, since
such models employ continuous shape functions to approximate the
ice thickness.
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terization for the driving stress. The numerical experiments
are based on the Marine Ice Sheet Model Intercompari-
son Project for plan-view models (MISMIP3d) setup (Pat-
tyn et al., 2013), a simple idealized ice-sheet geometry. Ad-
ditional experiments are presented for the Amundsen Sea
Embayment (ASE) of the West Antarctic Ice Sheet (WAIS),
which includes the Pine Island and Thwaites glaciers. We use
the Ice-sheet and Sea-level System Model (ISSM) to perform
all the numerical experiments. In Sects. 2 and 3, we describe
the technical details of the stabilization schemes and driv-
ing stress parameterization, respectively, and in Sect. 4 we
present the numerical setup of experiments used to test them.
The results are shown in Sect. 5, followed by discussions in
Sect. 6 and final remarks in Sect. 7.

2 Mass transport equation and stabilization schemes
2.1 Mass transport equation

The evolution of the ice thickness is described by an advec-
tion equation with source terms on the right-hand side:

oH _ . .
5, TV @H) =ms—m, ey

where v = {vy, vy} is the depth-averaged ice velocity in the
horizontal plane, mg the surface mass balance (positive for
accumulation), and m1y, the basal melt (positive for ablation).
The velocity field v is a function of the ice geometry and
therefore of the ice thickness H. Note that both surface mass
balance mg and basal melt 71, may depend on the surface
elevation and ice-shelf depth, respectively. All these depen-
dencies make Eq. (1) a non-linear advection equation. For the
sake of simplicity, we keep mig as a constant in all transient
simulations. The description of my, is given in Sect. 4.1 (see
Eq. 41).
The weak formulation of Eq. (1) is

oH _ . .
f(W_i_v.(vH))IﬂdQ:/(ms_mb)wdQ’
Q Q

Yy e H, 2

where H = H(2) is a space of admissible functions for the
model domain €2, and ¢ is called a test or weight function.
We seek a solution H € H such that the weak form (Eq. 2)
is satisfied. In the traditional finite-element method, both H
and ¢ belong to the same set of functions H. It is known that
in this approach Eq. (2) generates potentially large, spurious
oscillations if not properly stabilized or if the mesh size is
not excessively small (see, for example, Brooks and Hughes,
1982).

The weak form (Eq. 2) (and its alternative stabilized
forms) requires approximating functions in H with non-
trivial first-order derivatives. In this sense, we employ sub-
space H'! C H whose functions (and their first derivatives)
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are square integrable. For discretization purposes, we use P1
Lagrange functions and Delaunay-based triangulation.

2.2 Artificial diffusion and streamline upwinding

In general, stabilization schemes may be seen as a consistent
way of adding terms to Eq. (1) (or Eq. 2) in order to trans-
form it into a more stable formulation. In the artificial dif-
fusion (ArtDiff; MacAyeal, 1997, p. 172) and streamline up-
winding (Streamline; Hughes and Brooks, 1979; Kelly et al.,
1980) schemes, the resulting mass transport equation is

OH
StV @H) =V (DVH) = its i, )

where D is a second-order tensor, known as the diffusive
tensor. In the artificial diffusion scheme, the tensor is defined
as (MacAyeal, 1997, p. 172)

_hf vl 0
D_2< 0 |Uy})’ @

where A is the characteristic size of the element, and v, and
vy are the horizontal components of the (depth-averaged) ice
velocity. In the streamline upwinding method, the tensor is
defined in such a way that the artificial diffusion is added
only along streamlines and not in cross flows. In this sense,
the tensor D is defined as (Hughes and Brooks, 1979; Kelly
et al., 1980; Brooks and Hughes, 1982)

h h 2 ,
D=—" i@1=-" ( Ux ”’”{’), (5)
2 vl 2ol \ vyve vy
where || - || is the Euclidean norm. The resulting weak formu-

lation of Eq. (3), after integrating the diffusive term by parts,
is

/ (2_’;’ LV (TJH)) VdQ +/V¢ . DVHAQ
Q Q

- f (g — 1) A2,
Q

Yy e H. (6)

Both schemes are interpreted as an upwind-equivalent
scheme employed in the finite-difference method (Kelly
et al., 1980; Selmin, 1993), sharing therefore similar char-
acteristics such as a first-order accuracy and large numerical
dissipation (de Vahl Davis and Mallinson, 1976; Gresho and
Lee, 1979). However, the resulting formulation is very sta-
ble, which made them popular in glaciology (e.g., MacAyeal,
1997, p. 172). Artificial diffusion was the default scheme em-
ployed in ISSM. The low accuracy of such schemes leads to
the development of alternative methods with higher accuracy,
such as the streamline upwind Petrov—Galerkin.
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2.3 Streamline upwind Petrov—Galerkin

In the SUPG scheme (Brooks and Hughes, 1982), the diffu-
sive or upwind term is not added directly into Eq. (1). In-
stead, the upwind effect is achieved by adding the upwinding
term into the test function i (Christie et al., 1976; Hein-
rich et al., 1977). This procedure, where the solution and
test functions belong to different spaces, is commonly called
Petrov—Galerkin method (see, e.g., Griffiths and Lorenz,
1978; Brooks and Hughes, 1982). The modified test func-
tions I/Af are generally defined as (Brooks and Hughes, 1982)

b=y 4TV @y, )

where 7 is a stabilization coefficient, defined below. Using
the modified test functions v, the resulting weak formulation
of Eq. (1) is written as

OH _
4+ V.-(BH) | ydQ
at
Q
OH _ _
+ [ (5, +V 6 )V @y de
Q

=/(ms—mb)¢d9+/(ms—ﬁib)fv'('_Hﬂ)dQ,
Q Q
Vi e H. (3)

The most common definition of the stabilization term t is
given by (Franca et al., 2006)

1
T = _ coth(P,) — —) , O]
2MH( “ P
with
RV
P = : (10)
2K

where P, is the Péclet number of element e, and « is known
as the diffusion coefficient. The diffusion coefficient « is not
explicitly defined in Eq. (1). For fast ice streams where the
flow is dominated by basal sliding rather than internal de-
formation?, an alternative is to assume the asymptotic limit
of the term within parentheses in Eq. (9) when « and conse-
quently P, go to infinity. With this assumption, the stabiliza-
tion coefficient is approximated by

1)

An alternative to defining t is to replace the Péclet num-
ber by the Courant-Friedrichs—Lewy (CFL) number C, in
Eq. (9) (Gudmundsson, 2020, p. 19, 20), i.e.,

2In ice flows dominated by internal deformation rather than
basal sliding, the velocity field may be described by the shallow ice
approximation. Within this approximation, the thickness equation
turns into a (non-linear) diffusion equation (see Greve and Blatter,
2009, p. 82), which does not require any stabilization scheme.
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where At is the simulation time step. The motivation be-
hind this approach is the equivalence between the SUPG and
Taylor—Galerkin methods in transient problems (see, e.g.,
Donea, 1984a; Donea et al., 1984; Codina, 1998; Blank et al.,
1999; Akin and Tezduyar, 2004; Kuzmin, 2010, p. 73). For
C. < 1, which is basically true in ice-sheet simulations?,
the term within parentheses in Eq. (12) is approximately
C./3 (Gudmundsson, 2020, p. 20). Therefore, for low CFL

numbers, we can approximate Eq. (12) by

At (14)
T~T) = —.
6

In ISSM, we implement 7 as given by Eq. (11),1i.e., T = 11.
This definition is also employed in Elmer/Ice, a popular
FEM-based ice-sheet model (Gagliardini et al., 2013). How-
ever, for some simulations performed here, we use the ap-
proximation given by Eq. (14) (r = 12), as implemented in
Ua (Gudmundsson, 2020), another popular ice-sheet model.

2.4 Discontinuous Galerkin

Strictly speaking, DG is not exactly a stabilization scheme in
the sense of adding upwinding terms to Eq. (1) or to the space
of test functions . It is a variant of the traditional continuous
Galerkin method, in which the functions approximating the
solution are discontinuous across elements’ edges. This adds
the advantage of local conservation with typical FEM char-
acteristics such as the ease of dealing with non-structured
meshes, complex domains, and boundary conditions, and hp
adaptivity (Cockburn, 1998; Kuzmin, 2010, p. 84). With ap-
propriate definition of the numerical inter-element fluxes, the
resulting formulation is known to be stable in advection-
dominated problems (e.g., Brezzi et al., 2004). It was orig-
inally developed for the neutron transport simulation (Reed
and Hill, 1973), and since then DG has been applied to other
fields, including elliptic-type equations (e.g., Babuska et al.,
1999; Brezzi et al., 2000; Arnold et al., 2002). A more com-
plete history and an overview of the vast application fields of
DG can be found in Cockburn (1998, 2003).

In DG, the weak formulation is written in an element-wise
fashion, and the advection operator is integrated by parts

3In 2-D, it is common to bound the CFL by one-half over the
entire domain and simulation period.
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such that Eq. (2) is rewritten as

dH ) i
/(—w—(vaw) dszf+/(vH¢).ndSE
SE

at
Qe‘
= / (rits — rity) YA,
Qe

Yy e H, (15)

where Q¢ € Q is the domain of element e, S is the boundary
of ¢, H is built on the element’s domain (i.e., H = H(Q2°)),
and n is a unit vector pointing outward along the boundary
S¢. The stabilized version of Eq. (15) comes from the defini-
tion of the numerical flux (v H) in the second integral on the
left-hand side. In ISSM, an upwinding numerical flux is em-
ployed such that Eq. (15) is rewritten as (Brezzi et al., 2004)

ot
Qe ¢

oH _ -
/(—lﬂ —(vH)~V1p> dQe+f(vH)u-(1pn)dSe

= / (1t — 1) YA,
QL’

Vi e H, (16)

where (vH ), is the upwinding numerical flux.

As seen in Sect. 2.6, the time-derivative discretization
of Eq. (16) in ISSM relies on a backward Euler scheme,
which differs from the popular Runge—Kutta discontinu-
ous Galerkin (RKDG; Cockburn and Shu, 1991; Cockburn,
1998, 2003), an explicit time projection scheme that is known
for its stability (as long as CFL < 1/3) and allows full par-
allelization since the resulting mass matrix is block diago-
nal. The DG implementation in ISSM was conceived to be
an alternative to other stabilization schemes without enforc-
ing large changes in an existing code. Therefore, we do not
expect to achieve the same benefits as RKDG (and similar
schemes) in our simulations. The Elmer/Ice model (Gagliar-
dini et al., 2013) adopts a time discretization similar to the
implementation of ISSM.

2.5 Flux-corrected transport

The flux-corrected transport (FCT) scheme operates in the
resulting algebraic system of the traditional Galerkin dis-
cretization (i.e., Eq. 2) instead of modifying its weak form or
the approximation/trial spaces. The scheme was developed
to solve the continuity equation for compressible fluids in
a finite-difference framework (Boris and Book, 1973), and
it was extended to FEM by Lohner et al. (1987) and most
recently by Kuzmin and Turek (2002) and Kuzmin et al.
(2003). The latter is also named as FEM-FCT in the litera-
ture. The FEM-FCT scheme seems to be stable even in the
presence of steep gradients and discontinuities (e.g., John
and Schmeyer, 2008). For simplicity, we refer to the FEM-
FCT scheme as FCT. This scheme can be described as a hy-
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brid method combining a higher-order (but potentially oscil-
latory) scheme and a lower-order diffusive (not oscillatory)
scheme. In regions where the solution is smooth, the higher-
order scheme is applied, while the lower-order scheme is ap-
plied where necessary (e.g., steep gradient regions). How-
ever, this scheme adds just enough flux into the “low-order
region” from the high-order (a.k.a. anti-diffusive) region to
maintain its accuracy without inducing oscillations.

The scheme modifies the discrete form of Eq. (2) by
employing a generic finite-difference scheme for the time
derivative, i.e.,

Mc+0AK)H" ! = [Mc — (1 —60) AtKIH" + AtF, (17)

where At is the time step, Mc is the mass matrix?, K is
the advection matrix, and F is the forcing vector. The su-
perscripts 7+ 1 and » indicate the next and current steps, and
the fractional weight 6 stands for the backward Euler scheme
if & = 1 and for Crank—Nicolson if 6 = 1/2. As explained in
Sect. 2.6, the load vector F as well as the velocity field in K
are defined in step n. To simplify the notation, we drop the
superscripts of these variables in this section.

The first step consists of turning Eq. (17) into a stable,
low-order algebraic system. This is achieved by replacing the
consistent mass matrix Mc by a lumped mass matrix Mp and
the advection matrix K by a matrix L:

Mc = diag{m;},
N

mi = mij, (18)
j=l1

where N is the total number of degrees of freedom. The ma-
trix L is defined as

L=K+D, 19)

where D = {d;;} represents an artificial diffusion with ele-
ments defined as (Kuzmin and Turek, 2002)
d,-jzdjiz—max{O, kijakji}s Vi;éj,
N
dii = — Z d;j, (20)
j=L j#i

where k;; are the elements of matrix K (= {k;;}). By con-
struction, the matrix L. does not contain any positive off-

diagonal elements. The resulting stable, low-order system of
equations is

(ML +6ALYH" ™ =ML — (1 —0) ArtLIH" + AtF.  (21)

Compared to the original system (Eq. 17), the modified
system (Eq. 21) creates large numerical diffusion that pre-
vents spurious oscillations. By doing so, however, it also re-
duces the accuracy of solution H" 1.

41t is also named as consistent mass matrix, since it contains all
terms from the FEM discretization.
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In order to improve the accuracy of the solution while
still preventing spurious oscillations, the second step of the
scheme consists in adding an anti-diffusive term to the right-
hand side of Eq. (21):

My, + 0 ArL) H'" = [My, — (1 - 0) L] H" + AtF + F*, (22)

where F* is a vector whose elements fl* are defined as
N

fﬁ:Zaijr,-j, i=1,...,N. (23)
j=1

In Eq. (23), a;; € [0, 1] are weights to be defined appro-
priately (see below and Appendix A), and R = {r;;} is based
on the residual vector R between Egs. (21) and (17):

R= (M; —Mc) (H"+1 _ H”)
+AD [9H”+1 +a —e)H”]. (24)

The residual vector R can be decomposed as (see, e.g.,
Kuzmin, 2009)

N
ri = Z rijs Tji = —Tij, (25
j=1, j#i
where r;; represents the raw anti-diffusive flux from node
J into node i. Using Egs. (18) and (20), r;; can be written
as (John and Schmeyer, 2008)

Fij =mjj (Hin+l — H;H_l) —mjj (Hin — H]n)
1 +1
— Aeod (HH = HH)
— At(1-6)d;; (Hi”—H]’-'). (26)

Note that r;; depends on the solution H n+1 Roughly
speaking, there are two approaches to proceed with Eq. (26):
(i) a non-linear algorithm and (ii) a linear algorithm. Here, we
describe the latter (Kuzmin, 2009), which is currently imple-
mented in ISSM. Further details of both approaches can be
found in John and Schmeyer (2008) or in Kuzmin (2009).

In the linear FCT algorithm, the solution H"*! in Eq. (26)
is replaced by the solution Hp, obtained in the low-order sys-
tem (Eq. 21), i.e.,

My +60ALYH =My — (1 —6) AtL1H" + AtF. (27)

In ISSM, the Crank—Nicolson scheme (i.e., 8 =1/2) is
used in Eq. (27), and the raw anti-diffusive flux (Eq. 26) is
replaced by an alternative form (Kuzmin, 2009):

rij =mijj (HL,i —HL,j)+dij (Hui—Hyj), (28)

where H is an approximation of the time derivative d H /dt.
This approximation is computed using Richardson’s itera-
tion:

H' = B + M (KHL —McH?"), m=0,1,..., (29)
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with H 8 = 0. The convergence of Eq. (29) usually takes one
to five iterations (Kuzmin, 2009).

Once the anti-diffusive flux is obtained by Eq. (28) using
Egs. (27) and (29), the last step is to compute the solution
H"*! In this linearized FCT version, the solution H"*! is
explicitly obtained by solving (Kuzmin, 2009)

My H"T! =M Hy + AtF*, (30)

where F* is obtained by Eq. (23) with 7;; computed by
Eq. (28). The weights «;; are obtained using the so-called
Zalesak algorithm (Zalesak, 1979). Appendix A presents the
algorithm as implemented in ISSM.

2.6 Time discretization of the mass transport equation

We employ a semi-implicit finite-difference time-stepping
scheme to solve the temporal evolution of the ice thickness.
This scheme involves a backward Euler method? for the time
derivative in Eq. (1), but the other variables (velocity, sur-
face mass balance, and basal melting) are based on the previ-
ous time step. To illustrate this scheme, we apply this time-
derivative discretization in Eq. (6), as follows:

Hn+1 — H"
/ (T 4v. (a"H"“)) wdQ
Q

+/V1/f-D”VH”+1dQ
Q
zf(mg_mg)l/fdsz,
Q
vy e H, (31)

where At is the time step, and superscripts n and n+ 1
indicate the current and next simulation steps, respectively.
Algorithm 1 presents the solution sequence employed for
the mass transport computation.

Algorithm 1 Solution sequence for the ice thickness evolu-
tion (mass transport equation).

Given an initial state (v, H), while 1" < M do:
1. With H", compute #" (stress balance equation)
2. With H", compute 71§ and 7ir;, (update source terms)

3. With H", 3", m, and ;hg, compute H" ] (mass transport
equation)

4. With H"*!, update glacier geometry and grounding line
position

5. Time increment " T1 =" + At

Post processing.

S5For FCT, a Crank—Nicolson method is employed for H, but v,
s, and iy, are defined in time step n.
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3 Sub-element parameterization of driving stress

The position of the grounding line in non-full Stokes mod-
els is generally tracked with a level set condition based on a
floatation criterion (Seroussi et al., 2014a). This level set can
be located anywhere in an element, so it does not necessarily
coincide with elements’ edges:

o=H+ %Wr, (32)

where H is the ice thickness, p and py, are ice and ocean den-
sities, respectively, and r is the bedrock elevation (negative if
below sea level). The ice is grounded if ¢ > 0; otherwise,
it is floating. The grounding line is implicitly defined where
¢ = 0. In the element e containing the grounding line, the ice
surface, s, is recovered as follows:

if o (x,y) >0,

33
ifo(x,y) <0. &)

s(x.y) = Hx,y)+rx,y)),
T H Gy (= p/ow) .

The second condition in Eq. (33) guarantees the continu-
ity of the ice surface at the grounding line. However, its gra-
dient is discontinuous within the element: in the grounded
part (i.e., ¢ > 0), the surface gradient is a function of both
thickness and bedrock elevation, whereas in the floating part
(¢ < 0), it is proportional to the thickness gradient only. The
driving stress is therefore also discontinuous in elements par-
tially floating and partially grounded, and we propose to use
a sub-element driving stress parameterization to account for
this discontinuity. A similar approach to subgrid cells was
proposed (Cornford et al., 2013; Feldmann et al., 2014) based
on finite-volume or finite-difference methods by applying
one-sided differences to compute surface gradients on each
side of the grounding line.

The driving stress parameterization is based on recover-
ing the ice surface, and consequently its gradient, on the el-
ement e containing the grounding line. We divide the ele-
ment domain Q¢ in two subdomains: Q¢ and Qf that are
the grounded and floating parts of the element, respectively
(ie., Q¢ = QE UQF and Qé NQf = @). We then perform the
numerical integration of the driving stress on these two sub-
domains, i.e.,

Fe:/A“Vsdfz"=/A"Vsd§26+/AeVSdQe, (34)

Qe Q4 QL

where F¢ is the element load vector, A¢ is a matrix repre-
senting the rest of components of the driving stress and ele-
ment basis functions®, and Vs is evaluated according to the
recovered ice surface (Eq. 33). For comparison purposes, we
named the proposed driving stress parameterization SED2

SFor shallow shelf approximation (SSA; MacAyeal, 1989) equa-
tions, A¢ = pg HO®, where g is the gravitational acceleration and
©¢ is a matrix of element basis functions.
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(sub-element driving stress 2), since the approach here is
similar to the basal friction parameterization SEP2 devel-
oped by Seroussi et al. (2014a). The non-parameterized case,
i.e., when the ice surface is evaluated on the elements’ ver-
tices and then linearly interpolated elsewhere within the ele-
ments, regardless of the grounding line position, is referred
to as no driving stress parameterization (NSED). Mathemat-
ically, the ice surface in the NSED scheme is defined as
s=H( — p/pyw) over Q°, and the resulting driving stress
is proportional to VH.

4 Numerical experiments
4.1 MISMIP3d — numerical setup

In this section, we describe the idealized geometry exper-
iments used to evaluate the stabilization schemes and the
proposed driving stress parameterization. For the latter, we
employ different parameterization schemes for basal friction.
The list of all the schemes tested is summarized in Table 1.
The numerical experiments are based on the MISMIP3d
setup (Pattyn et al., 2013). The ice-sheet flows along the
x axis in an 800 x 50 km? rectangular domain entirely filled
with ice. For the ice divide, x =0, we set v, =0. A free-
slip condition is applied to the lateral boundaries of the do-
main, i.e., vy = 0 for y =0 and y = 50 km. The calving front
is fixed in time and located at x = 800 km, where we apply
a Neumann boundary condition based on ocean water pres-
sure. We employ a Weertman-type friction law given by

7o =C || vp|™ ' op, (35)

where Ty, is the basal friction, C is the friction coefficient, vy
is the basal velocity, and m is the sliding law exponent. The
bed elevation is defined as

r(x,y) =100 —x, (36)

where r(x, y) is the bedrock elevation (in meters; negative if
below sea level), and x € [0 800] is the x coordinate in kilo-
meters. All experiments start from the same initial geometry,
defined by the following ice thickness profile:

H(x,y,t=0)
_ 1
m+2 | m+2Cmg ([ m+1 _ _m41) |2
_Hgl T pg gl x ’
if x < xg,

- L 37
A Ugﬁl(%flgﬁlf]) i| n+l
me )

it [’hs(x—)fgl)“‘vnggl]n+1

if x > xg,

where H is the ice thickness, mi is the accumulation rate, Xgl
is the grounding line position (x axis), n is the Glen law ex-
ponent, Hy and vg are the ice thickness and the ice velocity
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Table 1. List of the numerical schemes analyzed in this work.

T. D. dos Santos et al.: Assessment of numerical schemes in ice flow models

Stabilization schemes

Artificial diffusion
Streamline upwinding

Streamline upwind Petrov—Galerkin

Discontinuous Galerkin
Flux-corrected transport

ArtDiff (Sect. 2.2)
Streamline (Sect. 2.2)
SUPG (Sect. 2.3)
DG (Sect. 2.4)

FCT (Sect. 2.5)

Sub-element parameterization schemes

Friction parameterization 1
Friction parameterization 2

No driving stress parameterization

Driving stress parameterization 2

SEP1 (Seroussi et al., 2014a)
SEP2 (Seroussi et al., 2014a)
NSED (Sect. 3)
SED2 (Sect. 3)

(x direction) at the grounding line, respectively, defined as

’

P
Hg = 7w |r(xg1,y)

_ Mg Xgl

Vgl = , (38)
el Hy
and A is defined by
_ n
A=A (w> , (39)
4pw

where A is the Glen law rate factor. The parameters used in
all experiments are summarized in Table 2. In Eq. (37), the
thickness expression for x < xg is the steady-state profile of
a 1-D ice sheet considering uniform accumulation rate and
negligible longitudinal stresses (Schoof, 2007a). The x > x4
case is the steady-state profile of an unconfined 1-D ice shelf
under a uniform accumulation rate. Note that the initial thick-
ness profile defined by Eq. (37) is a function of the grounding
line position, xg.

We define the initial grounding line position to be
close to its steady-state position. According to boundary
layer (Schoof, 2007a) and numerical convergence analy-
ses employing SSA (Seroussi et al., 2014a), the ground-
ing line should be located at x >~ 600km. We therefore set
xg1 = 600 km. Note that this steady-state grounding line po-
sition only applies to SSA models; other stress balance mod-
els (full Stokes, Blatter—Pattyn, L1L2, etc.) produce steady-
state positions upstream of 600 km (Pattyn et al., 2013). The
ice thickness as defined by Eq. (37) is not an exact steady-
state profile but represents a slightly perturbed profile used
to initialize all the experiments. The numerical models rely
on unstructured triangular meshes (see some examples in Ap-
pendix B), and the mesh resolutions (and respective number
of elements) chosen for the numerical convergence experi-
ments are shown in Table 3. The analytical thickness (Eq. 37)
is interpolated onto each vertex of the mesh, and the floata-
tion criterion is applied to generate both surface and base
profiles of the ice sheet. To enforce the same initial position
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of the grounding line (xg) in the models, we employ a fric-
tion level set defined according to a distance-based function:

Yor(X, y) = Xg1 — X, (40)

where @, is the initial friction level set (positive if ice is
grounded, and therefore friction is applied). The level set is
evaluated at all elements’ vertices.

The numerical experiments are divided in two sets of anal-
yses: (i) diagnostic analysis and (ii) prognostic analysis. The
diagnostic analysis consists of solving the stress balance
equations under different sets of sub-element parameteriza-
tion schemes (driving stress and basal friction; Table 1), with
different mesh resolutions (Table 3). Here, we compare the
ice speeds calculated by each set of sub-element parameter-
ization schemes and mesh resolutions. We employ the two-
dimensional SSA (MacAyeal, 1989) to compute the veloc-
ity field. The SSA equations are solved using Picard itera-
tions and each linear system is solved using an iterative lin-
ear solver (conjugate gradient). The ice-sheet geometry is
given by Eq. (37), with grounding line position defined by
Eq. (40). The aim of the prognostic analysis is to solve the
mass transport equation and compare the transient response
using different stabilization schemes (Table 1). The transient
simulations start from the same initial condition (Eq. 37) and
grounding line position (Eq. 40) and run forward in time for
100 years under the same accumulation rate (rg; Table 2)
under three different scenarios of external forcings: (i) no
external forcing, (ii) basal melt under the ice shelf, and (iii)
changes in basal friction. The first experiment (no external
forcing) aims to analyze the models’ adjustments under no
external perturbation. In the second experiment, basal melt is
applied at the base of the ice shelf in order to thin it, gener-
ating a large change in ice thickness close to the grounding
line. Here, the basal melt is applied on (a) only fully float-
ing elements and (b) fully and partially floating elements.
It is important to note that applying melt on partly floating
elements is not suitable for realistic marine ice-sheet sim-
ulations (see discussion in Seroussi and Morlighem, 2018),
and we only assess the implications of using different sta-
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Table 2. Constants and parameters used along the numerical exper-
iments.

Symbol  Description Value

nig surface mass balance  0.5m yr_1

C friction coefficient 107 Pam!/3s1/3
A ice rate factor 1072 pa—3s~!
m friction exponent 173

n Glen’s law exponent 3

Zu upper elevation —50m

Zd deep elevation —200m

mp, deep melt rate 30m yr_]

o ice density 900myr~!

Pw water density 1000myr™ 1

bilization schemes. In (a), no grounding line retreat is ex-
pected, since no buttressing effect is present in the initial
condition (unconfined ice shelf). In (b), the grounding line is
expected to retreat because part of the melt rate is applied on
the first grounded vertices (Seroussi and Morlighem, 2018).
The basal melt is defined below (see Eq. 41). The last ex-
periment (friction perturbation) is based on the MISMIP3d
perturbation phase, as a non-symmetric change in the basal
friction coefficient is introduced. The goal of this experiment
is not to assess grounding line reversibility, as proposed in
the original MISMIP3d benchmark, but instead to assess the
general migration of the grounding line (and resulting mass
loss) for each stabilization scheme and different mesh reso-
lution.

The basal melt applied in the second set of experiments is
defined as follows (Seroussi and Morlighem, 2018):

0, leb = Zu,
. _ Zb —Z2u .
iy (2b) = § Mip , ifza < zb < zu, 41
—<u
M, if zp < z4,

where 71y, is the depth-dependent basal melting in myr~!

(positive if melting), zp, in meters, is the vertical coordi-
nate of the ice-shelf base (negative if below sea level), my
is the maximum melt rate for vertical coordinates equal to
or lower than z4. We use myp = 30myr’1, zy = —50m, and
zq4 = —200 m, unless otherwise specified.

In all prognostic experiments, the grounding line is free
to migrate, and its position over the simulation time is up-
dated according to a hydrostatic floatation criterion, follow-
ing Eq. (32): ice is floating (grounded) if the thickness, H, is
lower (higher) than the floatation height, Hy = —(pow/p)r.
The grounding line position is defined where H = H.

4.2 Amundsen Sea Embayment — numerical setup

In order to quantify the performance of the stabilization
schemes with real ice-sheet geometries and numerical se-
tups, we run transient simulations (prognostic analyses) of
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Table 3. Mesh resolution and associated number of elements

Resolution  Number of elements
Skm 2533
2km 15981
1 km 63545
500 m 253335
250 m 1013894

the ASE, which includes the fastest glaciers of WAIS. The
glaciers in the ASE are subject to high ocean-induced melt
rates and are prone to the marine ice-sheet instability (MISI),
a positive feedback of grounding line retreat and increased
ice discharge sustained by a retrograde bedrock slope (Weert-
man, 1974; Schoof, 2007b; Gudmundsson et al., 2012). Ice-
shelf buttressing is present for most glaciers in the ASE,
which helps stabilize the grounding line on retrograde slopes,
reducing the possibility of MISI (Dupont and Alley, 2005;
Goldberg et al., 2009; Docquier et al., 2014; Gudmundsson
et al., 2019; Martin et al., 2019). Therefore, ice-shelf thin-
ning plays an important role in the dynamics of this sector,
and it is important to assess the impact of different stabiliza-
tion schemes on the response of ASE due to ocean-induced
melt and resulting sea-level-rise contribution.

Our ASE domain includes Pine Island, Thwaites, and
neighboring glaciers (Haynes, Pope, Smith, and Kohler
glaciers). We use BedMachine Antarctica vl (Morlighem
et al., 2020) to build the digital elevation model and interfer-
ometric synthetic aperture radar (InSAR)-derived surface ve-
locities (Mouginot et al., 2019a) to infer basal friction coeffi-
cient and ice rheology using control algorithms (Morlighem
et al., 2010, 2013). We generate the mesh based on an inter-
polation error estimate of the observed ice velocity and on
the distance to the grounding line: a mesh resolution equal to
1 km is employed in the vicinity of the grounding lines, while
coarser resolution (up to 16 km) is employed for the rest of
the grounded ice. The mesh contains 261 375 elements and
131 087 vertices. Note that this is a typical numerical setup
employed in many of ice-sheet studies (e.g., Favier et al.,
2014; Joughin et al., 2014; Seroussi et al., 2014b; Cornford
et al., 2015). Details of the model setup and initialization are
described in Barnes et al. (2020).

For this setup, we perform only transient simulations
with different stabilization schemes. All simulations start
from the same initial condition and are forced by a con-
stant surface mass balance obtained from the regional cli-
mate model (RACMO v2.3, Van Wessem et al., 2014) and
the parameterized basal melt defined by Eq. (41). Here,
the parameters in Eq. (41) are based on ice—ocean simula-
tions (Seroussi et al., 2017; Nakayama et al., 2019): z, =0
and zg = —500 m. We run two basal melt scenarios based on
different values of my,. For the first scenario, we set myp, =
50 myr’1 and, for the second one, my, = 200 myr’l . Melt is
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applied only on fully floating elements. We chose the com-
bination SEP1 4+ NSED as a set of parameterization schemes
for basal friction and driving stress, respectively. The den-
sities of ice and ocean are set to 917 and 1027kgm™3, re-
spectively. We run forward in time for 50 years with a fixed
time step equal to one-eighth of a year. Like the other exper-
iments performed here, the ice flow is computed by the SSA
equations (MacAyeal, 1989).

5 Results
5.1 MISMIP3d - diagnostic analysis

To compare the ice speed from different sets of sub-element
parameterizations, we compute the speed from a reference
model. The reference model is based on a triangular struc-
tured conforming mesh with resolution of 50 m. This struc-
tured conforming mesh is constructed in such a way that the
elements’ edges (around the grounding line) match perfectly
the grounding line position (xg = 600 km; see Sect. 4.1; see
also examples of structured meshes in Appendix B), and
therefore no error related to driving stress and basal fric-
tion modeling is introduced in the stress balance computa-
tion in this reference model. We compare the speeds using
two norms, the L, norm and L, norm, defined as follows:

N
Z(v{’ — vl-’)z, (42)

i=1

h h
I v; _U,'r”Lz =

, (43)

Iof =], = max |of —uf
where v =|| v || is the absolute value of the ice speed, 4 and
r refer to the mesh resolution and reference model, respec-
tively. To evaluate the norms, the results from all models
are interpolated onto a finer regular grid (25 m resolution),
and the speed differences (vf’ —vy) are calculated on each
vertex i of that grid. For the error convergence comparison,
we also run models with structured meshes (conforming to
xg1 = 600 km) considering the mesh resolutions shown in Ta-
ble 3 (see examples in Appendix B). We refer to the speeds
obtained by these conforming-mesh-based models as the ref-
erence speeds.

Upstream of the grounding line, all sets of parameteri-
zations “approach” the reference speed (v!) for mesh res-
olutions finer than or equal to 1km (Fig. 1). In the down-
stream part (floating ice), a 500 m mesh resolution or finer
is required for all models to reach speeds at the grounding
line and ice front similar to the reference model (Figs. 1
and 2). Overall, the errors in speed from models employ-
ing SEP1 +NSED and SEP2+ SED2 are closer to the
ones obtained from structured conforming meshes (dotted
line in Fig. 3). In other words, the convergence of sets
SEP1 + NSED and SEP2 + SED?2 is similar to the conver-
gence of conforming-mesh-based models. The other combi-
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nations, SEP1 + SED2 and SEP2 + NSED, present relatively
higher error levels in both norms (Fig. 3) for mesh resolutions
coarser than 500 m.

5.2 MISMIP3d - prognostic analysis

We compare the transient results using the volume above
floatation changes (AVAF) generated by each model and
mesh resolution. The changes in VAF over time, ¢, are cal-
culated as follows:

AVAF! = VAF! — VAF"

0’ (44)
where h refers to mesh resolution and #q is the initial time
of the transient simulations. For some simulations, we also
compare the grounding line positions at the end of the ex-
periments. Based on the diagnostic analysis (Sect. 5.1), we
employ the following sets of parameterizations in all tran-
sient simulations: SEP1+ NSED and SEP2 4 SED2. We
also compute the relative error in AVAF” obtained at the end

of the experiments for a mesh resolution %, defined as

AVAF?" — AVAF!
AVAF?

h _
EAVAF =

; (45)

where 2/ indicates the next coarser mesh resolution. We use
similar quantities to compute the relative error in grounding
line position at the end of the experiments, replacing AVAF
by the grounding line position, GL;,s, in Eq. (45).

5.2.1 No external forcing experiment

Since the initial ice-sheet profile (Eq. 37) is not exactly in
steady state, some changes in VAF are expected to occur
along the transient simulation due to grounding line adjust-
ments (Fig. 4). In this control experiment, for mesh resolu-
tions equal to or finer than 2km, all stabilization schemes
produce similar evolution of AVAF for both sets of pa-
rameterizations (Fig. 5). At the end of the experiment (¢t =
100 years), all models produce a VAF loss equal to 116+4 Gt
(Fig. 6). As shown in Fig. 6, the stabilization schemes gener-
ate different convergence curves of relative errors (except for
streamline upwinding and artificial diffusion), but all show a
decrease in error as the resolution increases, as expected. For
a mesh resolution equal to 250 m, the relative errors for all
stabilization schemes and sub-element parameterizations are
below 5 % (Fig. 6).

5.2.2 Basal melt experiment

In the setup where basal melt is applied only to fully floating
elements (i.e., no melt on partly floating elements), models
using artificial diffusion and streamline upwinding schemes
produce almost 4 times the VAF losses observed in the con-
trol experiment (Fig. 7). At the end of the experiment, t =
100 years, and for a mesh resolution equal to 500 m, the ex-
pected AVAF is —116 £4 Gt (see Sect. 5.2.1). A compara-
ble amount of mass loss is obtained with models employing
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Figure 1. Ice speeds obtained by the diagnostic analysis along a flow line (y = 25km) and around the grounding line (x = 600 km, dashed
line) for different mesh resolutions: 5000, 2000, 1000, and 500 m. All sets of sub-element parameterizations are shown: SEP1 4 NSED,
SEP2 + NSED, SEP1 + SED2, and SEP2 4 SED2. The speed from the 50 m resolution structured conforming mesh (reference model) is

also shown (reference, dotted line).
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Figure 2. Convergence of the ice speed at the grounding line (x = 600 km, a) and at the ice front (x = 800 km, b) obtained in the diagnostic
analysis. All sets of sub-element parameterizations are shown: SEP1 + NSED, SEP2 4+ NSED, SEP1 + SED2, and SEP2 + SED2. Reference
speeds from structured conforming-mesh-based models are also displayed (reference, dotted line).

SUPG and discontinuous Galerkin. However, using artificial
diffusion and streamline upwinding, the resulting AVAF is
~ —360 Gt, while with FCT, the AVAF reaches ~ —200 Gt
(Fig. 8). The grounding line positions at the end of this basal
melt experiment are expected to be close to the ones obtained
with the control experiment (no external forcing). This is vir-
tually achieved by models running with SUPG and discontin-
uous Galerkin, as illustrated on the left panel of Fig. 9. The
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grounding lines obtained from models employing artificial
diffusion and streamline upwinding and even FCT have re-
treated further inland, resulting in an overestimated mass loss
in comparison to SUPG and discontinuous Galerkin (Fig. 9).
Both sets of sub-element parameterizations (SEP1 4+ NSED
and SEP2 4 SED2) lead to similar AVAF “convergence” for
all stabilization schemes, although the convergence errors
differ among them (Fig. 8). Only SUPG shows a decrease
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(a) Error convergence, L2-Norm
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(b) Error convergence, Linf-Norm
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Figure 3. Error convergence of the ice speed for the diagnostic analysis in Ly norm (a) and Ls, norm (b). All sets of sub-element parameter-
izations are shown: SEP1 + NSED, SEP2 + NSED, SEP1 + SED2, and SEP2 + SED2. The error convergence from structured conforming-

mesh-based models is also shown (reference, dotted line).
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Figure 4. No external forcing experiment: ice surface and ice base at the end of the experiment (+ = 100 years) for different stabilization
schemes (see legend). Two sets of parameterizations are employed: SEP1 + NSED (a) and SEP2 + SED2 (b). The dotted black line is the
initial ice-sheet geometry, defined by Eq. (37). Here, the mesh resolution is equal to 500 m.

in relative error with mesh resolution, reaching error levels
smaller than 10 % for a 250 m mesh resolution. Note that, in
Fig. 8, artificial diffusion and streamline upwinding present
relatively smaller errors in comparison to the others schemes
(mainly DG and FCT), but the errors produced by these
schemes do not decrease with mesh resolution and seem to be
far from convergence, even for a mesh resolution of 250 m.
When some basal melt is also applied to partly floating
elements, all models generate VAF losses higher than those
generated with the previous basal melt setup (Fig. 10), as ex-
pected (Seroussi and Morlighem, 2018). Models employing
artificial diffusion and streamline upwinding schemes pro-
duce almost twice the change in VAF compared to mod-
els using SUPG and discontinuous Galerkin. In this setup,
FCT tends to perform as well as SUPG and discontinuous
Galerkin as the mesh resolution becomes finer (Figs. 10
and 11). The grounding lines obtained with artificial diffu-
sion and streamline upwinding schemes evolve upstream of
the grounding lines computed with the SUPG, discontinu-
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ous Galerkin, and FCT schemes (Fig. 9b). The sensitivity to
mesh resolution is higher for models using artificial diffu-
sion and streamline upwinding: VAF losses vary from 400 to
1300 Gt for the range of mesh resolutions used in this study,
250 to 5000 m (Fig. 11). For models employing SUPG, dis-
continuous Galerkin, and FCT, VAF losses vary from about
200 to 800 Gt for the same range of mesh resolutions. In this
melt setup, a mesh resolution equal to 250 m is not enough
to achieve relatively small errors in VAF changes: the rela-
tive errors for this mesh resolution vary from 20 % to 30 %,
depending on the stabilization scheme used, and they do not
seem to have entered the asymptotic region (Fig. 11). Both
sets of sub-element parameterizations, SEP1+ NSED and
SEP2 4 SED2, generate virtually the same AVAF conver-
gence for all stabilization schemes (see Fig. 11).

5.2.3 Friction perturbation experiment

Virtually all stabilization schemes produce the same AVAF
evolution for both sets of sub-element parameterizations
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Figure 5. No external forcing experiment: evolution of volume above floatation change (A VAF) for different mesh resolutions and stabiliza-
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Figure 7. Basal melt experiment (no melt on partly floating elements): evolution of AVAF for different mesh resolutions and stabilization

schemes (see legend).
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Figure 10. Basal melt experiment (melt on partly floating elements): evolution of AVAF for different mesh resolutions and stabilization
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(Fig. 12). The amount of mass loss at the end of the ex-
periment varies with mesh resolution: from 1300 to 1600 Gt
for the range of mesh resolutions considered here, 5000 to
250 m. Using the SUPG, discontinuous Galerkin, and FCT
schemes, the models produce slightly less mass loss than arti-
ficial diffusion and streamline upwinding, ~ 40 Gt (Fig. 13).
Both sets of parameterizations generate similar AVAF con-
vergence for all stabilization schemes (Fig. 13). For mesh
resolutions equal to or finer than 1 km, the relative errors de-

https://doi.org/10.5194/gmd-14-2545-2021

crease to values below 5 %, reaching ~ 0.5 % for a resolution
of 250 m. The positions of the grounding line along the lat-
eral boundaries (i.e., y =0 and y = 50km) reach 618 and
600.3 km, respectively, for mesh resolutions finer than 1 km
(Fig. 14). For these mesh resolutions, the relative errors are
smaller than 0.1 % (Fig. 15).
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5.3 Amundsen Sea Embayment — prognostic analysis

To evaluate the performance of the stabilization schemes in
real ice-sheet simulations (i.e., the ASE setup), we compare
the VAF changes obtained with transient simulations em-
ploying the five schemes considered in this work. For the
SUPG scheme, we chose the stability parameter as defined
by Eq. (14). Models running with the other definition (i.e.,
Eq. 11) present spurious oscillations in this experiment. The
two major glaciers in ASE, i.e., the Thwaites and Pine Island

https://doi.org/10.5194/gmd-14-2545-2021

(PIG) glaciers, may respond differently to ocean-induced
melt: Pine Island presents a more confined ice shelf com-
pared to Thwaites. Therefore, we also compute the changes
in VAF for these two glaciers.

In the experiment forced by the first basal melt scenario
(i.e., mp =150 myr_l), the VAF loss after 50 years varies
from 3200 to 2800 Gt for Thwaites and from 1900 to 1700
for Pine Island (Fig. 16, upper panels). In both glaciers, the
artificial diffusion scheme overestimates the amount of VAF
loss up to 10 % in comparison to the SUPG scheme. Dis-

Geosci. Model Dev., 14, 2545-2573, 2021
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using Eq. (45) and replacing AVAF by the grounding line position.

continuous Galerkin and SUPG produce a smaller change in
VAF, while streamline upwinding and FCT lies in between.
Under a higher basal melt scenario (7, =200myr~1),
the VAF losses vary from 4400 to 3900Gt and from
5100 to 3500 Gt for Thwaites and Pine Island, respectively
(Fig. 16, lower panels). For Thwaites, the streamline upwind-
ing scheme produces less mass loss during the entire simu-
lation time, while artificial diffusion and FCT generate the
highest amount of mass losses. The effect of the artificial
damping is more pronounced in Pine Island: at the end of the
experiment, the artificial diffusion scheme leads to ~ 50 %
more VAF loss compared to SUPG, the scheme that produces
the lowest change in VAF for PIG. Discontinuous Galerkin
generates spurious oscillations in ice thickness for this exper-
imental setup, and therefore it is not shown in Fig. 16.
Considering the entire ASE domain, in simulations forced
by a low melt rate (my, = 50 mylr_1 ), the model running with
artificial diffusion overestimates by 10 % the VAF loss in
comparison to the one employing SUPG (Fig. 17). Under a
higher rate of basal melt (7, =200 myr~!), the VAF loss
of ASE is overestimated by about 20 % in the same artificial
diffusion—-SUPG rate comparison (see Fig. 17). Streamline
upwinding and FCT present similar responses for both melt
scenarios: these schemes generate less VAF losses in com-

Geosci. Model Dev., 14, 2545-2573, 2021

parison to artificial diffusion. This difference is more pro-
nounced in the experiment forced by 200 myr~—! of melt rate.

6 Discussion

The diagnostic analysis using the analytical ice-sheet pro-
file (Sect. 5.1) shows that the convergence of ice speeds de-
pends on the set of parameterizations chosen. The conver-
gence curve associated with the new driving stress param-
eterization (SED2) is similar to the ones of structured con-
forming meshes when combined with the parameterization
SEP2 for basal friction. Specifically, considering an a priori
error estimate of kh?, where k and B are constants, k is inde-
pendent of A, 8 depends on the polynomial order of elements
and smoothness of the solution (Szabd and Babuska, 1991,
p. 61, 62), employing SEP2 4 SED2 reduces the value of k
to a value closer to the ones produced by structured conform-
ing meshes (see SEP2 + SED2 and SEP2 + NSED in Fig. 3).
The same is observed for SEP1 4+ NSED in comparison to
SEP1 4 SED2. Overall, models employing SEP1 + NSED
and SEP2+ SED2 achieve relatively low levels of errors
with mesh resolutions at least 4 times coarser in compari-
son to the other schemes, SEP1 + SED2 and SEP2 + NSED
(see Fig. 3). These results suggest that improved conver-
gence (i.e., smaller k) is achieved by discretizing consis-
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Figure 16. AVAF along transient simulations for Thwaites (left panels) and Pine Island (PIG, right panels) glaciers. The transient simulations
are forced by two different basal melt rate scenarios: 50 myr~! (upper panels) and 200 myr—! (lower panels). The basal melt is applied only
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Figure 17. AVAF along transient simulations for the Amundsen Sea Embayment (ASE) domain. The transient simulations are forced by
two different basal melt rate scenarios: 50 myr71 (a) and 200 myr71 (b). The basal melt is applied only on fully floating elements, and the
parameterization schemes for basal friction and driving stress are SEP1 and NSED, respectively.

tently the friction coefficient and driving stress, i.e., by em-
ploying SEP1+ NSED or SEP2+ SED2. This is consis-
tent with previous studies based on finite-volume and finite-
difference methods (Cornford et al., 2013; Feldmann et al.,
2014), where one-sided differences were employed on each
side of the grounding line to compute surface gradients and
basal friction. The driving stress and basal friction should be
equally balanced (i.e., discretized) at the grounding line to
improve the accuracy of the ice velocity as well as the dy-
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namics of the grounding line (Cornford et al., 2013; Feld-
mann et al., 2014). The error norms for fine mesh resolutions
(500 m or finer) shown in Fig. 3 are probably impacted by
our iterative solver. However, note that the errors for these
mesh resolutions are below lrnyr_l in the Lo, norm, or
3.17 x 1078 ms~L, which is the same order of magnitude as
our solver tolerance and machine precision.

Employing an analytical expression of ice geometry based
on a predefined grounding line position allows the setup

Geosci. Model Dev., 14, 2545-2573, 2021
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Table 4. Steady-state GL positions for the MISMIP3d setup using different sub-element parameterization schemes. GL positions for
SEP1 + NSED and SEP2 + NSED are extracted from Seroussi et al. (2014a). We employ the same numerical setup as described in Seroussi
et al. (2014a). The estimated GL position from BLT is also included (Schoof, 2007b).

Parameterization Meshresol. GL (y=0km) GL (y =50km)

Friction  Driv. stress (m) (km) (km)

SEP1 NSED 5000 631.7 631.9

SEP1 NSED 2000 609.8 610.2

SEP1 NSED 1000 604.9 604.8

SEP1 NSED 500 605.0 605.0

SEP1 NSED 250 605.5 605.6

SEP1 SED2 5000 689.4 689.0

SEP1 SED2 2000 635.3 635.0

SEP1 SED2 1000 619.4 619.4

SEP1 SED2 500 610.2 610.2

SEP1 SED2 250 607.2 607.2

SEP2 NSED 5000 550.3 551.1

SEP2 NSED 2000 575.0 574.8

SEP2 NSED 1000 592.2 591.9

SEP2 NSED 500 599.1 599.1

SEP2 NSED 250 603.3 603.4

SEP2 SED2 5000 631.4 631.5

SEP2 SED2 2000 613.1 612.9

SEP2 SED2 1000 607.0 607.1

SEP2 SED2 500 605.7 605.7

SEP2 SED2 250 605.6 605.6

BLT - 606.8 606.8
of reference models (i.e., models whose mesh captures
the exact position of the grounding line), in which no er-
200 Steady-state grounding line position . rors due to parameterization schemes are introduced dur-
=@=SEP1+NSED ing the stress balance solution (diagnostic analysis). There-
'.'gng:gggg fore, using the reference setup improves the confidence of
=@= SEP2+SED2 this analysis. Comparing grounding line positions at steady
el N = BLT | state is another approach (Table 4 and Fig. 18) where the
g boundary layer theory (BLT) provides an estimated posi-
5 tion of the steady grounding line. The steady-state compar-
% ison shows that 1km mesh resolution is enough for mod-
g i —— els using SEP1+4 NSED and SEP2+ SED2 to achieve the
© grounding line position predicted by the BLT, within a tol-
erance of 0.5 %, while models employing other schemes
(SEP1 + SED2 and SEP2 + NSED) need finer mesh resolu-
tion (at least 16 times more elements to generate a 250 m res-
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Figure 18. Convergence of steady-state grounding line (GL)
positions (y =0km) for the MISMIP3d setup. Different sets
of sub-element parameterizations are tested: SEP1+ NSED,
SEP2+ NSED, SEPI1+SED2, and SEP2+ SED2. The dotted
line is the grounding position from the boundary layer theory
(BLT) (Schoof, 2007b).
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olution mesh) to achieve the BLT prediction with the same
tolerance. This corroborates the conclusions obtained with
the diagnostic analysis in Sect. 5.1.

The prognostic analysis performed with the MISMIP3d-
type geometry shows that the numerical damping produced
by the artificial diffusion and streamline upwinding schemes
impacts the accuracy of grounding line dynamics mainly in
simulations when large A H appear at its vicinity, such as the
ice-shelf melt experiments. These two schemes generate the
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same stabilization term in the x-direction flow performed in
this numerical setup (see Sect. 2.2). The numerical damping
induces a positive feedback of mass loss: the grounded ice
upstream of the grounding line thins due to the (artificial)
damping and starts to unground; once it is floating, it is sub-
ject to basal melt, which induces further thinning inland. For
melt-induced experiments, where some melt is also applied
to partly floating elements, models running with artificial dif-
fusion and streamline upwinding overestimate mass loss in
comparison to models running with other schemes (SUPG,
DG, and FCT). Note, however, that applying melt on partly
floating elements leads to high levels of errors for all the sta-
bilization schemes and mesh resolutions used in this study
and therefore is not a suitable approach. The basal friction
perturbation experiment (Sect. 5.2.3) shows that, for a given
mesh resolution, the relative errors in AVAF are at least 1 or-
der of magnitude higher than the errors in grounding line po-
sition (see Figs. 13 and 15). For instance, the grounding line
position has an error of 1 % for a 2 km mesh, while the corre-
sponding error in AVAF is higher than 10 %. Small changes
in grounding line position can therefore lead to large differ-
ences in AVAF. This suggests that AVAF should be used
as a metric of numerical convergence in ice-sheet model in-
tercomparison projects. The MISMIP3d setup used in this
analysis is suitable because (1) there is no buttressing effect
involved in these basal melt experiments, and therefore the
grounding line dynamics is expected to be independent of
ice-shelf basal melt; (2) the bedrock is the same for all mesh
resolutions, which eliminates the source of errors related to
bedrock resolution (Durand et al., 2011); (3) it allows the
definition of an analytical ice-sheet profile and guarantees
the same initial condition for all models independently of
the mesh resolution or stabilization schemes. These numeri-
cal characteristics therefore eliminate the influence of several
sources of errors, allowing the analysis to focus only on the
response to the stabilization schemes.

For the prognostic analysis performed with real glaciers
in West Antarctica (Sect. 5.3), streamline upwinding per-
forms as well as the FCT scheme, which may be ex-
plained by the “anisotropic balancing dissipation” of the
stabilization term (Kelly et al., 1980; Brooks and Hughes,
1982) (Sect. 2.2) that has prevented numerical damping over
transverse flows. Interestingly, streamline upwinding gener-
ates less mass loss in comparison to SUPG for the Thwaites
Glacier in the high-melt-rate scenario (Fig. 16). We attribute
this to the low performance of the stabilization parameter
(7) in this simulation. In this same melt scenario, the mass
loss of PIG is clearly overestimated using artificial diffu-
sion, which is likely associated with the positive feedback
explained above: the grounding line of PIG retreats sev-
eral kilometers more using ArtDiff compared to the other
schemes. For the entire ASE domain considered here, SUPG,
FCT, and streamline upwinding yield similar VAF evolution
within a difference of ~ 5% in the high-melt experiment.
Discontinuous Galerkin has similar performance to SUPG,
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at least for the lower-basal-melt scenario. However, produc-
ing spurious oscillations in ice thickness in the second melt
experiment highlights that the DG scheme as implemented in
ISSM may be not completely robust.

The choice of the stabilization scheme relies on the bal-
ance between stability, accuracy, computational cost, and im-
plementation effort. Yet, the “best” choice could be never
reached (e.g., John et al., 2018). Artificial diffusion pro-
vides stability to numerical solutions, even in the presence
of strong discontinuities and shocks (which is not the case
in ice-sheet dynamics). But at the same time, it excessively
smooths the solution for large AH, which impacts the re-
sults. For simulations with large buttressing effect, as is the
case for the Pine Island and Thwaites glaciers, numerical
damping could artificially “enhance” the marine ice-sheet in-
stability feedback existing for retrograde bedrock slopes and,
consequently, overestimate mass loss in ocean-induced melt
simulations. Note that numerical damping does not always
lead to grounding line retreat, but it can also prevent its ad-
vance. High mesh resolution could be employed to decrease
the diffusion effects, but it comes at a higher computational
cost. Adaptive mesh refinement could be an alternative in this
case, although it is not available in all ice-sheet models. Dis-
continuous Galerkin and SUPG may generate spurious 0s-
cillations in idealized experiments where discontinuities are
present (e.g., John and Schmeyer, 2008), and in real ice-sheet
simulations, as observed here for ASE experiments. The per-
formance and stability of SUPG clearly rely on the defini-
tion of the stabilization parameter 7, and the numerical is-
sues and results observed here for the ASE simulations indi-
cate that the definitions of 7 as given by Eqgs. (11) and (14)
are not totally robust and optimized for real ice-sheet sim-
ulations, at least for the SUPG as currently implemented in
ISSM. FCT presents better results on idealized cases (John
and Schmeyer, 2008), but some excessive VAF loss is ob-
served in some experiments performed here (e.g., Fig. 7).
Besides that, this scheme performs as well as the streamline
upwinding in the two basal melt scenarios using the ASE
setup.

Apart from differences observed in terms of accuracy
(i.e., VAF change), the remaining differences between the
stabilization schemes used here are their numerical imple-
mentations and computational costs. The implementation
of the artificial diffusion, streamline upwinding, and SUPG
is straightforward in most of ice-sheet FEM-based mod-
els. However, the definition of the stability coefficient for
SUPG (Eq. 7) is problem dependent, and possibly, its opti-
mum value may remain unclear in many real ice-sheet sim-
ulations. Discontinuous Galerkin requires specific coding of
data structures, at the minimum requiring information on el-
ements’ neighbors, and significant implementation effort to
compute the integrals along elements’ edges. Also, the num-
ber of degrees of freedom in comparison to other schemes is
considerably increased (up to a factor of 6 for triangular P1
Lagrange elements), which impacts the computational cost
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when the backward Euler approach is used, as is the case in
ISSM. An alternative would be an explicit approach (Runge—
Kutta discontinuous Galerkin): in this case, the solution us-
ing the DG scheme would be completely parallel (e.g., Cock-
burn, 2003). While this would improve the computational
cost, there are more stringent restrictions on the CFL time
step. The FCT scheme requires operations on global matri-
ces and vectors. While this is straightforward in codes rely-
ing on shared memory (e.g., one process, multiple threads),
these operations require additional CPU communications in
codes based on distributed memory (e.g., Message Passing
Interface), potentially translating into a larger computation
time. Finally, we note that the current ISSM implementations
of the stabilization schemes presented here are based on the
classical literature of FEM, where the numerical analyses of
such schemes are carried out in idealized problems. There is
still room for development of stabilization schemes and im-
proved numerical accuracy, stability, and computational per-
formance in the specific field of ice-sheet modeling; most
stabilization schemes were designed to handle the presence
of shocks and strong discontinuities, which are mostly absent
from this field.

7 Final remarks

The convergence error of ice speed depends on the combina-
tion of parameterizations chosen for basal friction and driv-
ing stress. Given that the a priori error estimate is kh# (h is
the mesh resolution), the sub-element parameterization for
driving stress proposed here (SED2) presents smaller values
of k when combined with a similar approach for basal fric-
tion (SEP2). In models employing the SEP1 basal friction pa-
rameterization, a smaller k is achieved with no driving stress
parameterization (NSED). As already suggested by previous
simulations based on finite-volume or finite-difference meth-
ods, in order to achieve improved numerical convergence
(i.e., smaller values of k) for a given computational cost,
the discretization of the basal friction should match the dis-
cretization of the driving stress; the following combinations
of sub-element parameterizations therefore provide the best
results: SEP1 + NSED and SEP2 + SED2.
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In all transient simulations performed here for both
idealized and real ice-sheet configurations, models rely-
ing on artificial diffusion generate the largest amount of
mass loss in comparison to models running with the other
schemes. SUPG and discontinuous Galerkin produce the ex-
pected grounding line dynamics for the idealized case (e.g.,
MISMIP3d-type setup). For the ASE experiments, these two
schemes produce less mass loss than the others ones, al-
though some spurious oscillations are observed, which com-
promised the results. By design, the streamline upwinding
has the same behavior as artificial diffusion in the idealized
case (x-direction flow). However, in the real ice-sheet simu-
lations (ASE setup), streamline upwinding performs as well
as the flux-corrected transport scheme. Based on the numer-
ical tests performed here and the ease of implementation,
SUPG seems a preferred scheme, although careful attention
shall be given to the definition of the stabilization param-
eter, which may be problem dependent. A second choice
would be the streamline upwinding scheme, as long as a
high-enough mesh resolution is employed around the discon-
tinuities (e.g., grounding line). The development of new sta-
bilization schemes and/or improvements of existing ones in
FEM remains an active field of research. Nevertheless, since
most theoretical studies and convergence analyses involve,
in general, smooth data and regular boundaries, the conclu-
sions drawn from these studies may not necessarily hold for
real cases, such as the Amundsen Sea Embayment simulation
performed here. This highlights the importance of testing fu-
ture stabilization schemes with real geometries and external
forcing. In general, most stabilization schemes were devel-
oped in the context of compressible flow, where shocks and
strong discontinuities appear, which is not the case of ice-
sheet modeling, opening new development opportunities for
this specific field.
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Appendix A: Zalesak’s algorithm

We compute the weights «;; in Eq. (23) using the anti-
diffusive flux r;; (Eq. 28) and Zalesak’s algorithm (Zalesak,
1979) (see also Moller et al., 2004; John and Schmeyer,
2008, and Kuzmin, 2009):

Algorithm 2 Zalesak’s algorithm for the weights («;;) com-
putation.

Given an anti-diffusive flux r;;, do:

1. Compute:
N
Pi+= Z max {O,rij},
J=1j#i
N
P = Z min{O, ”ij}- (Al)
J=1j#i
2. Compute7:
+ m;i )
0f =2 (Hm* — ).
— m; i
o =" (#min— Hy ). (A2)
3. Compute:
of ]
R =min { 1, =
i » oF
Pi
Ri_:min{],Q—i_}. (A3)
4
4. Compute:
min{R;", R7}, ifr;; >0,
Qij =173 _. L {'_ . (A4)
mm{R’. ,Rj 1, 1fr,-j < 0.

7We note that H{"* and H]'_“;“ are the maximum and minimum
values of the low-order solution Hy, over the patch of elements shar-
ing node i, respectively.

https://doi.org/10.5194/gmd-14-2545-2021

2567

Geosci. Model Dev., 14, 2545-2573, 2021



2568 T. D. dos Santos et al.: Assessment of numerical schemes in ice flow models

Appendix B: Example of meshes

Six examples of structured and unstructured meshes are
shown in Fig. B1. We use the package Triangle (Shewchuk,
1996) to generate the unstructured meshes.

Structured mesh (2 km) Unstructured mesh (2 km)

30 - 30
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Figure B1. Examples of meshes employed in this work. Left panels are structured conforming meshes, and right panels the unstructured
meshes. Three mesh resolutions are shown: 2, 1, and 0.5 km. The color maps are the ice speeds obtained in the diagnostic analysis (Sect. 5.1)
considering the grounding line at x = 600 km. Note that the structured meshes are conforming to the grounding line; i.e., they are generated
such that the elements’ edges match the grounding line position (in this case, xg| = 600 km). Sub-element parameterizations SEP1 + NSED
are employed in the unstructured meshes to computed the ice speeds presented here.
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Code availability. The numerical schemes evaluated here are cur-
rently implemented in the ISSM. The code can be downloaded,
compiled, and executed following the instructions available on
the ISSM website: https://issm.jpl.nasa.gov/download (last access:
20 November 2020). The public SVN repository for the ISSM code
can also be found directly at https://issm.ess.uci.edu/svn/issm/issm/
trunk (Larour et al., 2020) and downloaded using username “anon”
and password “anon”. The version of the code for this study, corre-
sponding to ISSM release 4.18, is SVN version tag number 25833.
The documentation of the code version used here is available at
https://issm.jpl.nasa.gov/documentation/ (last access: 20 November
2020).

Data availability. All data sets used in the prognostic anal-
ysis of the Amundsen Sea Embayment, Sects. 4.2 and 5.3,
are freely available in the public domain and are referenced
in the text. BedMachine Antarctica vl is available at the
National Snow and Ice Data Center (NSIDC), Boulder, CO,
https://doi.org/10.5067/C2GFER6PTOS4 (Morlighem, 2019). The
InSAR-derived surface velocity is available at the NSIDC, Boul-
der, CO, https://doi.org/10.5067/PZ3NJSRXRH10 (Mouginot et al.,
2019b).
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