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Abstract— With the advancements in electronics technology,
high-density (HD) EMG sensing systems have become available
and have been investigated for their feasibility and performance
in neural-machine interface (NMI) applications. Comparing to
the traditional single channel-based targeted muscle sensing
method, HD EMG sensing performs a sampling of the electrical
activity over a larger surface area and has the promise of 1)
providing richer neural information from one temporal and two
spatial dimensions and 2) ease of wear in real life without the
need of anatomically targeted electrode placement. To use HD
EMG in real-time NMI applications, challenges including high
computational burden and unreliability of EMG recordings over
time need to be addressed. This paper presented an HD EMG
PR based NMI which seamlessly integrates HD EMG PR with a
Sensor Fault-Tolerant Module (SFTM) which aimed to provide
robust PR in real time. Experimental results showed that the
SFTM was able to recover the PR accuracies by 6%-22% from
disturbances including contact artifacts and loose contacts. A
Python-based implementation of the proposed HD EMG SFTM
was developed and was demonstrated to be computationally
efficient for real-time performance. These results have
demonstrated the feasibility of a robust real-time HD EMG PR-
based NMI.

I. INTRODUCTION

Electromyography (EMG)-based neural-machine
interfaces (NMIs) have been studied and developed for
decades to control neurorehabilitation systems such as neural
prostheses which restore function for patients with limb loss
or impairment [1]-[5]. The purpose of the EMG-controlled
NMIs is to measure the muscle activities of relevant muscles,
learn the patterns of collected EMG signals associated with
different movement tasks, and make predictions of user’s
intended movement for control of external applications. With
the advancements in electronics technology, high-density
(HD) EMG sensing systems, which generally consist of 16 to
256 regularly spaced electrodes, have become available and
have been investigated for their feasibility and performance
in NMI applications [4], [6]-[8]. Comparing to the traditional
single channel-based targeted muscle sensing method, HD
EMG sensing performs a sampling of the electrical activity
over a larger surface area and has the promise of 1) providing
richer neural information from one temporal and two spatial
dimensions [9] and 2) ease of wear in real life without the
need of anatomically targeted electrode placement [6]. Some
recent research findings have suggested that, comparing to
traditional electrode placement method, HD EMG grids yield
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better robustness to electrode shift [10]-[12] and higher
accuracy for EMG pattern recognition (PR) [4], [8], [13]. In
addition, it opens possibility of directly extracting motor
neuron spike trains for neurorehabilitation using HD EMG
decomposition [9], [14]-[16].

To use HD EMG in real-time NMI applications, various
methods have been explored to address the high
computational burden associated with HD EMG sensing,
including developing new computationally efficient features
tailored to HD EMG [17], designing rapid EMG
decomposition algorithms for real-time control of multi-
degree-of-freedom systems [6], [16], [18], and employing
parallel computing technologies such as FPGA and GPU to
accelerate the processing of HD EMG signals [19], [20]. In
our previous work, a novel spatial-temporal feature set named
Adjacent Features (AFs) has been developed to analyze the
intensity and structure of the HD EMG signals and the
similarities between adjacent electrodes [17]. The
experimental results showed that the developed AFs were not
only computationally efficient for HD EMG PR; they also
resulted in higher accuracies than Hudgins’ time-domain
(TD) features and autoregression (AR) based features for
classifying various hand and wrist gestures [3].

Unreliability of EMG recordings over time is a challenge
for applying EMG-based NMIs in practice. Conditions such
as electrode shifts, movement artifacts, environmental noises,
loose electrode-skin contacts, muscle fatigue, and arm posture
may cause variabilities in the EMG characteristics and thus
threaten the reliability of EMG-based control [21]-[23].
Although HD EMG has shown more robustness to electrode
shift than traditional electrode placement method [10]-[12],
its use in practice is still challenged by variances and
disturbances such as movement artifacts and bad contacts,
especially given that it is recording with many electrodes
simultaneously without anatomically targeted electrode
placement [24]. Our previous work has developed a Sensor
Faculty-Tolerant Module (SFTM) for EMG PR systems and
has tested it on single-channel EMG-based NMlIs [25]. The
SFTM consists of multiple sensor fault detectors and a self-
recovery mechanism. The sensor fault detectors closely
monitor the time-domain features of individual EMG signals
to detect outliers, which are likely caused by disturbances.
The self-recovery mechanism was developed by utilizing the
information redundancy in multiple EMG signals. Our
preliminary results have shown that removing one or two
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signals from the system will not significantly reduce the EMG
pattern recognition performance. When disturbances are
detected on certain EMG channels, the self-recovery
mechanism will remove features of the “abnormal” signals
from the system, retrain the classifier, and perform
classification using features from “normal” signals only. The
SFTM has great potential to perform well or even better in
HD EMG based NMIs because a large number of signals will
result in much more redundant information in the EMG
recordings. This redundancy (using dozens or even hundreds
of sensors) allows for selected electrode outputs which
contain artifacts to be discarded while still providing the
classifier with an overall view of muscle activity. By
comparison, a sparse EMG array discarding faulty electrode
signals during a localized physical disruption may be losing
information on entire muscles’ activity for the duration of the
signal artifacts. In either case, gesture class separability is
harmed by extracting features from artifacts or a critically
incomplete electrode array.

This paper aimed to develop an SFTM for HD EMG PR
based NMIs and evaluate its effectiveness on both commonly
used TD and AR features as well as the newly developed AFs.
A Python-based implementation of the proposed HD EMG
SFTM was developed and tested on both normal EMG dataset
and datasets contaminated by different types of disturbances.
Performance metrics including the classification accuracy,
system recovery performance, and CPU runtime were
measured and analyzed.

II. METHODS
A. Architecture of the HD EMG SFTM

Figure 1 shows the overall architecture of the proposed HD
EMG PR based NMI, which consists of standard EMG PR
modules coupling with the SFTM. The SFTM closely
monitors the status of individual EMG input signals and
responses accordingly to maintain system performance. The
HD EMG input signals are preprocessed by amplifiers and
filters and then segmented by overlapped sliding analysis
windows. In each window, various features are extracted from
each input signal and then fed to the SFTM. The signal fault
detectors monitor the features of each EMG signal to detect
anomalies. Based on the detection results, only the features
extracted from normal channels are concatenated into a
feature vector for pattern classification. If no anomaly is
detected, the feature vector is directly sent to the classifier
generated from the original training data. If one or more
signals are determined as abnormal, a fast classifier retraining
process is triggered and the feature vector derived from
normal channels is fed to the new classifier for pattern
classification.

Signal Fault Detector: A Mahalanobis distance analysis-
based outlier detection method has been designed for
individual HD EMG signal fault detection. We assume that
disturbed signals are qualitatively different from EMG signals
during normal motion activities. The detector is built only
from normal training data without the need for prior
knowledge of disturbed data. If a new piece of testing data has

HD EMG SFTM
{ Signal #1 i
| EsS Extraction Detector feEaIt\:Ilfes Signal status
from (“nermal” or
Signal “normal” | “abnormal”)
HD EMG Feature Fault signals
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Parameters of
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User Pattern
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Figure 1. Overall system architecture of the HD EMG pattern
recognition based NMI which consists of standard EMG pattern
recognition modules coupling with the SFTM.

a large deviation from the normal EMG data, it will be flagged
as a disturbance. The detector parameters can be calculated in
the training procedure automatically. No more tuning step is
required in the testing phase. More details of the signal fault
detection algorithm can be found in [25].

Fast Classifier Retraining Process: For EMG PR-based
NMIs, the original classifier will no longer be applicable
when one or more EMG signals are removed from the system
[5], [25]. The classifier needs to be retrained to recover the
PR performance. The response time of the retraining
algorithm is very critical to the design of real-time SFTM
because the training process for HD EMG PR is time
consuming due to the large amount of data produced. In our
prior work, after examining the details of the linear
discriminant analysis (LDA) algorithm, a computationally
efficient classification algorithm that is commonly used in
real-time NMIs, we have found that, by making efficient use
of existing information obtained from the original training
procedure, the LDA-based retraining procedure can be
significantly simplified [25], [26]. The fast retraining
algorithm can dramatically accelerates the retraining speed
and is much more memory efficient compared to a full
retraining process.

B. Feature Engineering

Both commonly used EMG features including TD features
and AR coefficients and our newly developed spatial-
temporal HD EMG AFs have been evaluated in this study.

TD Features: The Hudgins' TD features have been widely
used in real-time EMG PR due to their low computational
complexity and high accuracy [27]. The TD features used in
this work include mean absolute value (MAV), root mean
square (RMS), wavelength (W), zero crossings (Z), and sign
slope changes (T).

AR Features: AR features are also commonly used because
of their effectiveness in EMG PR [28]. In this study, the AR
coefficients (denoted as ARy, k € [0,5]) and AR error (4R.) of
a sixth-order AR model have been included in our evaluation.

Adjacent Features: AFs have been developed in our prior
work to analyze the intensity and structure of the HD EMG
signals and the spatial relations between adjacent electrodes
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[17]. The HD EMG signals are the result of motor unit action
potentials (MUAP) propagating through the muscle tissues.
Between adjacent channels, similarities in signal
characteristics can be observed. The AFs approximate and
quantify these characteristics by calculating the Mean
Absolute Difference (MAD) between adjacent signals in the
transverse (T) and longitudinal (L) directions. To calculate the
AF, the transverse and longitudinal measured electrical signals
(MESSs) are shifted forward and backward by dn samples, and
then compared to the reference MES. The MADs in the
longitudinal and transverse direction of an electrode at the 7, j
location of the HD EMG grid are calculated as

Il X jln]—Xi4q jln+dnl|
wl

and

MADy gn[i,j] =

Wl x; jln]—X; jya[n+dn]|
wl

MADr (i, j] =

>

respectively, where 7 is the sample within the analysis window,
wl is the total number of samples in a window, dn is the
number of samples to shift by, and Xj; is the normalized MES
at the £, j location of the grid. In this study, six AFs have been
evaluated including MAD;,_;, MADr.;, MADyy, MADry,
MADy,;, and MADr; because of their good performance in HD
EMG PR based on our previous results [17].

Feature Engineering: A parameter tuning framework has
been designed to optimize and identify the top performing
feature sets. Specifically, three different parameter searches
have been done in our experiments to investigate the
following feature spaces:

e AFsonly
e Combination of TD features and AR features
e Combination of AFs, TD features, and AR features

For each parameter search, up to three features are selected
from each type of features (i.e., AFs, TD features, and AR
features) to save time on tuning and to avoid computationally
complex models.

C. System Implementation

The proposed real-time HD EMG SFTM was implemented
based on Python 3 due to its low developmental complexity,
high performance, high adaptability, portability, and library
support. Key libraries including Numba and Intel oneAPI
Math Kernel Library (MKL) were used in our implementation.
Numba is a derivative of the NumPy scientific computing
library that offers a Just-In-Time (JIT) compiler that translates
a subset of Python code into super-fast machine code. The
Intel oneAPI MKL accelerates linear algebra operations and
routines. An open-source hyper-parameter optimization
framework Hyperopt was used to develop our parameter
tuning algorithm for the feature engineering phase [29].

D. Experiments

This study is conducted with Institutional Review Board
(IRB) approval at San Francisco State University (SFSU) and
informed consent of subjects. One male able-bodied subject
was recruited. Data acquisition was conducted with the OT
Bioelettronica’s Quattrocento amplifier at 2560 samples per
second with three surface EMG electrode grids (placed on the

subject’s dominate forearm) with 10mm spacing in an § by 8
arrangement, resulting in 192 channels.

Seven hand and wrist gestures including no movement,
wrist supination, wrist pronation, hand close, hand open, wrist
flexion, and wrist extension were performed in our
experiments. The proposed HD EMG SFTM is not restricted
to specific types of disturbances. To evaluate the performance
of the SFTM, two common disturbances of EMG recordings
have been investigated in this study: Contact Artifacts (CA)
and Loose Contacts (LC) [21], [24]. In the CA trials, the seven
gestures were made with a pen tapping on approximately the
last 3 dozen electrodes (156-192) at a rate of 4-5 Hz. The exact
electrodes affected vary from strike to strike. The LC
disturbances were introduced with the last two rows of one 8x8
EMG electrode grid peeled back, and a towel placed between
the electrodes and the skin while gestures were performed.
Figures 2 and 3 show two representative trials of HD EMG
signals contaminated by CA and LC, respectively.

In our experiments, three datasets were collected, including
one normal EMG set, one set contaminated by CA, and one set
contaminated by LC. For each dataset, the subject performed
the seven gestures in sequence five times. Each gesture was
performed for five seconds with short rest periods in-between.
The sampled data were segmented into overlapped analysis
windows with 100 ms length and 50 ms increment.

Evaluation of the effectiveness of the SFTM was based on
the resulting accuracies from classification. To evaluate the

Figure 2. A representative trial showing HD EMG signals
contaminated by CA

Fige 3. A representative trial showing HD EMG signals
contaminated by LC
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effect of the SFTM on EMG signals without disturbances, the
normal EMG dataset was divided into five groups with each
group containing one repetition of each gesture and then a five-
fold cross validation was performed to calculate the averaged
classification accuracy with and without the SFTM. For the
CA and LC datasets, the normal dataset was used as the
training set to create the initial LDA classifier and then the
classification accuracies for the CA and LC datasets with and
without the SFTM were calculated and compared.

The Python 3 based implementation of the HD EMG SFTM
was running on a Huawei Matebook X Pro with an Intel i7-
8550U CPU, 16GB of memory, and Windows 10 Home
operating system.

III. RESULTS AND DISCUSSION

Table I shows the classification accuracies of the HD EMG
PR system with and without the SFTM on the CA and LC
datasets. Six selected feature sets with highest overall
recovered classification accuracies are included in this table.
The positive effects of the SFTM are evident, increasing the
classification accuracies by 6%-22%. All selected feature sets
can recover the EMR PR performance to over 90% thanks to
the SFTM. The benefit is the greatest when AFs are used
where the recovered classification accuracies can be as high as
97%. This further proves the effectiveness and robustness of
AFs in HD EMG PR. The computational requirements of AFs

TABLE 1. CLASSIFICATION ACCURACY OF THE HD EMG PR SYSTEM WITH
AND WITHOUT THE SFTM ON CA AND LC DATASETS

CAw/o CAw LCw/o LCw Totalw
Features SFTM SFTM SFTM SFTM  SFTM
(%) (%) (%) (%) (%)
AF: MADy -,
MADyro, MADy,; 84.58 96.16  87.09 99.66 @ 97.91
TD:Z, T
AR: AR3, AR5
AF: MADy, -,
MADv0 86.27 9574 6541 99.90 @ 97.82
AF: MADy g,
MADr 79.85 9429 7143 99.80 @ 97.04
AF: MADy,o,
MADy, 77.59 9394 82.41 99.36 = 96.65
TD: T
AR: AR>, AR3, ARs 76.19 8446 96.34 99.25  91.85
TD:Z, T
AR: AR2, AR3, AR+ 75.39 8241 92.18 98.50  90.45

TABLE II. CLASSIFICATION ACCURACY OF THE HD EMG PR SYSTEM WITH
AND WITHOUT THE SFTM ON NORMAL DATASETS

Features Normal set w/o Normal set w
SFTM (%) SFTM (%)

AF: MADiy,-1 MADr,0 MADr, 1 100.00 100.00
TD:Z, T
AR: AR3, AR5
AF: MADy,-;, MADL o 100.00 99.90
AF: MADy,-;, MADL o 100.00 100.00
AF: MADy, 0, MADy, ;1 100.00 100.00
TD: T
AR: AR>, AR3, AR4 100.00 100.00
TD: Z, T
AR: AR>, AR3, AR4 99.95 99.90

TABLE III. SFTM CPU RUNTIME WITH VARIOUS CONFIGURATIONS

SFTM CPU runtime (ms) with various number

# of of extracted features
abnormal 1 2 3 6 9
Signals = Feature Features Features Features Features
0 2.59 6.22 7.29 1637 = 29.13
2 3.49 10.45 1294 4323  120.55
24 4.23 10.92 11.81 3720  88.36
48 3.76 10.62 1129 3636  69.86
96 4.72 9.84 1048 = 2546 4736
144 6.30 8.59 9.94 21.87  37.79
161 4.99 7.01 9.96 2145 3647
190 435 6.73 10.69 19.50 = 33.10

are comparable with those of TD features, which makes AFs
effective features for real-time HD EMG PR systems.

Table II shows the effect of the SFTM on the normal
dataset with the six selected feature sets included in Table I.
The results show that, for normal EMG data without
disturbances, the SFTM only has slight effect on the PR
performance. Only two feature combinations in Table II yield
slightly lower (<0.1%) classification accuracies when SFTM
is applied, which might be due to false detections from the
signal fault detectors. Overall, the SFTM is effective in
recovering HD EMG PR performance from disturbances and
still maintains the PR performance when there is no
disturbance.

Table III summarizes the CPU runtime of the Python-
based SFTM implementation with various configurations
based on two variables: 1) the number of signals detected as
abnormal and 2) the number of features extracted for EMG PR.
The SFTM process can be divided into a few major steps
including feature normalization, feature reloading, fast
retraining, and classification. The results show that the total
SFTM CPU runtime for all configurations is less than 100 ms
except for one configuration (2 abnormal signals and 9
extracted features). When six or fewer features are used, the
CPU runtime for all configurations is less than 50 ms. This
demonstrates the computational efficiency of the proposed
SFTM and its promise in real-time HD EMG PR applications.
With the assistance of GPU and other advanced computing
techniques, the processing speed of the SFTM can be further
accelerated.

IV. CONCLUSION

This project designed and validated an HD EMG PR based
NMI which seamlessly integrates HD EMG PR with an
SFTM that detects signal anomaly, retrains the classifier, and
performs reliable PR in real-time. Three types of HD EMG
features (TD features, AR features, and AFs) were evaluated
on three datasets including a normal set and two contaminated
sets with CA and LC, respectively. The SFTM was able to
recover the classification accuracies by 6%-22%. The benefit
of the SFTM was the greatest when AFs were used, which
further proved the effectiveness and robustness of AFs in HD
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EMG PR. A Python-based implementation of the proposed
HD EMG SFTM was developed and was demonstrated to be
computationally efficient for real-time performance. These
results have demonstrated the feasibility of a robust real-time
HD EMG PR-based NMI.
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