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ABSTRACT

We consider the question: what is the abstraction that should be
implemented by the computational engine of a machine learning
system? Current machine learning systems typically push whole
tensors through a series of compute kernels such as matrix multi-
plications or activation functions, where each kernel runs on an Al
accelerator (ASIC) such as a GPU. This implementation abstraction
provides little built-in support for ML systems to scale past a single
machine, or for handling large models with matrices or tensors
that do not easily fit into the RAM of an ASIC. In this paper, we
present an alternative implementation abstraction called the tensor
relational algebra (TRA). The TRA is a set-based algebra based on
the relational algebra. Expressions in the TRA operate over binary
tensor relations, where keys are multi-dimensional arrays and val-
ues are tensors. The TRA is easily executed with high efficiency
in a parallel or distributed environment, and amenable to auto-
matic optimization. Our empirical study shows that the optimized
TRA-based back-end can significantly outperform alternatives for
running ML workflows in distributed clusters.

1 INTRODUCTION

In widely-used machine learning (ML) systems such as Tensor-
Flow [4] and PyTorch [3], computations are usually specified op-
erationally: a sequence of mathematical operations such as matrix
multiplications, activation functions (ReLU, tanh), convolutions,
etc., are applied to a set of input tensors to define a computation.
HPC systems such as ScaLAPACK [17] and distributed analytic
packages such as Dask [1] offer a similar, operational interface.
Operations are “black boxes” in the sense that the internals of the
operation are mostly opaque to the system. An operation such as
a matrix multiply is not a logical operation that the ML system
figures out how to best optimize at runtime. Instead, it is a physical
operation that has to run somewhere, on some hardware, via the
invocation of a computational kernel.

This operational approach has certain drawbacks, namely that
the system has limited latitude for automatic optimization. The
programmer is responsible for making sure that the operations can
run successfully using available resources (such as the amount of
RAM on each GPU), and if the operations cannot run successfully,
the programmer must figure out how to break the operations up into
smaller pieces that can run. Tasks such as getting a computation
to run on multiple GPUs or on multiple machines in a distributed
cluster so as to minimize communication are left to the programmer.

Toward declarative tensor programming. There has been work
on programming models that are more declarative. PyTorch and

TensorFlow now both support variants of Einstein notation—a clas-
sical notation for specifying operations over tensors, and work on
optimizing such computations has made its way into commercial
systems [8]. Researchers have proposed variants of the Ricci calcu-
lus as a specification language for ML [32]. There have been other
proposals for declarative tensor programming languages that allow
for automatic generation of compute kernels that can be optimized
to handle the data at hand such as Tensor Comprehensions [43].
Nevertheless, while there has been attention paid at the ques-
tion of how to specify ML computations declaratively, there has
been little attention paid to the question of what the correct im-
plementation abstraction for ML system design should be. That
is, what target should a ML system back-end present to the front-
end?! There are several requirements for such a back-end interface.
It should be able to express most/all important ML or numerical
computations. It should be hardware agnostic, but computations
specified using the interface should be easily scaled to multiple
ASICs and multiple machines. It should allow for computations
over very large input data. It should facilitate easy, automatic op-
timization. And it should provide for execution times that are as
fast as a carefully-designed, “hand-built” computation on top of the
very best tools such as ScaLAPACK, Dask, TensorFlow, or PyTorch.

The tensor relational algebra. In this paper, we argue that the
implementation abstraction that should be offered by a ML system
back-end is the tensor relational algebra, or TRA for short. The TRA
is a simple variant of the classical relational algebra (RA), which
serves as the standard implementation abstraction for modern re-
lational database system design. The key difference is that in the
TRA, the relations over which computations are performed are
always binary relations between k-dimensional vectors (keys) and
r-dimensional tensors.

Of course, it is widely understood that a k-dimensional tensor
can be stored as a binary relation between k-dimensional keys
and real number values, e.g. [25]. Thus, why not use classical RA
as the implementation abstraction? There is good evidence that
a compute engine based upon such an abstraction will perform
very poorly over the dense-tensor computations common in deep
learning [35]: the overhead associated with storing each entry in a
high-dimensional tensor as a separate tuple and moving billions of
tuples through a system can result in poor performance, especially
when the competition is a high-performance CPU or GPU kernel.
This is why the TRA specifically allows for tensors or “chunks” of

!Throughout the paper, we use the term front-end to refer to the programmer-facing
API and compiler; in PyTorch, for example, this would be the part of the system that
accepts Einstein notation and transforms it into a set of executable operations. We use
the term back-end to refer to the sub-system that actually executes the computation.
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a larger tensor to be stored in each tuple—the fixed, per-tuple cost
is incurred by a much smaller number of tuples.

We argue that the TRA has three key advantages as an imple-
mentation abstraction: expressivity, easy optimization, and high
performance. The joins and aggregations offered by the TRA can
implement the indexed operations required by the Einstein nota-
tion and related specification languages. It is easy to implement
and optimize relational operations in a distributed environment, as
the decades of success enjoyed by relational database systems has
demonstrated. And by design, an ML system back-end implement-
ing the TRA is able to run classical HPC algorithms which rely on
decomposing matrices into chunks, and it can run them almost as
well as special-purpose HPC softwares such as ScaLAPACK.

Our Contributions. We propose the TRA as well as an implemen-
tation algebra (IA) which is easy to implement in a distributed sys-
tem. We consider how computations in the TRA can be transformed
into computations in the IA, and propose a set of transformations or
equivalences that allow re-writes of computations in the IA. Finally,
we implement a prototype of the IA, and show that it can enable
efficient, distributed implementations of ML computations, which
can reach or even significantly outperform the existing HPC and ML
systems including ScaLAPACK, Dask, TensorFlow, and PyTorch.

2 TRA OVERVIEW
2.1 Motivation

There has been significant interest in tensor manipulation lan-
guages, which allow for declarative specification of ML and numer-
ical computations. This simplest of these is the Einstein notation,
which provides a way to write a tensor computation like the form:

Vi,j: Cij— ZAi’k x By ;.
k

This example describes matrix multiplication. The value i-th row
and j-th column of the output is the dot product of the i-th row of
input matrix A and the j-th column of input matrix B. Different
proposals have different variations on this idea [8, 32, 43], but the
common features are that (1) values from different tensors are fed
into a scalar function (such as the multiplication above) by matching
indices, and (2) those dimensions are summed over.

Languages such as the Einstein notation provide an excellent,
declarative interface for programming an ML system—much as
SQL provides the interface for relational systems. But the question
remains: what is the correct implementation abstraction for ML
systems? That is, what is the interface that the back-end should
export, which can be targeted by an ML programming system
compiler and auto-differentiation engine that make up the ML
system’s front-end?

2.2 TRA: The Basics

We propose the TRA as this ML implementation abstraction. The
TRA operates over tensor relations containing pairs of the form:

(key, array).

Conceptually, these tensor relations store sets of arrays. Each key
value serves, not surprisingly, as the key for the pair.

Tensors are decomposed into sets of sub-tensors to represent
them as tensor relations. For example, consider the matrix A,

1 2 5 6
3 4 7 8
A= 9 10 13 14|’

—_

1 12 15 16

we may store this as a tensor relation

oelfonls 2 oo o)
ol Hpfon e )}

The TRA offers a similar set of operations to the RA: joins, ag-
gregations, selections. It makes an excellent compilation target for
tensor manipulation languages like the Einstein notation for several
reasons. First, these languages typically match elements in tensors
based on shared index values (which can be implemented as rela-
tional joins) and then sum out various dimensions (implemented as
aggregations). The problem with using the RA as an implementa-
tion abstraction for tensors, where tensors are stored relationally as
keys identifying a single non-zero value in a tensor, is performance.
Tensors can have millions or billions of entries, and it seems impos-
sible to build a back-end with acceptable performance if it has to
process one tuple per non-zero value.

Thus, the TRA operates over sub-tensors or “chunks”, and ex-
pects the ML system front-end to supply a kernel function (typically
a high-performance CPU or GPU operation) to operate over the
sub-tensors themselves. This does complicate the TRA compared
to the RA, but as we show experimentally, this modification makes
it possible for a TRA-based back-end to significantly outperform
the back-ends offered by TensorFlow and PyTorch.

2.3 TRA: the Implementation Algebra

One of the key advantages of the TRA is that like the RA, there are
a number of re-writes, inherited from the RA (such as push-down
of selections) that can be used to optimize TRA computations.

However, when designing an ML system back-end, one of our
key goals is to distribute ML computations across multiple ASICs or
multiple machines. Such distributed computations have many differ-
ent implementations. Consider the matrix multiply required to push
a batch of feature vectors (represented as one matrix) through the
links into a fully connected layer in a neural network (the weights
are represented as a second matrix). This could be implemented by
decomposing the feature matrix into sub-matrices at each site (each
containing a subset of the feature vectors) and broadcasting the
weight matrix to all sites. This is the common “data paralle]l” imple-
mentation, in ML system parlance. Or, one could fully decompose
both matrices and apply a complex distributed algorithm, such as
the 3D algorithm [9]. This would be a combined data and “model
paralle]” implementation in ML system parlance. Crucially, the TRA
cannot express the distinctions among such implementations.

As such, we also propose an implementation algebra (IA) that can
express these different distributed computations, as well as a simple
compilation strategy from the TRA to the IA. Further, we propose
an extensive set of re-writes for the IA that allow such disparate
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implementations to be reached from an initial TRA computation,
and a simple cost model. Given this, an ML system back-end would
export a simple, TRA-based interface which says nothing about
distribution to multiple machines or ASICs. A TRA computation
can then be compiled into a computation in the IA, and optimized
into a high-performance, distributed computation.

3 TENSOR RELATIONAL ALGEBRA
The RA operates over (key, array) pairs. Define an array type

that consists of:

(1) A rankr € Z*
(2) A boundb € (Z*)".

For two vectors u = (u;) and v = (v;), defineu < v = A; (u; < 0;).

Define u < v similarly. Informally, we say that an array of rank r
is bounded by vector b if the array is r dimensional, and for any
r-dimensional vector i that is less than the bound, array; returns a
real number. Formally:

(1) For any indexi € (Z*)",0 <i<b = array; € R.

2) —|(6 <i<b) = array; = L. That is, for any index i

outside of the bound [6 b], array; is undefined.

Subsequently, we denote the set of all arrays of rank r and bound
b as T("P) Thus, T("P) defines an array type.

We denote the power set of (Z9)k x T(rb) a5 R(kD) this is the
set of all possible tensor relations with k-dimensional keys, storing
arrays of type T(rb),

3.1 Operations in Tensor Relational Algebra

Given this, the TRA is essentially a set of higher-order functions
over tensor relations. That is, each operation takes as input a kernel
function defined over multi-dimensional arrays (in practice, this
function is likely be an array-based MKL, CUDA, or Verilog kernel)
and returns a function over tensor relations.

We begin by giving an overview of the higher-order functions
taking binary functions as input: aggregation (denoted using X)
and join (denoted using ).

(1) Aggregation is a function:

2 ()9 x (T < 7B 7))

N (R(k,r,b) N R(g,r,b))

¥ (groupByKeys, aggop) takes as input a list of key dimensions to
aggregate according to groupByKeys as well as an array kernel
operation aggOp, and then returns a function that takes as input a
tensor relation, groups the arrays in the relation based upon the

indicated key values, and applies aggOp to the arrays in the group.

Consider the matrix A from the last section. We can sum up the
individual arrays vertically using

2 ((1),matadd) (Ra)

(2 s A A

Because of the argument (1), the call 3 (1) natadd) constructs an
aggregation function that groups all pairs having the same value

which gives:

for the key in position 1, and sums them. Or we could sum up the
individual arrays into a single array using:

2 ((y,matadd) (Ra)

(G4 e

B ((Z*)g X (Z*)g X (T(rl’bl) X T(rr,br) N T(ro’bo)) )

which gives:

(2) Join is a function:

R (R(kz,rz,bz) « RUerrrbr) R<k1+kr—g,ru,bu))

M (joinKeysL, joinKeysR, projop) takes as input a set of key dimen-
sions to join on from the left and from the right, as well as an
operation to run over all (leftArray, rightArray) pairs that
are created during the join, and returns a function that performs
the join and applies projOp to all pairs. Similar to a natural join
in classical databases systems, the output key is all of the key val-
ues from the left input, with all of the key values from the right
input appended to them, subject to the constraint that no value in
joinKeysR is repeated a second time.

With join and aggregation we may implement matrix multiply
over two matrices stored as tensor relations. Imagine that we want
to implement A X A for the matrix A defined previously, where A
is stored as a tensor relation R 4. This can be written as:

2 ((0,2),matAdd) (N(<1>,<o>,matr4u1) (Ra, RA))

This computes a matrix multiply of the matrix A because all of the
pairs in R4 are first joined on key index 1 from the first instance of
Ra equaling key index 0 from the second instance of R4. Each pair
of arrays are then multiplied using the kernel matMul. For example,

(<0,1>, [3 Z) and ((1,0), 191 12])

are joined to produce
111 122
(<0’ 1.0) [151 166]) '

The index (0, 1, 0) in this output pair is a combination of (0, 1) and
(1,0) from the two input pairs, with the redundant index entry
dropped (redundant because we know that two of the entries in po-
sitions 1 and 0, respectively, are repeated due to the join). Next, the
arrays are aggregated using matAdd, summing out index 1 (keeping
indices (0, 2) as groupByKeys), to complete the matrix multiply.
In contrast to join and aggregation, rekey, filter and transform
are higher-order functions taking a unary function as input.
(3) ReKey allows manipulation of keys:

REKEY : ((Z*)ki — (Z*)kv) N (R(k,-,r,b) N R(kg,r,b))

REKEY (keyFunc) applies the keyFunc on every key in the relation
and generates a new key.
(4) Filter is a function:

o: ((Z*)’“ - {true, false}) - (R<k,r,b> 5 R(k,r,b>)

O(boolFunc) Teturns a function that accepts a tensor relation and
filters each of the tuples in the tensor relation by applying boolFunc
to the keys in the tuples.
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(5) Transform is a function:
1 (T<r,-,b,-> - T(ro,bo>) N (R<k,ri,bi) N R(k,rn,ba)

A(transformFunc) returns a function that accepts a tensor relation
and applies the kernel function transformFunc to the array in each
tuple from the tensor relation.

For an example of the rekey, filter and transform operations,
assume we have a kernel operation diag that diagonalizes a matrix
block, a function isEq((ko, k1)) — ko = k1 that accepts a key and
returns true if entries in position 0 and 1 in the key are identical to
one another, and a function getKey@({ko, k1)) — (ko) that returns
the first dimension of a key. We can use these functions along with
filter, rekey, and transform to diagonalize a matrix A represented
as a tensor relation Ry, by first examining the keys to remove
all pairs that do not contain entries along the diagonal, and then
diagonalizing the resulting arrays:

)'(diag) (REKEY(getKeyQ) (U(isEq) (RA)))

In addition, there are a number of operations that can be used
to alter the organization of arrays within a tensor relation. This
allows the manipulation of how a tensor is represented as a tensor
relation. For this purpose, we have tile and concat:

(6) Tile:

Tae : (27 x Z°) — (ROD) — Rlketrd))

TILE(tileDim, tileSize) returns a function that decomposes (or
tiles) each array along a dimension tileDim to arrays of the target
tileSize (by applying the arrayTileOp function on the array).
As a result, a new key dimension is created, that effectively counts
which tile the tuples holds along the tiling dimension.

For example, consider the matrix B,

B_12569101314
13 4 7 8 11 12 15 16|’

partitioned by columns and stored in tensor relation:

1 2 5 6 9 10 13 14
Rp = {(<0>’ [3 4 7 8]) ’ (<1>’ 1 12 15 16])}
If we make the call T1iLE(; 5) (Rp), we will decompose each array
along dimension 1, creating one new array for each two columns.

In addition, a new key dimension is created, that effectively counts
which tile the pair holds along the tiling dimension:

TILE (1 5) (RB)={((O,O),[; i]),(«),l},[g g})

9 10 13 14
fanfs ol )

We may sometimes find ourselves in a situation where it is necessary
to manipulate the key in each pair in a tensor relation so that the
key is consistent with the desired interpretation. For example, the
tensor relation Rp defined above can represent a matrix with eight
columns and two rows, so TILE(y ) (Rp) is inconsistent with this,
logically representing a matrix having four columns and four rows.
For this purpose, we can leverage the REKEY operator as we defined
before.

For example, we can rekey the output of TILE(; 3) (Rp) so that
logically, it corresponds to a two-by-eight matrix:

REKEY (15, ky )= (2K +k1 )) (TILE(I,Z) (RB))

This will result in:

ol Dol Dol Bl )

Finally, we have the ability to undo a tiling.
(7) Concat:

Concar : (Z" X Z") — (R(k”’b) - R(k‘l”’b’))

CONCAT (keyDim, arraydim) is an inverse to tile, which first groups
all pairs in the relation using all of the key dimensions other than
keyDim, then concatenates all of the arrays in each group along
arrayDim, with the concatenation ordering provided by keyDim.

A call to ConcaAT(y ) (TILE(LZ) (RB)) first groups all pairs in

TILE(1,2) (Rp) using all of the key dimensions other than key di-
mension 1, and then concatenates the arrays in each group along
array dimension 1, with the ordering provided by key dimension 1.
Hence, this computation simply results in the recovery of Rp.

3.2 Integrity Constraints and Closedness

There are two important integrity constraints that each tensor rela-
tion must follow: uniqueness of keys, and a lack of “holes” in the
tensor relation. The primary reason for defining these constraints
is facilitating easy, cost-based optimization. With such constraints,
cardinality estimation, one of the most vexing problems in rela-
tional optimization, goes away—see Section 5.3. Further, neither
is particularly burdensome when expressing computations using
the TRA. In fact, if the interpretation of a tensor relation of type
RKb) s that it represents a r-dimensional tensor decomposed
into chunks, these constraints are quite natural:

o Uniqueness: every key should be unique in a tensor relation.

e Continuity: there are no “holes”. Given a tensor relation
R, of key-arity k, define the frontier of R as FRONT(R). f =
FrRONT(R) is a k-dimensional vector that bounds all keys in
R. That is, for each key vector k in R, k < f. Further, the
frontier is the “smallest” vector bounding R, in that for any
other vector f bounding R, f < f’. Continuity requires that
for any vector k < f, some tuple in R have the key k.

It is easy to show that for the majority of TRA operations—the
exceptions being the rekey and filter operations—tensor relations
are closed. That is, if the input(s) are tensor relation(s) that obey
uniqueness and continuity, then the output must be a tensor relation
that obeys these constraints. Filtering a tensor relation or altering
the keys can obviously violate the constraints, where the the former
probably leads to holes in the resulting relation, and the latter
can result in repeated key values. Analyzing a TRA expression to
automatically detect whether it can violate these constraints is left
as future work; we conjecture that if the filtering predicate (or re-
keying computation) are limited to simple arithmetic expressions, it
may be possible to check for closedness using an SMT solver [19].
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4 IMPLEMENTATION ALGEBRA

We now describe TRA’s implementation algebra (IA) that is suitable
for execution in a parallel/distributed environment.

In IA, we extend each (key, array) tuple in a tensor relation
with an additional site attribute, so that a physical tensor relation
R will consist of triples:

(key, array, site).

The site attribute takes a value in {1, 2, ..., s} where s is the number
of computation sites. Conceptually, the site value indicates the
location where the tuple is stored; this could be a machine in a
distributed cluster, or a compute unit like a GPU.

Each physical tensor relation can map a particular (key, array)
pair to one or more sites. There are a few especially important
mappings, recognized by the predicates ALL() and PARTp():

(1) If ALL(R) = true, it indicates that if we project away the
array attribute, the resulting set will take the value:

{k s.t. k < FroNT(R) X {1...5}}

where FRONT(R) is the frontier of R (the frontier of a physical
tensor relation is defined as in a “regular” tensor relation).
In other words, this means that each possible (key, array)
tuple in R appears at all sites.

(2) If PARTp(R) = true for some set D C {1...k}, it indicates
that: (i) for a given key value, there is only one tuple in R and
(if) two tuples with the same key values for all dimensions
in D must be found on the same site. In other words, R is
partitioned according to the key dimensions in the set D.

We are ready to describe the IA. Let R (krb.s) specify the set of
all valid physical tensor relations with key-arity of dimension k,
storing arrays of type T(rb) ‘and partitioned across s sites.

The first two operations are concerned with manipulating the
assigning of tuples in a physical relation to sites, while the later
four operations operate over the key and array attributes.

(1) Broadcast is defined as

Beast : RUrDs) _, R(krb.s)

Given a physical tensor relation, Bcast simply ensures that each
tuple takes each site value, so that (i) the set of (key, array) pairs
is unchanged after BcasT, but (ii) in any physical relation R output
from a broadcast, ALL(R) = true.

(2) Shuffle is defined as:

SHUF:Z{L..k}_)(R(k,r,b,s)_)R(k,r,b,s))

SHUF (partpims) is @ function that accepts a set of key dimensions,
and returns a function that accepts physical tensor relation, and
then repartitions the physical tensor relation, so that (i) the set of
(key, array) pairs is unchanged after SHUF, but (ii) in any physical
relation R output from a shuffle, PARTp5 - tpims (R) = true.
(3) Local join is an extension of the TRA’s join operation:

bl ((Z*)g x (Z%)9 x (T(r”bl) x T(rbr) T(r"’b“)))
= (R(kz,rl,bl,S) x Rkrrebrs) R(kﬁkr—g,ro,bo,s))

Similar to TRA join (), "“L(joinKeysL, joinKeysR, projop) takes as
input a set of key dimensions to join on from the left and from

the right, as well as a kernel operation to run over all (leftArray,
rightArray) pairs that are created during the join. The key differ-
ence that the local join combines only on pairs from the left and
right inputs that have the same site values. If two tuples success-
fully join, the corresponding output tuple will have the site value
as those input tuples.

(4) Local aggregation is an extension of TRA aggregation:

sho @)k x (109 x 700 — 70
N (R(k,r,b,s) = R(g,r,b,s))

Like TRA aggregation (Z), ZL(groupByKeys, aggop) takes as input a
list of key dimensions to aggregate over groupByKeys as well as a
kernel function aggOp. However, it returns a function that takes as
input a physical tensor relation, groups the arrays in the relation
based upon the indicated key values and the site value, and applies
aggOp to the arrays in the group. Each output tuple in the resulting,
physical tensor relation will take its site value from the site value
of the set of input tuples that were aggregated to produce it.

(5) IA has a filter:

ot ((Z*)g — {true, false}) - (R(k”xbxs) N R(k,r,b,s))

The only difference is that each accepted input tuple’s site value
is carried through the filter.
(6) Map provides two functionalities:

AL (((Z*)ki N ((Z*)ko)m) % (T("isbi) N (T(ru,bo))m))
5 (R(ki,r,-,b,-,s> R R(ko,ro,bo,s))

AL(keyMapFunc,arrayMapFunc) is a multi-map. It returns a function
that applies keyMapFunc to each key value in the input and applies
arrayMapFunc to each array value in the input. Both keyMapFunc
and arrayMapFunc return m output tuples per input tuple; the site
value is simply copied from input to output. We subsequently call m
the arity of keyMapFunc/arrayMapFunc. In most cases the arity of
these functions will be one, but on some cases (such as replication-
based matrix multiply, see Section 4.2.2), the arity will be greater.

5 COMPILATION AND OPTIMIZATION

To distribute tensor-based computations so that they can run effi-
ciently requires an optimization framework. We consider three core
questions related to actually distributing a computation specified
in the TRA: (1) How is that TRA computation compiled into an
equivalent statement in IA? (2) What are a set of equivalence rules
that allow computations in IA to be re-written, so as to produce
different implementations that are known to produce the same
results, but may run more efficiently? And (3) How to cost those
different, equivalent implementations, so that a search strategy can
be used to choose the most efficient one?

5.1 Compiling the TRA

A complete set of rules mapping from TRA operations to IA opera-
tions are listed in Table 12. Note that though there can be multiple

%In Table 1, tensor relations R, R; and R, are stored as the corresponding physical tensor
relations R, R; and R,; 1dOp represents an identity map for key or array; arrayTileOp
is a kernel function splitting the array to chunks of the indicated size on the indicated
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Table 1: Translation from TRA to IA.

TRA expression

Corresponding IA

P (groupByKeys, aggOp) (R)

ZL(groupByKeys, aggop) (SHUF(groupByKeyS> (R))

™ (joinKeysL, joinKeysR, projop) (R1,Ry)

™™ (joinKeysL, joinKeysR, projop) (Bcast (R;), Ry)

REKEY (keyFunc) (R)

/1L (keyFunc, idOp) (R)

O (boolFunc) (R)

of (boolFunc) (R)

A(transformFunc) (R)

L
A (idOp, transformFunc) (R)

TILE(tileDim, tileSize) (R)

T
A" (keyTileOp(tileDim, tileSize), arrayTileOp(tileDim, tilesize)) (R)

CONCAT(keyDim, arrayDim) (R)

EL ({keyDim)€,arrayConcatOp) (SHUF(keyDim)C (R))

IA computations for a given TRA computation, the compiler will
generate one of such IA computation as the initial plan, and an opti-
mizer will typically be responsible for applying a search algorithm
to produce the optimal physical plan represented by IA.

5.2 Equivalence Rules

Once a (possibly inefficient) computation in IA is produced, it can
be optimized via the application of a set of equivalence rules. An
equivalence rule for IA expressions holds if, for any input physical
tensor relations, the two expressions produce equivalent outputs—
two physical tensor relations are said to be equivalent if they contain
the same set of (key, array) pairs after projecting away the site
attribute.

There are two classes of equivalence rules we consider: simple
equivalence rules which are often extensions of classic relational
equivalence rules (e.g., commutative property of selections), and
domain-specific equivalence rules that are more complex transfor-
mations that always hold, and tend to be useful for mathematical
computations, such as matrix multiplications.

5.2.1 Simple Equivalence Rules. In Table 2, we give an extensive
list of two types of simple equivalence rules: (i) those based on
kernel function composition, and (ii) equivalence rules based on
optimization of re-partitions.

Kernel function composition targets the order or location of the
application of kernel functions in order to reduce the computation
load and memory consumption. This is closely related to the idea
of ML operator fusion, which has been explored in systems such as
TVM [16] (though TVM does not consider the sort of distributed
computations considered here). Re-partition rules formalize notions
of distributed query optimization over tensor relations, and are
primarily designed to reduce communication.

Such rules are surprisingly effective for optimizing distributed
tensor manipulations. Consider the example of extracting the diago-
nal elements of matrix X plus matrix Y: diag(X +Y), where matrix
X and Y are stored in physical tensor relations Rx and Ry. This
computation can be represented by the following TRA expression,
where isEq((ko, k1)) > ko = k1, merge((ko, k1)) — (ko), matAdd
is an element-wise sum of two arrays, and diag diagonalizes the
array. Then diag(X + Y) can be written as:

A(diag) (REKEY(merge) (O-(isEq) (N(<0,1),(O,1),matAdd) (RX,RY)))) .

This TRA expression can be translated to the IA expression:

dimension; arrayConcatOp reverses this. keyTileOp is similar to arrayTileOp, but
operates on keys; (keyDim)¢ represents the complement set of (keyDim).

AL (id0p, diag) (1L<merge,id0p) (tTL<isEq) (NL(<0,1>,(0,1>,ma:Add) (Bcast (RX):RY))))-

We can apply the following equivalence rules for the above IA
expression:

AL (1d0p, diag) (/1]“<merge,id0p) (UL(isEq) (NL(<0,1>.<0,1>,ma:Add) (Bcast (Rx),RY))))

R1-2

1—

AL(merge,diag) (O-L(isEq) (NL((U,I),(O.I),matAdd) (BCAST (RX) 5 RY)))

=
|

6

AL(merge,diag) (ML((O,l),(U,l),matAdd) (D-L(isEq) (Becast (Rx)) , O'L(iSECI) (RY)))

R2-2

8
I

A (nerge, diag) (ML((O,I),(U,I),matAdd) (BCAST (O’L(issq) (RX))sO'L(isEq) (RY)))

R1-7

oE (merge ((0,1)) merge ((0,1)) mataddodiag) (BCAST (0L<issq) (Rx)>,0L(isEq) (RY))-

The transformation will significantly reduce both the communi-
cation overhead and the computation load: by applying R1-6, the
isEq functions will be pushed down, this transformation not only
reduces the input tuple pairs for the join to execute the matAdd
function but also the enables reduction of communication over-
head where the the filter operation is commuted with the broadcast
operation by R2-2; lastly, R1-7 leverages the property that kernel
functions diag and matAdd are distributive, as a result, addition
will only be applied for the diagonal elements for the paired blocks
after kernel function composition.

5.2.2  Domain-Specific Equivalence Rules. Such rules encode spe-
cific knowledge from parallel and distributed computing algorithms.
Adding such rules to a system allows IA to have at its disposal
common implementation strategies, that it can choose from in a
cost-based manner.

We do not attempt to produce an exhaustive list of such rules,
but rather we consider in detailing one example: distributed matrix
multiplication over tensor relations Ry and Ry:

2 ((0,2)matadd) (P((1),(0)mathu1) (Rx;Ry)) .

For physical tensor relations Rx and Ry, using the rules of Table
1, this would be compiled into:

3L (0.2 matadd) (SHUF(<0,2)) (NL(<1>,<0>,macMu1) (Beast (Rx) , RY))) .

This is a simple, broadcast-based matrix multiply. Applying sim-
ple equivalence rules brings us to cross product-based matrix mul-
tiplication, which partitions Rx on columns, and Ry on rows. The
IA program is:

2 ((0.2)matadd) (SHUF(<o,z>) (ML(<1>,<0>,matMu1) (SruF((1y) (Rx) , SHUF ((gy) (RY))>) .
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Table 2: Simple equivalence rules for kernel function composition and re-partition enumeration.

Kernel function composition based rules:

R1-1. Filter operations can be merged.
For a physical relation R:
O-L(boolFuncU (O-L(boolFunCZ) (R)) = O_L(boolFuch\boolFuncZ) (R).

R1-2. Map operations can be merged, if the output arity of the key and array mapping functions is one.
For a physical relation R:

AL (AL (R)) = AL (R)
(keyMapFunc1, arrayMapFuncl) (keyMapFunc2, arrayMapFunc2) = (keyMapFunc1okeyMapFunc2,arrayMapFuncloarrayMapFunc2) .

R1-3. Map and filter are commutative if keyMapFunc is an identify function (idOp).
For a physical relation R € Rkrbs) if v key € (Z*)k, keyMapFunc(key) = key:
AL(keyMapFunc, arrayMapFunc) (O'L(boolFunc) (R)} = O'L(boolFunc) (AL(keyMapFunc, arrayMapFunc) (R))

R1-4. The arrayMapFunc in map can be composed with local aggregation if keyMapFunc is an identify function (idOp):
For a physical relation R € RErbS) if vy key € (Z*)k, keyMapFunc(key) = key:

AL(keyMapFunc, arrayMapFunc) (ZL(groupByKeys, aggop) (R)) = zL(groupByKeys, arrayMapFuncoaggOp) (R)

And if the kernel function arrayMapFunc and aggOp is distributive; that is, V array;, array, € T rb),

arrayMapFunc (aggOp (arrayy, array,)) = agg0Op (arrayMapFunc (array;), arrayMapFunc (array,)):

AL(keyMapFunc, arrayMapFunc) (ZL(groupByKeys, aggop) (R)) = ZL(gr‘oupByKeys, aggOpoarrayMapFunc) (R)

R1-5. The boolFunc in filter can be composed with local aggregation if the kernel function only depends on groupByKeys.
For a physical relation R € R&"PS) v key, key, € (Z9k, if

boolFunc (Hgroupaykeys (key;)) = boolFunc (Igroupaykeys (keyz)) = boolFunc (key;) = boolFunc (key,):

O'L(boolFunc) (Z (groupByKeys, aggOp) (R)) = 2:L(boolFunc(groupByKeys), agg0lp) (R)

R1-6. The kernel function in local filter can be pushed down with local join if the boolFunc only checks the joined keys .
For physical relations R; and R,:

L L — pal L L
O~ (boolFunc) (M (joinKeysL, joinKeysR, projop) (Rl> Rr}) =X (joinKeysL, joinKeys, projOp) (‘7 (boolFunc) (R[),O’ (boolFunc) (Rr))-

R1-7. The kernel function in local map can be composed with local join, if the output arity of the key and array mapping functions is one.
For physical relations R; and R,:
L L — wal
A (keyMapFunc, arrayMapFunc) (N (joinKeysL, joinKeysR, projop) (Rl’ Rr)) = ™ (keyMapFunc(joinKeysL), keyMapFunc(joinKeysR), arrayMapFuncoprojop) (Rl, Rr)-
And if the kernel function arrayMapFunc and projOp is distributive, that is, V array;, array, € T("b),
arrayMapFunc : (projop (arrayy,array,)) = projop (arrayMapFunc (array,), arrayMapFunc (array,)):
L L — wal
A (keyMapFunc, arrayMapFunc) (N (joinKeysL, joinKeysR, projop) (Rl’ Rr)) = ™ (keyMapFunc(joinKeysL), keyMapFunc(joinKeysR), projOpoarrayMapFunc) (Rl, Rr)-

Re-partition based rules:

R2-1. Only the final broadcast/shuffle in a sequence of broadcast/shuffle operations is needed.
For a physical relation R:

BeasT (BeasTt (...BcasT (R))) = Beast (R)

SHUF(partDimsn) (---SHUF(partDimsz) (SHUF(partDimsl) (R))) = SHUF(partDims,,) (R).

R2-2. The re-partition operations are commutative with the local filter operation.
For a physical relation R:

Beast (O'L(boolFunc) (R)) = O'L(boolFunc) (Beast (R));

SHUF(partDim) (O-L(boolFunc) (R)) = UL(boolFunc) (SHUF(partDims) (R))

R2-3. The re-partition operations are commutative with the local map operation.
For a physical relation R:

Bcast (AL(keyMapFunc,arrayMapFunc) (R)) = AL(keyMapFunc,arrayMapFunc) (BCAST (R))§
And, if keyMapFunc is the identity function:

L — )L
SHUF(partDims) (A (keyMapFunc, arrayMapFunc) (R)) =1 (keyMapFunc, arrayMapFunc) (SHUF(partDims) (R))

R2-4. A shuffle can be avoided if the physical relation is already partitioned by a local aggregation’s groupByKeys.
For a physical relation R, if partDims C groupByKeys:
Z:L(groupByKeys, agg0p) (SHUF(partDims) (R)) = EL(groupByKeys, aggOop) (R)

R2-5. An aggregation can be split to two phases, if the physical relation is only partially partitioned.
For a physical relation R, if groupByKeys C partDims:
2L(groupByKeys, agg0p) (SHUF(partDims) (R)) = z:L(groupByKeys, agg0op) (SHUF(partDims) (ZL(groupByKeys, agg0p) (R)))

R2-6. A Join > defined by the TRA can be implemented in the following equivalent ways.

For physical relations R; and R,

NL(joinKeysL, joinKeysR, projop) (Bcast (Ry),Ry) = NL(joinKeysL, joinKeysR, projop) (Ry, Beast (Ry))
= NL(joinKeysL, joinKeysR, projop) (SHUF(joinKeysL) (Rl) )SHUF(joinKeysR) (Rr>)-

R2-7. The local join can be pushed through shuffle.

For physical relations R; € RKLribrs) and R, € RKrrrbrs) if partDims C joinKeysL:
SHUF(partDims) (NL(joinKeysL, joinKeysR, projop) (SHUF(joinKeysL) (Rl) ’SHUF(joinKeysR) (Rr))) =
™™ (joinkeysL, joinKeysR, projop) SI'IUF(joinKeysL) (Rl)’SHUF(joinKeysR) (Rr)
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However, more complicated schemes are possible, which are
expressible in IA, but not derivable using the simple equivalence
rules. For example, replication-based matrix multiplication can be
viewed as a relational version of the 3D parallel matrix multipli-
cation [9]. The algorithm first replicates matrix X and Y’s blocks
multiple times, viewing the result as a 3-D array, and shuffles them
using the index of the corresponding voxel as a key; then each site
joins the tuples with the same keys and performs local multiplica-
tions, aggregating to obtain the final results. If xDups is defined as
FroNT(Ry)[1] and yDups is FRONT(Rx ) [0], the shuffle stage can
be implemented in IA as:

R;( = SHUF((O,Z)) (AL(insertDim(2,xDups),dup1icate(xDups)) (RX))
R; = SHUF((U,Z)) (AL(insertDim(O,yDups),duplicate(yDups)) (RY))

where kernel functions insertDim and duplicate add a new di-
mension, and duplicate each existing array the specified number of

. . L
times. For example, applying A (insertDim(2,xDups),duplicate(xDups))
to the tensor relation

(oo fen )

O S R i
will produce:

{[oanfy Ifoons 3]
(o0 f; f)fern; )
( 9 9

10
oo |’ 1

(13 14 13 14
(CRICN bl | N (RN 16])}
Next we execute:

=F (0 2y matadd) (NL(<o,1,z>,<o,1,z>,matnu1> (R R;)) .
The equivalence of these three implementations is an example
of a set of domain-specific equivalence rules.

5.3 Cost Model

One of the beneficial aspects of the TRA is that cost-based opti-
mization is much easier than that for classical relational algebra: If
the uniqueness and continuity constraints hold, tuple counts need
not be estimated and can be computed exactly.

In the simple cost model presented here, we use the number of
floating point values that must be transferred between sites as the
cost metric. There are two reasons for this decision.

Fist, the number of floating point operations in distributed ML
computation is fixed. For example, all of the classical distributed
matrix multiply algorithms—2.5D [40], SUMMA [42], etc., have the
same floating point cost. While this is not a hard and fast rule—it is
possible to push the filtering of tuples in a tensor relation past the
application of a kernel function, which would change the number of

floating-point operations—in many applications, network transfer
is the dominant cost, and is a reasonable cost metric.

Second, skew, which could slow down a computation with low
network cost, is generally not an issue in a TRA computation, un-
like in classical relational database system. The TRA continuity and
uniqueness constraints imply that joins and aggregations cannot
encounter skew. Consider a join. For two tuples t; and #; in tensor
relation R, when that relation is joined with another relation S,
the number of tuples from S that join with #; and #; must be the
same. This, along with the fact that the TRA requires all arrays
in a tensor relation to be of the same type, implies that skew will
be very rare. In a TRA implementation, the only source of delay
where the entire computation is blocked on a machine is likely to
be a machine that is, simply stated, slower to perform computa-
tions than the others in the cluster. Such slowness may be due to
hardware heterogeneity—a challenging issue for future work—or
for unpredictable reasons, such as other workloads running on the
machine, which are eventualities that cannot be planned for and
must be handled by the runtime.

To compute the network transfer cost for a plan in IA, we
need to be able to compute the frontier of each physical relation
R: f = FRONT(R). The reason is that, assuming that uniqueness
and continuity constraints hold, we can compute the number of
floating point numbers in R using f. If R is of type R(&7-P:3) "and
f = FRONT(R), then the number of tuples in the corresponding ten-
sor relation is n = []; f;, and the number of floating point numbers
in the tensor relation is n X []; b;.

Once the frontier is known, it is used to compute the transfer cost
for each BcasTt and SHUF operation. The cost to broadcast a tensor
relation of type RUkrbs) and having f floating point numbers, is
simply f X s. The cost to shuffle a tensor relation of f floating point
numbers is simply f.

Thus, the task of costing a physical TRA plan reduces to com-
puting the type of each intermediate relation, as well as its frontier.

Computing the type is relatively easy: we work up from the
leaves to the end result(s) of a physical plan, using the type signature
of each of the physical operations (Section 4) to infer the type of
each intermediate physical relation.

Computing the frontier in this way, working up from leaves to
outputs, is also possible, but it requires a bit more thought. We now
consider how the frontier of an output is computed for each of the
various operations in the physical algebra:

(1 ML(joinKeysL, joinkeysR, projop) (Ry Ry). For local join, as-
suming that R; and R, have an appropriate partitioning
to sites, let f; and f, be the left and right input frontiers
of dimensionality k; and k,, respectively. Then the output
frontier f is computed as follows. For k < k; and k not in
joinKeysL, f[k] = f;[k], as the frontier value for that di-
mension is inherited from the left. For k < k; and where
k = joinKeysL[i], f[k] = min(f;[k], f,[i]), as the frontier
value for that dimension results from the join of the two
relations. And finally, for all other k, f[k] is inherited from
the corresponding dimension in the right frontier.

(2) sk (groupByKeys, aggop) (R). For local aggregation, assuming
an appropriate partitioning, let f; denote the input frontier,
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and let n be the number of key dimensions in groupByKeys.
In this case, for k < n, f[k] = f;[groupByKeys|[k]].

ok (boolFunc) (R). This performs a filter in the physical tensor
relation R. For an n-dimensional input frontier f;, for any
k < n, by definition:

3

~

f[k] = 14+max {k[k] s. t. k < f; and boolFunc(k) = true}.

That is, the k-th dimension in the frontier is inherited from
the largest key value in that dimension accepted by boolFunc.
In many cases, especially if boolFunc consists of simple
arithmetic expressions any comparisons, symbolic methods
can be used to compute this. But in practice, it may simply be
easier to use a brute-force approach, where each key value is
fed into boolFunc to compute the required maximum. Since
the size of a tensor relation is typically small—tens of thou-
sands of tuples would be very large—this is a very practical
approach.
(4) AL (keyMapFunc, arrayMapFunc) (R). Similarly, for an n-dimensional

input frontier f;, for any k < n, by definition:

f[k] = 1 + max {keyMapFunc(k)[k] s. t. k < f;}.

Again, a brute force-approach is appropriate for computing
the frontier in this case.

6 EVALUATION

The goal of our paper is to design a computational abstraction
that could be exported by the back-end of a machine learning
system. To be specific, we have detailed that: (1) such an abstraction
should be expressive enough to express a variety of computations;
(2) the computations expressed using the abstraction should be
competitive with hand-coded or special-purpose solutions; and (3)
the abstraction should be amenable to automatic optimization.

To determine whether the TRA meets these goals, we have imple-
mented a simple Python back-end that exports the TRA/IA interface.
Across three different large-scale ML computations, we experimen-
tally evaluate this TRA-based back-end. To see whether a TRA-
based back-end can provide suitable performance, we compare with
a number of other options, including hand-coded MPI solutions,
high-performance libraries such as ScaLAPACK, distributed data
science tools such as Dask, and ML systems such as TensorFlow and
PyTorch. To see whether it is amenable to automatic optimization,
for each ML computation, we apply a series of transformations to
obtain multiple implementations in the IA, and evaluate whether
the cost model is able to predict which is preferable.

Benchmark Tasks. (i) distributed matrix multiplication, (ii) dis-
tributed nearest neighbor search in a Riemannian metric space, and
(iii) distributed stochastic gradient decent (SGD) in a two-layer,
feed-forward neural network (FFNN).

TRA Implementation. We implement an execution engine for
the IA in Python. While it may seem surprising that Python is
appropriate for implementing a relational engine, for even very
large ML problems, the number of tuples in a TRA computation is
small; most data are stored in the large arrays. Our Python execution
engine makes heavy use of PyTorch to handle those arrays. PyTorch
is used to actually execute the compute kernels on the various sites
in a compute cluster, and our IA implementation uses PyTorch’s

optimized communication library to move the arrays stored in
tensor relations between machines.

6.1 Matrix Multiplication
Multiplication of A € R™*K and B € R¥*J can be formalized:
30,2y matadd) (M((1).opmatmur) (Ra,RB))

where matrix A and B are stored in tensor relations R4 and Rg.

To test the effectiveness of IA optimization, as others have done
[22, 23], we consider three different multiplications: (i) general
matrices (I = K = J = 4 x 10%), (ii) matrices with a common large
dimension (K = 6.4 x 10°, I = J = 10%), and (iii) matrices with two
large dimensions (I = J = 8 x 104, K = 10%). Matrices are filled with
random data following uniform distribution U (-1, 1).

As discussed, the above TRA as three equivalent IA plans: broad-
cast based matrix multiplication (BMM), cross-product based matrix
multiplication (CMM), and replication-based matrix multiplication
(RMM). We compare these three IA implementations with Intel’s
version of ScaLAPACK [17] which realizes the classic SUMMA [42].
We also compare with our own, hand-coded version of the classical
2.5D matrix multiply algorithm [40], implemented on top of MPI
[12]; with Dask [1], a popular distributed analytic tool with a Python
interface [39]; and with PETSc [2], a popular high-performance
distributed computing library [10]. All methods are benchmarked
over Amazon EC2 clusters with 5, 10 or 15 r5d. 2x1arge instances
(each with 8 vCPU, 64 GB RAM, and connected by up to 10 Gb/s
interconnect). Note that we have made reasonable amount of effort
to tune the hyper-parameters in the alternative solutions (e.g., grid
size, thread number, initial layout, etc.) and report the best results.
Results are in Table 3. In Table 4, we report the IA cost (as computed
in Section 5.3) predicted for a 10-node cluster.

6.2 Nearest Neighbor Search

We use TRA to implement a nearest neighbor search problem
in a Riemannian metric space encoded by matrix A € RP*D,

where given a query vector x4 € R™P and a candidate set X €

RN*D | the goal is to find the i-th row in the matrix that minimizes:
da (xi,xq) = (xi —xq) A (x; - xq)T. Suppose x4, X, A are stored
in tensor relation Ry, , Rx and Ra, the corresponding TRA program
can be encoded as:

Raiff = P ((1),(1),matVecSub) (qu, RX)
Rproj =2 ((0,.2)matadd) (™(¢1),(0)matmu1) (Raifr> RA))

Rdist :A(rowSum) (Z((0>,matAdd) (N(<0,1),<0,1>,e1emMu1) (Rprostdiﬂ)))
Rmin :2((),min1ndex) (Rdist) -

where matVecSub is matrix-vector subtraction, elemMul is element-
wise matrix multiplication (Hadamard product), minIndex finds
the minimal element’s index. We hand-compile this into an ex-
pression in the IA, and then use the various equivalence rules
to produce two different implementations: Opt4Horizontal and
Opt4Vertical.Opt4Horizontal will broadcast Rx, and Ry to each
compute site and partition Rx by dimension 0; then the computa-
tion of Rgjgr, Rproj> and Rgjs¢ Will be conducted by local operations.
Opt4Vertical will first broadcast Rx, to each site and compute
Rdifr, then partition Rg;g by dimension 1 and partition R4 by dimen-
sion 0 so that Rpyej is computed in a cross-product based matrix
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Table 3: Distributed matrix multiply runtimes.

Two General Matrices A Common Large Dim Two Large Dims
Cluster Size 5 10 15 5 10 15 5 10 15
BMM 61.18s 46.48s 38.54s 106.24s | 104.67s | 101.63s 57.23s 37.60s 31.64s
CMM 63.14s 40.08s 29.38s 51.52s 30.58s 23.09s 106.82s 82.72s 75.63s
RMM 60.71s 43.56s 44.55s 91.19s 74.40s 68.43s 59.91s 41.12s 33.26s
ScaLAPCK 66.11s 37.05s 28.30s 83.96s 58.17s 35.45s 53.06s 28.13s 22.34s
2.5D 62.93s 29.60s 23.11s 83.59s 46.43s 34.82s 61.13s 28.36s 21.21s
Dask 200.64s | 161.23s | 104.12s Fail Fail Fail Fail Fail Fail
PETSc 1034.40s | 535.85s | 430.80s || 1071.62s | 801.26s | 550.74s || 1051.71s | 810.61s | 598.24s

Table 4: Predicted costs for a 10-node cluster.

BMM CMM RMM
Two General 1.6x 1010 | 1.6 x 101 | 1.6 x 1010
A Common Large Dim || 6.4%x 10 | 1.0x10° | 6.4 x 10%°
Two Large Dims 8.0x10° | 6.4x10'° | 8.0x10°

multiplication. For the the Opt4Horizontal IA implementation,
Rx,s Rx and R4 are initially partitioned by dimension 0. For the
the Opt4Vertical IA implementation, Ry - and Ry are initially
partitioned by dimension 0, while Rx is initially partitioned by 1.

We generate two data sets: (i) Large, with a large number of data
points (N = 1.5x10°, 1.5x10°) but small feature space (D = 6x103);
and (ii) Wide, with a small number of data points (N = 6 x 10%), with
alarge feature space ( D = 3x10%, 10°). We execute this computation
on compute clusters with 4, 8 or 12 r5d. 2x1arge instances.

We also implemented the same computation using Dask[1]. And
as a baseline, we compare the execution time with a PyTorch im-
plementation that runs on a single site equipped with the same
computing power as the TRA implementation: an r5d.8xlarge
instance (with 32 vCPU, 256 GB RAM), an r5d. 16xlarge instance
(with 64 vCPU, 512 GB RAM) and an r5d. 24x1large instance (with
96 vCPU, 768 GB RAM). Since the single-site implementation has
zero communication overhead, this should be something of a lower-
bound on the time required to run the computation. The results
and predicted costs are enumerated in Table 5 and Table 6.

6.3 Feed-Forward Neural Network

Lastly, we benchmark a training iteration of a two-layer FFNN for
multiple label classification, computed over an input matrix.

Again, we compile the TRA program for FFNN learning by hand
into the IA, and use the equivalence rules to produce two imple-
mentations. The first, called TRA-DP, resembles the classic data
parallel implementation. The second, called TRA-MP, corresponds
to an intra-operation model parallel plan.

We compare these two IA plans with the state-of-the-art data
parallel implementation provided by PyTorch 1.7.1 [33] and Tensor-
Flow 2.4.1 [5]. We also compare with the same computation written
on top of Dask [1], and hand-coded using ScaLAPACK [17]. Note
that these two options do not fully support GPU.

Two data sets are considered. First, the data from the Google
speech recognition task [44], where a 1600 feature vector is ex-
tracted from audio wave-forms; the goal is to identify 10 keywords
(D = 1600 and L = 10); for this task, we train a very wide hidden

layer with large number of neurons where H = 1 x 10°, 1.5 x 10°,
or 2 X 10%; a batch size of 10* (N = 10%) are used for min-batch
SGD. Second, we consider the AmazonCat-14K [36, 37] benchmark,
which is an extreme multi-label (XML) classification dataset includ-
ing a large number of features (D = 597540) and labels (L = 14588);
we train a relatively narrow network with H = 0.5 X 103,1 x 103,
3% 103, 5 x 103, or 7 X 10%; a batch size of 10° (N = 103) are used
for mini-batch SGD. Each is executed on CPU clusters with 2, 5
or 10 r5dn.2xlarge instances connected by up to 25 Gb/s inter-
connect) and GPU clusters with 2, 5 or 10 p3.2xlarge instances
(each with a NVIDIA Tesla V100 GPU, and connected by 10 Gb/s
interconnect). The results for Google speech are listed in Table 7;
for Amazon-XML in Table 8. Predicted costs are given in Table 9.

6.4 Discussion

First, the experiments do seem to show that the TRA provides an ab-
straction upon which a variety of ML computations can be mapped.
Further, the TRA seems to provide for good performance. On the
matrix multiplication experiments, the best TRA-based implemen-
tations were at least competitive with ScaLAPACK as well as our
hand-coded MPI-based implementation (we observed 29s for the
TRA-based CMM vs. 23s for hand-coded MPI in the “two general
marices” case, 31s for the TRA-based BMM vs. 21s for hand-coded
MPI in the “two large dims case”) even beating them both (23s for
the TAR-based CMM vs. 35s for hand-coded MPI) in the “common
large dim case”. On the FFNN experiments, the best TRA-based
implementation for each task was about 1.5X times as slow as the
hand-constructed ScaLAPACK implementation for the Google data
set, but considerably faster than ScaLAPACK for the more chal-
lenging Amazon data set. In general it is fair to say that the best
TRA-based implementation for each task was at least competitive
with the ScaLAPACK and MPI-based codes. The fact that there is not
a significant performance hit moving from a special-purpose tool
requiring significant programmer expertise to a general-purpose
implementation abstraction seems to argue that in fact, a TRA-based
back-end can provide state-of-the-art performance.

It is also instructive to compare our TRA-based implementations
with the other, more user-friendly tools tested, which in practice
would be more reasonable alternatives to an ML system with a
TRA-based back-end. Dask was not competitive, and was often
one or two orders of magnitude slower. On the FFNN experiments,
PyTorch was generally better performing than TensorFlow in CPU
clusters, while both systems perform almost identically in GPU
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Table 5: Nearest neighbor search runtimes.

Wide (N =1.5x10°) Wide (N =1.5x10°) Large (D =3x10%) Large (D =10°)
Cluster Size 4 8 12 4 8 12 4 8 12 4 8 12
Opt4Horizontal 5.64s 4.71s 3.36s 55.62s 39.24s 24.63s 13.26s 17.71s 28.25s | 159.69s | 229.40s | 315.17s
Opt4Vertical 10.44s 9.26s 9.88s 120.09s | 112.69s | 108.59s 5.93s 4.52s 3.82s 57.81s 35.61s 26.43s
Single big machine 5.31s 4.65s 3.33s 51.54s 35.82s 23.01s 5.21s 4.41s 3.79s 48.22s 31.12s 24.88s
Dask 485.87s | 289.50s | 223.55s Fail Fail Fail 437.31s | 420.25s | 381.10s Fail Fail Fail

Table 6: Predicted nearest neighbor search costs, 8 machines.

Opt4Horizontal | Opt4Vertical
Wide data set 2.9x 108 8.0 x 1010
Large data set 7.2 %100 4.8 x10°

Table 7: SGD iteration time: FFNN for Google Speech.

Cluster CPU GPU
Nodes 2 [ 5 ] 10 2 [ 5 [0
100k Neurons
PyTorch-DP 11.16s 6.15s 4.75s 0.99s 1.19s 1.27s
TF-DP 11.93s 7.32s 5.51s 0.87s | 1.13s | 1.17s
ScaLAPCK 8.52s 4.97s 2.79s NA NA NA
Dask 62.57s 56.57s 49.63s NA NA NA
TRA-DP 11.62s 6.51s 5.20s 1.49s 1.59s 1.63s
TRA-MP 26.56s 28.71s 29.09s 7.01s | 11.56s Fail
150k Neurons
PyTorch-DP 14.28s 9.46s 6.54s 1.18s | 1.65s | 1.78s
TF-DP 16.68s 10.69s 8.43s 1.16s | 1.62s | 1.75s
ScaLAPCK 13.45s 7.48s 3.87s NA NA NA
Dask 96.56s 85.32s 77.07s NA NA NA
TRA-DP 14.52s 9.68s 7.56s 2.15s 2.22s 2.23s
TRA-MP 33.20s 42.80s 43.10s Fail Fail Fail
200k Neurons
PyTorch-DP || 17.25s | 11.94s 9.30s Fail | 2.09s | 2.42s
TF-DP 21.36s 13.21s 11.21s 1.52s | 2.12s | 2.46s
ScaLAPCK 17.18s 10.05s 5.06s NA NA NA
Dask 136.66s | 112.72s | 104.01s NA NA NA
TRA-DP 17.89s 12.51s 9.67s 2.94s 2.80s 2.85s
TRA-MP 37.82s 54.23s 59.84s Fail Fail Fail

clusters. For Google speech, the optimal partition schema is iden-
tical to data parallelism, where the best TRA-based option is able
to closely match PyTorch’s speed. Further, while PyTorch failed
on the larger Google computations in a 2-GPU cluster, the TRA
implementation was able to run to completion. On the even larger,
extreme classification problem, the TRA-MP (model parallel) IA
was much, much faster than PyTorch, (where TensorFlow fails in
most cases since it does not allow a parameter matrix to exceed 2
GB), and much more scalable. PyTorch also cannot handle the huge
matrices required to power this computation in some settings.
The final question we wanted to address was whether the TRA
is amenable to automatic optimization. Note that in each case, there
was one IA implementation that was suitable for the input data,
and one that was not; the difference between the two was often
significant. In a system based upon the TRA, it would be crucial to
automatically choose the suitable implementation. We found that

Table 8: SGD iteration time: FFNN for Amazon-XML.

Cluster CPU GPU
Nodes 2 [ 5 ] 10 2 [ 5 [ 10
0.5k Neurons
PyTorch-DP 3.58s 4.51s 6.41s 1.46s | 2.11s | 2.19s
TF-DP 5.94s 7.81s 8.96s 1.21s 1.85s 2.11s
ScaLAPCK 4.92s 2.91s 1.73s NA NA NA
Dask 27.96s 27.01s 22.69s NA NA NA
TRA-DP 4.77s 5.13s 7.84s 2.42s 2.48s 2.61s
TRA-MP 2.18s 1.41s 0.83s 0.15s | 0.12s 0.09s
1k Neurons
PyTorch-DP 9.74s 10.29s 10.34s 2.67s | 3.76s 4.20s
TF-DP Fail Fail Fail Fail Fail Fail
ScaLAPCK 8.16s 6.65s 2.47s NA NA NA
Dask 45.40s 42.15s 29.34s NA NA NA
TRA-DP 12.50s 14.29s 15.68s 4.67s | 4.69s 4.73s
TRA-MP 3.86s 2.79s 1.70s 0.40s | 0.37s 0.35s
3k Neurons
PyTorch-DP || 25.46s | 29.04s | 30.51s Fail Fail Fail
TE-DP Fail Fail Fail Fail Fail Fail
ScaLAPCK 17.56s 9.59s 7.91s NA NA NA
Dask 103.83s | 89.09s 81.56s NA NA NA
TRA-DP 26.59s 38.15s 46.06s Fail | 12.74s | 13.13s
TRA-MP 10.57s 6.36s 3.88s Fail 0.54s 0.44s
5k Neurons
PyTorch-DP || 34.05s | 46.53s | 50.17s Fail Fail Fail
TE-DP Fail Fail Fail Fail Fail Fail
ScaLAPCK 23.21s 11.65s 8.33s NA NA NA
Dask 246.56s | 143.86s | 127.26s NA NA NA
TRA-DP 44.12s | 68.54s 75.15s Fail Fail Fail
TRA-MP 18.59s 8.07s 5.75s Fail 0.59s 0.48s
7k Neurons
PyTorch-DP Fail Fail Fail Fail Fail Fail
TF-DP Fail Fail Fail Fail Fail Fail
ScaLAPCK 29.19s 14.04s 9.57s NA NA NA
Dask Fail Fail Fail NA NA NA
TRA-DP 60.28s | 89.36s | 107.86s Fail Fail Fail
TRA-MP 21.35s 12.12s 7.854s Fail Fail 0.73s

in each case, the simple cost model from Section 5.3 would have
chosen the correct implementation. For example, consider Table
9. In each case, the cost metric correctly assigns the lower cost to
the appropriate IA computation: TRA-DP for the smaller, Google
problem, and TRA-MP for the larger, extreme classification problem.
These results suggest that it should easily be possible to perform
cost-based optimization over the IA.
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Table 9: Predicted FFNN costs for a 5-node cluster.

TRA-DP | TRA-MP

Google speech 100k || 9.7 x10% | 1.0 x 10™°
Google speech 150k || 1.5x10° | 1.5% 101
Google speech 200k || 1.9x10° | 2.0 x 10
Amazon XML 1k 3.7%x10° | 1.0 x 107
Amazon XML 3k 1.1x 101 | 3.0x 107
Amazon XML 5k 1.8x 10 | 5.0 x 107
Amazon XML 7k 2.6 %100 | 7.0 x 107

7 RELATED WORK

Our focus has been on the proper implementation abstraction for
ML systems. The TRA is “front-end agnostic”” Still, there has been
considerable interest in programming and compilation for such
systems. FAQ, by Khamis et al. [8], considers how to compute
Einstein-notation-like expressions over semi-rings. Effectively, FAQ
re-writes such expressions so that they can easily be computed
using the “Outsideln” method for first determining the non-zero en-
tries using a series of joins, followed by the computation of the val-
ues. Laue et al. [32] propose a variant on the Ricci calculus for com-
puting tensor-based derivatives using the Einstein notation. Tensor
Comprehensions are an Einstein-like programming language and
associated compiler that is able to produce efficient CUDA kernels
[43]; the tensor algebra compiler is a similar effort [31]. Our efforts
are complementary. One could imagine, for example, using FAQ-
like algorithms along with a compiler for high-performance kernels
to generate expressions for a TRA-based back-end.

Classic data-flow systems have been modified to support dis-
tributed machine learning. Both Spark [45] and SystemML [21]
provide native libraries for deep learning. A set of deep learning
frameworks can run on top of Spark, such as TensorFrames [24],
Deeplearning4j [41], SparkNet[38] and BigDL [18]. Conceptually,
these deep learning frameworks are related to the TRA as they
allow the distribution of ML computations. Consider TensorFrames.
TensorFrames allows the items in a Spark DataFrame to be op-
erated on by a TensorFlow computation. One could view those
TensorFlow computations as being similar to the kernels applied
by TRA, and the Spark operations used to manipulate the data as
being similar to the the joins, aggregations, and so on offered by
the TRA. The key difference is that while these systems are each
significant engineering efforts aimed at marrying different tech-
nologies (TensorFlow and Spark in the case of TensorFrames), the
TRA is designed as a generic back-end. In fact, a TensorFrames-
like programming model could easily be mapped onto TRA, with
mapRows, aggregate, etc., being mapped to the appropriate TRA
operations, and the TensorFlow computations run as kernels.

Relational systems have long been proposed for ML. MLog [34]
is a declarative relational system managing data movement, data
persistency, and training batch generation. Similar ideas have been
applied in [7] for feature extraction queries over multi-relation
databases, and [28] for optimizing sparse tensor computations con-
structed from relational tables. Recently, relational systems have
also been considered as runtime engine (instead of an efficient data
loader) for distributed ML. DB4ML [27] proposes user-defined it-
erative transactions. Multi-dimensional-recursion has been built

on top of SimSQL [15], a distributed analytic database system, that
can support neural network training [26].

The idea of moving past relations onto arrays as a database
data model, is long-standing (e.g., consider Baumann’s work on
Rasdaman [13]). SciDB [14] is a well-known system following this
idea. LevelHeaded [6] uses a special key-value structure to support
linear operations. MATLANG [11] introduces a language for matrix
manipulation. TensorDB [29, 30] is a database system that can
perform tensor manipulation. LARA[25] proposes an algebra with
tuple-wise operators, attribute-wise operators, and tuple extensions,
then defines linear and relational algebra operations using these
primitives. RMA [20] attempts to bridge the gap between relations
and matrices. While related, these systems attempt to implement
tensor computations as algebraic expressions (e.g., a join followed
by an aggregation) over relations of (key, value) pairs. This
requires pushing a huge number of pairs through the system, which
introduces significant overhead.

8 CONCLUSION

We have introduced the tensor relational algebra (TRA), and sug-
gested this as the interface that could be exported by the back-end
of a machine learning system. We have showed through extensive
experimentation that a computation expressed in the TRA then
transformed into the implementation algebra and optimized, is
competitive with (and often faster than) other options, including
HPC softwares such as ScaLAPACK, and ML softwares such as
TensorFlow and PyTorch.

There are many avenues for future work. TRA is not meant to be
a user-facing programming language. Thus, a key question is: can
a language such as Tensor Comprehensions or Einstein notation be
compiled into TRA? At a high level, this should not be too difficult,
as these languages match indices in different tensors (which is easily
implemented as a join) and then sum out dimensions (aggregation).
But there are many details to consider. The TRA uses arrays or
“chunks” for speed. How to automatically block or chunk a tensor
computation? How to automatically generate the compute kernels?
Sparsity is also an important issue. A compiler could also decide to
store a sparse tensor using arrays that do not have zero dimensions,
but where those arrays are stored sparsely, with a high-performance
kernel generated to handle the specific sparsity pattern.
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