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Abstract

Hajos conjectured that every graph containing no subdivision of the complete
graph K, 1 is properly s-colorable. This conjecture was disproved by Catlin. Indeed,
the maximum chromatic number of such graphs is Q(s?/logs). We prove that
O(s) colors are enough for a weakening of this conjecture that only requires every
monochromatic component to have bounded size (so-called clustered coloring).

Our approach leads to more results, many of which only require a much weaker
assumption that forbids an ‘almost (< 1)-subdivision’ (where at most one edge is
subdivided more than once). This assumption is best possible, since no bound on the
number of colors exists unless we allow at least one edge to be subdivided arbitrarily
many times. We prove the following (where s > 2):

1. Graphs of bounded treewidth and with no almost (< 1)-subdivision of K4
are s-choosable with bounded clustering.

2. For every graph H, graphs with no H-minor and no almost (< 1)-subdivision
of Ksi1 are (s + 1)-colorable with bounded clustering.

3. For every graph H of maximum degree at most d, graphs with no H-subdivision
and no almost (< 1)-subdivision of K411 are max{s+ 3d — 5, 2}-colorable with
bounded clustering.

4. For every graph H of maximum degree d, graphs with no K, ; subgraph and
no H-subdivision are max{s + 3d — 4, 2}-colorable with bounded clustering.

5. Graphs with no K, ;-subdivision are (4s — 5)-colorable with bounded cluster-
ing.

The first result is tight and shows that the clustered analogue of Hajos” conjecture
is true for graphs of bounded treewidth. The second result implies an upper bound
for the clustered version of Hadwiger’s conjecture that is only one color away from
the known lower bound, and shows that the number of colors is independent of the
forbidden minor. The final result is the first O(s) bound on the clustered chromatic
number of graphs with no K, 1-subdivision.
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1 Introduction

In the 1940s, Hajos conjectured that every graph containing no subdivision of the
complete graph K, ; is s-colorable; see [25, 30, 31|. Dirac [5] proved the conjecture for
s < 3. It is open for s € {4,5}, which would imply the Four Color Theorem. Catlin [3]
presented counterexamples for all s > 6, and Erdds and Fajtlowicz [8] proved that the
conjecture is false for almost all graphs. Indeed, there are graphs with no K {-subdivision
and with chromatic number €(s*/log s). The best upper bound on the number of colors is
O(s?), independently due to Bollobas and Thomason [2] and Komlos and Szemerédi [19];
see [12] for a related result. See [25, 31| for more explicit counterexamples and further
discussion of connections to other areas of graph theory.

The purpose of this paper is to prove several positive results in the direction of weak-
enings of Hajos’ conjecture. Define a coloring of a graph G to simply be a function that
assigns one color to each vertex of GG. For a coloring ¢ of a graph GG, a monochromatic
c-component of G is a connected component of a subgraph of GG induced by all the vertices
assigned the same color by c. When c is clear, we simply write monochromatic component.
A coloring has clustering n if every monochromatic component has at most 1 vertices.
Our focus is on minimizing the number of colors, with small clustering as a secondary goal.
The clustered chromatic number of a graph class F is the minimum integer k£ for which
there exists an integer ¢ such that every graph in F has a k-coloring with clustering c.
There have been several recent papers on this topic [1, 4, 6, 10, 11, 13-18, 20, 21, 26, 28|,
see [33] for a survey.

Most of our results actually hold (in some sense) for more general classes of graphs
than those with no K, -subdivision, as we now explain. Say a graph H’ is an almost
(< 1)-subdivision of a graph H if H' can be obtained from H by subdividing edges,
where at most one edge is subdivided more than once. Most of our results say that all
graphs containing no almost (< 1)-subdivision of Ky, plus some other properties, are
s-colorable with bounded clustering.

The following is our first main result. It provides a Hajos-type result for clustered
coloring of graphs with bounded treewidth.

Theorem 1. For all s,w € N, there exists n € N such that every graph with treewidth at
most w and with no almost (< 1)-subdivision of Kgy1 is s-choosable with clustering n.

The notion of s-choosable with bounded clustering is defined in Section 2.1. Note that
every graph that is s-choosable with bounded clustering is also s-colorable with bounded
clustering. This shows that the number of colors in Theorem 1 is best possible in the
following strong sense: for all s € N and n € N there is a graph G with treewidth at most
s — 1 (and thus with no subdivision of K1), such that every (s — 1)-coloring of G has
a monochromatic component with at least n vertices; see [33]. In particular, at least s
colors are required even for this weakening of Hajos’ conjecture.

The assumption of bounded treewidth in Theorem 1 is equivalent to saying that the
graph excludes a planar graph as a minor by Robertson and Seymour’s Grid Minor The-



orem [29]. What if we exclude a general graph as a minor? Our next result answers this
question (with one more color).

Theorem 2. For every s € N and every graph H, there exists n € N such that every
graph containing no H-minor and containing no almost (< 1)-subdivision of Kgy1 is
(s + 1)-colorable with clustering 1.

Theorem 2 (with H = K1) has the following interesting corollary for graphs exclud-
ing a minor.

Corollary 3. For every s € N there exists n € N such that every graph containing no
Kgq1-minor is (s + 1)-colorable with clustering 7.

Kawarabayashi and Mohar [18] first proved that graphs containing no K, -minor are
O(s)-colorable with bounded clustering. The bound on the number of colors has since
been steadily improved |7, 15, 21, 27, 32|. Prior to the present work, the best bound was
s + 2, which followed from a general result by the authors [23]. Corollary 3 improves
this bound to s + 1, although it should be noted that results from [23] are essential for
the proof of Theorem 2 and Corollary 3. Dvotak and Norin [6] have announced that
a forthcoming paper will prove that s colors suffice (which is the clustered analogue of
Hadwiger’s Conjecture, and would be best possible). Their result is incomparable with
Theorem 2 and the aforementioned general result in [23].

Our next result relaxes the assumption that the graph contains no H-minor, and
instead assumes that it contains no H-subdivision. The price paid is an increase in the
number of colors, depending only on the maximum degree of H.

Theorem 4. For every s € N and every graph H with mazimum degree d € N, there
exists 1 € N such that every graph with no H-subdivision and no almost (< 1)-subdivision
of Ksy1 is max{s + 3d — 5, 2}-colorable with clustering n.

The next theorem relaxes the assumption of no almost (< 1)-subdivision of Ky, and
instead assumes the graph contains no K ;-subgraph. Interestingly the number of colors
does not depend on ¢. Note that K, contains a K,;-subdivision where every edge is
subdivided at most once, when t is sufficiently large.

Theorem 5. For s,t,d € N and every graph H of maximum degree d, there exists n € N
such that every graph with no K ;-subgraph and no H -subdivision is max{s + 3d — 4, 2}-
colorable with clustering n.

We remark that all of the above theorems forbid (< 1)-subdivisions of K, or subdi-
visions of H. That is, we forbid a subdivision of a graph where some edge is allowed to
be subdivided arbitrarily many times. This condition is required since there are graphs of
arbitrarily high girth and arbitrarily high chromatic number [9], which therefore require
arbitrarily many colors for any fixed clustering value; this shows that excluding finitely
many graphs as subgraphs cannot ensure any upper bound on the number of colors.

Our final theorem simply excludes a K, -subdivision. This is the first O(s) bound
on the clustered chromatic number of the class of graphs excluding a K ;-subdivision.



Theorem 6. For each s € N, there exists n € N such that every graph containing no
K 1-subdivision is max{4s — 5, 1}-colorable with clustering n.

We now compare the above theorems with Hajos’ conjecture. First note that The-
orems 1-4 are stronger than Hajos’ conjecture in the sense that they only exclude an
almost (< 1)-subdivision of K1, whereas Hajos’ conjecture excludes all subdivisions of
K¢y1. Moreover, Theorem 1 also holds in the stronger setting of choosability. On the
other hand, Theorems 1-6 are weaker than Hajos” conjecture in the sense that they have
bounded clustering rather than a proper coloring. However, such a weakening is un-
avoidable since Hajos” conjecture is false. Indeed, the proof of the theorem of Erdds and
Fajtlowicz [8] mentioned above shows that, for a suitable constant ¢, almost every graph
on cs? vertices contains no subdivision of K,,; and has chromatic number (s?/logs).
Trivially, such a graph has treewidth at most cs? and contains no K ,-minor. Thus the
clustering function in all of the above theorems is at least Q(s/log s).

The paper is organized as follows. Section 2 introduces preliminary definitions and
results from our companion papers [23, 24| that are used in the present paper. Section 3
introduces a structure theorem of the first author and Thomas [22| for graphs excluding
a fixed subdivision, and uses it to prove Theorem 5. Building on this work, Section 4
proves the remaining theorems mentioned above.

2 Preliminaries

We use the following notation. Let Ny := {0,1,2,...} and N := {1,2,...}. For
m,n € Ny, let [m,n] :={m,m+1,...,n} and [n] := [1, n].

Let G be a graph (allowing loops and parallel edges). For v € V(G), let Ng(v) :=
{w € V(G) : vw € E(G)} be the neighborhood of v, and let Ng[v] := Ng(v) U {v}. For
X C V(G), let Ng(X) = Uyex(Ng(v) — X) and Ng[X] := Ng(X) U X. Denote the
subgraph of G induced by X by G[X].

For a graph G, a subset X of V(G), and an integer s > 1, let

N*(X) :={veV(G) - X : |[Ng(v)N X| > s} and
NG (X) ={veV(G)— X :1<|Ng(v)NnX| < s}

When the graph G is clear from the context we write N>*(X) instead of N5*(X), and
similarly for N<*(X).

Lemma 7 (|24, Lemma 12|). For all s,t € N, there ezists a function fs;: Ng — Ny such
that for every graph G with no K, subgraph, if X C V(G) then |[NZ*(X)| < fs.(|X]).

Lemma 7 is sufficient to prove the theorems in this paper. But when G excludes a fixed
minor or subdivision of a fixed graph, the function f,; in Lemma 7 can be made linear;
see [24]. This improves the clustering function in all our results, although to simplify the
presentation, we choose not to explicitly evaluate our clustering functions.

A tree-decomposition of a graph G is a pair (T, X = (X, : « € V(T))), where T is a
tree and for each node x € V(T'), X, is a subset of V(G) called a bag, such that for each
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vertex v € V(G), the set {z € V(T) : v € X, } induces a non-empty (connected) subtree
of T', and for each edge vw € E(G) there is a node x € V(T') such that {v,w} C X,. The
width of a tree-decomposition (7, X') is max{|X,| —1: x € V(T)}. The treewidth of a
graph G is the minimum width of a tree-decomposition of G.

Let H be a graph. An H-minor of a graph G is a map « with domain V(H) U E(H)
such that:

For every h € V(H), a(h) is a nonempty connected subgraph of G.
If hy and hy are different vertices of H, then a(hy) and «(hsy) are disjoint.

For each edge e of H with endpoints hq, he, a(e) is an edge of G with one end in
a(hy) and one end in a(hy); furthermore, if hy = hs, then a(e) € E(G) — E(a(hy)).
If e, e5 are two different edges of H, then a(e;) # a(es).

2.1 List Coloring

For our purposes, a color is an element of Z. Let G be a graph. A list-assignment
of G is a function L with domain containing V' (G), such that L(v) is a non-empty set of
colors for each vertex v € V(G). For a list-assignment L of V(G), an L-coloring of G is
a coloring ¢ of G such that ¢(v) € L(v) for every v € V(G). An L-coloring has clustering
n if every monochromatic component has at most 7 vertices. A list-assignment L of G is
an (-list-assignment if |L(v)| > ¢ for every vertex v € V(G). A graph G is (-choosable
with clustering n if G is L-colorable with clustering n for every (-list-assignment L of G.

For a graph G, a subset Y7 C V(G), and s,r € N, a list-assignment L of G is an
(s, 7, Y7)-list-assignment if:

(L1) |L(v)| € [s + r] for every v € V(G).
(L2) Yy ={v e V(G) : |L(v)| = 1}.
(L3) For every y € N<*(Y1),

IL(y)| =s+7r—|Na(y)NYi| =r+1

and L(y) N L(u) = O for every u € Ng(y) N Y.
(L4) For every v € V(G) — Ng[Y1], we have |L(v)| = s + 7.
(L5) For every v € V(G) — Yy, we have |L(v)| > r + 1.

We say that an (s, r, Y))-list-assignment L of G is restricted if:
(L1’) L(v) C [s+ 7] for every v € V(G).

Note that a restricted (s,2,Y])-list-assignment is called a (s, Y7, 0,0)-list-assignment in
our companion paper [23].

For a list-assignment L of a graph G with Y} = {v € V(G) : |L(v)| = 1}, forn € N
and a nondecreasing function g : N — N, an L-coloring ¢ of G is (7, g)-bounded if:

e the union of the monochromatic components intersecting ¥; contains at most |Y; [2g(|Y1])
vertices, and

e every monochromatic component contains at most 772g(77) vertices.
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2.2 Companion Results

Our companion paper proves the following results for graphs with no K, subgraph.
The first assumes bounded treewidth, the second assumes an excluded minor.

Theorem 8 ([23, Theorem 17|). For all s,t,w € N, there exist n € N and a nondecreasing
function g such that if G' is a graph of treewidth at most w and with no K, subgraph, Y,
is a subset of V(G) with |Y1| < n, and L is an (s, 1,Y7)-list-assignment of G, then there
exists an (1, g)-bounded L-coloring of G.

Theorem 9 ([23, Theorem 24|). For all s,t € N and for every graph H, there existn € N
and a nondecreasing function g such that if G is a graph with no Ky, subgraph and no H -
minor, Y1 is a subset of V(G) with |Y1| <, and L is a restricted (s, 2,Y7)-list-assignment
of G, then there exists an (1, g)-bounded L-coloring.

2.3 Progress

The concept of “progress” from the proofs of the above two theorems are re-used in
the present paper. Let s,7 € N and L be an (s, r, Y7)-list-assignment of a graph G. For
W CV(G), a W-progress of L is a list-assignment L’ of G defined as follows:

Let Y/ =Y, UW.

For every y € Y1, let L'(y) := L(y).

For every y € Y] — Y1, let L'(y) be a l-element subset of L(y) (which exists by
(L2)—(Lb)).

For each v € N<5(Y]), let L' (v) be a subset of L(v)—{L'(w) : w € Ng(v)N(W —Y1)}
of size |L(v)| — |Ng(v) N (W —Y7)|.

e For every v € V(G) — (Y UN<*(Y)), let L'(v) := L(v).

Lemma 10 ([23, Lemma 12 with F' = 0]). Let s,r € N and L be an (s,r,Y1)-list-
assignment of a graph G. Let W C V(QG). Then every W-progress L' of L is an (s,r,Y; U
W)-list-assignment of G, and L'(v) C L(v) for every v € V(G).

Lemma 11 (|23, Lemma 13 with F' = (}]). For all s,t,k € N, there exist a number n > k
and a nondecreasing function g with domain Ny and with g(0) > n such that if G is a
graph with no K, subgraph, r € N, Yy is a subset of V(G) with |Y1| <1, and L is an
(s,r, Y1)-list-assignment of G, then at least one of the following holds:

1. There exists an (n, g)-bounded L-coloring of G.

2. 1| > k.

3. For every color £, there exist a subset Y| of V(G) with n > |Y{| > |Yi| and an
(s,r,Y])-list-assignment L' of G with L'(v) C L(v) for every v € V(G), such that:
(a) there does not exist an (1, g)-bounded L’-coloring ¢’ of G,

(b) for every L'-coloring of G, every monochromatic component intersecting Y7 is
contained in G[Y/], and



(¢c) for everyy € Y] with £ € L'(y), we have {v € Ng(y) —Y{ : £ € L'(v)} = 0.

4. Y1 # 0, Ng(Y1) = 0, and there does not exist an (n, g)-bounded L|g_y,-coloring of
G-Y.

2.4 Separations and Tangles

A separation of a graph G is an ordered pair (A, B) of edge-disjoint subgraphs of G
with AU B = G. The order of (A, B) is [V(AN B)|. A tangle T in a graph G of order

is a set of separations of G of order less than 6 such that:

(T1) For every separation (A, B) of G of order less than 6, either (A, B) € T or (B, A) €
T.

(T2) If (AZ, Bz) S T for i € [3], then A1 U AQ U Ag 7£ G.

(T3) If (A, B) € T, then V(A) # V(G).

Lemma 12 ([23, Lemma 16 with F' = 0|). For all s,t,0,n,7 € N with n > 90 + 1, for
every nondecreasing function g with domain Ny, if G' is a graph with no Ky, subgraph, Yy
is a subset of V(G) with 90 + 1 < |Y1| < n, and L is an (s,r,Y1)-list-assignment of G,
then at least one of the following holds:

1. There exists an (n, g)-bounded L-coloring of G.

2. There ezist an induced subgraph G’ of G with |V(G')| < |V(G)|, a subset Y/ of
V(G") with |Y{| < n and an (s,r,Y])-list-assignment L' of G' such that:

(a) L'(v) C L(v) for every v € V(G").
(b) There does not exist an (n,g)-bounded L'-coloring of G'.

3. T ={(AB): V(AN B)| < 0,|V(A)NY1| < 30} is a tangle of order 6§ in G.

A tangle T in G controls an H-minor « if there does not exist (A, B) € T of order
less than |V (H)| such that V(a(h)) C V(A) for some h € V(H).

Lemma 13 (|23, Lemma 23 with ¢ = r = 0]). For all s,t,t" € N, there exist 0* € N
and nondecreasing functions g*,n* with domain Ny such that if G is a graph with no K,
subgraph, 8 € N with 6 > 0*, n € N with n > n*(0), Y1 C V(G) with 30 < |Y1| < n, L is
a restricted (s,2,Y1)-list-assignment of G, g is a nondecreasing function with domain Ny
with g = g*, and T :={(A,B) : V(AN B)| < 0,|V(A)NYy| < 36} is a tangle in G of
order 0 that does not control a Ky-minor, then either:

1. there exists an (n,g)-bounded L-coloring of G, or

2. there exist (A*, B*) € T, a set Ya« with |Ya+| < n*(0) and Y1 NV(A*) C Yy« C
V(A*), and a restricted (s,2,Yax)-list-assignment L« of G|V (A*)] such that there
exists no (n, g)-bounded L 4«-coloring of G[V (A*)].




3 Excluding Subdivisions
The following theorem is a special case of a theorem by the first author and Thomas [22].

Theorem 14 ([22, Theorem 6.8]). For any integers d, h and graph H on h vertices with
mazimum degree at most d, there exist integers 0,& such that if G is a graph containing
no H-subdivision, and if T is a tangle in G of order at least 6 controlling a thdhj -minor,
then there exists Z C V(G) with |Z| < & such that for every vertex v € V(G) — Z, there
exists (A, B) € T — Z of order less than d such that v € V(A) — V(B).

The next two lemmas imply Theorem 5, since if s,d € N and 3d + s < 7, then d = 1.

Lemma 15. If H is a graph of mazimum degree at most 1, then every graph with no
H -subdivision is 2-colorable with clustering max{2|V (H)| —2,1}.

Proof. Since H is of maximum degree at most one, G has no H-subdivision implies that
G does not contain a matching of size |V (H)|, and hence G contains a vertex-cover S
of size at most 2|V (H)| — 2. By coloring every vertex in S with 1 and coloring every
vertex in V(G) — S with 2, we obtain a 2-coloring of G' with clustering max{|S]|,1} <
max{2|V(H)| —2,1}. O

Lemma 16. For any s,t,d € N and graph H of maximum degree d with 3d + s > 7,
there exist n € N and a nondecreasing function g such that if G is a graph with no K,
subgraph and no H-subdivision, Y1 C V(G) with |Y1| < n and L is a restricted (s',2,Y1)-
list-assignment of G, then there exists an (n, g)-bounded L-coloring, where s’ = 3d+ s — 6.

Proof. Define the following:

e Let f be the function f;; mentioned in Lemma 7.

e Let 0y be the number 0* and gy, 7y be the functions g*, n*, respectively, mentioned
in Lemma 13 by taking s = s, ¢ = ¢ and ¢' = | 3d|V (H)|].

e Let #; and £ be the numbers § and ¢ mentioned in Theorem 14, respectively, by
taking d =d, h = |V(H)| and H = H.

o Let ag:= f(&§)d* + £+ 1, and let a; := da;_1 + 1 for 1 € N.

o Let 0 :=0y+ 61 + (d — 1)a(d—1a0-

e Let n; be the number 7 and let g; be the function g mentioned in Lemma 11 by
taking s = ', t =t and k = 96. Note that g(0) > n; > 96 by Lemma 11.

o Let n:=n(0) +m + (d — 1)ag—1)q,-

e Let g : N — N be the function defined by ¢(0) := go(0) + ¢1(0) and g(z + 1) :=
go(x+1)+agi(z+1)+>7 ,i%g() for x € N.

Let G be a graph with no K, subgraph and with no subdivision of H, let Y; C V(QG)
with |Y;] < 7, and let L be a restricted (¢, 2,Y])-list-assignment of G. Suppose to the
contrary that there exists no (7, g)-bounded L-coloring of G. We further assume that
|V (G)| is minimum, and subject to this, |Y7| is maximum.



Claim 16.1. Y} # 0 and Ng(Y1) # 0.

Proof. First suppose that Y1 = (). Let v be a vertex of G, and let L' be a {v}-progress of
L. Let Y/ = {v}. By Lemma 10, L’ is an (¢, 2, Y{)-list-assignment of G. Since |Y]| < 7,
the maximality of |Y;| implies that there exists an (7, g)-bounded L’-coloring ¢’ of G. But
¢ is an (1, g)-bounded L-coloring ¢ of GG, a contradiction.

So Yy # (). Suppose that Ng(Y;) = 0. Let G’ := G —Y;. Then L|g is an (5,2, 0)-
list-assignment of G — Y;. By the minimality of |V (G)|, there exists an (7, g)-bounded
L|gr-coloring ¢ of G'. Color each vertex y in Y; with the unique element in L(y). Since
1Y1| < |Yi|%g(|Y1]), we obtain an (5, g)-bounded L-coloring of G, a contradiction. O

Claim 16.2. |Y;| > 90 + 1.

Proof. Suppose |Y1| < 96. So |Yi1] < m. Since G has no K;; subgraph, G has no Ky,
subgraph. Applying Lemma 11 and Claim 16.1, either there exists an (7, g1)-bounded
L-coloring of G, or there exist Y/ C V(G) with n; > |Y{| > |Y1] and an (¢, 2, Y])-list-
assignment L' of G with L'(v) C L(v) for every v € V(G) such that for every L’-coloring
of G, every monochromatic component intersecting Y; is contained in G[Y/]. Since n; < n
and ¢; < g, every (m,g1)-bounded L-coloring of G is an (n,g)-bounded L-coloring of
G, so the former does not hold. Hence there exist Y/ C V(G) with n; > |Y{| > |Vi|
and a restricted (s',2,Y/)-list-assignment L' of G with L'(v) C L(v) for every v € V(G)
such that for every L’-coloring of GG, every monochromatic component intersecting Y is
contained in G[Y{]. Since |Y{| < m < 7, the maximality of |Y;| implies that there exists
an (1, g)-bounded L’-coloring ¢’ of G. So every monochromatic component respect to ¢
contains at most n?g(n) vertices. Since L'(v) C L(v) for every v € V(G), ¢ is also an
L-coloring of G. Every monochromatic ¢’-component intersecting Y; is contained in G[Y/]
and hence contains at most |Y/| < n; < ¢1(0) < g(0) < |Y1]29(]Y3|) vertices. So ¢ is an
(n, g)-bounded L-coloring of G, a contradiction. ]

Let 7 be the set of separations (A, B) of G such that |V(ANB)| < § and |V (A)NY;| <
30.

Claim 16.3. T s a tangle in G of order 0.

Proof. Suppose that T is not a tangle in G of order §. Note that G has no K ; subgraph
and L is an (s',2,Y7)-list-assignment of G with > |Y1| > 90+ 1 by Claim 16.2. Applying
Lemma 12 by taking s =, t=1¢,0 =0, n=mn, r =2 and g = g, there exists an induced
subgraph G’ of G with |V(G')| < |V(G)|, a subset Y/ C V(G’) with Y]] < n, and an
(s',2,Y/)-list-assignment L' of G’ with L'(v) C L(v) for every v € V(G) such that there
exists no (7, g)-bounded L'-coloring of G’. This contradicts the minimality of |V (G)|. O

Claim 16.4. T controls a K s gy ) -minor.

Proof. Suppose to the contrary that 7 does not control a K 8 gy (| -minor. Note that 6 >
0o, 1 = 1no(0) and g > go. Apply Lemma 13 with s = &', ¢ = ¢t and ¢’ = | 3d|V(H)|]. Since
there does not exist an (7, g)-bounded L-coloring of G, we know there exist (A*, B*) € T,
a set Ya- with [Ya«| < no(d) < nand Y1 NV(A*) C Yy C V(A*), and a restricted
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(s',2, Ya«)-list-assignment L4« of G[V(A*)] such that there exists no (7, g)-bounded L 4«-
coloring of G[V(A*)]. But |V(A4%)| < |V(G)| since |[V(A*) NYi| < 36 < |Yi]. This
contradicts the minimality of |V (G)]. O

Since G contains no subdivision of H, by Theorem 14 and Claim 16.4, there exists
Z C V(@) with |Z| < € such that for every v € V(G) — Z, there exists (A,, B,) € T — Z
of order at most d — 1 such that v € V(4,) — V(B,).

We may assume that for every v € V(G) — Z,

(i) (A,, By,) € T — Z has order at most d — 1 and v € V(A,) — V(B,),
(i) subject to (i), A, — V(A, N B,) is connected,
(iii) subject to (i) and (ii), every vertex in V(A, N B,) is adjacent to some vertex in

(
V(Ay) = V(By),

(iv) subject to (i)—(iii
(v) subject to (i)—(iv
(i)~

(vi) subject to (i

), V(A,) is maximal,
), [V(A, N B,)| is minimal, and

v), A, is maximal.

Note that for every v € V(G) — Z, A, is connected and for every two vertices z,y €
V(A,), there exists a path in A, from z to y internally disjoint from V (A, N B,) since
A, —V(A, N B,) is connected and every vertex in V' (A, N B,) is adjacent to some vertex
in V(AU> - V(Bv)

For any subset C C T — Z, let (Ac, Be) be the separation (U 4 pyec 4+ a,p)ec B)-
Note that V(Ac N Be) € U pec V(AN B), so [V(Ae N Be)| < [C[(d —1).

Claim 16.5. Let C = {(Ay, By) : w € W} for some W C V(G) — Z. If x is a vertex in
V(Ac N Be), then V(A, N B,) — V(By) # 0 for some w € V(G) — Z with (A, By) € C.

Proof. Since x € V(Ae N Be), there exists w € W C V(G) — Z such that (4,,B,) € C
and x € V(A, N By). Suppose to the contrary that V (A, N B,) C V(B,).

First suppose that there exists v € V(A,) — (V(B,) UV (A.)). Since A, — V(B,) is
connected by (ii) and every vertex in V(A4,,NB,,) is adjacent to a vertex in V (A, )—V(By)
by (iii), there exists a path P in G[(V(Ay) — V(By)) U {z}] from = to v. Since z €
V(A,)—V(B;) andv € V(G)— (ZUV(A,)), P—x intersects V(A,NB,) C V(B,). But
V(P —x) CV(A,) — V(By), a contradiction. So V(A,) — V(B,) C V(A,).

Suppose that there exists a vertex u € V(A, N B,) — V(A;). Since u € V(A, N B,),
there exists u' € Ng(u) NV (Ay) — V(B ) by (iii). So u' € Ng(u) NV (A,) — V(By) C
Ng(u) NV (A,). Since u € V(A,), v € V(A, N B,) NV (Ay,) — V(By), contradicting the
assumption V (A, N B,) C V(B,). Hence V(A, N B,) C V(A,).

Therefore, V(A,) C V(A,). By (v), every vertex in V (A, N B,) is adjacent to some
vertex in V(B,) — V(A,). Soif V(A,) = V(Ay), then V(A, N B,) C V(A, N By), and
since (A, By) satisfies (v), V(B,) = V(B,). Hence if V(A,) = V(Ay), then (A, B,) =
(Aw, By) by (vi). Since x € V(A,) — V(B,) and = € V(A, N By), (Asz, B:) # (Aw, Bw).
So V(A,) C V(A,). Since (A, By,) satisfies (iv), w € V(B,). Since V(A,NB,) C V(B,)
and w & V(By), w € V(B,) — V(As). So V(A,) € V(A,), a contradiction. O
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Let 72/ :={v e V(G) — (Y1UZ) : |[Ng(v) N Z| > s}. Note that |Z'| < f(|Z]|) < f(§)
by Lemma 7.
We say that a triple (C, S, T) is useful if the following hold:

(U1) There exists W C V(G) — Z such that C = {(A,, B,) : v € W}.

(U2) Ne[Ne|Z'INV(Be) = 0.

(U3) S is a subset of Ng[V(Aec N Be)] NV (Ac) and T is a subset of Y1 NV (Ae) — V(Be)
such that there exists a bijection ¢ from a subset of Y; NV (A¢) to S such that:

= ISIHITI+|Z]+1 < inV (Ae) =V(Be)[+[{y € YinSOV(AcNBe) « u(y) = y}l,
and
— for every vertex y in the domain of ¢,
x if y € V(Ae) =V (Be) and there exists a vertex v € Ng(y)NV (AcNBe)— S,
then ¢(y) € Ng(y) N V(Ae N Be), and
« if y € V(Ae N Be), then «(y) = y.

(U4) T is disjoint from Z’ and the domain of ¢.

Claim 16.6. There exists a collection C of members of T — Z with |C| < |Z'|d* + |Z] + 1
such that (C,0,0) is useful.

Proof. For every u € V(G)—Z, let C, := {(Au, B.),(A,, By) :v € Ng(u)NV(B,)}. Note
that |Ng(u) NV(B,)| < |V(A, N By)| < d—1since u € V(A,) — V(B,). So |C,| < d.
Note that Ng[{u}] NV (Be,) = 0.

For every u € V(G) — Z, let C/, :== C, U {(A4,, B,) : v € Ng(Ng[{u}]) N V(Be,)}
Note that |Ng(Ng[{u}]) N V(Be,)| < |V(Ae, N Be,)| < (d—1)|Cu] < (d—1)d. So
ICl,| < |Cu| + (d —1)d < d*. Note that Ng[Ne[{u}]]NV(Be ) = 0.

Let €' = .., C.. Then Ng[Ng[Z]] N V(Ber) = 0. And |¢/] < |Z'|d2. Since
Yi—Z| = |Y1|—|Z| = 90—& > 80 > | Z|, there exists a subset Y of Y1 —Z with |Y| = | Z|+1.
Let C :=C'U{(A,, By) : y € Y}. Clearly (C, 0, 0) satisfies (U1) and (U4). Since B¢ 2 Be,
(C,0,0) satisfies (U2). Since Y C V(A¢) =V (Be), |Z]|+1=|Y| < |YinV(4c) — V(Be)|,
so (C,0,0) satisfies (U3). Note that |C| < |C'| + Y] < |Z'|d* + |Z]| + 1. O

For a useful triple (C,S,T), a vertex v of V(G) — Z is:

e (C,S,T)-dangerous if v € V(Ac N Be) — S and there exists v/ € Ng(v) NV (A¢) —
(V(B¢) U S) such that either:

— v ¢Y,and [(YiNV(Ae))U(S—V(AcN Be))) N Neg(v')| = 2d — 4, or
-veY,-T,

e (C,S,T)-heavyif v € V(AcN Be) — S and
[Na(v) N (V1N V(Ae) = V(Be)) U (S = VI(Ae N Be)))| = d = 1.

Claim 16.7. Let (C,S,T) be a useful triple and let x € V(Ac N Be) be a (C, S, T)-heavy
vertex. Then there exists a useful triple (C',S",T") with C' = C U {(A,, B,)}, such that:
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L] V(AC/ N Bc/) -5 - V(Ac N Bc) — S,
e the set of (C',S",T")-heavy vertices is strictly contained in the set of (C,S,T)-heavy
vertices, and

e the set of (C',S",T")-dangerous vertices is a subset of the set of (C,S,T)-dangerous
vertices.

Proof. Let C' := CU{(As, Bx)}. Let X := Ng(x)N(YLUS)NV (A, NAe) — V(B U Be).
Since z € V(A,) — V(B.), Ng(x) C V(A,). So |X| = |[Ng(z)n (Y1 US)NV(Ac) —
V(Be)| = |[V(Az N B, NAe) =V (Be)| 2d—1—|V(A, N B, N Ac) — V(Bc)| since x is
(C, S, T)-heavy. That is, |V (A, NB,)—V(Bc)| = |[V(A:NB,NAc) =V (Be)| = d—1—|X].
Since z is (C, S, T)-heavy, x ¢ S. Let ¢ be a bijection mentioned in (U3) witnessing that
(C,S,T) is useful. Let X’ be the intersection of X and the domain of «.

For each y € X', since x € Ng(y)NV (AcNBe)—S, t(y) € Na(y)NV (AecNDBe) by (U3).
Since X' € X CV(A, NA¢) — V(B U Bg), for each y € X', Ng(y) C V(A,), so t(y) €
Ng(y) N V(Ac N Bc) - V(Ax) N V(Ac N Bc) - (V(Ac/) — V(Bc/)) U V(AC NBc.NAN BI)
Let

Z, =V (A, N By) — V(Ac)

Zy =V(A;NB,NA:NBe) — {uly) :y € X'}

Zy:=V(A,NB,NAcNBe)N{uly) : y € X'}
So {Z1, Zy, Z3} is a partition of V(A, N B, N Be), and hence

V(4,1 B~ V(A1 By — V(Be)
<d—1—|V(A;NB,) =V (Be)|.

Recall that |V (A,NB,)—V(Be)| = d—1—|X|. So |Z1UZ,UZ;] < (d—1)—(d—1—|X]) =
| X
Let

S" = (SNV(B,)—V(A:NB,NAcNBe))U(V (AeNBer)—V (AcNBe) ) UV (A,NB,NANBe).

Note that (V(Ac/ N Bc/) — V(AC N Bc) @) V(Ax NB,NA:N Bc) - V(Ax NnB,N Bc) =
Zl U ZQ U Z3. So

1S < (ISNV(By)| = |SNV(A, N B, N Ac N Be)|) + |21 U Zy U Zs
<ISNV(B)| —{y € X' 1 u(y) € Zs}| + [ X|
= [SNV(B)| +[X —{y € X":u(y) € Z3}|
=[{yeYinV(Ac) :u(y) € SNV(B)} +|X - X'+ X' —{y € X' 1(y) € Z3}|.

Recall that for every y € X', 1(y) € Nog(y) N V(Ac N Be) NV (A,). Soifye X' —{y €
X' :u(y) € Zs}, then

L(y) S Ng(y)ﬂV(AcﬂBc>mV(A$)—V(AmﬂBxﬂAcﬂBc) = Ng(y)ﬂV(AcﬂBcﬂAx)—V<Bm),
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so u(y) € SNV(B,). That is, {y € YiNV(A4c) : t(y) € SNV (B,)} and X' — {y €
X' u(y) € Z3} are disjoint. Note that X — X’ is disjoint from the domain of ¢. So
{yeYinV(Ac):uy) e SNV(B,)}, X — X" and X' —{y € X' : 1(y) € Z3} are pairwise
disjoint sets. Therefore,

1SI<Hy eYinV(Ae) :uly) € SNV(Be)} U (X —{y € X' :u(y) € Zs})|.

Since X C YU S and X NV(B,) = 0, for every x € X — {y € X' : 1(y) € Z3},
ife g XNY,—{y e X' :uy) € Z3}, then z € X NS —Y; and «(y) = x for some
y € Y1 NV (Ac) such that «(y) € SNV(B,). In addition, if y is a vertex in Y; NV (A¢)
such that «(y) € X NS — Y], then «(y) & SNV (B,).

Since |S"| < {y e YiNV(Ac) - t(y) € SNV(B,) } U (X —{y € X' : 1(y) € Z3})|, there
exists an injection ¢/ such that

e /(y) =(y) if y is in the domain of ¢ and ¢(y) € SNV (B,),

e for each v € §' — (SN V(B,)), there exists exactly one element y € (X NY; —{y €
X' :u(y) € Zsh)U{y e YiNV(Ae) : t(y) € X NS —Y;} such that /(y) = v, and

o if 1(y1) = /(y2) for some yi, yo, then y; = ys.

Recall that «(y) € SNV(B,) forevery y € (X NY) —{y € X' :1(y) € Zs})U{y e Y1 :
t(y) € XNS —Y1}. Then // is a bijection from a subset of Y1 NV (A¢) to S’. We further
modify ¢ and S’ by applying the following operations for some vertex y € V(A¢)—V (Ber)
in the domain of /' with L/(y) QI Ng(y) N V(Ac/ N Bc/) and Ng(y) N V(AC/ N BC/) -9 7é @,
and then repeating until no such vertex y exists:

e add a vertex v € Ng(y) NV (A N Ber) — S into S,
e delete /(y) from S, and
e redefine /(y) to be v.”

Now, further modify ¢/ and S’ by applying the following operations for some vertex z €
S" — Ng[V(Aer N Ber)], and repeating until no such vertex z exists:

e remove z from S’, and

e if y is the element in the domain of /' with ¢/(y) = z, then remove y from the domain
of /.

Notice that for each vertex z removed from S’ in the above procedure, z € S—V (AN
Be) and Ng(2) NV (Ae N Be) € V(Ae N Be) — V(B,). Note that ¢/ remains a bijection
from a subset of Y1 NV (Ae) to S'.

Observe that for every y in the domain of «/ with y € V(A;) — V(B;) and Ng(y) N
V(Ae: N Ber) = S" # 0, (y) € Ng(y) N V(Aer N Ber) due to the above modification. In
addition, if y is in the domain of / and y € V(Ae N Ber), then y € V(Ae N Be) and y is
in the domain of « such that ¢(y) = ¢/(y), so ('(y) = t(y) = v.

Let T" be the set obtained from 7" by deleting the domain of /. So T” is disjoint from
the domain of //. Since T is disjoint from Z’, T" is disjoint from Z’. So (C’, S’,T") satisfies
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(U4). In addition, |S’| —|S| is at most the number of vertices in X and in the domain
of «/ but not in the domain of ¢. So |S"| — |S| < |T'| — |T"|. Hence |S"| + |T7| < |S| + |T.
Since {y e iNSNV(AcNBe) :(y) =yt —{yeinS NV(Ac N Be) :(y) =y} C
(V(Aer) = V(Ber)) — (V(Ae) — V(Be)), (C', S, T") satisfies (U3) and is useful.

It is easy to see that V(Ae N Ber) — 8" € V(Ae N Be) — S. Note that each vertex
v € V(Ae N Ber) — S belongs to V(Ae N Be) — V(AL), so Ng(v) NV (Ae) — V(Ber) =
Ne(v)NV(Ae) —V(Be). Furthermore, S’ —V(Ae N Be) €S —V(AeN Be). Hence every
(C', 8", T")-heavy vertex is (C, S,T)-heavy. Since z is (C,S,T)-heavy but not (C', S",T")-
heavy, the set of (C’, S’, T")-heavy vertices is strictly contained in the set of (C, S, T')-heavy
vertices.

Let v be a (C',S',T")-dangerous vertex and let v" be a vertex in Ng(v) NV (Aer) —
(V(Be) N S’) witnessing the definition of being dangerous. Since v ¢ S’, v € V(A¢ N
Be) — V(Ay), so v € Ng[V(Ac N Be)| NV (Ae) NV (B,). Sov' € V(B,) — (V(Be) US).
Since v € V(AC/ N BC'), v € Ng(v) N Ng[V(AC/ N Bc/)]. Since v’ € S" and v/ € V(Ac N
Be) — V(A N Ber) and o' € V(B,) and Ng(v') NV (Ae N Be) — V(Ay) # 0, we know
v" € S by the procedure of modifying S. So v' € (Ng(v)NV(Ac) — (V(Be)US)) NV (B,).
Note that T'— 17" C V(A,) — V(B,). Soif v € Y; —T", then v' € Y} — T and v is
(C, S, T)-dangerous. Furthermore, Y1 N V(Ac) N Ng(v') = Y1 NV (Ae) N Ng(v') and
S"— V(Ao NBe) €S —V(AeN Be), so v is (C, 5, T)-dangerous. Therefore, the set of
(C', 8", T")-dangerous vertices is a subset of the set of (C, S, T)-dangerous vertices. This
proves the claim. O

Claim 16.8. Let (C,S,T) be a useful triple. Then there exists a set S" with S U (Y1 N
V(Ac N Be)) €85 C Ng[V(Ae N Be)| NV (Ae) such that (C,S',T) is a useful triple and:

o If V is the bijection witnessing that (C,S',T) satisfies (U3), then for every y €
Y1 NV (Ae N Be), the unique element of the domain of ' mapped to y by V' is y.

e The set of (C,S",T)-dangerous vertices is contained in the set of (C, S, T)-dangerous
vertices.

e The set of (C,S’,T)-heavy vertices is contained in the set of (C,S,T)-heavy vertices.

Proof. Let ¢ be a function mentioned in (U3) witnessing that (C,S,T) is a useful triple.
We may assume that Y1 NV (AecNBe) C 9, since if some vertex y € Y1 NV (AeN Be) does
not belong to S, then y is not in the domain of ¢, and we can define «(y) = y without
violating (U3) and (U4) such that the set of dangerous vertices and the set of heavy
vertices remain the same.

Since ¢ is a bijection, we write the element mapped to y by ¢ as (=Y (y). Modify ¢
and S by applying the following operations to some vertex y € Y1 N SNV (Ae N Be) with
(D (y) # 9, and repeat until no such y exists:

e remove (=Y (y) from the domain of ¢,

e define ((y) := v,

Then define S” and ¢/ to be the modified S and ¢, respectively. Clearly, (C,S’,T)
satisfies (U3), S € 5" C Ng[V(Ae N Be)| NV (Ac), and /(y) =y for every y € Y1 NS N
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V(AcN Be). Since we assume that Y1 NV (AcNBe) C S, we have SU(Y1NV(AeNBe)) C
S" C Ng[V(Ae N Be)] N V(Ae) and /(y) = y for every y € Y1 NV (Ae N Be). Since
T C V(Ac) — V(Be), (C,8',T) satisfies (U4). Since S" — S C V(Ac N Be), the set of
(C, S, T)-dangerous vertices is contained in the set of (C,S,T")-dangerous vertices, and
the set of (C, S, T)-heavy vertices is contained in the set of (C, S, T')-heavy vertices. [

Claim 16.9. Let (C,S,T) be a useful triple, and let x be a (C,S,T)-dangerous verte.
If there exists no (C,S,T)-heavy vertex, then there exists a useful triple (C',S",T") with
C' = CU{(A,, B,)} such that the set of (C',S’",T")-dangerous vertices is strictly contained
in the set of (C,S,T)-dangerous vertices.

Proof. By Claim 16.8, we may assume that Y; N V(A¢c N Be) € S and the function ¢
mentioned in (U3) witnessing that (C,S,T') is useful satisfies ((y) = y for every y €
YiNV(Ae N Be). Let C':=C U {(A,, By)}-

We first assume that |Yy NV (A, N Be)| = d—2. So [Y1iNV(A,NBe)| = |[V(A: N
B,)NV(Be)| by Claim 16.5. Hence there exists a function " whose domain is a subset of
Y1 NV (Ac U A,) such that:

e /(y) = u(y) for every y € Y1 NV (Ac) — V(A, N Be) belonging to the domain of ¢
with ¢(y) € V(Ae) N Ng[V(Aer N Ber)] — V(A,), and

e for ecach vertex v in V(A, N B,) N V(B¢), there exists exactly one element y €
Y1 NV (A, N Be) such that J/(y) = v and if v € Y], then y = v.

Let S := (SN Ng|[V(Ac: N Ber)] — V(A,)) UV (A, N B, N Be). So ! is a bijection from a
subset of Y1 NV (AcUA;) to S’. Note that every vertex in S" — V(Ae N Ber) is contained
inS—(V(A;) UV (Ae N Ber)), so it is adjacent to some vertex in V(Ae N Ber).

Let T" :=T. Since ¢ satisfies (U3) and ¢(y) = y for every y € Y1NSNV(Ac N Be), we
know that ¢ satisfies (U3). Since 7" =T C V(A¢) — V(Be), (C',S",T") satisfies (U4). So
(C',S",T") is a useful triple.

Let vbea (C',S",T")-dangerous vertex. Sov € V(AcNBe)—S" C V(AcNBe)—V (Ay).
Let v" be a vertex witnessing that v is (C’, ', T")-dangerous. Sov' € V(B,)—(V(B¢)US’)
and Ng(v') C V(Ae). Since v € V(A N Ber) — V(Az), v € Ng[V(Ae N Ber)], so v’ & S.
Since S" — V(Ac/ N Bc/) cS—- V(AC N Bc), if v/ € Y7 and ‘((Yi N V(Acl)) U (S/ — V(Ac/ N
BC’))) ﬂNg(U/)’ = 2d—4, then v/ ¢ Yi and |<<Yi ﬂV(Ac)) U (S— V(Ac ﬂBc)» ﬂNg(’Ul>| =
2d — 4, so v is (C, S, T)-dangerous. Since T" =T, if v € Y] —T', then v/ € Y1 — T and v
is (C, S, T')-dangerous. So every (C', S’,T")-dangerous vertex is (C, S, T')-dangerous. Since
z is (C,S,T)-dangerous but not (C',S’,T")-dangerous, the set of (C',S’,T")-dangerous
vertices is strictly contained in the set of (C, S, T')-dangerous vertices. So the claim holds.

Hence we may assume that |Y; NV (A, N Be)| < d— 3.

Modify S and define ¢/ to be the function obtained from ¢ by applying the following
operations to a vertex y in the domain of ¢ with «(y) & N[V (Ae N Be)] NV (Aer), and
repeating until no such y exists:

o ifyec V(AcNBe) —V(B,) or V(A, N B,) NV (Be) — S = 0, then remove y from

the domain of ¢ and remove ¢(y) from S,
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o if Yy g V(AC N Bc) — V(BI> and Ng(y) N V(Ac/ N B@) -85 = (Z) and V(Am N Bm) N
V(Bc) — S # 0, then redefine +(y) to be an element in V(A, N B,) NV (B¢) — S and
add this element into S,

e otherwise remove «(y) from S, redefine ¢(y) to be an element in Ng(y) NV (A N
Ber) — S and add this element into S.

Let S’ be the modified S, and let

Clearly, 7" is disjoint from the domain of /. By (U2), Z'NV(B¢) = (). So T" is disjoint
from Z" as T is disjoint from Z’. So (C',S’,T") satisfies (U4).

Since Y1NV (AecNBe) € S, we know YNV (AcNBe)— (V(B,)UNg[V(AeNBer)]) € S.
For every y € YiNV(AcNBe) — (V(B:) UNg[V (Aer N Ber))), since t(y) =y € Ne[V (Ae N
BCI)] N V(A@) and y € V(Ac N Bc) — V(Bx), Yy < S -9,

So |S’ = |S/| + |}/1 N V(Ac N Bc) — (V(Bz) U Ng[V(AC/ N Bc/>])| Hence ’S,| + |T/| <
S|+ T+ |YiNV(Be) — V(Ac U B,)|. Since 1NV (Be) = V(AcUB,) CY1N(V(Ae) —
V(Ber)) — V(Ae) and (C, S, T) satisfies (U3), we know

IS'|+ T+ 1Z] + 1

SISI+ITI+ [YinV(Be) = V(Ac U By)| + [Z] + 1

SYinV(Ae) =V(Be)|+ {y e inSNV(Ac N Be) = 1(y) = y}|
+ Y10 (V(Ae) = V(Ber)) — V(Ac)|

< Vi NV(Aer) = V(Ber)| = [V 1 V(Ac 1 Be) = V(B,)|
+H{yerinSnV(AcnBe) : u(y) =y}

<ViNV(Ae) = V(Be)|+{y e in SNV (Ae N Be) NV(By) = 1(y) =y}

< VN V(Ae) ~ V(Be)| + [y € i NS N V(Ao Ber) : £(y) =y},

Hence (C', S",T") satisfies (U3). Therefore (C',S’,T") is useful.

Suppose that the set of (C’',S’, T")-dangerous vertices is not strictly contained in the
set of (C,S,T)-dangerous vertices. Since z is (C,S,T)-dangerous but not (C',S’,T")-
dangerous, there exists a vertex v that is (C’, ', T")-dangerous but not (C, S, T')-dangerous.
So there exists a vertex v' € Ng(v) NV (Ae) — (V(Be ) US’) such that either o' € Y7 —T7,
or v/ €Yy and |((Y1 NV (Ae)) U (S — V(Aer N Ber)) N Ng(v')| = 2d — 4. Since v' €
N[V (Ae N Ber)] NV (Aer), if v belongs to S at beginning, then v’ is not removed from
S during the process of modifying S, so v' € S’, a contradiction. So v' € S.

Suppose that v € V(A¢) —V(Be). Sov € V(AcNBe) NV (AN Ber) C V(AN Be) N
V(B,). Hence if v belongs to S at beginning, then v is not removed from S during the
process of modifying S, so v € S'. Since v is (C', S", T")-dangerous, v € S’, so v € S. Since
visnot (C, S, T)-dangerous, v’ € Y1 —T, and either v' € Y] or |((Y1NV (Ac))U(S =V (AcN
Be)))NNg(v')| < 2d—4. Since T'NV (A¢)—V (Be) = TNV (Ac)—V (Be), v ¢ Y1—T". Since
vis (C', 8", T")-dangerous, v' € Y7 and [((Y1 NV (Ae)) U (S" — V(AN Ber))) N N (v')| =
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2d — 4. Since Ng(’Ul> - V(Ac) and S’ — V(Ac/ N BC’) - S — V(AC N Bc),

2d — 4 < |((Y; N V(Ae)) U (S — V(Ae N Ber))) N Ne(v)]
= (Y N V(A) U (S’ = V(A N Ber))) N N (v)
<I((Yi N V(4e)) U (S = V(Ae N Be))) N Na(v))
< 2d — 4,

a contradiction.

Therefore, v € V(B¢). So v’ € (V(A,) —V(B,)) NV (B¢) and hence Ng(v') C V(A,).
Since Y1 NV(Ac N Be) C S, if v € YINV(Ae N Be), then v/ € S, a contradiction. So
v & Y1 NV(Ae N Be). Since Y1 NV (Be) — V(Ac U B,) C T if v € Yi — T, then
v € Y1 NV(Ac N Be), a contradiction. So v ¢ Y; — T". Since v is (C', 5", T")-dangerous,
’((Yl N V(AC/)) U (S, — V(Ac/ N BC/))) N Ng(vl)‘ > 2d — 4. Since ’Yi N V(Ax N Bcﬂ <d-3
and (S’ - V(Ac/ N Bc/)) - (V(Ac) U V(Bx)) = Q) and Ng(vl) - V(Ax),

[N () N (Y1 NV (Ae) = V(Be)) U (S = V(Ae N Be))
> [No(v') N (V1N V(A) = V(Be)) U (" = V(Aer N Ber))|
> [Na(v) N (Y1 NV(A:)) U (S" = (V(Ae N Be))))| — (d = 3)
= [Ne(v) N (Y1 U (8" = (V(Aer N Be))))| = (d = 3)

In particular, v' € V(Ae N Be) — V(B;). Since there exists no (C, S, T)-heavy vertex, v’
is not a (C, S, T)-heavy vertex. So v’ € S, a contradiction. This proves the claim. O]

Claim 16.10. If (C,S,T) is a useful triple such that there exists a (C,S,T)-dangerous
vertez, then there exists a useful triple (C', S, T") with C C C" and |C'| < |C| + |[V(Ac N
Be)| + 1 such that the set of (C',S",T")-dangerous vertices is strictly contained in the set
of (C,S,T)-dangerous vertices.

Proof. Note that there are at most |V (Ac N Be)| (C, S, T)-heavy vertices. By repeatedly
applying Claim 16.7 at most |V (Ac N Be)| times, there exists a useful triple (Cy, S, Th)
with C C Cy and |Cy| < |C| + |V (Ac N Be)| such that there exists no (Cy, 51, T7)-heavy
vertices, and the set of (Cy, Sy, T})-dangerous vertices is contained in the set of (C, S, T)-
dangerous vertices. By Claim 16.9 applied to C;, there exists a useful triple (C’,S’,T")
with C; CC" and |C'] = |C1| + 1 < |C| + |V (Aec N Be)| + 1 such that the set of (C', S, T")-
dangerous vertices is strictly contained in the set of (Cy, 51, T})-dangerous vertices and
hence is strictly contained in the set of (C,S,T)-dangerous vertices. This proves the
claim. [

Claim 16.11. There exists a useful triple (C*,S*,T*) with |C*| < a(g-1)a
exists no (C*, S*, T*)-dangerous vertex.

such that there

0
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Proof. By Claim 16.6, there exists a useful triple (Co, 0, 0) with |Co| < |Z'|d* + |Z] + 1.
Let Sp = 0 and Ty = 0. So (Cy, S, Tp) is a useful triple with |Co| < f(€)d? + & + 1 = ay.
For ¢ > 1, if there exists a (C;_1, S;_1, T;_1)-dangerous vertex, then by Claim 16.10, there
exists a useful triple (C;, S;, T;) such that |C;| < |C;—1]|+|V (Ae,_, N Be,_,)|+1 and the set of
(Ci, S;, T;)-dangerous vertices is strictly contained in the set of (C;_1, S;_1, T;—1)-dangerous
vertices. So |C;| < a;_1 + (d — 1)a;—1 + 1 < a; for each ¢ > 1 by induction on i. Since
there are at most |V (A, N Be,)| < |Col(d—1) < (d— 1)ag (Cy, So, To)-dangerous vertices.
Hence there exists ¢* with 0 < i* < (d— 1)ag such that (Ci, Si+, Tj+) is a useful triple with
no (Cj, i+, Tj+)-dangerous vertex. Note that |Ci| < ai < @(a—1)ao- O

Let «* be the function mentioned in (U3) witnessing that (C*, S*,T*) is useful. By
Claim 16.8, we may assume that Y3 NV (Ac N Be«) € S* such that *(y) = y for every
Yy < Yi N V(Ac* N BC*)

Define the following:

( ) V(B)U(Zus uTY)
(A,B)eC*
Yg = (Y1NV(Be:))U(ZUS UT™).

Claim 16.12. For every vertex v € V(Gp) — Yp, Ng(v) NY; C Ng,(v) N Y.

Proof. Suppose to the contrary that there exist v € V(Gg) — Yp and y € Ng(v) NY; —
(Ng,(v)NYg). Sincey € Y1 =Yg,y € V(Ae+) —V(Be+). Sov € V(Ae- N Be+) —S*. Since
there exists no (C*, S*,T*)-dangerous vertex, v is not a (C*, S*, T*)-dangerous vertex.
Since y € Ng(v) NV (Aes) — (V(Be)US*), y € Y1 —T*. Sincey € Y1,y € T*. Soy € Vg,
a contradiction. ]

Define the following:

e For every y € Yp, let Lg(y) be a 1-element subset of L(y).

e For every v € V(Gp) — Yp with |Ng,(v) N Y| € [s' — 1], let Lg(v) be a subset
of L(v) with size ' + 2 — |Ng,(v) N Yg| such that Lg(v) N Lg(u) = 0 for every
u € Ng(v) NYp. (Note that such a subset of L(v) exists by Claim 16.12.)

e For every other vertex v of Gp, let Lg(v) := L(v).

Hence Lg is a restricted (¢',2, Yp)-list-assignment by Claim 16.12. Since (C*, S*,T%) is
useful and ¢*(y) = y for every y € Y1 NV (A N Bey),

Y| < |[YiNV(Be)| + 1S — Y1 N V(Ae N Be-)
< (Il - IYmV(Ac) V(Be+)
<

Ya| -

+ 2]+ [T
)+ S = V1NV (Ae- N Bex)| + | Z] + T

by (U3).
Since |Yp| < |Yi|, we know |V(Gg)| < |[V(G)|. By the minimality of |V(G)|, there
exists an (7, g)-bounded Lg-coloring cg of Gp. Define the following:
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o Let Gy :=G[V(Acr) U Z].

o Let Yy:=Y1iNV(Ae))UZUS*UT* UV (Ae- N Bex).

e For every y € Yy, let La(y) be a 1-element subset of L(y) such that if y € V(Gp),
then La(y) = {cn(y)}-

e For every v € V(G4) — Ya with 1 < [Ng,(v)NYa| < —1, let Ls(v) be a subset
of L(v) with size s’ + 2 — |Ng, (v ) N Ya| such that La(v) N La(u) = 0 for every
uEY,N NGA(’U).

e For every other vertex v of Gy, let L,(v) := L(v).

Then L, is a restricted (s',2,Y,)-list-assignment of G 4. Since |C*| < a(g—1)a, |V (Acx N
Be-)| < (d—1)ag-1)a, < 0 —&. So (A¢-, Be+) € T — Z and hence |Y; OV(AC*) < 360. By
Hence |Y4| < |[Yi NV (Ae)| + |S*| + |T*| + | Z] + [V (Ae- N Be+)| < 30 +30+0 < 70.

In particular, |V(G4)| < |V(G)|. By minimality, there exists an (7, g)-bounded L 4-
coloring c4 of G 4.

Claim 16.13. For every v € V(G4) — (V(Gp)UY1) with Ng(v) NV (Aes N Bex) —S* £ 0,
cg(u) & La(v) for every u € Ng(v) NV (Gp).

Proof. Since v € V(Ga) — (V(Gp) U Y1), v € V(G) — (Z UV (Be)). So there exists
(A, B) € C* such that v € V(A) — V(B). Hence Ng(v) C V(A) and |Ng(v) NV (Ae- N
Be+)| < |[Ng(v)NV(ANB)| <d—1.

Since v € Ng(Aes N Bex) and C* satisfies (U2), v € Z’. So |[Ng(v)NZ| < s— 1.

Since Ng(v)NV (AexNBex)—S* # 0, there exists w € Ng(v)NV (A« NBex)—S*. Since
there exists no (C*,S*, T*)-dangerous vertex, w is not a (C*, S*,T*)-dangerous vertex.
Since S* C V(Gp), v & S*. Sincev € Y1, v € Y1 —T*. So |Ng(v)N((Y1NV(Aex))U(S*—
V(A N Bex)))| < 2d — 5.

Since T* C Y1 NV (Ae+),

[Ng(v) NYa|

|Ng(v) NV (Aex N Bex)
(d—1)+(s—1)+(2d - 5)
=3d+s—7=5—1.

N IN

So by the definition of La, L4(v)N{cp(u)} = La(v)NLa(u) = @ for every u € YaNV(Gp)N
N¢(v). Since Ng(v) NV (Gp) C Ya, cg(u) € La(v) for every u € Ng(v) NV (Gp). O

Let ¢ be the L-coloring of G defined by ¢(v) := ca(v) if v € V(G4), and ¢(v) := cp(v)
it v e V(G) - V(Ga).

Claim 16.14. Let M be a monochromatic c-component intersecting both V(G ) —V (G p)
and V(Gg) —V(G4). Then every component of M NG 4 intersects Ya, and every compo-
nent of M N Gp intersects Yg.
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Proof. Since M intersects both V(G4) — V(Gp) and V(Gg) — V(G4), every component
of M NG, intersects V(Ae« N Bex) UZUS*UT* CYy.

Let Mp be a component of M N Gpg. Suppose that Mp is disjoint from Yz = (Y} N
V(Be+)) U Z US*UT*. Since M intersects both V(G4) — V(Gg) and V(Gp) — V(Ga),
there exist u € V(Mp)NV (AcxNBes) —S* and v € Ny, (v)NV (A ) — (V(Bex )US*UT™).
Since u is not a (C*, S*, T*)-dangerous vertex, v € Y; — T*. Since v € T*, v € Y;. So
veV(Ga) — (V(Gp)UYr) and Ng(v) NV (Aex N Bex) — S* D {u} # (. By Claim 16.13,
c(v) = ca(v) # cp(u) = c(u). But M is a monochromatic c-component, a contradiction.
Hence every component of M N G g intersects Yp. O

Let U, be the union of the monochromatic c4-components of G4 intersecting Y,. Let
Up be the union of the monochromatic cg-components of G intersecting Yg. Since cy
and ¢, are (n, g)-bounded, |V(U4) UV(Us)| < [YalPg([Yal) + Vs Pg([Ya]) < (76)9(70) +
(¥l - 12g(11] — 1) < (1Y),

Since V(G) C V(G4) UV (Gp), by Claim 16.14, every monochromatic c-component
intersecting both V(G4) —V(Gg) and V(Gg) —V(G4) is contained in U4 UUg and hence
contains at most g(|Y1]) < n?g(n) vertices. Let M be a monochromatic c-component. If
V(M) C V(Ga), then M is a monochromatic c4-component with at most n?g(n) vertices
since ¢4 is (1, g)-bounded. If V(M) C V(Gp), then M is a monochromatic cg-component
with at most n%g(n) vertices since cp is (1, g)-bounded. Hence every monochromatic
c-component contains at most n%g(n) vertices.

Since Y7 C Y, U Yp, by Claim 16.14, the union of the monochromatic c-components
intersecting Y is contained in Uy U Up, so it contains at most g(|Y1]) < [Y1]%g(|Y1])
vertices. Therefore, ¢ is an (7, g)-bounded L-coloring of G, a contradiction. This proves
the theorem. O

4 Excluding Almost (< 1)-Subdivisions

Recall that an almost (< 1)-subdivision of a graph H is a graph obtained from H by
subdividing edges such that at most one edge is subdivided more than once. The following
simple observation is useful.

Lemma 17. For s € N, let G be a graph and let H be a subgraph of G isomorphic to
K1y for some t > (*,') +2. Let (X, Z) be the bipartition of H with |X| =s—1. If
G does not contain an almost (< 1)-subdivision of Ksy1, then each component of G — X
contains at most one vertex in Z, and G — X has at least two components.

Proof. Let Cy,Cs, ..., Cy be the components of G — X. For each i € [k], [V(C;)NZ] < 1,
as otherwise G[X U Z] together with a path in C; connecting two vertices in V' (C;) N Z is
an almost (< 1)-subdivision of Ky, a contradiction. Hence k > |Z| >t > 2. O

The following lemma shows that a result for graphs excluding a K, subgraph can be
extended for graphs excluding an almost (< 1)-subdivision of K 1. Let s, € N. Let G
be a graph and Y} C V(G). An (s,r,Y))-list-assignment of G is said to be faithful if for
every v € V(G) = Yy with [Ng(v) NYi] = s, we have L(v) — Uy, anew) L) # 0.

20



Lemma 18. Let G be a subgraph-closed family of graphs. Let B,r be functions with
domain N such that f(x) > x and r(x) € N for every x € N.

Assume that for every s € N, there exist n € N and a nondecreasing function g such
that for every G € G with no K, subgraph, where t, := max{ (;) + 2,5+ 2}, for every
Y1 C V(G) with |Yi| < n, and for every (5(s),r(s), Y1)-list-assignment L of G, there
exists an (n, g)-bounded L-coloring of G.

Then for every s € N with s > 2, there exist n* € N and a nondecreasing function
g* such that for every graph G € G with no almost (< 1)-subdivision of Ks.1, for every
Y1 CV(G) with |Y1| < n*, and for every faithful (6(s —1),r(s — 1), Y1)-list-assignment L
of G, there ezists an (n*, g*)-bounded L-coloring of G.

Proof. For every s € N, let 7, be the number and g, be the function such that for every
G € G with no K, subgraph, every Y} C V(G) with |Y;| < 5, and every (8(s),r(s), Y1)-
list-assignment of G, there exists an (7, gs)-bounded L-coloring of G. For every s € N
with s > 2, let 0¥ := ns_; and let ¢g* be the function defined by ¢*(0) := ¢5_1(0) and
gi(z) :== gs—1(x) + nf - gi(x — 1) for every z € N.

Fix s € N—{1}. Let ' := 8(s — 1) and 7’ := r(s — 1). We shall prove that for
every graph G in G with no almost (< 1)-subdivision of K4, for every Y7 C V(G)
with |Y;] < n¥, and for every faithful (5,7, Y))-list-assignment L of G, there exists an
(n%, g¥)-bounded L-coloring of G.

Suppose to the contrary that G is a graph in G with no almost (< 1)-subdivision of
K1, Y1 is a subset of V(G) with |Yi]| < nf, and L is a faithful (5,77, Y1)-list-assignment
of G such that there exists no (9%, g*)-bounded L-coloring of G. We further assume that
|V(G)] is as small as possible.

Since ¥ = n,_1 and g > g, 1, there exists no (n;_1, gs_1)-bounded L-coloring of G.
Since 1} = 15_1, by the definition of n,_; and g,_1, G contains a K,_,,, , subgraph. Let
t" be the maximum integer such that G contains a K ; subgraph. So ¢’ > t,_;. Let H
be a subgraph of G isomorphic to K,_1p. Let {P,Q} be the bipartition of H such that
|P| =s—1and |Q| =t By the maximality of ¢, @Q is the set of all vertices of V(G) — P
adjacent in G to all vertices in P.

Claim 18.1. Every component of G — P contains some vertex in Y;.

Proof. Suppose to the contrary that there exists a component C' of G — P disjoint from
Y;. By Lemma 17, G — P contains at least two components and there exists at most one
vertex in C' adjacent in G to all vertices in P. By the minimality of G, there exists an
(%, g5)-bounded L|y (a)-v(c)-coloring c of G — V(C').

Since ' > s — 1 and L is an (8,7, Y1)-list-assignment and V(C) NY; = 0, for every
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v € V(C) with [Ng(v) NYi| < 8" — 1, we have L(v) N U, ey L(y) = 0 and

|L(v) ={c(y) : y € Na(v) N P}
()%4%@)y€NdWﬁP—EH

>|L
=" +1" —[Ne(v) "Y1 = [{c(y) 1 y € Ne(v) NP — Y1}
=B+ 71" —|Na(v) "Y1 N Pl - {e(y) : y € Ne(v) NP — Y1}
> ' +1" —[Ng(v) NP
>6+T—( 1)
> 1.

For every v € V(C) with |Ng(v) Y| = /7,
[Ne(v) N P| = [Na(v) Y1 2§ =B(s —1) 2 s - 1,

implying P C Y; and |Ng(v) NYi| = /', so L(v) — {c(y) : y € Ng(v) N P} = L(v) —
Uyengwyn L(y) # 0 since L is faithful. So for every v € V(C), L(v) — {c(y) : y €
Ng<v) M P} 7é @

Let L' be the following list-assignment of G[V(C) U P]:

e For every v € P, let L'(v) := {c(v)}.

e For every v € V(C) with |[Ng(v) N P| > [, let L'(v) be a l-element subset of
L(v) = Uyep L'(w).

o Let Y/ :=PU{veV(C): |Ng(v)nP|=p}

e For every v € V(C)NN<F(Y/), let L'(v) be a subset of L(v) — UyeNG(v)m,, L'(y) of
size |L(v)| — |[Ng(v) N Y} =Yi| = '+ 1" — |[Ng(v) N Y]] >+ + 1.

e Forevery v € V(C)NN<F(P)=N<F(Y]), let L'(v) be a subset ofL( )=Uyenownr L' ()
of size |L(v)| — |[Ng(v) NP =Y1| =" +r"—|Ng(v)NP| =1 + 1.

e For every v € V(C) — (Y UN<F(Y/)U N<¥(P)), let L'(v) := L(v).

Note that Y — P consists of the vertex in V(C') adjacent in G to all vertices in P. Hence
for every v € V(C) N Ng(P) — Y/, |[Ng(v)NP| € [/ —1]. That is, V(C)N Ng(P) =Y/ =
V(C) N N<#(P). So for every v € V(C) N Ng(P) —Y{, L'(v) N L'(u) = 0 for every
u € PN Ng(v).

Clearly, L' is an (8, r', Y])-list-assignment of G. If v € V(C) —Y{ with |Ng(v)NY]| =
/', then since |Y{ — P| = 1, we know v € N<¥(P) — N<#(Y/), so L'(v) is a set of size
at least r' +1 > 2 disjoint from ¢y, np L'(y). Hence if v € (V(C) U P) — Y] with
[Ne(v) Y]] =, then L'(v) = Uyeng vy L'(¥) = L'(v) = Uyengwnyz—p L' (y) has size
|L'(y)| — 1 > 1. Therefore, L' is a faithful (5’,7’, Y{)-list-assignment of G[V (C') U P].

Since G— P contains at least two components, |V (C)UP| < |V(G)|. By the minimality
of G, there exists an (n}, g*)-bounded L’-coloring ¢’ of G[V(C) U PJ.

For every v € V(C)NNg(P), ifv € N<#(P), then L'(v) is disjoint from Uyengwne L' ()
if v € V(C) with |[Ng(v)NP| > §, then v € Y/ — P and L'(v) is disjoint from |, .p L'(v).
Hence every monochromatic ¢’-component intersecting P is contained in G[P)].

yePrP
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Let ¢* be the L-coloring defined by ¢*(v) := ¢(v) ifv € V(G)—V(C), and ¢*(v) := ¢ (v)
if v € V(C). Hence every monochromatic ¢*-component is either contained in G—V(C') or
contained in C, so it contains at most n2g(n?) vertices. Since V(C)NY; = 0, the union of
the monochromatic ¢*-components intersecting Y; equals the union of the monochromatic
c-components intersecting Y;, and contains at most |Y;|?g(|Y1|?) vertices. Therefore, ¢* is
an (nf, g¥)-bounded L-coloring of G, a contradiction. O

Let Cy,Cy, ..., C be the components of G — P. For i € [k], let G; := G[V(C;) U P].
By Lemma 17, k > t,.1 > s+ 1. By Claim 18.1, Y, N V(C;) # 0 for each ¢ € [k],
so [V(G)nYy| < Y| —(k—=1) < |Yi| — s for each ¢ € [k], and k£ < |Yi| < nf. So
(V(G;) N Y1) UP| < |Y1] —s+|P| < |Yy| for each i € [k].

Let L* be the following list-assignment of G"

o Let Y" =Y, UP.

e For each v € Y}*, let L*(v) be a 1-element subset of L(v).

e For each v € N<#(Y}"), let L*(v) be a subset of L(v) — Uyengnve L (y) with size
[L(v)] = [Ne(v) N (V7" = Y1)| = " + 7" = [Na(v) N Y7,

e For each v € V(G) — (Y* U N<F(Y})), let L*(v) := L(v).

Clearly, L* is an (f,r',Y}")-list-assignment of G. Let v € V(G) — Y* with |[Ng(v) N
Y| = B So L*(v) = L(v). If [Ng(v) NYy] = ', then Ng(v) N Yy = Ng(v) NYi, so
L*(v) = UyeNG(v)ﬂYl* L*(y) = L(v) — UyeNG(u)mY1 L(y) # 0 since L is a faithful (8,7, Y1)-
list-assignment of G. If [Ng(v) NY:| < @, then |L*(v)| = |L(v)| = B + 1" — |[Ng(v) NY)]
and L(v) is disjoint from U, ¢y, )y, L(¥), s0
o)~ U rew=rvw- U Lol
yENg(v)NY7* YyENg(v)NY;*—Y1
>rw-1 U L)
yENG(’U)ﬁYf—Yl
> '+ 1" = [Na(v) N Y| = [Na(v) N Y] =Y
=B+ 1" = [Na(v) N Y|
=r>1.

Therefore, L* is a faithful (5,7, Y}*)-list- assignment of G.

Since P C Yy, L*|y(q, is a faithful (5,7, Y N V(G;))-list-assignment of G;. Recall
that for each ¢ € [k], |[Y* N V(G;)| < |Y1] — 1 < 1. By the minimality of G, for each
i € [k], there exists an (1}, g¥)-bounded L*|y g, colorlng ¢; of G;. Since P C Y NV(G;)
for every i € [k], we know for every v € P, cz( ) = ¢;(v) for any i,j € [k]. Let ¢* be the
L*-coloring of G defined by ¢(v) := ¢;(v) if v € P, and ¢(v) := ¢;(v) if v € V(C;) for some
i€ [k].

Since P C Y* N V(G;) for all i € [k], the number of vertices in the union of the
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monochromatic c*-components intersecting Y; U P is at most

k
ZD”WV g:(IYT nV(Gi)) < Z(|Yl|_1) g.(IY1l = 1)
<ns - (Nl =12 (- 1)
< [Yi*gi(Iva).

Furthermore, every monochromatic c¢*-component disjoint from Y; U P is a monochromatic
ci-component for some i € [k], and hence contains at most n}%g?(n) vertices. Therefore
c* is an (1}, g¥)-bounded L-coloring of G. This proves the lemma. O]

The following lemma is equivalent to Lemma 18 except it applies for restricted list
assignments. The proof is identical, so we omit it.

Lemma 19. Let G be a subgraph-closed family of graphs. Let 3,r be functions with
domain N such that B(x) > x and r(z) € N for every x € N.

Assume that for every s € N, there exist n € N and a nondecreasing function g such
that for every G € G with no Ky;, subgraph, where ts ;= max{ (;) + 2,5+ 2}, for every
Y1 CV(G) with |Y1| < n, and for every restricted (5(s),r(s), Y1)-list-assignment L of G,
there exists an (n, g)-bounded L-coloring of G.

Then for every s € N with s > 2, there exist n* € N and a nondecreasing function
g* such that for every graph G € G with no almost (< 1)-subdivision of Ks.1, for every
Y1 C V(GQ) with |Y1| < n*, and for every restricted faithful (B(s — 1),r(s — 1),Y})-list-
assignment L of G, there exists an (n*, g*)-bounded L-coloring of G.

Theorem 20. If s € N with s > 2, then the following hold:

1. For every w € N, there exist n € N and a nondecreasing function g such that
for every graph G of treewidth at most w with no almost (< 1)-subdivision of K1,
every subset Yy of V(G) with |Y1| < n and every faithful (s—1,1,Y1)-list-assignment
of G, there ezists an (n, g)-bounded L-coloring of G.

2. For every graph H, there exist n € N and a nondecreasing function g such that for
every graph G with no H-minor and no almost (< 1)-subdivision of Ksiq, every
subset Y1 of V(G) with |Yi| < n and every restricted faithful (s — 1,2,Y7)-list-
assignment L of G, there exists an (n, g)-bounded L-coloring of G.

3. For every d € N with d > 2 and graph H of maximum degree at most d, there
exist n € N and a nondecreasing function g such that for every graph G with no
H -subdivision and no almost (< 1)-subdivision of K1, every subset Y1 of V(G)
with |Y1] < n and every restricted faithful (s +3d — 7,2, Y1)-list-assignment L of G,
there exists an (n, g)-bounded L-coloring of G.

4. There existn € N and a nondecreasing function g such that for every graph G with no
K1 -subdivision, every subset Yy of V(G) with |Y1] < n and every restricted faithful
(4s—17,2,Y)-list-assignment L of G, there ezists an (n, g)-bounded L-coloring of G.
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Proof. Statement 1 follows from Theorem 8 and Lemma 18 by taking G to be the set of
graphs of treewidth at most w, 3(s) = s and r(s) = 1.

Statement 2 follows from Theorem 9 and Lemma 19 by taking G to be the set of graphs
with no H-minor, 5(s) = s and r(s) = 2.

Statement 3 follows from Lemmas 16 and 19 by taking G to be the set of graphs with
no H-subdivision, f(s) = 3d + s — 6 and r(s) = 2. Note that 5(s) > s since d > 2. And
3d+s>T7sinced > 2 and s > 1.

Statement 4 follows from Statement 3 by taking H = K. O]

When Y; = 0, every (s,r,Y7)-list-assignment is faithful. Thus, Theorem 20 implies
that for all s,d,w € N with s > 2 and d > 2, for every graph H, there exists n € N such
that:

1. For every graph G with treewidth at most w and with no almost (< 1)-subdivision
of K41, and for every list-assignment L of G with |L(v)| > s for every v € V(G),
there exists an L-coloring with clustering 7 (Theorem 1 for s > 2).

2. For every graph G with no almost (< 1)-subdivision of K, and with no H-minor,
there exists an (s + 1)-coloring of G with clustering 7 (Theorem 2 for s > 2).

3. If the maximum degree of H is at most d, then for every graph G with no H-
subdivision and no almost (< 1)-subdivision of K1, there exists an (s + 3d — 5)-
coloring of G' with clustering 7 (Theorem 4 for s > 2 and d > 2).

4. For every graph G with no K, -subdivision, there exists a (4s — 5)-coloring of G
with clustering 1 (Theorem 6 for s > 2).

Note that when s = 1, graphs with no K, subgraph have no edge, so they are 1-colorable
with clustering 1. This together with Lemma 15 complete the proof of Theorems 1, 2, 4
and 6.
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