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A key problem in functional magnetic resonance imaging (fMRI) is to estimate spatial activity patterns from
noisy high-dimensional signals. Spatial smoothing provides one approach to regularizing such estimates. How-
ever, standard smoothing methods ignore the fact that correlations in neural activity may fall off at different
rates in different brain areas, or exhibit discontinuities across anatomical or functional boundaries. Moreover,
such methods do not exploit the fact that widely separated brain regions may exhibit strong correlations due to
bilateral symmetry or the network organization of brain regions. To capture this non-stationary spatial correla-
tion structure, we introduce the brain kernel, a continuous covariance function for whole-brain activity patterns.
We define the brain kernel in terms of a continuous nonlinear mapping from 3D brain coordinates to a latent
embedding space, parametrized with a Gaussian process (GP). The brain kernel specifies the prior covariance
between voxels as a function of the distance between their locations in embedding space. The GP mapping warps
the brain nonlinearly so that highly correlated voxels are close together in latent space, and uncorrelated voxels
are far apart. We estimate the brain kernel using resting-state fMRI data, and we develop an exact, scalable in-
ference method based on block coordinate descent to overcome the challenges of high dimensionality (10-100K
voxels). Finally, we illustrate the brain kernel’s usefulness with applications to brain decoding and factor analysis

with multiple task-based fMRI datasets.

1. Introduction

An important problem in neuroscience is to characterize the covari-
ance of high-dimensional neural activity. Understanding this covariance
structure could provide insight into the brain’s functional organization
and help regularize estimates of encoding or decoding models. Although
advances have been made in both theory and methodology for estimat-
ing large covariance Bickel and Levina (2008); Schéfer et al. (2005) and
precision matrices Hsieh et al. (2013); Treister and Turek (2014),
few methods have been designed with the particular challenges of
functional magnetic resonance imaging (fMRI) data in mind (see
Varoquaux et al. (2010) for an exception).

One of the challenges of modeling the covariance of fMRI data is that
the spatial discretization of the brain may differ across experiments.
FMRI measures blood oxygenation level dependent (BOLD) signals in
discrete spatial regions called “voxels”. Each voxel represents a tiny cube
of brain tissue. Although brains are typically registered to an anatomical
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template in a standard space, such as the volumetric Montreal Neurolog-
ical Institute (MNI) template or the surface-based template used by HCP
Van Essen et al. (2013), these spaces differ in resolution and geometry
Brett et al. (2002). In many cases, brains are aligned onto the “same” 3D
space but with different voxel coordinates. A covariance matrix for one
set of voxels cannot be applied to data registered to a different set of
voxels. Thus, modeling the covariance of fMRI data presently requires
a new covariance matrix to be constructed whenever a different set of
voxels is used.

A second challenge for fMRI covariance estimation is spatial non-
stationarity. Standard spatial smoothing models assume that correla-
tion falls off as a function of the Euclidean distance between voxels.
In real brains, however, correlation patterns depend on relationships to
anatomical and functional boundaries, and may exhibit strong depen-
dencies over long distances due to bilateral symmetry and the network
organization of brain regions.

To address these challenges, we propose the brain kernel, a continu-
ous covariance function for whole-brain fMRI data. This function arises
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from a generative model of fMRI data, and seeks to describe covariance
of neural signals across the entire brain Stein (2012). Specifically, the
brain kernel defines, for any finite set of n voxel locations in the brain, a
positive definite n x n covariance matrix over n-dimensional vectors of
neural activity at those locations. The brain kernel improves upon prior
work by i) capturing fMRI voxel covariance matrices for any registration
reference, and ii) capturing spatial nonstationarity through a nonlinear
latent manifold.

Our approach uses a Gaussian process to parametrize a continuous
nonlinear mapping from 3D brain coordinates to a latent embedding
space, such that correlations in neural activity fall off as a fixed func-
tion of distance in the latent space. Thus, the nonlinear function seeks
to warp the 3D brain in order to place locations with correlated neural
activity at nearby locations in the latent space. Locations with uncor-
related activity, conversely, are mapped to more distant points in the
latent space, even if they are physically close together in the brain.

The paper is organized as follows. In Section 2 we provide a brief
overview of Gaussian process models. In Section 3, we formally intro-
duce the brain kernel model for fMRI data. In Section 4, we describe an
efficient inference method for fitting the brain kernel, and illustrate the
challenges and benefits of an exact inference method using simulated
and real fMRI datasets. In Section 5, we describe the brain kernel fit to
whole-brain resting-state fMRI data. Finally, in Section 6, we demon-
strate the usefulness of the inferred brain kernel with applications to
decoding and factor modeling.

2. Mathematical background

Before introducing the brain kernel model, we briefly review the
mathematical building blocks for Gaussian process models.

2.1. Gaussian processes (GPs)

Gaussian processes provide a flexible and tractable prior distribution
over nonlinear functions Rasmussen (2004). A GP is parametrized by a
mean function m(x), which specifies the mean value of the function f(x)
at input point x, and a covariance function k(x,,x,), which specifies
cov( fx), f (xz)), the covariance between the function values f(x;) and
f(x,), for any pair of inputs x, and x,.

Technically a GP is a random process for which the values taken at
any finite set of input points has a well-defined multivariate Gaussian
distribution. The mean and covariance of that Gaussian are given by
evaluating the mean and covariance functions at the corresponding set
of input points. Let (x;,...,x,) denote a collection of »n points in the
input domain. If a function f has a Gaussian process distribution, f ~
GP(m, k), then the vector of function values f = (f(x)),..., f(x,))" hasa
multivariate Gaussian distribution:

f ~ N(m, K), 9]

where m = (m(x,), ..., m(x,))" is the mean vector, and K is the (n x n)
covariance matrix whose i, j’th element is k(x;,x )

2.2. GP regression

A common application of GPs is to predict function values at test
points given a set of training data consisting of observed inputs and
function values. In GP regression, these predictions come from the con-
ditional distribution over unknown function values given the observed
values.

Let X=(xj,....x,) denote a set of n input points and let f =
(f&x),..., f(x,))T denote the vector of function values observed at
these points. Here we assume the observed data is noiseless, and we
will consider noisy observations in Section 3. We consider a set of
n* novel input points X, = (X,,,...,X,,), for which we would like
to predict the corresponding (unobserved) function values, denoted

£, = (s s S ) T
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The GP gives us the following joint prior distribution over the ob-
served and unobserved function values:

f m Knn Kn*
(e )
f, m, K., K.

where m, = (m(x,,,), ..., m(x,,,:)) 7 is the mean for novel test points in
X,, and matrices K,,, K,,, and K,, are of size (nxn*), (n* xn), and
(n* x n*), respectively, formed by evaluating the covariance function k
at the relevant points in X and X,.

By applying the standard formula for Gaussian conditional distribu-
tions, we obtain the following conditional distribution of f* given f:

£If ~ N (u(X,), 0%(X,)), 3)
where mean and covariance are given by

uX,) =K, K !(f —m)+m,, )

X, =K,, -K,K'K,.. 5)

GP regression uses eq. 4, the posterior mean of the function given the
training data, to predict function values at test points X, given the train-
ing data {X,f}.

Although we have assumed so far that the function f is scalar-valued,
we can extend the GP regression framework to vector-valued functions
by using a separate GP for each output dimension of f.

3. The brain kernel model

Here we introduce the brain kernel (BK) model, which is a proba-
bilistic model of fMRI measurements at an arbitrary set of 3D spatial
voxel locations. The brain kernel itself is a covariance function for neu-
ral activity that arises under this BK model, which we will infer from
registered fMRI data.

3.1. Nonlinear embedding function

The first component of the brain kernel model is a nonlinear func-
tion, f : R?> — R?, which provides a continuous nonlinear mapping
from 3D brain coordinates to a d-dimensional latent embedding space.
The goal of this mapping is to embed brain regions with similar activity
at nearby locations in the embedded space. Typically, we consider d > 3,
so that the embedding is higher-dimensional than the three physical di-
mensions of the brain. This gives the embedding flexibility to capture
complex non-smooth dependencies between brain regions. One example
of such a dependency is the functional symmetry of the two hemispheres
Di Lollo (1981); Kitterle and Kaye (1985); Westcott (1973), which sug-
gests that one might wish to map symmetric points on the two hemi-
spheres to nearby points in the embedded latent space. This would not
be possible with a continuous mapping in three dimensions. But, in four
dimensions, one can fold the three-dimensional brain along the fourth
dimension, analogous to the way that folding a 2D brain slice along the
mid-line would allow for close alignment of symmetric points from the
two hemispheres.

Let x € R? denote an input vector, specifying the three-dimensional
location of a voxel in the brain, and let z € R¢ denote the output of f,
so that z = f(x) is the d-dimensional embedding location of a voxel at x.
Thus, for a set of voxel locations X = (xy, ..., x,), the embedded locations
in the latent space are Z = (z,, ..., 2,) = (f(X),.... f(X,)).

To impose smoothness on the embedding function, we place a GP
prior on f. We use a linear mean function, m(x) = Bx, where Bisa d x 3
matrix. This choice ensures that the embedding defaults to a linearly
stretched version of the brain in the absence of likelihood terms. Be-
cause f is a vector function with outputs of dimension d, the mean func-
tion output is also d-dimensional. For the covariance function, we use
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a Gaussian or “radial basis function” (RBF) covariance for each output
dimension of f:

kpxsx) = 7 exp (=5 11%, = x,113). ©)

The hyperparameters governing this covariance function consist of a
marginal variance r and a length-scale 5, which control the range and
smoothness of f, respectively. The GP prior over each output dimension
of f can therefore be written as

£;() ~ GP(b,. k), ©)

where f () denotes the jth output dimension of the function f(-), and
b; is the jth row of the matrix B. The prior is therefore governed by a
set of hyperparameters denoted 6, = {B,r,5}. Thus, all output dimen-
sions of the function f are assumed a priori independent with the same
covariance function and differing mean functions.

This GP prior over the function f implies a multivariate normal prior
over any set of embedded voxel locations Z. Let z; denote the jth latent
embedding of the entire set of brain voxels in the training data. Then
the prior over z; given the true voxel locations X is

p(z;|1X) = N (b;X,K), ®

where K € R"™" is the covariance matrix with the i, jth element given
by k(x;, x;) (eq. 6).

3.2. From embedding space to neural activity

The second component of the brain kernel model is a probability
distribution over neural activity as a function of locations in embed-
ding space. Our modeling assumption is that neural activity changes
smoothly as a function of locations in embedding space, or equivalently,
that correlations in neural activity decrease smoothly with distance in la-
tent space. We formalize this assumption using the brain kernel, which
provides a mapping from latent embedding locations to a covariance
matrix for neural activity.

Let ve R" denote a vector of neural activity from »n voxels
with positions X = (x|, ...,x,) and latent embedding locations Z =
(fx), ..., f(x,)). The BK model assumes this neural activity vector has
a multivariate Gaussian distribution with zero mean and covariance de-
termined by the brain kernel:

v~ N(0,C,,), )]
where
Kpk (X1,X1) Kpk (X1, X,)
C, = : : (10)
KBK(XH’XI) KBK(Xn’Xn)

is the covariance matrix, which results from applying the brain kernel
kpk(-,-) to every pair of voxel locations (x;, x;) in the set X.

The brain kernel itself is the bivariate function kg : R* X R? — R
from pairs of 3D voxel locations to a covariance of neural activity at
those pairs of locations:

kax(:x) = pexp (= 311706) = Fx)I3) = pexp (=312, = 2,13)., (D)

where p is the marginal variance. The length-scale is omitted here be-
cause z is an unknown latent variable that we need to optimize which
absorbs the unknown length-scale for simplicity. The brain kernel there-
fore specifies a positive semidefinite covariance matrix for neural activ-
ity at any set of 3D voxel locations, which is a function of the embedded
latent locations of those voxels via the nonlinear function f. The brain
kernel model transforms the data representation from voxel space to the
latent embedding space, and this transformation explicitly estimates the
covariance over neural activity (Fig. 1).
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3.3. From neural activity to BOLD signal

Next, we assume that the experimenter does not directly measure
the neural activity vector v, but instead receives measurements cor-
rupted by independent Gaussian noise. If y denotes the vector of fMRI
measurements, we assume y; = v; +¢&;, where i is the index for voxels
and & ~ N(0,6?) represents measurement noise. The vector y denotes
a single measurement of neural activity for all voxels. This induces the
following marginal distribution over fMRI measurements given the em-
bedding:

yIf ~ N(0,C,, +6°1,). (12)

Note however that the brain kernel generates C,,,, the covariance of the
underlying neural activity v, as opposed to the covariance of the noisy
fMRI measurements y; the covariance of these measurements is (C,, +
621,). For simplicity, we will omit the subscript in C,, in the following
text and write simply C.

The full set of hyperparameters governing the brain kernel model
are therefore 6 = {B, r, 5, p, 0%}, where {B,r,5} describe the nonlinear
embedding function, p is the marginal variance of neural activity, and
62 is the variance of additive Gaussian noise.

4. Inference methods

To fit the brain kernel model, we estimate the latent embeddings
of all voxels Z as well as the model hyperparameters 6 = {B,r, 5, p, 52}
given a time series of whole-brain fMRI measurements Y as well
as voxels’ 3D locations X. More specifically, Y = (yi, ..., y7) € R™T,
where y, € R” refers to the vector of fMRI measurements at time in-
dex te{1,...,T}. Let X =(xy,...,X,) € R>" where x, € R? and i €
{1,...,n}, denote the set of n 3D voxel locations for this dataset. Let
Z=(2y,...,2,) = (f(X))s ..., f(x,)) € R™" wherez, € R denotes the set
of n voxels’ d-dimensional latent representations.

We propose two empirical estimators: maximum a posteriori (MAP)
and penalized least squares (PLS). Briefly, MAP solves the problem us-
ing conventional Bayesian probabilistic inference. Since we have already
defined the distribution to generate fMRI measurements from the latent
embeddings (eq. 12) and the prior for the latent embeddings (eq. 8),
we can estimate the latent embeddings Z using MAP methods. PLS for-
mulates an objective function by minimizing the squared error between
the sample covariance of the data cov(Y), and the model-defined covari-
ance C (eq. 10). The goal of both inference methods is to find the latent
embedding locations Z and the model hyperparameters such that the
neural activity covariance C resembles the sample covariance of Y as
closely as possible.

4.1. Maximum a posteriori (MAP) estimation

Estimating large covariance matrices is a fundamental problem in
modern multivariate analysis. One common approach uses maximum
likelihood methods. We have already defined the data distribution Y
given the latent embedding Z in eq. 12 and described the prior over Z
in eq. 8.

The joint distribution is then

T d
p(Y.ZIX,0) = [[ 312, 5.6 [ p(2,1X. B, 1, 5) (13)
=1 j=1
T , d !
= [[Nwl0.C+6’L) [[ Nz b, X K), (14)

t:

j=1

where C is a function of Z and p. Thus, the loss function for the maximum
a posteriori (MAP) estimator is

Lyviap(Z.0) = —log p(Y,Z|X, 6)
tr[(C + 6®1,)7'8] + Tlog|C + ¢°1,,|
+tr[(Z - BXK (Z-BX)"]. (15)



A. Wu, S.A. Nastase, C.A. Baldassano et al.

A nonlinear embedding of 3D brain B
z
3-dimensional ( }
brain coordinates ) \\,
T 4 fMRI
dataset
! l

voxel locations
X; X j

embedding
function

d-dimensional kernel

24 4
embedding space 21$‘ .
P )

o -t

S is the sample covariance of measured neural activity, defined as

M=

T
1 _ CT |
S=—— D 0-9Dy-V. ¥== 2 ¥ (16)

Minimizing £yjap W.r.t. Z and 6, we derive the MAP estimators Zyjap
and fyap-

4.2. Penalized least squares (PLS) estimation

Another common approach aims at finding an estimator that re-
sembles the sample covariance while also satisfying structural assump-
tions about the data Fan et al. (2008, 2016). In prior work, Fan et al.
Fan et al. (2016) showed that a generalized thresholding covariance es-
timator can be cast as a penalized least squares (PLS) problem:

€ = argmin{||S — C|| + R(O)}, amn
C

where R(-) is a penalty function that imposes structure on the covari-
ance matrix C. Sparsity in C is often encoded using a shrinkage penalty.
However, we abandon sparsity in the brain kernel because the covari-
ance of brain activity may have dense structures. Instead, we regular-
ize the latent subspace of the covariance matrix using the normal prior
on the latent embedding Z (eq. 8), which is a Bayesian regularization
of the log likelihood with the form tr[(Z — BX)K~!(Z — BX)"]. This is
1

equivalent to an /,-norm penalty on K 2 (Z — BX)". Including the noise
variance term o2, the loss function for the empirical estimator is

Lps(Z,0)

Minimizing Lpyg w.r.t. Z and 6, we derive the empirical PLS estimators
Zprs and Opy g. Here, the least square term estimates the embedding Z
using the sample covariance, while the second term regularizes Z with
the kernel matrix K and mean values BX constructed from X. Eq. 18 can
also be considered as inheriting the log of the GP prior from eq. 15 and
replacing the data likelihood term with a squared loss.

=|S-C-6’L|3 +tr[(Z - BX)K'(Z - BX)T]. (18)

4.3. Exact inference by block coordinate descent

Calculating the log posterior (eq. 15) for MAP inference has a com-
putational complexity of O(n?), due to the need to compute the inverse
and the determinant of the covariance matrix. This cost is often imprac-
tical in fMRI settings, where the number of voxels » may be on the order
of thousands to hundreds of thousands.

To optimize Z and the model hyperparameters, we could use
gradient descent or Newton’s method as the optimizer; however,
this approach is computationally impractical. Thus, we need to con-
sider a scalable inference method. Existing scalable inference meth-
ods for large datasets Damianou et al. (2014); Hensman et al. (2013);
Lawrence (2007) exploit low-rank approximations to the full Gaussian
process. However, these approximations suffer from a loss of accuracy

brain kernel covariance function

Ui/\/\/
C/RVAVERNY o

brain HBK(Xian) = COV(’Ui,’Uj)
2 — pexp (—[1£(x:) — £x)12)

= pexp (—%Hz, —zj||2)
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Fig. 1. The diagram of the brain kernel model.
A. The nonlinear latent embedding of the 3D
coordinates into a d-dimensional latent space
using a function f. This f function is sampled
from a GP prior. B. Given the voxel locations
and the BOLD activity of these two locations in
an fMRI dataset (top right), our goal is to con-
struct the brain kernel with the locations as in-
puts that matches their covariance of the BOLD
activity (bottom right). The covariance is equal
to the Euclidean-based kernel of the voxels’ em-
bedding in the latent space.

neural activity

time ——

in covariance estimation. Thus, we develop a block coordinate descent
(BCD) algorithm as an exact inference method for the brain kernel model
(see Methods, Algorithm 1). Coordinate descent has been successfully

Algorithm 1 Block Coordinate Descent Algorithm for the Brain Kernel
Model.

Input: sample covariance S, voxel coordinate X

Output: latent variable Z, linear projection B, length-scale 6,

marginal variance r

Generate the index set {I; }j?:] given X

Randomly initialize Z

forr=1,2,... do

Pick I € {I;}}

=1’

and solve eq.~34 to get an initialization for Z(,’)

Find the optimal Zy) and B by solving eq.~29 or 31

Estimate the optimal length-scale §* and the optimal marginal vari-
ance r* by solving eq.~43

Update K-/ and K1

0 1 given ¢6* and r* according to eq.~42
end for

applied to solve penalized regression models Wu and Lange (2008),
to estimate covariance graphical lasso models Wang (2014), and to
compute large-scale sparse inverse covariance matrices Treister and
Turek (2014). Our PLS and MAP estimators are non-convex smooth func-
tions. We apply an iterative block coordinate descent method solved by
the proximal Newton approach Tseng and Yun (2009). Given such a
scalable optimizer, we alternate between optimizing Z and the hyper-
parameters using either eq. 15 (MAP) or eq. 18 (PLS) as the objective
loss function. More details about the optimization can be found in the
Methods section.

In practice, we used the PLS estimate to initialize the MAP estimate,
as PLS optimization is faster and requires less memory, but the MAP
estimate is more principled and achieves a higher accuracy. We used
the BCD algorithm to optimize both the PLS and MAP objectives.

4.4. Predicting activity for new voxels

Although we fit the brain kernel model to data collected with a par-
ticular grid of voxels, our framework allows us to apply the model to
fMRI measurements collected using different voxel grids. To do so, we
use the fact that the brain kernel is defined using a Gaussian process;
the mean of this GP provides a smooth mapping from 3D voxel space
to the d-dimensional latent embedding space, which can be evaluated
at any 3D brain locations. We obtain the embedding location of a novel
3D voxel location x* using the posterior mean of this GP:

z* = Bx* + (Z - BX)K™'k*, 19)

where k* = [k (x*,x), -+, k f(x*,x,,)]'r represents the vector formed by
evaluating the RBF covariance function for the voxel at location x* and
all the observed voxels in X. The brain kernel for any arbitrary pair of



A. Wu, S.A. Nastase, C.A. Baldassano et al.

Neurolmage 245 (2021) 118580

Fig. 2. Recovery of 1D brain from synthetic
data. A. The true covariance matrix for neu-
ral activity at 100 evenly-spaced voxels in a 1D
brain (top), generated by a 1D latent embed-
ding function sampled from the 1D brain ker-
nel model (bottom, blue curve). B. Model esti-
mates. The first column is the inducing-point
method; the second column is dynamic VIP;
and the last column is our BCD method. In each
column, we show the estimated covariance ma-
trix (top) and the estimated 1D latent embed-
dings (bottom, red curve). We also show the
mean squared error (MSE) between the esti-
mated covariance matrix and the true covari-
ance matrix. (For interpretation of the refer-
ences to colour in this figure legend, the reader
is referred to the web version of this article.)

A true covariance B inducing-point dynamic VIP BCD
o (mse=10.7) (mse=30.2)
o T [y

©
x
o
>
1 voxel # 100
(o))
£
o) \§
° e(\
@ S g
£ We e%\@
[0
1 100

voxel location

voxel locations in the test set x;" and x;.‘ is therefore given by:

. | R
kpr(X;,X)) = pexp(=5 117 = 7115), (20)

with z and z; the corresponding latent embeddings (eq. 19).
Now given the newly estimated brain kernel and the new voxel lo-
cation x*, we could predict its activity via

v =YT(C+ D) le, @1

where ¢* = [kpr(X*, X)), -+, kg (x*,x,)]T € R™! and y* € R™! is the
predicted activity of the new voxel across all measurements.

4.5. Synthetic experiments

To illustrate the performance of our proposed inference method
to optimize the brain kernel objective function, we began with an
application to simulated data, where the ground-truth embedding is
known. We first compared our block coordinate descent (BCD) method
Algorithm 1), which maximizes the exact log evidence (eq. (15), with
two variational inference methods that optimize a lower bound on log
evidence: an inducing-point method Lawrence (2007), and a dynamical
variational inference method (dynamic VIP') Damianou et al. (2014).

We created a simulated dataset using a 1-dimensional brain and 1-
dimensional latent embedding function, sampled from the brain kernel
model (Fig. 2). Here, the latent embedding is a nonlinearly warped ver-
sion of the 1D brain. We considered a set of 100 voxel locations on an
evenly spaced 1D grid: X = [1,2, ...,100]". We then sampled the voxels’
latent locations Z from a GP with mean m(x) = 0.6x and RBF covariance
with length-scale § = 10 and marginal variance r = 9: Z ~ N'(0.6X, K),
where K;; = 9exp(—(i — j)?/200). Given this embedding function, the
brain kernel defines a covariance matrix for neural activity at these 100
voxels, denoted C, with the i, jth entry given by C; ; = exp(—(z; — z; )2/2)
(Fig. 2A top). To obtain simulated fMRI measurements, we sampled 750
observations from a Gaussian distribution with zero mean and covari-
ance C + 51, where 62 = 5 represents the variance of additive measure-
ment noise.

We compared the different estimators on the task of recovering
the true covariance and latent embedding function from this dataset
(Fig. 2B). The inducing-point method with six inducing points (column
1) performed well at recovering the latent embedding function, although
it was outperformed by our BCD estimator in terms of mean squared er-
ror (BCD; column 3). The dynamic VIP estimate with six inducing points

! https://github.com/SheffieldML/GPmat

(column 2) converged to a local optimum far from the true latent embed-
ding, yielding a substantially higher error. In contrast, exact inference
using BCD outperformed both inducing point-based approximate meth-
ods in terms of accuracy at recovering the true latent from simulated
data.

Next, we conducted a set of synthetic experiments to examine how
well different models captured the covariance of simulated fMRI data,
using voxels on a 1-dimensional, 2-dimensional, or 3-dimensional grid.
We fit these simulated datasets using the brain kernel model optimized
with (1) BCD, (2) variational inducing-point, and (3) the dynamic VIP
method, and two additional models: (4) a linear brain kernel (LBK)
model, and (5) a GP with RBF covariance function (RBF). Note that the
first three methods are based on the original brain kernel model but have
different inference methods, while the last two methods represent sim-
plifications of the proposed brain kernel model. The linear brain kernel
model assumes a purely linear embedding function; it thus allows rotat-
ing and linearly dilating the voxel grid, but does not allow for nonlinear
warping of voxel locations. The covariance function for neural activity
v under the LBK model is given by:

Kok (%i:%;) = pexp (=1 11Bx; — Bx, 13 ). @)

where B is a d x v linear embedding matrix and v is the number of di-
mensions of x, e.g., v =2 for a 2-dimensional grid of voxels, and d is
the dimension of the latent space. To assess the importance of the struc-
tured latent embedding in covariance estimation, we fit the data with a
standard GP with RBF covariance function:

Krar(%i:%) = pexp (= 31Ix, = x,|3/7%), @3)

where / is the length-scale for the RBF kernel. This model imposes
smoothness using Euclidean distance, without estimating any (linear or
nonlinear) transformation of the true voxel locations. To fit the LBK and
RBF models, we minimized the following negative log likelihood for hy-
perparameters 0:

£(0)

—log p(Y|X, 0)
tr[(C(X, 0) + 6°L,)™"'S] + Tlog|C(X, 0) + o°L,], 24)

where C(X, 6) is the model-generated covariance matrix (given by eq.
22 for the linear brain kernel model with 8 = {B, p}, and by eq. 23 for
the RBF model with 6 = {/, p}), S is the sample covariance (eq. 16), ¢>
is the noise variance, and T is the number of samples in the simulated
dataset.

For each grid dimension, we simulated ten independent datasets,
each with different nonlinear embedding functions sampled from the
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Fig. 3. Quantitative comparisons for BCD, inducing-point, dy-
namic VIP, LBK, and RBF on three simulated datasets with 1D,
2D, and 3D input voxel locations. A is the held-out voxel exper-
iment, and B is the held-out sample experiment. Within each

experiment, we show the normalized test likelihood values for
W BCD each method with three different simulated datasets.

M inducing-point
M dynamic VIP
LBK
RBF

1D_sample 2D_sample 3D_sample

brain kernel model. For the 1D experiments, we generated each dataset
with 500 voxels and 750 samples, and embedded the 1D voxel space
to a 1D latent embedding space. For the 2D experiments, we used a
25 x 25 voxel grid, embedded nonlinearly in a 3D latent embedding
space, and generated datasets of 1000 samples, where each sample is
a vector of 625 noisy measurements of brain activity at voxel locations.
For the 3D datasets, we used a 10 x 10 x 10 grid of voxels, embedded
nonlinearly into a 6D latent space, and we generated 1500 samples per
dataset.

To compare models, we performed two different cross-validation
tests: (i) prediction on held-out voxels (Fig. 3A), and (ii) predictions
on held-out samples (Fig. 3B).

For the first of the two cross-validation tests, we removed ten
randomly-selected voxels X* from the simulated 1D datasets and set
them aside as test data, and we optimized the model parameters on a
training set of measurements from the remaining 490 voxels. (For exper-
iments with 2D and 3D grids, we set aside 62 and 100 voxels as held-out
data, and we trained models using the remaining 563 and 900 voxels,
respectively.) For the BK and LBK models, we computed the embedding
locations Z* for the test voxels using the GP posterior mean given the
inferred embedding locations Z (eq. 19), and we used these locations to
evaluate the covariance of the test voxel activity (eq. 21). For the RBF
model, there is no embedding, so the covariance of the test data depends
only on the test voxel locations X*. We used the resulting predictive co-
variance to compute the log likelihood of the test data. We found that the
BCD-optimized brain kernel model estimate outperformed other meth-
ods, while the LBK and RBF models performed worse, presumably due
to their inability to capture the nonlinear embedding of the simulated
data (Fig. 3A).

Next, we evaluated cross-validation performance on held-out sam-
ples, which were measured at the same set of voxels as the training set.
For these simulations, we randomly selected 75 samples as test data
for the 1D datasets, and used the remaining 675 samples to fit the five
models. (For 2D and 3D grids, we used a train-test split of 900:100 and
1350:150 samples, respectively.) We estimated a covariance function
using measurements in the training set, and computed a test likelihood
using this covariance function on the test set. We generated ten random
splits for each dataset and computed the normalized test log likelihood.
In this predictive task, the BCD estimate again outperformed other meth-
ods (Fig. 3B).

Overall, these simulations demonstrated that the inducing point-
based GP methods, which are often used due to their scalability, had
higher errors than our exact BCD inference method. In addition, by com-
paring to the linear brain kernel model and the standard GP model with
an RBF kernel, we showed that the ability to capture a nonlinear trans-
formation of the voxel locations is critical for accurately modeling the
covariance of simulated brain activity.

5. Inferring the brain kernel from resting-state fMRI data

Now that we have described the brain kernel model and validated
our inference method using simulated data, we turn to the problem of
inferring the brain kernel from real data. We fit the brain kernel model
to large-scale publicly-available resting-state fMRI data from the Human
Connectome Project (HCP) Van Essen et al. (2013). An advantage of this
approach is the large size of the HCP sample, which mitigates overfitting
and allows us to learn an embedding function that captures correlation
patterns common to a vast collection of different brains. However, ap-
plying the resulting brain kernel to task-based fMRI datasets assumes
that the correlations presented in resting-state fMRI data are applica-
ble to activation patterns in other brain states. Previous studies have
shown interesting relations between brain activity during a task and at
rest. One study showed that coherent spontaneous activity accounted
for variability in event-related BOLD responses Fox et al. (2006). A
second study concluded that functional networks used by the brain
in action were continuously and dynamically “active” even when at
“rest” Smith et al. (2009). A third study showed that resting-state ac-
tivation patterns had strong statistical similarities to cognitive task acti-
vation patterns Cole et al. (2016). These provide reasons for optimism,
though the possibility of changes in correlation across different tasks
could potentially affect the application of the brain kernel which we
will show empirically later.

We examined resting-state fMRI data from 812 subjects collected via
the Human Connectome Project (HCP) Van Essen et al. (2013). These
data were acquired in four fMRI runs of approximately 15 minutes each,
two runs in one session and two in another session, with eyes open
and relaxed fixation on a projected bright cross-hair on a dark back-
ground. A sophisticated preprocessing pipeline was used to align voxels
across subjects. Detailed information about imaging protocols, image
acquisition, and preprocessing can be found in WU-Minn (2017). The
resulting dataset consisted of 59,412 voxels in a cortical surface coordi-
nate system. Although the full covariance matrix of these data is of size
~ 59K x 59K, we fit the model using the first 4500 eigenvectors of the
full matrix provided by HCP.

We fit the brain kernel with different numbers of latent dimensions
and computed the test log likelihood with held-out voxels and samples
(Fig. 4D). We found that test performance plateaued with increasing
dimensionality, and selected d = 20 dimensions for subsequent analy-
ses. We then estimated the brain kernel by fitting the 20-dimensional
latent embedding for each voxel using BCD optimization of eq. 18 and
eq. 15. The resulting function is a matrix of embedding locations of size
~ 59K x 20, where each row contains the embedded location of a sin-
gle voxel in the resting-state fMRI dataset. This embedding, in addition
to the hyperparameters (the linear projection matrix B and the hyper-
parameters {y,§} for K), provides a full parametrization of the brain
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kernel. The entire fitting process took approximately 1 week on a single
CPU, since we needed to optimize the latent embedding location of each
voxel in the HCP dataset so that the covariance in BOLD activity for any
pair of voxels was accurately described by the brain kernel.

Although it is impossible to visualize the 20-dimensional nonlinear
embedding that defines the brain kernel, we can gain insight into its
shape by plotting low-dimensional projections on subsets of voxels. To
visualize the brain kernel, we selected two symmetric ROIs in the left
and right parietal lobes (Fig. 4A, top). Taken together, these two ROIs
contain 3K voxels. We visualize the sample covariance of these voxels
(Fig. 4A, bottom). This covariance contains four identifiable blocks: two
diagonal blocks that correspond to the covariance of voxels within each
ROI, and two off-diagonal blocks that correspond to cross-ROI covari-
ance. The off-diagonal blocks reveal that the two ROIs have reasonably
strong correlations despite being spatially distant in the brain.

The original 3D voxel coordinates (Fig. 4B, top) and the covariance
given by the best-fitting RBF kernel (eq. 23; Fig. 4B, bottom) show that
the RBF kernel model fails to capture the off-diagonal blocks of the sam-
ple covariance, corresponding to covariance between voxels in opposite
hemispheres, due to the fact that the RBF kernel depends only on the
Euclidean distance between voxels. In contrast, a 3-dimensional projec-
tion of the estimated 20-dimensional brain kernel embedding (Fig. 4C,
top) and the corresponding brain kernel covariance (Fig. 4C, bottom)
appear to capture this cross-ROI structure in the covariance matrix. The
3D projection corresponds to the first three principal components of the
20-dimensional latent embeddings, and shows that paired voxels from
opposite hemispheres are embedded close to each other under the brain
kernel.

Conversely, some voxels that are physically close together in the
brain are embedded far apart in the embedding space. As an example,
we presented a visualization of some selected 3D coordinates (Fig. 5A)
and their corresponding 3D latents (Fig. 5B) of three regions on the left
hemisphere (color coded). We can see the green region is closer to the
orange region in the 3D voxel space, while it’s closer to the blue region
in the latent space. The blue region covers mostly the visual area. The
green region contains motor functions including eye movement and ori-
entation. The red region corresponds to higher mental functions such as
planning and emotion. This could explain the stronger functional con-
nectivity between green and blue in the latent space.

Overall, this nonlinear embedding allows the brain kernel to more
accurately capture the covariance of the real data.

6. Applications

To illustrate the usefulness of the brain kernel, we applied it to two
different fMRI data analysis problems: decoding and factor modeling

C latent embedding

best-fitting brain kernel
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Fig. 4. 3D embeddings and the corresponding
covariance matrices of the resting-state fMRI
data. A. The two example regions of interest
(ROIs) we selected in the left and right pari-
etal lobes (top) and the full covariance for
the 3K voxels in these two ROIs (bottom). B.
The original 3D voxel coordinates (top) and
the best-fitting RBF kernel (bottom). C. A 3-
dimensional projection of the estimated 20-
dimensional brain kernel embedding (top) and
held out samples  the corresponding brain kernel covariance ma-
1 trix (bottom). D We show the influence of the
latent dimensionality on the predictive perfor-
mance for held-out voxels and held-out samples

0.9 with the resting-state fMRI data.
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Fig. 5. 3D coordinates (A) and their latent embeddings (B) of three regions
on the left hemisphere. Opposite to Fig. 4B and C where the ROIs are separate
in the voxel space but overlap in the latent space, the orange region and the
green region are closer in the voxel space but distant to each other in the latent
space, compared to the relation between the green region and the blue region.
(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

(Fig. 6). For both analyses, we used the latent embedding function fit to
resting state data (as described in Section 5), and tuned two hyperpa-
rameters governing the amplitude and length-scale of the brain kernel,
which allowed it to adapt to the statistics of each task dataset of inter-
est. We refer to this as tuning of the brain kernel covariance for use in
applications. We describe these applications in detail below.

6.1. Brain decoding

In this section, we illustrate how the brain kernel can be applied to
fMRI classification (or ”"decoding”) tasks.

6.1.1. HCP tasks

We first examined the task fMRI datasets in the HCP database.
We explored the working memory task, the gambling task
Delgado et al. (2000), the language processing task Binder et al. (2011),
the motor task Buckner et al. (2011), the emotion processing task
Hariri et al. (2006), the relational processing task Smith et al. (2007),
and the social cognition task (more details found in Barch et al. (2013);
WU-Minn (2017)). We will elaborate on the working memory and
gambling tasks and finally summarize the result with all datasets.

Working memory task

We obtained the working memory task fMRI measurements from the
HCP Barch et al. (2013). The stimuli consisted of four types of pictures:
places, tools, faces, and body parts. Stimuli were presented for 2 s on
each trial followed by a 500-ms inter-trial interval (ITI). Each task block
consisted of ten trials of 2.5 s each. Each run contained 8 task blocks, half
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for a 2-back working memory task and half for a 0-back working mem-
ory task, along with 4 fixation blocks. Two runs were collected for each
subject, with 405 volumes per run or approximately 5 minutes. Because
the task fMRI was from the same HCP project as the resting-state fMRI,
they shared the same coordinate system and preprocessing pipeline. The
task fMRI was aligned with the MNI template with the same 59,412 vox-
els as the resting-state fMRI data. Instead of analyzing the whole-brain
data for brain decoding, we worked with functional ROIs. For each pre-
sented type of pictures, we took the group-average task contrast for the
2-back vs 0-back working memory task and kept all voxel coordinates
whose z-statistics were at least -1.96 or +1.96 standard deviations away
from the mean, indicating that the voxels were statistically significant
in the contrast map. We repeated the same thresholding procedure for
all objects and took a union set of all coordinates to formulate the func-
tional ROIs for the working memory task. We didn’t select the ROIs using
the contrast among objects, therefore the resulting ROIs contained no
discriminative information with respect to the decoding task.

The experiment required observers to perform a working memory
task using four different types of objects. We tested the ability to decode
these objects from fMRI data by fitting a binary linear classifier for each
pair of objects. We used Bayesian linear regression classifiers to solve
six binary classification problems. A Bayesian linear regression classifier
has the form,

y = sign(xw + €), (25)

where x is a vector of all voxels for one fMRI measurement or sample,
y is a +1 label indicating the binary object category for that sample, w
is a vector of regression coefficients, and e is independent zero-mean
Gaussian noise with variance 2. To regularize the estimate of w, we as-
sumed a zero-mean Gaussian prior with covariance C, i.e., w ~ N'(0, C).
We considered three different choices of prior covariance: (1) a ridge
prior, which corresponds to a diagonal covariance with a positive con-
stant along the diagonal; (2) a radial basis function (RBF) covariance
(eq. 23), which imposes smoothness based on the voxels’ 3D locations
in the brain, and (3) the brain kernel defined as

ki) = pexp (=3 11705 = £/,

where f is the nonlinear embedding function fitted in Section 5 and
is fixed for decoding. {p,!} are tuneable hyperparameters that we op-
timized when tuning the brain kernel to the task data of interest. The
computational cost of this tuning is the same as the cost for optimizing
the standard kernels such as the RBF covariance, which has an equiv-
alent pair of hyperparameters. This optimization is fast (e.g., 80 s for
3,000 voxels on a CPU), and there is no difference in computational
cost between the brain kernel and the RBF smoothing prior.

We trained the classifier with these three priors on one run and calcu-
lated accuracy performance on the second run, then repeated the same

(26)

covariance

Gaussian prior
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Fig. 6. Schematic figure illustrating two applications of the
brain kernel to task fMRI data. After fitting the brain kernel to
resting-state data, we applied it to task fMRI data with n vox-
els by evaluating the brain kernel at the 3D voxel locations.
This results in a n X n prior covariance matrix for the task data,
denoted C. We then used the covariance C as the prior covari-
ance for two modeling tasks: (1) brain decoding and (2) factor
analysis. Two unknown parameters w and L are both random
variables with a Gaussian prior whose covariance is C. Thus,
we effectively imposed assumptions on the structure of w and
L via C.

X =LF —+ €<« noise

I\

factor

procedure with test and training sets reversed. When we trained the
model, we randomly split the training run into five folds and selected
the optimal hyperparameters in the covariance functions via 5-fold cross
validation. After cross validation, we applied the optimal hyperparam-
eters to the test run for each prior model. We repeated this 5-fold cross
validation experiment ten times to reduce variability. We used linear
regression to train the classifier, so the +1 labels were treated as contin-
uous target values, and test accuracy was evaluated by taking the sign
of the prediction. We plotted averaged accuracy across both runs and all
repeats for the three priors for ten randomly-selected subjects (Fig. 7A).
The RBF prior outperformed the ridge prior, but the brain kernel prior
outperformed both of the other priors, indicating that smoothing in a
nonlinear embedding space defined by correlations of fMRI signals pro-
vided additional benefits in regularizing weights for a classification task.
Moreover, the framework of the brain kernel for regularization allows
us to visualize the inferred decoding weights overlaid on a 3D brain
(Fig. 7B).

Gambling task

We next examined fMRI data in a gambling task from the HCP
Barch et al. (2013), adapted from a prior study Delgado et al. (2000).
Participants were asked to play a card-guessing game. They were shown
a mystery card with a number that could range from 1 to 9. They needed
to guess whether it was more or less than 5 by pressing on of two buttons.
If they made the correct guess, the card showed a green up arrow with
“$1” for rewards; if they guessed wrongly, the card showed a red down
arrow with “-$0.5” for losses; if the true value was 5, they got a neu-
tral response without win or loss. Participants had 1,500 ms to guess,
and the feedback was presented for 1000 ms, followed by a 1000-ms
inter-trial interval (ITI). Each task block consisted of eight trials that
were either mostly reward or mostly loss. Two runs were collected for
each subject. Each run contained two mostly reward and two mostly
loss blocks, interleaved with four fixation blocks. There were 253 vol-
umes per run, which lasted approximately 3 minutes. The task fMRI
was aligned to the MNI template and had the same 59,412 voxels as the
resting-state fMRI data. Instead of analyzing the whole-brain data for
brain decoding, we worked with functional ROIs which were selected
using the same approach as described in the working memory task.

We formulated the task as a binary classification problem separating
reward trials and punishment trials. We used the same Bayesian linear
regression classifiers as described in the working memory section. We
trained the classifier with three priors on one run and calculated the ac-
curacy performance on the second run, then switched the training and
test runs. This procedure was repeated ten times. The +1 labels were
treated as continuous target values during training, and the test accu-
racy was evaluated by taking the sign of the prediction. We computed
the averaged accuracies across two runs and 10 repetitions for the three
priors for 15 subjects (Fig. 8A). For 11 out of 15 subjects, the brain ker-
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Fig. 7. A. Accuracy performance on the work-
ing memory task. The x-axis indicates sub-
ject identifiers. The y-axis is accuracy perfor-
mance. We compared our brain kernel with
a ridge prior and a smooth RBF kernel, color
coded. The error bars indicate standard errors.
B. Visualization of an example set of decoding
weights. Blue indicates negative values and yel-
low indicates positive values. (For interpreta-
tion of the references to colour in this figure
legend, the reader is referred to the web ver-
sion of this article.)
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Fig. 8. A. Accuracy performance on the gam-
bling task. The x-axis indicates subject identi-
fiers. The y-axis is accuracy performance. We
compared our brain kernel with a ridge prior
and a smooth RBF kernel, color coded. B.
Visualization of an example set of decoding
weights. Blue indicates negative values and yel-
low indicates positive values. (For interpreta-
tion of the references to colour in this figure
legend, the reader is referred to the web ver-
sion of this article.)
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nel improved accuracy over both the ridge prior and the smooth RBF
prior. For two of the remaining four subjects, the brain kernel outper-
formed the ridge prior. The discrimination problem with the gambling
data was more difficult than the working memory task. Many activations
occurred in the visual cortex and the prefrontal cortex for working mem-
ory, whereas critical activations for the reward task might be localized
to the striatum, which was not included in the cortical data used here.
However, with the cortical brain kernel, we were still able to improve
the predictive ability of the Bayesian decoding model.

All HCP tasks

We’ve elaborated on the working memory and gambling tasks above.
We also achieved the classification accuracy performance for all other

tasks (presented in Appendix B.1). Here we summarize the averaged
accuracy over all subjects for each task in Fig. 9. Consistent with the
above results, we succeeded in achieving the best performance with the
working memory and gambling tasks using the brain kernel. For other
tasks, the brain kernel performed mildly better than the ridge prior and
the smoothing prior estimates. The overall performance of these HCP
task fMRI datasets indicates that the brain kernel is a better choice than
the smoothing and the ridge priors.

6.1.2. Visual recognition task
Next, we examined the problem of decoding faces and objects from
fMRI measurements during a visual recognition task. Just to remind, the
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Fig. 9. Accuracy performance averaged over all subjects for all task fMRI
datasets in the HCP database. The x-axis indicates the task. The y-axis is ac-
curacy performance.
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Fig. 10. Examples of the stimuli for 7 categories (except for scrambled control
images) Haxby et al. (2001).
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brain kernel was estimated using the resting-state fMRI from HCP, and
we applied it to a popular fMRI dataset from a study of human ventral
temporal cortex Haxby et al. (2001) for the decoding task. We extended
the application beyond HCP, i.e., constructing the brain kernel on HCP
and then trying on a completely different dataset. Therefore, we were
looking at cross-dataset generalization, not just cross-task generaliza-
tion within HCP. In this visual recognition experiment, six subjects were
asked to recognize eight different types of objects (bottles, houses, cats,
scissors, chairs, faces, shoes, and scrambled control images, examples in
Fig. 10). Each subject participated 12 scanning runs. In each run, the
subjects viewed images of eight object categories, with 11 whole-brain
measurements per category. Each subject’s f{MRI data was preprocessed
using the fMRIprep package® Esteban et al. (2017) and aligned to the
MNI template. Both voxels in this dataset and voxels in the HCP database
were all aligned in the same MNI space, allowing us to use eq. 19 to get
the brain kernel covariance for the present dataset. Instead of analyzing
the whole-brain data, we extracted ROIs with 1,645 voxels in the ventral
temporal cortex, which is thought to be involved in object recognition.
The ROI mask was obtained from Nilearn Abraham et al. (2014).

We assessed performance by training Bayesian linear regression clas-
sifiers to discriminate between pairs of objects, e.g., face vs. bottle, for
each of the 28 possible binary classifications among the eight objects
(Fig. 10). We trained the weights w for each model using linear regres-
sion from fMRI measurements x to binary labels y € {—1,+1}, and as-
sessed accuracy on the test set using predicted labels § = sign(xw). Here,
we split the training and test sets by subjects. In this visual recognition
dataset, we had six subjects but only 11 X 2 X 12 = 264 measurements
in a 1,645-voxel space for each subject in a binary decoding task. The
number of training measurements was not sufficiently large to train a

2 https://github.com/poldracklab/fmriprep
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Fig. 11. Accuracy performance on the visual recognition task. The x-axis indi-
cates subject IDs. The y-axis is accuracy performance. We compared our brain
kernel with a ridge prior and a smooth RBF kernel, color coded.

good classifier with a reasonable generalization performance. Therefore,
different from the HCP tasks, we chose to do inter-subject analyses by
using 5 subjects for training and one subject for test. We repeated this
leave-one-subject-out manner for six times with each subject being used
as the test set once and obtained the result in Fig. 11.

The averaged accuracy performance across four repeated runs for six
subjects shows that the brain kernel performed comparably to the ridge
and smoothing priors with better accuracy performance for 5 out of 6
subjects (Fig. 11). This indicates that the brain kernel can provide func-
tional and structural support for most subjects and visual recognition
tasks in this dataset. The improvement was statistically modest overall
based on the standard errors, which could be a result of several factors:
misalignment of the coordinate space to the HCP coordinate space used
to estimate the brain kernel; mismatch between the resting-state covari-
ance used to construct the brain kernel and covariance present during
the visual recognition task; or the object recognition tasks may rely on
fine-grained spatial response topographies that are poorly aligned across
individuals.

6.2. Factor modeling

In this section, we illustrate a second type of application of the brain
kernel. Instead of using it to regularize decoding weights, as in the pre-
vious section, we used it as a spatial prior for Bayesian factor analysis.

6.2.1. Sherlock movie watching task

We examined the Sherlock fMRI dataset, in which participants were
scanned while they watched the British television program “Sherlock”
for 50 min Chen et al. (2017). The fMRI data comprised 1,973 TRs (Rep-
etition Time), where each TR was 1.5 s of the movie. Before performing
any analysis, the fMRI data were preprocessed and aligned to MNI space
using the techniques described in the prior work Chen et al. (2017).
We examined the brain data averaged across all subjects to smooth out
individual variability. We identified 11 ROIs previously implicated in
processing naturalistic stimuli, comprising the default mode network
(DMN-A, DMN-B), the ventral and dorsal language areas, and the pri-
mary auditory and visual cortices Simony et al. (2016).

For each ROI, we performed a standard factor analysis (FA) to fac-
torize the voxel-by-time fMRI data into a latent source matrix and a
factor matrix. Thus fMRI images can be considered as being generated
by a covariate-dependent superposition of latent sources. Some follow-
ing analyses, such as decoding and encoding tasks, can be performed
with the factor matrix. The number of latent sources is much fewer than
the number of time points, thus providing a parsimonious description
of neural activity patterns that avoids many of the pitfalls of traditional
voxel-based approaches. Similar FA based models have been proposed
in Gershman et al. (2011); Manning et al. (2014). Here, we performed
a Bayesian factor analysis of the form

X =LF +e¢, @7
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Fig. 12. Co-smoothing evaluation. The blue region is the data used for training;
the pink region contains voxels that are used to infer the factor matrix during
the inference period; and the yellow region is used for test. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

where X € RVXT is the fMRI image with N voxels and T time points,
L € RV*K is the latent source matrix encoding the canonical spatial
pattern (over voxels) associated with each latent source. F € RKXT is
the factor matrix containing the timeseries for K latent sources. ¢ is a
Gaussian noise with ¢ ~ N (0, 62). We assumed that the ith factor (col-
umn) is from a standard normal distribution, i.e., p(F;) = N'(0,I). We
also assumed that the jth latent source (column) is from a Gaussian
prior p(L;) = N(0, C) where C is the covariance matrix. Like the decod-
ing tasks, we used a ridge prior, a smooth RBF kernel, and the brain
kernel in the place of the covariance matrix C. With different priors,
the latent sources L showed different characteristics imposed by these
distinct regularizations.

Our goal was to infer the latent variables L and F, and the hyper-
parameters for C and 62, denoted as 6. To quantify performance, we
compared data explanation under the three prior with the same number
of latent sources which was set to 10. In practice, we first standardized
the fMRI image X, then tuned the hyperparameters using the marginal
distribution of X, and finally inferred the factor matrix and the latent
sources via maximum likelihood parameter estimation (details in Meth-
ods). To evaluate the performance of the three priors, we used a method
called “co-smoothing” Wu et al. (2018), depicted in Fig. 12. We first split
the time points into two equal sets by taking the first half as one set and
the latter half as the other set. We took the first set for training (the
blue region) and the second set for inference (the pink region) and test
(the yellow region). We trained the model with the neural activity in
the training set to obtain the estimated latent sources L*. We then kept
the latent sources fixed for the inference and test purpose. Next we split
the second set into five folds along the voxel axis, four for inference and
one for test. We used the neural activity

in the inference set to infer the factor matrix (mapping the latent
sources to the time series) during the inference period given the la-
tent sources L*. Finally we predicted the neural activity for the left-out
voxels in the test set given the latent sources and factor matrix. We re-
peated the inference and test step five times in a cross-validation fashion
and obtained an averaged R* value representing the performance of the
prior. After the first run, we achieved three R? values for the three pri-
ors (ridge, smooth and brain kernel). To better visualize the difference,
we normalized the three R? values so that the maximum was 1 and the
minimum was 0. We then launched a second run by using the second
set as the training set and the first set as the inference and test set. The
final normalized test R? value was an average of the two runs.

We compared the normalized test R? value for the three priors for
each ROI (Fig. 13). The error bars indicate standard errors. In most re-
gions, the brain kernel outperformed the ridge prior and the smooth
RBF kernel. This implies that when performing Bayesian FA, the brain
kernel provided a superior prior covariance for the latent source matrix
and may enhance performance in terms of data explanation.

6.2.2. HCP tasks

We examined the task fMRI datasets in the HCP database with the
same Bayesian FA model. We collected all the task fMRIs for the same
10 subjects and performed Bayesian FA for each subject in each task.
We implemented the same “co-smoothing” evaluation and compared
the normalized test R? for the three priors averaged over all subjects
for each task (Fig. 14). In most tasks, the brain kernel outperformed
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the ridge prior and the smooth RBF kernel. This implies that the brain
kernel provided a superior prior covariance for the latent source matrix
and may enhance performance in terms of data explanation for the HCP
database.

7. Discussion

We introduced the brain kernel model, a new model for the spa-
tial covariance of fMRI data. This model takes the form of a covariance
function, meaning that it can take any two continuous voxel locations
in the brain as inputs and return the prior covariance of their activi-
ties. Unlike standard smoothness-inducing covariance functions used in
the Gaussian process literature, which assume that correlation falls off
monotonically with distance, the brain kernel allows widely-separated
voxel locations (e.g., on opposite sides of the brain) to have high cor-
relation, while pairs of nearby voxels can be nearly uncorrelated. This
property arises from the fact that the nonlinear embedding function,
parametrized with Gaussian processes, warps and stretches the brain in
a higher-dimensional space so that widely-separated pairs of voxels can
be mapped to nearby embedding locations, while pairs of nearby voxels
can be moved far apart in embedding space.

We fit the brain kernel model using a nonlinear embedding of the
3D brain in a 20D space. We introduced an exact inference method for
fitting the brain kernel model using block coordinate descent (BCD),
and estimated the brain kernel using a large publicly-available dataset
of resting-state fMRI measurements from many subjects. We found that
the resulting brain kernel accurately captured the covariance of resting-
state fMRI measurements.

We further demonstrated the applicability of the brain kernel using
two different modeling tasks: brain decoding and factor analysis. In both
cases, we used the brain kernel to define a prior distribution in place of a
more conventional prior based on ¢, shrinkage or local smoothness. We
showed that the brain kernel achieved gains in performance, illustrating
that the correlations in resting-state fMRI may be usefully mined to aid
analyses of task fMRI. A comprehensive summary of application results
can be found in Appendix B.

Moreover, to examine other choices of covariance function for
parametrizing the brain kernel, we re-fit the brain kernel to resting-
state fMRI data using a Matern-3/2 covariance function. We also com-
pared the RBF and Matern-3/2 brain kernels using the working-memory
decoding task fMRI data shown in the main paper. We found that the
RBF covariance function outperformed the Matern-3/2 covariance func-
tion in both modeling the covariance of resting-state data and decod-
ing of working memory task data. More details can be found in Ap-
pendix C. We have therefore decided to keep our focus on the brain ker-
nel parametrized with RBF covariance in the main paper. But exploring
a wider family of possible covariance functions is indeed a worthwhile
direction for further research.

The estimation of a good quality of the brain kernel requires as much
fMRI data as possible. However, we want to emphasize is that our inten-
tion was not to suggest that experimentalists should collect more data
than needed for their study. We merely meant to suggest that—if there
are pre-existing publicly or privately available datasets that exhibit sim-
ilar functional connectivity / covariance structure to patterns of activity
observed during a particular study, then that additional data might be
leveraged using the brain kernel to improve decoding performance or la-
tent variable modeling of the data collected for the study of interest. This
would indeed incur a computational burden (researchers would need to
fit the brain kernel using the pre-existing dataset). However, no addi-
tional data would be needed; on the contrary, the brain kernel would
make it possible to exploit the structure of the pre-existing data so that
the significance level / effect sizes are larger in the study of interest, thus
effectively increasing statistical power or reducing data requirements.
For the purpose of using the resting-state brain kernel as an alternative
prior apart from the RBF covariance, people can just download it from



A. Wu, S.A. Nastase, C.A. Baldassano et al. Neurolmage 245 (2021) 118580

Sherlock fMRI dataset Fig. 13. Normalized test R? performance on the Sherlock fMRI
o 1r dataset. The x-axis indicates ROIs (PPHG — Posterior Parahip-
g 0.8+ pocampal Gyrus; PAC - Primary Auditory Cortex; PAN — Pri-
S 0.6- mary Auditory Network; DMN-A — Default Mode Network-A;
. 0.4 DMN-B - Default Mode Network-B; DLN — Dorsal Language
T O' o Network; VLN - Ventral Language Network; PVC — Primary Vi-
g . sual Cortex). The y-axis is the normalized R? performance on
c PPHG PAC PAN DMN-A  DMN-B DLN VLN PVC the test set' (hi.gher values indicate better performance). Tl?e
ROI error bars indicate standard errors. We compared our brain
‘- -  Bllrain kemel ‘ kernel with a ridge prior and a smooth RBF kernel, color coded.
riage SMOO! rain Kernel
. HCP task fMRI dataset Fig. 14. Normalized test R> performance on the HCP task
2 fMRI datasets. The x-axis indicates the task. The y-axis is the
% 0.8 normalized test R? performance averaged over 10 subjects for
S 0.6 each task (higher values indicate better performance).
o)
Nos4
£ 0.2
S o
< working : language emotion relational social
gambling motor ; ) . .
memory processing processing processing  cognition
task
(Il ridge Bl smooth [_brain kernel|
link and use it instead of the RBF covariance, since we have already fit and the Sherlock movie dataset presented in the main paper. For most
it with a giant resting-state fMRI dataset from diverse subjects. subjects in both datasets, the brain kernel didn’t show a dominating
performance over both the ridge prior and the smooth RBF kernel (Ap-
Limitations pendix B).
Beyond those reasons, we hypothesize that the lack of benefit ob-
Despite the successes presented above, it is important to acknowl- ~ Served on non-HCP (OUtﬁide the HCP) datasets may arise f.r0m a mis-
edge that we applied the brain kernel to several other datasets for both H_latCh bet.ween the covariance of'restmg-state fMRI observations used to
the decoding and the factor modeling tasks beyond the examples shown ﬁt. the brain k.ernel and Fhe covarlance of task fMRI datasets. However, it
in the main section, for which it did not yield improvements over stan- might also arise from differences in acquisition parameters, preprocess-
dard priors. ing steps, or alignment between HCP and non-HCP datasets. Although
For decoding, we applied the brain kernel to the Sherlock movie we aligned all voxels with the MNI template, misalignment might still
dataset Chen et al. (2017) whose decoded vectors contained seman-  result from differences between processing pipelines.
tic descriptions for the movie scenes. We observed that the smooth- We include more analyses about the reasons behind these limitations
ing prior was better than the brain kernel prior, both better than the and under which circumstances the brain kernel could be a better prior
ridge prior. Then we investigated the reason of the performance differ- ~ ©Ption than the ridge prior and the smoothing prior in Appendix B. We
ence and figured out that the brain kernel was able to impose a strong can show only that if there is similar structure between the covariance of
cross-covariance assumption over many voxels; but much of the cross- resting-state data used to estimate the brain kernel and the discrimina-
)
covariance didn’t exist in the Sherlock movie data or could hurt the tive ROIs in the task data, the brain kernel will function as a better prior
decoding performance. The optimal brain kernel prior corresponded to than a standard smoothing kernel. For factor modeling applications, the
a small length-scale that led to less smoothing assumptions compared brain kernel is often more reliably effective because we typically use a
with the smoothing kernel. So this Sherlock movie dataset is not an large number of voxels to infer latents, rather than a few responsive vox-
ideal dataset that could leverage most of the resting-state functional els that. may be selec.ted in decoding tasks. Similarly, we would.expect
connectivity to do the decoding task. We also applied it to a public the brain kernel to give good performance when the task fMRI is com-
fMRI dataset in which subjects viewed 5000 visual images (BOLD5000) posed of smooth latent sources that resemble the spatial correlation in
Chang et al. (2019). The binary labels were living objects versus non- the resting-state data. We can fit a best brain kernel or a best RBF kernel
living objects. We observed that the brain kernel did not reliably out- to the sample covariance and evaluate the similarity both qualitatively
perform the ridge prior and the smoothing prior estimates across sub- and quantitatively with the negative log-likelihood (NLL) value. If the
jects. The optimal smoothing prior and the brain kernel prior both con- best-fitting brain kernel resembles the sample covariance and the NLL
verged to the ridge prior after hyperparameter estimation, i.e., the es- value of the brain kernel is smaller, it’s promising to use the brain kernel
timated length-scale was very small and all three priors had the same as a prior for Bayesian factor .modelmg analysm. )
performance. Therefore, smoothness did not help the classification task. Given that th.e comput'atlonal bgrden Is not h1gher than that of
More details can be found in Appendix B. For these cases, regulariz- standard smoothing or shrinkage priors (and potentially smaller than
ing the decoding weights with the brain kernel did not improve per- shrinkage-inducing regularizers like LASSO), we hope that researchers
formance, suggesting that the covariance of resting-state fMRI did not will incorporate the brain kernel into standard analysis pipelines, and
provide useful information for classifying fMRI measurements in these apply it In cases where it is observed to ofﬂ.er 1mp.r0ved. pz.arforrnance.
tasks, or at least that the brain kernel was not capable of captur- We consider this to analogous to the ways in which existing regular-
ing it. It remains possible, however, that a brain kernel fit from task izers such as smoothing priors or sparsity-inducing priors like LASSO
fMRI datasets might offer benefits for decoding fMRI data from these are currently employed: researchers may conduct exploratory analyses
tasks. to determine whether incorporating smoothness or sparsity improves
For factor modeling, we also applied the brain kernel to the visual performance, and then adopt these regularizers as warranted by the

recognition task and the BOLD5000 dataset except for the HCP dataset data.
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Outlook and future directions

Although the brain kernel did not achieve improved performance
in all datasets and applications we considered, we feel it nevertheless
holds great potential for fMRI data analysis. First, we cast the problem
of estimating covariance of fMRI datasets as that of estimating a non-
linear mapping from 3D brain coordinates to a latent embedding space.
This results in a compact representation of the full brain covariance
matrix, requiring storage of only a N,,,;, X 20 matrix of embedding lo-
cations (when the embedding dimensionality is 20), as opposed to a full
N yoxers X Nyoxers COVariance matrix. Moreover, because the brain kernel
is a continuous covariance function, we can use it to model the covari-
ance at arbitrary voxel locations, even those not contained in the original
training dataset.

In addition to providing a compact parametrization of fMRI covari-
ance, the brain kernel’s nonlinear embedding function may be useful
for gaining insights into the geometry of correlations within and across
brain regions. Examining the embedding of different brain regions (e.g.,
as shown in Fig. 4) allows researchers to directly visualize correlations
in terms of distances between embedded voxels.

Although the brain kernel fit to the HCP resting-state fMRI data did
not yield improvements on all task fMRI datasets we explored, it is pos-
sible that other methods for training or applying the brain kernel might
produce bigger gains. For example, one might train the brain kernel on
task fMRI datasets, or train a hierarchical version that gains statistical
strength from combining datasets, while preserving flexibility to capture
differences between the two kinds of data. A more ambitious possibility
is to formulate a hierarchical version of the brain kernel that allows for
per-subject variability. This would produce a hierarchical brain kernel
in which each brain has own specific brain kernel, allowing for detailed
differences in correlation maps across brains. All such applications will
benefit from more robust methods for alignment and preprocessing, and
it may be that these alone will be enough to improve the performance
of the brain kernel. Although these directions are beyond the scope of
the current paper, we feel that the idea of the brain kernel is one that
researchers might extend and apply to novel settings and datasets.

Finally, an exciting possibility for future work is to combine the
brain kernel with other advanced statistical modeling techniques.
Methods for modeling structured variability, such as topographic ICA
Manning et al. (2014), and methods for structured sparsity, such
as GraphNet Grosenick et al. (2013), sparse overlapping sets lasso
Rao et al. (2013), and dependent relevance determination Wu et al.
(2019, 2014), rely on capturing dependencies between nearby voxels.
All such methods might thus be improved by using nearness in func-
tional embedding space provided by the brain kernel, instead of near-
ness in 3D Euclidean space inside the brain. Likewise, methods for linear
alignment of functional data from multiple subjects such as hyperalign-
ment Haxby et al. (2020); Xu et al. (2012) might be extended using
nonlinear warping of brain coordinates under the brain kernel. There-
fore, we feel that the brain kernel holds promise for inspiring new data-
driven prior distributions and new modeling approaches for capturing
structure in fMRI data.

Methods
Block coordinate descent for the brain kernel model

The penalized least squares (eq. 18, PLS) has a computational com-
plexity of O(n?) and memory storage of O(n?); however, the maximum
a posteriori (eq. 15, MAP) has a computational complexity of O(n®) —
to invert the covariance matrix — and memory storage of O(n?). n is
the number of voxels, which often exceeds 10K. Gradient descent or
Newton’s method is computationally impractical as the optimizer. Thus,
we need to use a scalable inference method. Existing inference meth-
ods for large datasets Damianou et al. (2014); Hensman et al. (2013);
Lawrence (2007) exploit low-rank approximations to the full Gaussian
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process, which, however, suffer from a loss of accuracy in covariance
estimation. Thus, in this section, we develop a block coordinate descent
algorithm as an exact inference method for the brain kernel model. Co-
ordinate descent has been successfully applied to solve penalized re-
gression models Wu and Lange (2008), to estimate covariance graphi-
cal lasso models Wang (2014), and to compute large-scale sparse inverse
covariance matrices Treister and Turek (2014).

Our PLS and MAP estimators are non-convex smooth functions. We
apply an iterative block coordinate descent method solved by the prox-
imal Newton approach Tseng and Yun (2009). We first divide the voxel
set {1,...,n} into blocks. Next, we iterate over all blocks, minimizing
the functions with respect to the voxels within each block. Without loss
of generality, we split the voxel set into two blocks, {1, ...,m} (block
1) and {m+1,...,n} (block 2), where m < n, and focus on the first m
columns of Z for the update. We partition Z, C, S, and K~ as follows:

K- K-! c(zy,2)) o(zy,2,)
z=[z, 7, XK'= [Kl‘T K‘}], y=| .
12 z (2> 21) (22 2,)
c(Zy,Zpy1) c(zy,2,)
S S]] S12 co y ﬂ _ 1 : ‘m+1 l' d
“lst, osol Tlocll P N
12 C(Zyys Zypsy) c(z,y,2,)

(28)

Here, subscripts represent the block indices, so Z, and Z, are the first
m columns and the last n — m columns of Z and subscript 12 indicates
the block matrix across the first m variables and the last n — m variables.
Only g and y contain the active variables in Z, to optimize. Z, is fixed.

Applying the block representation to eq. 18, we get the block PLS
objective function for solving Z,:

IpLS(Zy) =[Sy —y — oLy — ¥ = " L) + 281, = f)S1, - B)|
+tr[(Z; - BX K[ (Z, - BX))"

+2(Z, - BX)K})(Z, - BX,)T], 29

where X, and X, are the first m columns and the last n — m columns of
X.

To formulate the block MAP estimator for Z,, we first apply the block
matrix inversion to C,

| r-scysh, -1 ' B(Cp =BTy P!

—-C, BT (r - BC )", (Cn-BTy ')
Incorporating this matrix inversion into the MAP estimator, we get the
objective function

(30)

IMAP(Z)) = logly + 6?1, | + tr[ BC5) S, Co) BT (y + 6°1,)7']
=2tr[$),C5, BT (v + ”L) 7| + tr[Sy,(y + 0717
+tr[(Z, -BXDK[(Z, -BX))T
+2(Z, - BX)K;)(Z, - BX,)"]. 31

The time complexity of the block PLS estimator is O(nm?) per iteration,

where m is the size of the block, and the time complexity of the MAP

estimator is O(n>m) per iteration. For comparison, greedy gradient de-
scent has complexity O(»n?) per iteration. In the experiments, the block

MAP estimator for Z with the block PLS estimator as a warm start is a

practical optimization approach.

We now describe the block coordinate descent (BCD) update. We as-
sume that the voxel indices {1,...,n} are divided into k blocks {I; }j;l,
where /; is the set of indices corresponding to the columns of Z in the
Jj’th block. Denote I; columns of Z to be Z;. We cluster indices into
blocks based on the spatial locations of the voxels and assume smooth
measurements for nearby voxels. Thus, the size of a block should be
at least one length-scale of the region defined by the kernel in x space
to encourage dependencies among neighboring voxels. This smoothness
assumption leads to a block-wise but not an element-wise update, which
separates our BCD method from Informative Vector Machine (IVM)
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Lawrence (2003). At each iteration ¢, we choose a nonempty index sub-
set I € {I; }5;1. Then the objective functions /(Z;) in eq. 29 and 31 are
optimized w.r.t. Z; via L-BFGS Nocedal (1980). After the ¢’th iteration,
Z, is updated, holding all other blocks fixed.

For high-dimensional non-convex problems, a good initialization is
essential to finding a good optimum in practice. Two steps we exploited
during implementation to mitigate the optimization issue with multi-
modal, high-dimensional non-convexity.

First, we assumed the nonlinear latent embedding z to be a local
warping of the linear embedding which is the mean of the posterior
distribution for z (eq. 8). We first found a good estimate of b at the be-
ginning of the optimization. This is equal to fitting a linear brain kernel
(LBK) model. We estimated B in eq. 22 which is a matrix form of b.
This involves an easier optimization since the parameter space of b is
much smaller than z. Given the estimated b, z = Z + bX is optimized via
estimating Z and fixing b. This eases the high-dimensional non-convex
issue by learning a small parameter b and a local warping 2 separately.

Secondly, we introduced the Laplacian eigenmap algorithm, an ef-
fective and tractable initialization for a single block of Z inspired by
Laplacian eigenmaps.

The Laplacian eigenmap (LE) algorithm is a popular dimension-
ality reduction method that solves a generalized eigendecomposi-
tion Belkin and Niyogi (2003). LE defines a neighborhood graph on
the data {y, € R” " > such as k nearest neighbors or an e-ball graph,

and weighs each graph edge y; ~y; by a symmetric affinity func-

tion V(y;,y;) = v;;, typically Gaussian: v;; = exp —%) with s the
length-scale. Given this weighted graph, LE seeks latent points {z; €

R4 }%_, that are solutions to the optimization problem

min tr(Z"LZ) st. Z'DZ=1,Z'D1=1, (32)
with the symmetric affinity matrix V € R™", the degree matrix D =
diag(Y7_, v;;) € R™", the graph Laplacian matrix L = D - V € R™", and
1=11,...,1]". Constraints eliminate the two trivial solutions Z = 0 by
setting an arbitrary scale and z, = ... = z, by removing 1, which is an
eigenvector of L associated with a zero eigenvalue.

Following the previous two-block example, let Z be partitioned into
Z, and Z,. To update Z, given Z,, the objective function is:

L, Ly|[zT
min tr( (Z Z I 12][ 1])
A <[ ! 2| [Lsz Ly||Z]
We don’t need to use the constraints from eq. 32 because the trivial
solutions are removed given Z,. The solution is

(33)

Z,=-7,L,L}]. G4
Given the current latent embeddings for all other coordinates, the al-
gorithm seeks the best latent embedding of the unknown dimensions.
Because of the computational efficiency of this approach, we use Zl to
initialize the BCD algorithm for each iteration and Z, collapses all the
fixed blocks.

In addition, if V has a Gaussian affinity function, the latent embed-
ding Z is mapped from the observation Y with a radial basis function
nonlinearity. For covariance estimation, we enforce the resemblance be-
tween another radial basis function (RBF) kernel on Z and the sam-
ple covariance of Y. We are essentially trying to map the observation
space to itself with double layers of exponential transformations, which
would result in a bad latent embedding for initialization. Therefore, in-
stead of using a Gaussian function for the weights V, we use a function
that inverts the RBF nonlinearity on a covariance matrix, defined as
v = —f(yiij). Here, f(x) = sign(x)log(|x| + 1) is the log-modulus trans-
formation John and Draper (1980), which distributes the magnitude of
the data while preserving the sign of the data in order to control against
negative covariance values when taking the logarithm.

We chose the Laplacian eigenmap algorithm because it has the nice
closed-form expression for the conditional expression Z, given Z,. We
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were able to use Z, to efficiently find a better initial position for Z, that
reduced the search over the entire parameter space of Z,. We tried a
random start for Z, which led to a very bad local optimum. We also
tried to use the previous estimate to initialize Z,. That resulted in a
stuck in a bad local optimum that was very close to the previous solu-
tion. So Laplacian eigenmap allowed us to move away from the previous
estimate but also leverage Z, effectively.

Hyperparameter estimation for the brain kernel model

Our model includes five hyperparameters: {,r,B,p,0%}. We set
these parameters as follows.

Estimate §: § is the length-scale of the GP kernel mapping from coor-
dinate space to latent space. We can optimize this parameter by taking
the derivative of the GP log-likelihood w.r.t. §; this involves inverting
the kernel matrix with an O(r®) cost, which is computationally infeasi-
ble here. An inducing-point method Damianou et al. (2014) introduced
extra inducing variables to optimize, which further increased the com-
putational burden. Instead, we use a scalable spectral formulation for
learning the length-scale 6 of the GP kernel.

For a stationary Gaussian process f ~ GP(m, k), when f has a high
degree of smoothness, the prior covariance K becomes approximately
low rank, meaning that it has a small number of non-negligible eigen-
values. Because the kernel function for x space is shift invariant, the
eigenspectrum of K has a diagonal representation in the Fourier do-
main, a consequence of Bochner’s theorem Lazaro-Gredilla et al. (2010);
Wu et al. (2017),

g ~ N(a(), X(@)), (35)

where g is the Fourier transform of f, @ is the frequency, a(®) is the
Fourier transform of the mean function m(x), and X = diag(s(®)) is di-
agonal. This means that Fourier components are a priori independent,
with prior variance

s(@) = Qus>"?r exp (-27°6%0%), (36)
where h is the dimension of the input x. Without loss of generality,
we assume the size of the spectral domain for each input dimension
is w, and thus a = a(@) € R*" and T = 3(w) € R xwh given a spectral
representation @. The mapping between f(x) and its Fourier transform
g(w) is then

[ =Y X 0g(w) = e g(@), (37)
J

where e is a column vector with entries ¢>** ©; on the Jj’th position for
the j’th frequency. Let e; € R“" denote the Fourier vector for x; (i is the
index for voxels), then we can further define B = (e, ....e,) € RW"™n to
be the Fourier matrix for an input coordinate matrix X. Let z; € R" de-
note the jth latent embedding of X and j € {1, ...,d}. Note that z; is

the j’th row of the matrix Z. We can write z; = ngB, where g; € R ~
N'(a;,X). This implies that each latent embedding deterministically de-
pends on a unique spectral function. These spectral functions are all
sampled from multivariate Gaussian priors with different mean func-
tions but the same covariance function in the spectral domain. Bringing
the Fourier matrix B into the Gaussian prior (eq. 35), we derive the
Gaussian prior over the latent z; expressed with the spectral formula-
tion as
2, ~ N (a] B,BTEB). (38)
We can use this representation to optimize §. If § is in a large-
value regime, we can ignore Fourier components above a certain high-
frequency cutoff which leads to a lower-dimensional ® and a lower-
dimensional optimization problem. Because 4 = 3 in fMRI analyses, we
can control w to be small enough so that w” is tractable relative to the
large n, and B is a manageable high-dimensional matrix. Because we
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generally do not assume uniform gridding of coordinates X, 5 is a non-
uniform DFT (not orthogonal). Although the Kronecker tricks cannot be
used for scaling up with non-uniform DFT, we can employ block ma-
trix inverse lemma to transform the spectral formulation into a lower-
dimensional problem.

Then the standard negative GP log-likelihood to optimize for 6 is

1(6) = tr[(Z - BX)(K + eD)™'(Z - BX)"| + log|K + eI], (39)

where e is a small noise variance in the latent space to avoid ill-
conditions for K. Let A = (a/,...,a,)" € RO With the spectral rep-
resentation, eq. 39 can be re-written as

1(6)

Calculating (BTZB + eI)~! is still computationally expensive, but with
the spectral factorization, we are able to use the block matrix inverse
lemma as in eq. 30,

=tr[(Z-ABYBTEB+e)" (Z - AB)T| +1og|BTEB +€l|.  (40)

(B'EZB+ D!
I1- Bl (P! + By + D)7 By, —B](ZBy +el)™'E(ByE
—BpZ(B Z+eD) B Z+eD)7! B,
—BJ (EBy, + eD)TIE(B) 2 — By 2By X + ) By X
+eD)7' B, 1= B] (P! + By, +€eD7' B,
where B, and B, correspond to the Fourier bases for X, and X,
respectively. Note that neither B, nor B, is invertible. Moreover,
By =B B], By =B8], Py=%-X(B;;Z+¢eD)' B and P, =X -
I(ByX + el)"1 B, X. All matrices have size w” x w”, which is tractable
to invert. We know that the spectral expression of K~! is (BTZB + eI)~!.
We can also express Kl‘ll and Kl_zl with the spectral formulation as

KiH-B[®;'+ B +e)7' B, (42)

K =B (EB)| + D) ' 2(By,Z — BpX(B) Z + €)™ B} T + €)' B,

Consequently, the negative GP log-likelihood w.r.t. § in the block form
is represented as

1(6) = (Z) - AB)A - B[ (P;' + By +eD)™'B))(Z, —AB))"

+(Zy — ABy)A - B](PT! + Byy + €D By)(Zy — AB)T
+log|EB,, — B (ZB); + D) TBy, + €l| + log|ZB,, + €|
—2(Z) — AB)B] (ZB)| + eD)'E(BpE — BpZ(B) X + D)™

B Z+eD) By Z, - ABy)T.

“43)

With eq. 43, the computational cost is reduced to max(O(nw™), O(w*")),
where w is the dimension of the spectral form per input dimension and A
is the number of input dimensions. This complexity is much smaller than
O(n®) when n > w and h < 3. Another benefit of this formulation is that
& only exists in the diagonal of X (eq. 36), which makes the estimation
straightforward.

Estimate r: r determines the scale of the latent embedding Z. Since
r also exists on the diagonal of X (eq. 36), the optimization for r can be
combined with learning § using the same spectral representation in eq.
43.

Estimate p: p is the marginal variance of the covariance function.
We assume that the data has been normalized to have zero mean and
variance one. Thus we set p = 1.

Estimate B: B is the linear projection of the mean function. We can
estimate B jointly with Z in each BCD iteration by optimizing the same
objective function (eq. 29 and 31).

Estimate ¢2: o2 is the observation noise variance. We estimate
o2 using the eigenvalues of the sample covariance S Tipping and
Bishop (1999).

Algorithm 1 describes the complete BCD algorithm for the brain ker-
nel model. The convergence of the BCD algorithm (without parameter
estimation) to a stationary point is addressed in the theoretical results in
previous work Tseng and Yun (2009). There, a general block-coordinate-
descent approach is analyzed to solve minimization problems of the
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form F(x) = f(x)+ Ah(x), which is composed of the sum of a smooth
function f(-) and a separable convex function A(-), in our case h(x) =0
According to Part (e) of Theorem 4.1 in Tseng and Yun (2009), if I, at
the ¢’th iteration is chosen by the generalized Gauss-Seidel rule,

U

i=0,1,...,T-1

Ju2V Vi=12,...,T (44)

which is necessary to ensure that all variables are updated every T steps
and V is the set of all variables, then each coordinate-wise minimum
point of {Z I, } is a stationary point of f(Z).

Hyperparameter optimization and latent variable inference for Bayesian
factor analysis

Our goal was to infer the latent variables L and F and the hyperpa-
rameters for C and o2, denoted as 6. We assumed that

X =LF + ¢ ~ N(LF, 6°D), 45)
L; ~N(0,C), for the jth column, (46)
and

F, = N'(0,1), for the ith column. @7)

We first aimed at estimating the hyperparameters 6 by marginalizing
over L and F. The marginal distribution for X is

K T
p(X) :/.A/'(LF, oD [[N ;10,0 [[ N F,10.DdL, ... dLgdF, ... dFr,
j=1 i=1
(48)
which is intractable. However, we could match the second order mo-
ment of X to the sample covariance S = XX where X is the standardized
data sample. The second order moment is derived as follows

E[XX"] = E[LFF'LT] + 6°T1

//LFFTLTH/\/(L |0, C)H/\/(F |0,DdL, ... dLdF, ...dF; + c>T1

i=1

K
[ FF' H./\/(F |0, ))dF, .. dFT} LT[V @10,C)dL, ... dLg +*TT

=1

K
[/ Y FE H/\/(F 10, )dF, . dFT] LT[[N@;10.C)dL, ... dL, +6°TT
i=1 i=1 j=1
K
[Z / F,FT N (F,|0, DdF, ] LT[ N @;10,0)L, ... dLg +6>T1
i=1 j=1
=T / LLT H.A/(L,lo, C)dL, ...dLyg + 6°T1
j=1
K
=T 2 / LLTN(L,]0,C)dL, + 6°TT
=1
=TKC + 0TI 49)

By matching eq. 49 to the sample covariance S, we were able to estimate
the hyperparameters in C and 2.

Next, we fixed the estimated hyperparameters and inferred L.
Marginalizing over F we got

p(X|L) = N'(0,LLT + &2I). (50)
Then, we obtained the joint distribution between X and L as
K
p(X,L) = N'(0,LLT + 6°I) H N(L;10,0), 51
j=1
whose log likelihood is written as
L(@L)= —% log [LLT + 61| — =—Tr(X"(LLT + ¢’D7'X) - %Tr(LTc—lL).
(52)
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We maximized eq. 52 w.r.t. L. To speed up the optimization process,
we initialized L via finding a closed-form solution approximately max-
imizing eq. 52. Denoting LLT + ¢°I as Q, we rewrote the log likelihood
as

_ 1 _ 1 Iy T) L -1
LQ) = 2 log |Q| 2TTr(Q XXT) 2KTT(C Q), (53)
whose derivative is
0L(Q) | PSS SN I 1
=z — QXX - —C. 4
0Q 2Q * 2TQ Q 2KC S
Setting the derivative to be 0, we arrived at
1 i
= = —=XX
£QCT'Q+Q=
2
Q+ lKC)lC_l(Q+ lKC)— lXXT+1KC (55)
27K 2 T 47

We needed to decompose the right-hand side into the multiplication of
a symmetric matrix, C~! and the same symmetric matrix. Here is our
solution:

e Let P denote the Cholesky decomposition of %C‘l, ie., %C‘l =PP'.

e Denote Q + %KC =BB" and let B =P~TA where A is an unknown
square matrix.

e Then we can rewrite eq. 55 as

+BBTC'BBT = %XXT + %KC
= P TAATP-'PPTP-TAATP-! = ZXXT + ;KC
=> P TAATAATP-! = %XXT + iKC

> AATAAT = PT<%XXT n iKC)P.

o Next, we represent A with its singular value decomposition (SVD),
ie, A=USV'.
¢ Finally we can rewrite eq. 55 as

1

AATAAT = PT(%XXT + ZKC)P

1
~KC)P
X0

1
—-KC)P.
7K0O

= USV'VSUTUSV'VSUT = PT(%XXT +

=> US'UT= PT(%XXT + (56)

o Therefore, to solve eq. 55, we first factorize PT( %XXT + }‘K C)P us-
ing SVD to obtain U and S according to eq. 56.

 Then Q=BBT-JKC=PTAATP"! - JKC =P TUS?UTP"! -
i
EKC. 1

Ultimately, L can be obtained viaL = W, .x D2,
the eigen-decomposition of Q — ¢°I.

K where WDW' is

Given the above procedure, we were able to find an ideal initial-
ization for L which made the optimization of eq. 52 much easier. Con-
ditioned on the optimal L*, we turned to inferring the optimal F* via
maximizing

T
L(F) = log N (X|L*F,o”D) [ [ N (F, 10, 1), (57
i=1

which has a closed-form solution, i.e., F* = (L*TL* + ¢2I)"'L*TX.

1
Note that in order to obtain L = W.. KD?K x> We needed to guar-
antee that we were able to find a positive semi-definite (p.s.d.) matrix

Q — ¢2I. Here are the lemma and the theorem:
Lemma. If A is p.s.d., and B is symmetric p.s.d., then AB is also p.s.d.

Proof. If A and B are both p.s.d. and B is also symmetric, then sup-
pose 4 is an eigenvalue of AB with corresponding eigenvector x # 0,
i.e., ABx = Ax. Then BABx = ABx and so x' BABx = Ax'Bx. It is not
hard to check that BAB will also be p.s.d. For x s.t. x' Bx # 0, we have

A= x| BABx

B Both the numerator and the denominator are non-negative
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values, therefore 4 > 0. For x s.t. x' Bx = 0, we assume x = Ve where B =
VDV is the eigen-decomposition and e is the linear weight vector. Then
x'Bx =e"V'BVe = ¢"V'VDe = e"De = 0. Since D is a diagonal matrix
with non-negative values, e should have zero elements corresponding to
the non-zero eigenvalues. Therefore x is a linear combination of eigen-
vectors of B whose eigenvalues are zero, i.e., x = Ve where V,, contains
all zero eigenvectors with Dy = 0 and e has no zero elements. Follow-
ing that, we have Bx = BVje = ViDge =0 = ABx = jgAx =0= 1 =0.
Based on the derivation, we arrive at the conclusion that AB has non-
negative eigenvalues thus AB is p.s.d. []

Theorem. If KC —¢°I is p.s.d., then Q —¢°I is p.s.d. based on the
Lemma.

Proof.
KC > 6’1

1

=> KC;XXT >0’ !

—=XX" (Lemma)
T

1

=> KCFXXT > 62(KC + ¢*I) (This is true because of eq. 40.)

> KC%XXT > 0?KC +c*1

slelxxtlets2let eyt ler Lot e (Lemma)
K- T K K~ K K~ K~ K

=> PT%XXTP > o?P"P +6‘PTPP'P

> PT(%XXT + }‘KC)P > A—tl +6*P"P + 6*P"PP'P

= US*UT = -1+ 6’P"P+6*P"PP'P

1
=1
=8> (%I + azUTPTPU)(%I +6*UTPTPU)
= (82— (%1 +c?UTPTPU)S? + (%I +c2UTPTPUYS? — (%1 +6UTPTPU)) = 0.
Denoting A = 1+ c>UTPTPU and B = 82 — (;1+ c?UTPTPU), we can
simplify the above inequality as

BS® + AB > 0. (58)

We now prove that if inequality 58 is true, then B > 0, using proof by
contradiction:

If B * 0, then there exists an eigenvector x s.t. Bx = Ax, 1 < 0. Then
x'BS?x = Ax'S§?x < 0 due to the p.s.d. of S2. Similarly, for the same
eigenvector x, we could arrive at the same conclusion for AB, i.e.,
x"ABx = /x' Ax < 0. This implies that x" (BS? + AB)x < 0 which is con-
tradict to inequality 58. Therefore B > 0. Now we could continue the
deduction as follows,

B>0
>8> %1 +06*UTPTPU
= US™UT > %1 +0’PTP
=P TUS?UTP! » %KC +0l
=>Q-c1>0.
O

We can easily ensure that KC — 6°I is p.s.d., which guarantees that
1

Q — I is p.s.d. according to the Theorem. Therefore L = W:,:KD?K K
is valid.

Code Availability
The code is available at https://github.com/waql129/brainkernel.
Data Availability

The HCP datasets are publicly available at https://www.
humanconnectome.org/. The visual cortex dataset is publicly available
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at https://nilearn.github.io/modules/generated/nilearn.datasets.fetch_
haxby.html. The BOLD5000 dataset is publicly available at
https://bold5000.github.io/. The Sherlock movie dataset is pub-
licly available at https://dataspace.princeton.edu/handle/88435/
dsp01nz8062179.
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