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Abstract
Hajós conjectured that every graph containing no subdivision of the complete

graphKs+1 is properly s-colorable. This conjecture was disproved by Catlin. Indeed,
the maximum chromatic number of such graphs is Ω(s2/ log s). We prove that
O(s) colors are enough for a weakening of this conjecture that only requires every
monochromatic component to have bounded size (so-called clustered coloring).

Our approach leads to more results, many of which only require a much weaker
assumption that forbids an ‘almost (6 1)-subdivision’ (where at most one edge is
subdivided more than once). This assumption is best possible, since no bound on the
number of colors exists unless we allow at least one edge to be subdivided arbitrarily
many times. We prove the following (where s > 2):

1. Graphs of bounded treewidth and with no almost (6 1)-subdivision of Ks+1

are s-choosable with bounded clustering.
2. For every graph H, graphs with no H-minor and no almost (6 1)-subdivision

of Ks+1 are (s + 1)-colorable with bounded clustering.
3. For every graphH of maximum degree at most d, graphs with noH-subdivision

and no almost (6 1)-subdivision of Ks+1 are max{s+ 3d−5, 2}-colorable with
bounded clustering.

4. For every graph H of maximum degree d, graphs with no Ks,t subgraph and
no H-subdivision are max{s + 3d− 4, 2}-colorable with bounded clustering.

5. Graphs with no Ks+1-subdivision are (4s− 5)-colorable with bounded cluster-
ing.

The first result is tight and shows that the clustered analogue of Hajós’ conjecture
is true for graphs of bounded treewidth. The second result implies an upper bound
for the clustered version of Hadwiger’s conjecture that is only one color away from
the known lower bound, and shows that the number of colors is independent of the
forbidden minor. The final result is the first O(s) bound on the clustered chromatic
number of graphs with no Ks+1-subdivision.
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1 Introduction

In the 1940s, Hajós conjectured that every graph containing no subdivision of the
complete graph Ks+1 is s-colorable; see [25, 30, 31]. Dirac [5] proved the conjecture for
s 6 3. It is open for s ∈ {4, 5}, which would imply the Four Color Theorem. Catlin [3]
presented counterexamples for all s > 6, and Erdős and Fajtlowicz [8] proved that the
conjecture is false for almost all graphs. Indeed, there are graphs with noKs+1-subdivision
and with chromatic number Ω(s2/ log s). The best upper bound on the number of colors is
O(s2), independently due to Bollobás and Thomason [2] and Komlós and Szemerédi [19];
see [12] for a related result. See [25, 31] for more explicit counterexamples and further
discussion of connections to other areas of graph theory.

The purpose of this paper is to prove several positive results in the direction of weak-
enings of Hajós’ conjecture. Define a coloring of a graph G to simply be a function that
assigns one color to each vertex of G. For a coloring c of a graph G, a monochromatic
c-component of G is a connected component of a subgraph of G induced by all the vertices
assigned the same color by c. When c is clear, we simply write monochromatic component.
A coloring has clustering η if every monochromatic component has at most η vertices.
Our focus is on minimizing the number of colors, with small clustering as a secondary goal.
The clustered chromatic number of a graph class F is the minimum integer k for which
there exists an integer c such that every graph in F has a k-coloring with clustering c.
There have been several recent papers on this topic [1, 4, 6, 10, 11, 13–18, 20, 21, 26, 28];
see [33] for a survey.

Most of our results actually hold (in some sense) for more general classes of graphs
than those with no Ks+1-subdivision, as we now explain. Say a graph H ′ is an almost
(6 1)-subdivision of a graph H if H ′ can be obtained from H by subdividing edges,
where at most one edge is subdivided more than once. Most of our results say that all
graphs containing no almost (6 1)-subdivision of Ks+1, plus some other properties, are
s-colorable with bounded clustering.

The following is our first main result. It provides a Hajós-type result for clustered
coloring of graphs with bounded treewidth.

Theorem 1. For all s, w ∈ N, there exists η ∈ N such that every graph with treewidth at
most w and with no almost (6 1)-subdivision of Ks+1 is s-choosable with clustering η.

The notion of s-choosable with bounded clustering is defined in Section 2.1. Note that
every graph that is s-choosable with bounded clustering is also s-colorable with bounded
clustering. This shows that the number of colors in Theorem 1 is best possible in the
following strong sense: for all s ∈ N and η ∈ N there is a graph G with treewidth at most
s − 1 (and thus with no subdivision of Ks+1), such that every (s − 1)-coloring of G has
a monochromatic component with at least η vertices; see [33]. In particular, at least s
colors are required even for this weakening of Hajós’ conjecture.

The assumption of bounded treewidth in Theorem 1 is equivalent to saying that the
graph excludes a planar graph as a minor by Robertson and Seymour’s Grid Minor The-
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orem [29]. What if we exclude a general graph as a minor? Our next result answers this
question (with one more color).

Theorem 2. For every s ∈ N and every graph H, there exists η ∈ N such that every
graph containing no H-minor and containing no almost (6 1)-subdivision of Ks+1 is
(s+ 1)-colorable with clustering η.

Theorem 2 (with H = Ks+1) has the following interesting corollary for graphs exclud-
ing a minor.

Corollary 3. For every s ∈ N there exists η ∈ N such that every graph containing no
Ks+1-minor is (s+ 1)-colorable with clustering η.

Kawarabayashi and Mohar [18] first proved that graphs containing no Ks+1-minor are
O(s)-colorable with bounded clustering. The bound on the number of colors has since
been steadily improved [7, 15, 21, 27, 32]. Prior to the present work, the best bound was
s + 2, which followed from a general result by the authors [23]. Corollary 3 improves
this bound to s + 1, although it should be noted that results from [23] are essential for
the proof of Theorem 2 and Corollary 3. Dvořák and Norin [6] have announced that
a forthcoming paper will prove that s colors suffice (which is the clustered analogue of
Hadwiger’s Conjecture, and would be best possible). Their result is incomparable with
Theorem 2 and the aforementioned general result in [23].

Our next result relaxes the assumption that the graph contains no H-minor, and
instead assumes that it contains no H-subdivision. The price paid is an increase in the
number of colors, depending only on the maximum degree of H.

Theorem 4. For every s ∈ N and every graph H with maximum degree d ∈ N, there
exists η ∈ N such that every graph with no H-subdivision and no almost (6 1)-subdivision
of Ks+1 is max{s+ 3d− 5, 2}-colorable with clustering η.

The next theorem relaxes the assumption of no almost (6 1)-subdivision of Ks+1, and
instead assumes the graph contains no Ks,t-subgraph. Interestingly the number of colors
does not depend on t. Note that Ks,t contains a Ks+1-subdivision where every edge is
subdivided at most once, when t is sufficiently large.

Theorem 5. For s, t, d ∈ N and every graph H of maximum degree d, there exists η ∈ N
such that every graph with no Ks,t-subgraph and no H-subdivision is max{s+ 3d− 4, 2}-
colorable with clustering η.

We remark that all of the above theorems forbid (6 1)-subdivisions of Ks+1 or subdi-
visions of H. That is, we forbid a subdivision of a graph where some edge is allowed to
be subdivided arbitrarily many times. This condition is required since there are graphs of
arbitrarily high girth and arbitrarily high chromatic number [9], which therefore require
arbitrarily many colors for any fixed clustering value; this shows that excluding finitely
many graphs as subgraphs cannot ensure any upper bound on the number of colors.

Our final theorem simply excludes a Ks+1-subdivision. This is the first O(s) bound
on the clustered chromatic number of the class of graphs excluding a Ks+1-subdivision.
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Theorem 6. For each s ∈ N, there exists η ∈ N such that every graph containing no
Ks+1-subdivision is max{4s− 5, 1}-colorable with clustering η.

We now compare the above theorems with Hajós’ conjecture. First note that The-
orems 1–4 are stronger than Hajós’ conjecture in the sense that they only exclude an
almost (6 1)-subdivision of Ks+1, whereas Hajós’ conjecture excludes all subdivisions of
Ks+1. Moreover, Theorem 1 also holds in the stronger setting of choosability. On the
other hand, Theorems 1–6 are weaker than Hajós’ conjecture in the sense that they have
bounded clustering rather than a proper coloring. However, such a weakening is un-
avoidable since Hajós’ conjecture is false. Indeed, the proof of the theorem of Erdős and
Fajtlowicz [8] mentioned above shows that, for a suitable constant c, almost every graph
on cs2 vertices contains no subdivision of Ks+1 and has chromatic number Ω(s2/ log s).
Trivially, such a graph has treewidth at most cs2 and contains no Kcs2-minor. Thus the
clustering function in all of the above theorems is at least Ω(s/ log s).

The paper is organized as follows. Section 2 introduces preliminary definitions and
results from our companion papers [23, 24] that are used in the present paper. Section 3
introduces a structure theorem of the first author and Thomas [22] for graphs excluding
a fixed subdivision, and uses it to prove Theorem 5. Building on this work, Section 4
proves the remaining theorems mentioned above.

2 Preliminaries

We use the following notation. Let N0 := {0, 1, 2, . . . } and N := {1, 2, . . . }. For
m,n ∈ N0, let [m,n] := {m,m+ 1, . . . , n} and [n] := [1, n].

Let G be a graph (allowing loops and parallel edges). For v ∈ V (G), let NG(v) :=
{w ∈ V (G) : vw ∈ E(G)} be the neighborhood of v, and let NG[v] := NG(v) ∪ {v}. For
X ⊆ V (G), let NG(X) :=

⋃
v∈X(NG(v) − X) and NG[X] := NG(X) ∪ X. Denote the

subgraph of G induced by X by G[X].
For a graph G, a subset X of V (G), and an integer s > 1, let

N>s
G (X) := {v ∈ V (G)−X : |NG(v) ∩X| > s} and

N<s
G (X) := {v ∈ V (G)−X : 1 6 |NG(v) ∩X| < s}.

When the graph G is clear from the context we write N>s(X) instead of N>s
G (X), and

similarly for N<s(X).

Lemma 7 ([24, Lemma 12]). For all s, t ∈ N, there exists a function fs,t : N0 → N0 such
that for every graph G with no Ks,t subgraph, if X ⊆ V (G) then |N>s(X)| 6 fs,t(|X|).

Lemma 7 is sufficient to prove the theorems in this paper. But when G excludes a fixed
minor or subdivision of a fixed graph, the function fs,t in Lemma 7 can be made linear;
see [24]. This improves the clustering function in all our results, although to simplify the
presentation, we choose not to explicitly evaluate our clustering functions.

A tree-decomposition of a graph G is a pair (T,X = (Xx : x ∈ V (T ))), where T is a
tree and for each node x ∈ V (T ), Xx is a subset of V (G) called a bag, such that for each
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vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Xx} induces a non-empty (connected) subtree
of T , and for each edge vw ∈ E(G) there is a node x ∈ V (T ) such that {v, w} ⊆ Xx. The
width of a tree-decomposition (T,X ) is max{|Xx| − 1 : x ∈ V (T )}. The treewidth of a
graph G is the minimum width of a tree-decomposition of G.

Let H be a graph. An H-minor of a graph G is a map α with domain V (H) ∪ E(H)
such that:

• For every h ∈ V (H), α(h) is a nonempty connected subgraph of G.
• If h1 and h2 are different vertices of H, then α(h1) and α(h2) are disjoint.
• For each edge e of H with endpoints h1, h2, α(e) is an edge of G with one end in
α(h1) and one end in α(h2); furthermore, if h1 = h2, then α(e) ∈ E(G)−E(α(h1)).

• If e1, e2 are two different edges of H, then α(e1) 6= α(e2).

2.1 List Coloring

For our purposes, a color is an element of Z. Let G be a graph. A list-assignment
of G is a function L with domain containing V (G), such that L(v) is a non-empty set of
colors for each vertex v ∈ V (G). For a list-assignment L of V (G), an L-coloring of G is
a coloring c of G such that c(v) ∈ L(v) for every v ∈ V (G). An L-coloring has clustering
η if every monochromatic component has at most η vertices. A list-assignment L of G is
an `-list-assignment if |L(v)| > ` for every vertex v ∈ V (G). A graph G is `-choosable
with clustering η if G is L-colorable with clustering η for every `-list-assignment L of G.

For a graph G, a subset Y1 ⊆ V (G), and s, r ∈ N, a list-assignment L of G is an
(s, r, Y1)-list-assignment if:

(L1) |L(v)| ∈ [s+ r] for every v ∈ V (G).
(L2) Y1 = {v ∈ V (G) : |L(v)| = 1}.
(L3) For every y ∈ N<s(Y1),

|L(y)| = s+ r − |NG(y) ∩ Y1| > r + 1

and L(y) ∩ L(u) = ∅ for every u ∈ NG(y) ∩ Y1.
(L4) For every v ∈ V (G)−NG[Y1], we have |L(v)| = s+ r.
(L5) For every v ∈ V (G)− Y1, we have |L(v)| > r + 1.

We say that an (s, r, Y1)-list-assignment L of G is restricted if:

(L1’) L(v) ⊆ [s+ r] for every v ∈ V (G).

Note that a restricted (s, 2, Y1)-list-assignment is called a (s, Y1, 0, 0)-list-assignment in
our companion paper [23].

For a list-assignment L of a graph G with Y1 = {v ∈ V (G) : |L(v)| = 1}, for η ∈ N
and a nondecreasing function g : N→ N, an L-coloring c of G is (η, g)-bounded if:

• the union of the monochromatic components intersecting Y1 contains at most |Y1|2g(|Y1|)
vertices, and

• every monochromatic component contains at most η2g(η) vertices.
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2.2 Companion Results

Our companion paper proves the following results for graphs with no Ks,t subgraph.
The first assumes bounded treewidth, the second assumes an excluded minor.

Theorem 8 ([23, Theorem 17]). For all s, t, w ∈ N, there exist η ∈ N and a nondecreasing
function g such that if G is a graph of treewidth at most w and with no Ks,t subgraph, Y1
is a subset of V (G) with |Y1| 6 η, and L is an (s, 1, Y1)-list-assignment of G, then there
exists an (η, g)-bounded L-coloring of G.

Theorem 9 ([23, Theorem 24]). For all s, t ∈ N and for every graph H, there exist η ∈ N
and a nondecreasing function g such that if G is a graph with no Ks,t subgraph and no H-
minor, Y1 is a subset of V (G) with |Y1| 6 η, and L is a restricted (s, 2, Y1)-list-assignment
of G, then there exists an (η, g)-bounded L-coloring.

2.3 Progress

The concept of “progress” from the proofs of the above two theorems are re-used in
the present paper. Let s, r ∈ N and L be an (s, r, Y1)-list-assignment of a graph G. For
W ⊆ V (G), a W -progress of L is a list-assignment L′ of G defined as follows:

• Let Y ′1 := Y1 ∪W .
• For every y ∈ Y1, let L′(y) := L(y).
• For every y ∈ Y ′1 − Y1, let L′(y) be a 1-element subset of L(y) (which exists by

(L2)–(L5)).
• For each v ∈ N<s(Y ′1), let L′(v) be a subset of L(v)−{L′(w) : w ∈ NG(v)∩(W−Y1)}

of size |L(v)| − |NG(v) ∩ (W − Y1)|.
• For every v ∈ V (G)− (Y ′1 ∪N<s(Y ′1)), let L′(v) := L(v).

Lemma 10 ([23, Lemma 12 with F = ∅]). Let s, r ∈ N and L be an (s, r, Y1)-list-
assignment of a graph G. Let W ⊆ V (G). Then every W -progress L′ of L is an (s, r, Y1∪
W )-list-assignment of G, and L′(v) ⊆ L(v) for every v ∈ V (G).

Lemma 11 ([23, Lemma 13 with F = ∅]). For all s, t, k ∈ N, there exist a number η > k
and a nondecreasing function g with domain N0 and with g(0) > η such that if G is a
graph with no Ks,t subgraph, r ∈ N, Y1 is a subset of V (G) with |Y1| 6 η, and L is an
(s, r, Y1)-list-assignment of G, then at least one of the following holds:

1. There exists an (η, g)-bounded L-coloring of G.
2. |Y1| > k.
3. For every color `, there exist a subset Y ′1 of V (G) with η > |Y ′1 | > |Y1| and an

(s, r, Y ′1)-list-assignment L′ of G with L′(v) ⊆ L(v) for every v ∈ V (G), such that:

(a) there does not exist an (η, g)-bounded L′-coloring c′ of G,
(b) for every L′-coloring of G, every monochromatic component intersecting Y1 is

contained in G[Y ′1 ], and
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(c) for every y ∈ Y ′1 with ` ∈ L′(y), we have {v ∈ NG(y)− Y ′1 : ` ∈ L′(v)} = ∅.

4. Y1 6= ∅, NG(Y1) = ∅, and there does not exist an (η, g)-bounded L|G−Y1-coloring of
G− Y1.

2.4 Separations and Tangles

A separation of a graph G is an ordered pair (A,B) of edge-disjoint subgraphs of G
with A ∪ B = G. The order of (A,B) is |V (A ∩ B)|. A tangle T in a graph G of order θ
is a set of separations of G of order less than θ such that:

(T1) For every separation (A,B) of G of order less than θ, either (A,B) ∈ T or (B,A) ∈
T .

(T2) If (Ai, Bi) ∈ T for i ∈ [3], then A1 ∪ A2 ∪ A3 6= G.
(T3) If (A,B) ∈ T , then V (A) 6= V (G).

Lemma 12 ([23, Lemma 16 with F = ∅]). For all s, t, θ, η, r ∈ N with η > 9θ + 1, for
every nondecreasing function g with domain N0, if G is a graph with no Ks,t subgraph, Y1
is a subset of V (G) with 9θ + 1 6 |Y1| 6 η, and L is an (s, r, Y1)-list-assignment of G,
then at least one of the following holds:

1. There exists an (η, g)-bounded L-coloring of G.
2. There exist an induced subgraph G′ of G with |V (G′)| < |V (G)|, a subset Y ′1 of

V (G′) with |Y ′1 | 6 η and an (s, r, Y ′1)-list-assignment L′ of G′ such that:

(a) L′(v) ⊆ L(v) for every v ∈ V (G′).
(b) There does not exist an (η, g)-bounded L′-coloring of G′.

3. T := {(A,B) : |V (A ∩B)| < θ, |V (A) ∩ Y1| 6 3θ} is a tangle of order θ in G.

A tangle T in G controls an H-minor α if there does not exist (A,B) ∈ T of order
less than |V (H)| such that V (α(h)) ⊆ V (A) for some h ∈ V (H).

Lemma 13 ([23, Lemma 23 with ` = r = 0]). For all s, t, t′ ∈ N, there exist θ∗ ∈ N
and nondecreasing functions g∗, η∗ with domain N0 such that if G is a graph with no Ks,t

subgraph, θ ∈ N with θ > θ∗, η ∈ N with η > η∗(θ), Y1 ⊆ V (G) with 3θ < |Y1| 6 η, L is
a restricted (s, 2, Y1)-list-assignment of G, g is a nondecreasing function with domain N0

with g > g∗, and T := {(A,B) : |V (A ∩ B)| < θ, |V (A) ∩ Y1| 6 3θ} is a tangle in G of
order θ that does not control a Kt′-minor, then either:

1. there exists an (η, g)-bounded L-coloring of G, or
2. there exist (A∗, B∗) ∈ T , a set YA∗ with |YA∗ | 6 η∗(θ) and Y1 ∩ V (A∗) ⊆ YA∗ ⊆

V (A∗), and a restricted (s, 2, YA∗)-list-assignment LA∗ of G[V (A∗)] such that there
exists no (η, g)-bounded LA∗-coloring of G[V (A∗)].
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3 Excluding Subdivisions

The following theorem is a special case of a theorem by the first author and Thomas [22].

Theorem 14 ([22, Theorem 6.8]). For any integers d, h and graph H on h vertices with
maximum degree at most d, there exist integers θ, ξ such that if G is a graph containing
no H-subdivision, and if T is a tangle in G of order at least θ controlling a Kb 3

2
dhc-minor,

then there exists Z ⊆ V (G) with |Z| 6 ξ such that for every vertex v ∈ V (G)− Z, there
exists (A,B) ∈ T − Z of order less than d such that v ∈ V (A)− V (B).

The next two lemmas imply Theorem 5, since if s, d ∈ N and 3d+ s < 7, then d = 1.

Lemma 15. If H is a graph of maximum degree at most 1, then every graph with no
H-subdivision is 2-colorable with clustering max{2|V (H)| − 2, 1}.

Proof. Since H is of maximum degree at most one, G has no H-subdivision implies that
G does not contain a matching of size |V (H)|, and hence G contains a vertex-cover S
of size at most 2|V (H)| − 2. By coloring every vertex in S with 1 and coloring every
vertex in V (G) − S with 2, we obtain a 2-coloring of G with clustering max{|S|, 1} 6
max{2|V (H)| − 2, 1}.

Lemma 16. For any s, t, d ∈ N and graph H of maximum degree d with 3d + s > 7,
there exist η ∈ N and a nondecreasing function g such that if G is a graph with no Ks,t

subgraph and no H-subdivision, Y1 ⊆ V (G) with |Y1| 6 η and L is a restricted (s′, 2, Y1)-
list-assignment of G, then there exists an (η, g)-bounded L-coloring, where s′ = 3d+s−6.

Proof. Define the following:

• Let f be the function fs,t mentioned in Lemma 7.
• Let θ0 be the number θ∗ and g0, η0 be the functions g∗, η∗, respectively, mentioned

in Lemma 13 by taking s = s′, t = t and t′ = b3
2
d|V (H)|c.

• Let θ1 and ξ be the numbers θ and ξ mentioned in Theorem 14, respectively, by
taking d = d, h = |V (H)| and H = H.

• Let a0 := f(ξ)d2 + ξ + 1, and let ai := dai−1 + 1 for i ∈ N.
• Let θ := θ0 + θ1 + (d− 1)a(d−1)a0 .
• Let η1 be the number η and let g1 be the function g mentioned in Lemma 11 by

taking s = s′, t = t and k = 9θ. Note that g(0) > η1 > 9θ by Lemma 11.
• Let η := η0(θ) + η1 + (d− 1)a(d−1)a0 .
• Let g : N → N be the function defined by g(0) := g0(0) + g1(0) and g(x + 1) :=
g0(x+ 1) + g1(x+ 1) +

∑x
i=0 i

2g(i) for x ∈ N.

Let G be a graph with no Ks,t subgraph and with no subdivision of H, let Y1 ⊆ V (G)
with |Y1| 6 η, and let L be a restricted (s′, 2, Y1)-list-assignment of G. Suppose to the
contrary that there exists no (η, g)-bounded L-coloring of G. We further assume that
|V (G)| is minimum, and subject to this, |Y1| is maximum.
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Claim 16.1. Y1 6= ∅ and NG(Y1) 6= ∅.

Proof. First suppose that Y1 = ∅. Let v be a vertex of G, and let L′ be a {v}-progress of
L. Let Y ′1 = {v}. By Lemma 10, L′ is an (s′, 2, Y ′1)-list-assignment of G. Since |Y ′1 | 6 η,
the maximality of |Y1| implies that there exists an (η, g)-bounded L′-coloring c′ of G. But
c′ is an (η, g)-bounded L-coloring c of G, a contradiction.

So Y1 6= ∅. Suppose that NG(Y1) = ∅. Let G′ := G − Y1. Then L|G′ is an (s′, 2, ∅)-
list-assignment of G − Y1. By the minimality of |V (G)|, there exists an (η, g)-bounded
L|G′-coloring c of G′. Color each vertex y in Y1 with the unique element in L(y). Since
|Y1| 6 |Y1|2g(|Y1|), we obtain an (η, g)-bounded L-coloring of G, a contradiction.

Claim 16.2. |Y1| > 9θ + 1.

Proof. Suppose |Y1| 6 9θ. So |Y1| < η1. Since G has no Ks,t subgraph, G has no Ks′,t

subgraph. Applying Lemma 11 and Claim 16.1, either there exists an (η1, g1)-bounded
L-coloring of G, or there exist Y ′1 ⊆ V (G) with η1 > |Y ′1 | > |Y1| and an (s′, 2, Y ′1)-list-
assignment L′ of G with L′(v) ⊆ L(v) for every v ∈ V (G) such that for every L′-coloring
of G, every monochromatic component intersecting Y1 is contained in G[Y ′1 ]. Since η1 6 η
and g1 6 g, every (η1, g1)-bounded L-coloring of G is an (η, g)-bounded L-coloring of
G, so the former does not hold. Hence there exist Y ′1 ⊆ V (G) with η1 > |Y ′1 | > |Y1|
and a restricted (s′, 2, Y ′1)-list-assignment L′ of G with L′(v) ⊆ L(v) for every v ∈ V (G)
such that for every L′-coloring of G, every monochromatic component intersecting Y1 is
contained in G[Y ′1 ]. Since |Y ′1 | 6 η1 6 η, the maximality of |Y1| implies that there exists
an (η, g)-bounded L′-coloring c′ of G. So every monochromatic component respect to c′
contains at most η2g(η) vertices. Since L′(v) ⊆ L(v) for every v ∈ V (G), c′ is also an
L-coloring of G. Every monochromatic c′-component intersecting Y1 is contained in G[Y ′1 ]
and hence contains at most |Y ′1 | 6 η1 6 g1(0) 6 g(0) 6 |Y1|2g(|Y1|) vertices. So c′ is an
(η, g)-bounded L-coloring of G, a contradiction.

Let T be the set of separations (A,B) of G such that |V (A∩B)| < θ and |V (A)∩Y1| 6
3θ.

Claim 16.3. T is a tangle in G of order θ.

Proof. Suppose that T is not a tangle in G of order θ. Note that G has no Ks′,t subgraph
and L is an (s′, 2, Y1)-list-assignment of G with η > |Y1| > 9θ+1 by Claim 16.2. Applying
Lemma 12 by taking s = s′, t = t, θ = θ, η = η, r = 2 and g = g, there exists an induced
subgraph G′ of G with |V (G′)| < |V (G)|, a subset Y ′1 ⊆ V (G′) with |Y ′1 | 6 η, and an
(s′, 2, Y ′1)-list-assignment L′ of G′ with L′(v) ⊆ L(v) for every v ∈ V (G) such that there
exists no (η, g)-bounded L′-coloring of G′. This contradicts the minimality of |V (G)|.

Claim 16.4. T controls a Kb 3
2
d|V (H)|c-minor.

Proof. Suppose to the contrary that T does not control aKb 3
2
d|V (H)|c-minor. Note that θ >

θ0, η > η0(θ) and g > g0. Apply Lemma 13 with s = s′, t = t and t′ = b3
2
d|V (H)|c. Since

there does not exist an (η, g)-bounded L-coloring of G, we know there exist (A∗, B∗) ∈ T ,
a set YA∗ with |YA∗| 6 η0(θ) 6 η and Y1 ∩ V (A∗) ⊆ YA∗ ⊆ V (A∗), and a restricted
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(s′, 2, YA∗)-list-assignment LA∗ of G[V (A∗)] such that there exists no (η, g)-bounded LA∗-
coloring of G[V (A∗)]. But |V (A∗)| < |V (G)| since |V (A∗) ∩ Y1| < 3θ < |Y1|. This
contradicts the minimality of |V (G)|.

Since G contains no subdivision of H, by Theorem 14 and Claim 16.4, there exists
Z ⊆ V (G) with |Z| 6 ξ such that for every v ∈ V (G)−Z, there exists (Av, Bv) ∈ T −Z
of order at most d− 1 such that v ∈ V (Av)− V (Bv).

We may assume that for every v ∈ V (G)− Z,

(i) (Av, Bv) ∈ T − Z has order at most d− 1 and v ∈ V (Av)− V (Bv),
(ii) subject to (i), Av − V (Av ∩Bv) is connected,
(iii) subject to (i) and (ii), every vertex in V (Av ∩ Bv) is adjacent to some vertex in

V (Av)− V (Bv),
(iv) subject to (i)–(iii), V (Av) is maximal,
(v) subject to (i)–(iv), |V (Av ∩Bv)| is minimal, and
(vi) subject to (i)–(v), Av is maximal.

Note that for every v ∈ V (G) − Z, Av is connected and for every two vertices x, y ∈
V (Av), there exists a path in Av from x to y internally disjoint from V (Av ∩ Bv) since
Av − V (Av ∩Bv) is connected and every vertex in V (Av ∩Bv) is adjacent to some vertex
in V (Av)− V (Bv)

For any subset C ⊆ T − Z, let (AC, BC) be the separation (
⋃

(A,B)∈C A,
⋂

(A,B)∈C B).
Note that V (AC ∩BC) ⊆

⋃
(A,B)∈C V (A ∩B), so |V (AC ∩BC)| 6 |C|(d− 1).

Claim 16.5. Let C = {(Aw, Bw) : w ∈ W} for some W ⊆ V (G)− Z. If x is a vertex in
V (AC ∩BC), then V (Ax ∩Bx)− V (Bw) 6= ∅ for some w ∈ V (G)− Z with (Aw, Bw) ∈ C.

Proof. Since x ∈ V (AC ∩ BC), there exists w ∈ W ⊆ V (G) − Z such that (Aw, Bw) ∈ C
and x ∈ V (Aw ∩Bw). Suppose to the contrary that V (Ax ∩Bx) ⊆ V (Bw).

First suppose that there exists v ∈ V (Aw)− (V (Bw) ∪ V (Ax)). Since Aw − V (Bw) is
connected by (ii) and every vertex in V (Aw∩Bw) is adjacent to a vertex in V (Aw)−V (Bw)
by (iii), there exists a path P in G[(V (Aw) − V (Bw)) ∪ {x}] from x to v. Since x ∈
V (Ax)−V (Bx) and v ∈ V (G)− (Z ∪V (Ax)), P −x intersects V (Ax∩Bx) ⊆ V (Bw). But
V (P − x) ⊆ V (Aw)− V (Bw), a contradiction. So V (Aw)− V (Bw) ⊆ V (Ax).

Suppose that there exists a vertex u ∈ V (Aw ∩Bw)− V (Ax). Since u ∈ V (Aw ∩Bw),
there exists u′ ∈ NG(u) ∩ V (Aw) − V (Bw) by (iii). So u′ ∈ NG(u) ∩ V (Aw) − V (Bw) ⊆
NG(u) ∩ V (Ax). Since u 6∈ V (Ax), u′ ∈ V (Ax ∩Bx) ∩ V (Aw)− V (Bw), contradicting the
assumption V (Ax ∩Bx) ⊆ V (Bw). Hence V (Aw ∩Bw) ⊆ V (Ax).

Therefore, V (Aw) ⊆ V (Ax). By (v), every vertex in V (Ax ∩ Bx) is adjacent to some
vertex in V (Bx) − V (Ax). So if V (Ax) = V (Aw), then V (Ax ∩ Bx) ⊆ V (Aw ∩ Bw), and
since (Aw, Bw) satisfies (v), V (Bw) = V (Bx). Hence if V (Ax) = V (Aw), then (Ax, Bx) =
(Aw, Bw) by (vi). Since x ∈ V (Ax)− V (Bx) and x ∈ V (Aw ∩ Bw), (Ax, Bx) 6= (Aw, Bw).
So V (Aw) ⊂ V (Ax). Since (Aw, Bw) satisfies (iv), w ∈ V (Bx). Since V (Ax∩Bx) ⊆ V (Bw)
and w 6∈ V (Bw), w ∈ V (Bx)− V (Ax). So V (Aw) 6⊆ V (Ax), a contradiction.
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Let Z ′ := {v ∈ V (G) − (Y1 ∪ Z) : |NG(v) ∩ Z| > s}. Note that |Z ′| 6 f(|Z|) 6 f(ξ)
by Lemma 7.

We say that a triple (C, S, T ) is useful if the following hold:

(U1) There exists W ⊆ V (G)− Z such that C = {(Av, Bv) : v ∈ W}.
(U2) NG[NG[Z ′]] ∩ V (BC) = ∅.
(U3) S is a subset of NG[V (AC ∩BC)] ∩ V (AC) and T is a subset of Y1 ∩ V (AC)− V (BC)

such that there exists a bijection ι from a subset of Y1 ∩ V (AC) to S such that:

– |S|+|T |+|Z|+1 6 |Y1∩V (AC)−V (BC)|+|{y ∈ Y1∩S∩V (AC∩BC) : ι(y) = y}|,
and

– for every vertex y in the domain of ι,

∗ if y ∈ V (AC)−V (BC) and there exists a vertex v ∈ NG(y)∩V (AC∩BC)−S,
then ι(y) ∈ NG(y) ∩ V (AC ∩BC), and

∗ if y ∈ V (AC ∩BC), then ι(y) = y.

(U4) T is disjoint from Z ′ and the domain of ι.

Claim 16.6. There exists a collection C of members of T −Z with |C| 6 |Z ′|d2 + |Z|+ 1
such that (C, ∅, ∅) is useful.

Proof. For every u ∈ V (G)−Z, let Cu := {(Au, Bu), (Av, Bv) : v ∈ NG(u)∩V (Bu)}. Note
that |NG(u) ∩ V (Bu)| 6 |V (Au ∩ Bu)| 6 d − 1 since u ∈ V (Au) − V (Bu). So |Cu| 6 d.
Note that NG[{u}] ∩ V (BCu) = ∅.

For every u ∈ V (G) − Z, let C ′u := Cu ∪ {(Av, Bv) : v ∈ NG(NG[{u}]) ∩ V (BCu)}.
Note that |NG(NG[{u}]) ∩ V (BCu)| 6 |V (ACu ∩ BCu)| 6 (d − 1)|Cu| 6 (d − 1)d. So
|C ′u| 6 |Cu|+ (d− 1)d 6 d2. Note that NG[NG[{u}]] ∩ V (BC′u) = ∅.

Let C ′ :=
⋃
z∈Z′ C ′z. Then NG[NG[Z ′]] ∩ V (BC′) = ∅. And |C ′| 6 |Z ′|d2. Since

|Y1−Z| > |Y1|−|Z| > 9θ−ξ > 8θ > |Z|, there exists a subset Y of Y1−Z with |Y | = |Z|+1.
Let C := C ′∪{(Ay, By) : y ∈ Y }. Clearly (C, ∅, ∅) satisfies (U1) and (U4). Since BC′ ⊇ BC,
(C, ∅, ∅) satisfies (U2). Since Y ⊆ V (AC)− V (BC), |Z|+ 1 = |Y | 6 |Y1 ∩ V (AC)− V (BC)|,
so (C, ∅, ∅) satisfies (U3). Note that |C| 6 |C ′|+ |Y | 6 |Z ′|d2 + |Z|+ 1.

For a useful triple (C, S, T ), a vertex v of V (G)− Z is:

• (C, S, T )-dangerous if v ∈ V (AC ∩ BC) − S and there exists v′ ∈ NG(v) ∩ V (AC) −
(V (BC) ∪ S) such that either:

– v′ 6∈ Y1 and |((Y1 ∩ V (AC)) ∪ (S − V (AC ∩BC))) ∩NG(v′)| > 2d− 4, or
– v′ ∈ Y1 − T ,

• (C, S, T )-heavy if v ∈ V (AC ∩BC)− S and

|NG(v) ∩ ((Y1 ∩ V (AC)− V (BC)) ∪ (S − V (AC ∩BC)))| > d− 1.

Claim 16.7. Let (C, S, T ) be a useful triple and let x ∈ V (AC ∩ BC) be a (C, S, T )-heavy
vertex. Then there exists a useful triple (C ′, S ′, T ′) with C ′ = C ∪ {(Ax, Bx)}, such that:
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• V (AC′ ∩BC′)− S ′ ⊆ V (AC ∩BC)− S,
• the set of (C ′, S ′, T ′)-heavy vertices is strictly contained in the set of (C, S, T )-heavy
vertices, and

• the set of (C ′, S ′, T ′)-dangerous vertices is a subset of the set of (C, S, T )-dangerous
vertices.

Proof. Let C ′ := C ∪ {(Ax, Bx)}. Let X := NG(x)∩ (Y1 ∪ S)∩ V (Ax ∩AC)− V (Bx ∪BC).
Since x ∈ V (Ax) − V (Bx), NG(x) ⊆ V (Ax). So |X| > |NG(x) ∩ (Y1 ∪ S) ∩ V (AC) −
V (BC)| − |V (Ax ∩ Bx ∩ AC) − V (BC)| > d − 1 − |V (Ax ∩ Bx ∩ AC) − V (BC)| since x is
(C, S, T )-heavy. That is, |V (Ax∩Bx)−V (BC)| = |V (Ax∩Bx∩AC)−V (BC)| > d−1−|X|.
Since x is (C, S, T )-heavy, x 6∈ S. Let ι be a bijection mentioned in (U3) witnessing that
(C, S, T ) is useful. Let X ′ be the intersection of X and the domain of ι.

For each y ∈ X ′, since x ∈ NG(y)∩V (AC∩BC)−S, ι(y) ∈ NG(y)∩V (AC∩BC) by (U3).
Since X ′ ⊆ X ⊆ V (Ax ∩ AC) − V (Bx ∪ BC), for each y ∈ X ′, NG(y) ⊆ V (Ax), so ι(y) ∈
NG(y)∩V (AC ∩BC) ⊆ V (Ax)∩V (AC ∩BC) ⊆ (V (AC′)−V (BC′))∪V (AC ∩BC ∩Ax∩Bx).
Let

Z1 := V (Ax ∩Bx)− V (AC)

Z2 := V (Ax ∩Bx ∩ AC ∩BC)− {ι(y) : y ∈ X ′}
Z3 := V (Ax ∩Bx ∩ AC ∩BC) ∩ {ι(y) : y ∈ X ′}.

So {Z1, Z2, Z3} is a partition of V (Ax ∩Bx ∩BC), and hence

|Z1 ∪ Z2 ∪ Z3| = |V (Ax ∩Bx ∩BC)|
= |V (Ax ∩Bx)| − |V (Ax ∩Bx)− V (BC)|
6 d− 1− |V (Ax ∩Bx)− V (BC)|.

Recall that |V (Ax∩Bx)−V (BC)| > d−1−|X|. So |Z1∪Z2∪Z3| 6 (d−1)−(d−1−|X|) =
|X|.

Let

S ′ :=
(
S∩V (Bx)−V (Ax∩Bx∩AC∩BC)

)
∪
(
V (AC′∩BC′)−V (AC∩BC)

)
∪V (Ax∩Bx∩AC∩BC).

Note that (V (AC′ ∩ BC′) − V (AC ∩ BC) ∪ V (Ax ∩ Bx ∩ AC ∩ BC) ⊆ V (Ax ∩ Bx ∩ BC) =
Z1 ∪ Z2 ∪ Z3. So

|S ′| 6 (|S ∩ V (Bx)| − |S ∩ V (Ax ∩Bx ∩ AC ∩BC)|) + |Z1 ∪ Z2 ∪ Z3|
6 |S ∩ V (Bx)| − |{y ∈ X ′ : ι(y) ∈ Z3}|+ |X|
= |S ∩ V (Bx)|+ |X − {y ∈ X ′ : ι(y) ∈ Z3}|
= |{y ∈ Y1 ∩ V (AC) : ι(y) ∈ S ∩ V (Bx)}|+ |X −X ′|+ |X ′ − {y ∈ X ′ : ι(y) ∈ Z3}|.

Recall that for every y ∈ X ′, ι(y) ∈ NG(y) ∩ V (AC ∩ BC) ∩ V (Ax). So if y ∈ X ′ − {y ∈
X ′ : ι(y) ∈ Z3}, then

ι(y) ∈ NG(y)∩V (AC∩BC)∩V (Ax)−V (Ax∩Bx∩AC∩BC) = NG(y)∩V (AC∩BC∩Ax)−V (Bx),
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so ι(y) 6∈ S ∩ V (Bx). That is, {y ∈ Y1 ∩ V (AC) : ι(y) ∈ S ∩ V (Bx)} and X ′ − {y ∈
X ′ : ι(y) ∈ Z3} are disjoint. Note that X − X ′ is disjoint from the domain of ι. So
{y ∈ Y1 ∩ V (AC) : ι(y) ∈ S ∩ V (Bx)}, X −X ′ and X ′ − {y ∈ X ′ : ι(y) ∈ Z3} are pairwise
disjoint sets. Therefore,

|S ′| 6 |{y ∈ Y1 ∩ V (AC) : ι(y) ∈ S ∩ V (Bx)} ∪ (X − {y ∈ X ′ : ι(y) ∈ Z3})|.

Since X ⊆ Y1 ∪ S and X ∩ V (Bx) = ∅, for every x ∈ X − {y ∈ X ′ : ι(y) ∈ Z3},
if x 6∈ X ∩ Y1 − {y ∈ X ′ : ι(y) ∈ Z3}, then x ∈ X ∩ S − Y1 and ι(y) = x for some
y ∈ Y1 ∩ V (AC) such that ι(y) 6∈ S ∩ V (Bx). In addition, if y is a vertex in Y1 ∩ V (AC)
such that ι(y) ∈ X ∩ S − Y1, then ι(y) 6∈ S ∩ V (Bx).

Since |S ′| 6 |{y ∈ Y1 ∩V (AC) : ι(y) ∈ S ∩V (Bx)}∪ (X −{y ∈ X ′ : ι(y) ∈ Z3})|, there
exists an injection ι′ such that

• ι′(y) = ι(y) if y is in the domain of ι and ι(y) ∈ S ∩ V (Bx),
• for each v ∈ S ′ − (S ∩ V (Bx)), there exists exactly one element y ∈ (X ∩ Y1 − {y ∈
X ′ : ι(y) ∈ Z3}) ∪ {y ∈ Y1 ∩ V (AC) : ι(y) ∈ X ∩ S − Y1} such that ι′(y) = v, and

• if ι(y1) = ι′(y2) for some y1, y2, then y1 = y2.

Recall that ι(y) 6∈ S ∩ V (Bx) for every y ∈ (X ∩ Y1 − {y ∈ X ′ : ι(y) ∈ Z3}) ∪ {y ∈ Y1 :
ι(y) ∈ X ∩ S − Y1}. Then ι′ is a bijection from a subset of Y1 ∩ V (AC′) to S ′. We further
modify ι′ and S ′ by applying the following operations for some vertex y ∈ V (AC′)−V (BC′)
in the domain of ι′ with ι′(y) 6∈ NG(y)∩ V (AC′ ∩BC′) and NG(y)∩ V (AC′ ∩BC′)−S ′ 6= ∅,
and then repeating until no such vertex y exists:

• add a vertex v ∈ NG(y) ∩ V (AC′ ∩BC′)− S ′ into S ′,
• delete ι′(y) from S ′, and
• redefine ι′(y) to be v.”

Now, further modify ι′ and S ′ by applying the following operations for some vertex z ∈
S ′ −NG[V (AC′ ∩BC′)], and repeating until no such vertex z exists:

• remove z from S ′, and
• if y is the element in the domain of ι′ with ι′(y) = z, then remove y from the domain
of ι′.

Notice that for each vertex z removed from S ′ in the above procedure, z ∈ S−V (AC ∩
BC) and NG(z) ∩ V (AC ∩ BC) ⊆ V (AC ∩ BC) − V (Bx). Note that ι′ remains a bijection
from a subset of Y1 ∩ V (AC′) to S ′.

Observe that for every y in the domain of ι′ with y ∈ V (A′C) − V (B′C) and NG(y) ∩
V (AC′ ∩ BC′) − S ′ 6= ∅, ι′(y) ∈ NG(y) ∩ V (AC′ ∩ BC′) due to the above modification. In
addition, if y is in the domain of ι′ and y ∈ V (AC′ ∩ BC′), then y ∈ V (AC ∩ BC) and y is
in the domain of ι such that ι(y) = ι′(y), so ι′(y) = ι(y) = y.

Let T ′ be the set obtained from T by deleting the domain of ι′. So T ′ is disjoint from
the domain of ι′. Since T is disjoint from Z ′, T ′ is disjoint from Z ′. So (C ′, S ′, T ′) satisfies
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(U4). In addition, |S ′| − |S| is at most the number of vertices in X and in the domain
of ι′ but not in the domain of ι. So |S ′| − |S| 6 |T | − |T ′|. Hence |S ′|+ |T ′| 6 |S|+ |T |.
Since {y ∈ Y1 ∩ S ∩ V (AC ∩ BC) : ι(y) = y} − {y ∈ Y1 ∩ S ′ ∩ V (AC′ ∩ BC′) : ι′(y) = y} ⊆
(V (AC′)− V (BC′))− (V (AC)− V (BC)), (C ′, S ′, T ′) satisfies (U3) and is useful.

It is easy to see that V (AC′ ∩ BC′) − S ′ ⊆ V (AC ∩ BC) − S. Note that each vertex
v ∈ V (AC′ ∩ BC′) − S ′ belongs to V (AC ∩ BC) − V (Ax), so NG(v) ∩ V (AC′) − V (BC′) =
NG(v)∩V (AC)−V (BC). Furthermore, S ′−V (AC′ ∩BC′) ⊆ S−V (AC ∩BC). Hence every
(C ′, S ′, T ′)-heavy vertex is (C, S, T )-heavy. Since x is (C, S, T )-heavy but not (C ′, S ′, T ′)-
heavy, the set of (C ′, S ′, T ′)-heavy vertices is strictly contained in the set of (C, S, T )-heavy
vertices.

Let v be a (C ′, S ′, T ′)-dangerous vertex and let v′ be a vertex in NG(v) ∩ V (AC′) −
(V (BC′) ∩ S ′) witnessing the definition of being dangerous. Since v 6∈ S ′, v ∈ V (AC ∩
BC)− V (Ax), so v′ ∈ NG[V (AC ∩ BC)] ∩ V (AC) ∩ V (Bx). So v′ ∈ V (Bx)− (V (BC) ∪ S ′).
Since v ∈ V (AC′ ∩ BC′), v′ ∈ NG(v) ∩ NG[V (AC′ ∩ BC′)]. Since v′ 6∈ S ′ and v′ 6∈ V (AC ∩
BC) − V (AC′ ∩ BC′) and v′ ∈ V (Bx) and NG(v′) ∩ V (AC ∩ BC) − V (Ax) 6= ∅, we know
v′ 6∈ S by the procedure of modifying S. So v′ ∈ (NG(v)∩V (AC)− (V (BC)∪S))∩V (Bx).
Note that T − T ′ ⊆ V (Ax) − V (Bx). So if v′ ∈ Y1 − T ′, then v′ ∈ Y1 − T and v is
(C, S, T )-dangerous. Furthermore, Y1 ∩ V (AC) ∩ NG(v′) = Y1 ∩ V (AC′) ∩ NG(v′) and
S ′ − V (AC′ ∩ BC′) ⊆ S − V (AC ∩ BC), so v is (C, S, T )-dangerous. Therefore, the set of
(C ′, S ′, T ′)-dangerous vertices is a subset of the set of (C, S, T )-dangerous vertices. This
proves the claim.

Claim 16.8. Let (C, S, T ) be a useful triple. Then there exists a set S ′ with S ∪ (Y1 ∩
V (AC ∩BC)) ⊆ S ′ ⊆ NG[V (AC ∩BC)] ∩ V (AC) such that (C, S ′, T ) is a useful triple and:

• If ι′ is the bijection witnessing that (C, S ′, T ) satisfies (U3), then for every y ∈
Y1 ∩ V (AC ∩BC), the unique element of the domain of ι′ mapped to y by ι′ is y.

• The set of (C, S ′, T )-dangerous vertices is contained in the set of (C, S, T )-dangerous
vertices.

• The set of (C, S ′, T )-heavy vertices is contained in the set of (C, S, T )-heavy vertices.

Proof. Let ι be a function mentioned in (U3) witnessing that (C, S, T ) is a useful triple.
We may assume that Y1∩V (AC ∩BC) ⊆ S, since if some vertex y ∈ Y1∩V (AC ∩BC) does
not belong to S, then y is not in the domain of ι, and we can define ι(y) = y without
violating (U3) and (U4) such that the set of dangerous vertices and the set of heavy
vertices remain the same.

Since ι is a bijection, we write the element mapped to y by ι as ι(−1)(y). Modify ι
and S by applying the following operations to some vertex y ∈ Y1 ∩ S ∩ V (AC ∩BC) with
ι(−1)(y) 6= y, and repeat until no such y exists:

• remove ι(−1)(y) from the domain of ι,
• define ι(y) := y,

Then define S ′ and ι′ to be the modified S and ι, respectively. Clearly, (C, S ′, T )
satisfies (U3), S ⊆ S ′ ⊆ NG[V (AC ∩ BC)] ∩ V (AC), and ι′(y) = y for every y ∈ Y1 ∩ S ′ ∩
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V (AC ∩BC). Since we assume that Y1∩V (AC ∩BC) ⊆ S, we have S∪ (Y1∩V (AC ∩BC)) ⊆
S ′ ⊆ NG[V (AC ∩ BC)] ∩ V (AC) and ι′(y) = y for every y ∈ Y1 ∩ V (AC ∩ BC). Since
T ⊆ V (AC) − V (BC), (C, S ′, T ) satisfies (U4). Since S ′ − S ⊆ V (AC ∩ BC), the set of
(C, S ′, T )-dangerous vertices is contained in the set of (C, S, T )-dangerous vertices, and
the set of (C, S ′, T )-heavy vertices is contained in the set of (C, S, T )-heavy vertices.

Claim 16.9. Let (C, S, T ) be a useful triple, and let x be a (C, S, T )-dangerous vertex.
If there exists no (C, S, T )-heavy vertex, then there exists a useful triple (C ′, S ′, T ′) with
C ′ = C ∪{(Ax, Bx)} such that the set of (C ′, S ′, T ′)-dangerous vertices is strictly contained
in the set of (C, S, T )-dangerous vertices.

Proof. By Claim 16.8, we may assume that Y1 ∩ V (AC ∩ BC) ⊆ S and the function ι
mentioned in (U3) witnessing that (C, S, T ) is useful satisfies ι(y) = y for every y ∈
Y1 ∩ V (AC ∩BC). Let C ′ := C ∪ {(Ax, Bx)}.

We first assume that |Y1 ∩ V (Ax ∩ BC)| > d − 2. So |Y1 ∩ V (Ax ∩ BC)| > |V (Ax ∩
Bx)∩ V (BC)| by Claim 16.5. Hence there exists a function ι′ whose domain is a subset of
Y1 ∩ V (AC ∪ Ax) such that:

• ι′(y) = ι(y) for every y ∈ Y1 ∩ V (AC) − V (Ax ∩ BC) belonging to the domain of ι
with ι(y) ∈ V (AC) ∩NG[V (AC′ ∩BC′)]− V (Ax), and

• for each vertex v in V (Ax ∩ Bx) ∩ V (BC), there exists exactly one element y ∈
Y1 ∩ V (Ax ∩BC) such that ι′(y) = v and if v ∈ Y1, then y = v.

Let S ′ := (S ∩NG[V (AC′ ∩BC′)]− V (Ax)) ∪ V (Ax ∩Bx ∩BC). So ι′ is a bijection from a
subset of Y1 ∩ V (AC ∪Ax) to S ′. Note that every vertex in S ′− V (AC′ ∩BC′) is contained
in S − (V (Ax) ∪ V (AC′ ∩BC′)), so it is adjacent to some vertex in V (AC′ ∩BC′).

Let T ′ := T . Since ι satisfies (U3) and ι(y) = y for every y ∈ Y1 ∩S ∩ V (AC ∩BC), we
know that ι′ satisfies (U3). Since T ′ = T ⊆ V (AC)− V (BC), (C ′, S ′, T ′) satisfies (U4). So
(C ′, S ′, T ′) is a useful triple.

Let v be a (C ′, S ′, T ′)-dangerous vertex. So v ∈ V (AC′∩BC′)−S ′ ⊆ V (AC∩BC)−V (Ax).
Let v′ be a vertex witnessing that v is (C ′, S ′, T ′)-dangerous. So v′ ∈ V (Bx)−(V (BC)∪S ′)
and NG(v′) ⊆ V (AC). Since v ∈ V (AC′ ∩BC′)− V (Ax), v′ ∈ NG[V (AC′ ∩BC′)], so v′ 6∈ S.
Since S ′− V (AC′ ∩BC′) ⊆ S − V (AC ∩BC), if v′ 6∈ Y1 and |((Y1 ∩ V (AC′))∪ (S ′− V (AC′ ∩
BC′)))∩NG(v′)| > 2d−4, then v′ 6∈ Y1 and |((Y1∩V (AC))∪ (S−V (AC∩BC)))∩NG(v′)| >
2d− 4, so v is (C, S, T )-dangerous. Since T ′ = T , if v′ ∈ Y1 − T ′, then v′ ∈ Y1 − T and v
is (C, S, T )-dangerous. So every (C ′, S ′, T ′)-dangerous vertex is (C, S, T )-dangerous. Since
x is (C, S, T )-dangerous but not (C ′, S ′, T ′)-dangerous, the set of (C ′, S ′, T ′)-dangerous
vertices is strictly contained in the set of (C, S, T )-dangerous vertices. So the claim holds.

Hence we may assume that |Y1 ∩ V (Ax ∩BC)| 6 d− 3.
Modify S and define ι′ to be the function obtained from ι by applying the following

operations to a vertex y in the domain of ι with ι(y) 6∈ NG[V (AC′ ∩ BC′)] ∩ V (AC′), and
repeating until no such y exists:

• if y ∈ V (AC ∩ BC) − V (Bx) or V (Ax ∩ Bx) ∩ V (BC) − S = ∅, then remove y from
the domain of ι and remove ι(y) from S,
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• if y 6∈ V (AC ∩ BC) − V (Bx) and NG(y) ∩ V (AC′ ∩ BC′) − S = ∅ and V (Ax ∩ Bx) ∩
V (BC)−S 6= ∅, then redefine ι(y) to be an element in V (Ax ∩Bx)∩V (BC)−S and
add this element into S,

• otherwise remove ι(y) from S, redefine ι(y) to be an element in NG(y) ∩ V (AC′ ∩
BC′)− S and add this element into S.

Let S ′ be the modified S, and let

T ′ := T ∪ (Y1 ∩ V (BC)− V (AC ∪Bx))∪ (Y1 ∩ V (AC ∩BC)− (V (Bx)∪NG[V (AC′ ∩BC′)])).

Clearly, T ′ is disjoint from the domain of ι′. By (U2), Z ′∩V (BC) = ∅. So T ′ is disjoint
from Z ′ as T is disjoint from Z ′. So (C ′, S ′, T ′) satisfies (U4).

Since Y1∩V (AC∩BC) ⊆ S, we know Y1∩V (AC∩BC)−(V (Bx)∪NG[V (AC′∩BC′)]) ⊆ S.
For every y ∈ Y1∩V (AC∩BC)− (V (Bx)∪NG[V (AC′ ∩BC′)]), since ι(y) = y 6∈ NG[V (AC′ ∩
BC′)] ∩ V (AC′) and y ∈ V (AC ∩BC)− V (Bx), y ∈ S − S ′.

So |S| > |S ′|+ |Y1 ∩ V (AC ∩ BC)− (V (Bx) ∪NG[V (AC′ ∩ BC′)])|. Hence |S ′|+ |T ′| 6
|S|+ |T |+ |Y1 ∩ V (BC)− V (AC ∪Bx)|. Since Y1 ∩ V (BC)− V (AC ∪Bx) ⊆ Y1 ∩ (V (AC′)−
V (BC′))− V (AC) and (C, S, T ) satisfies (U3), we know

|S ′|+ |T ′|+ |Z|+ 1

6 |S|+ |T |+ |Y1 ∩ V (BC)− V (AC ∪Bx)|+ |Z|+ 1

6 |Y1 ∩ V (AC)− V (BC)|+ |{y ∈ Y1 ∩ S ∩ V (AC ∩BC) : ι(y) = y}|
+ |Y1 ∩ (V (AC′)− V (BC′))− V (AC)|

6 |Y1 ∩ V (AC′)− V (BC′)| − |Y1 ∩ V (AC ∩BC)− V (Bx)|
+ |{y ∈ Y1 ∩ S ∩ V (AC ∩BC) : ι(y) = y}|

6 |Y1 ∩ V (AC′)− V (BC′)|+ |{y ∈ Y1 ∩ S ∩ V (AC ∩BC) ∩ V (Bx) : ι(y) = y}|
6 |Y1 ∩ V (AC′)− V (BC′)|+ |{y ∈ Y1 ∩ S ′ ∩ V (AC′ ∩BC′) : ι′(y) = y}|.

Hence (C ′, S ′, T ′) satisfies (U3). Therefore (C ′, S ′, T ′) is useful.
Suppose that the set of (C ′, S ′, T ′)-dangerous vertices is not strictly contained in the

set of (C, S, T )-dangerous vertices. Since x is (C, S, T )-dangerous but not (C ′, S ′, T ′)-
dangerous, there exists a vertex v that is (C ′, S ′, T ′)-dangerous but not (C, S, T )-dangerous.
So there exists a vertex v′ ∈ NG(v)∩V (AC′)− (V (BC′)∪S ′) such that either v′ ∈ Y1−T ′,
or v′ 6∈ Y1 and |((Y1 ∩ V (AC′)) ∪ (S ′ − V (AC′ ∩ BC′)) ∩ NG(v′)| > 2d − 4. Since v′ ∈
NG[V (AC′ ∩ BC′)] ∩ V (AC′), if v′ belongs to S at beginning, then v′ is not removed from
S during the process of modifying S, so v′ ∈ S ′, a contradiction. So v′ 6∈ S.

Suppose that v′ ∈ V (AC)−V (BC). So v ∈ V (AC ∩BC)∩V (AC′ ∩BC′) ⊆ V (AC ∩BC)∩
V (Bx). Hence if v belongs to S at beginning, then v is not removed from S during the
process of modifying S, so v ∈ S ′. Since v is (C ′, S ′, T ′)-dangerous, v 6∈ S ′, so v 6∈ S. Since
v is not (C, S, T )-dangerous, v′ 6∈ Y1−T , and either v′ ∈ Y1 or |((Y1∩V (AC))∪(S−V (AC∩
BC)))∩NG(v′)| < 2d−4. Since T ′∩V (AC)−V (BC) = T∩V (AC)−V (BC), v′ 6∈ Y1−T ′. Since
v is (C ′, S ′, T ′)-dangerous, v′ 6∈ Y1 and |((Y1 ∩ V (AC′)) ∪ (S ′ − V (AC′ ∩BC′))) ∩NG(v′)| >
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2d− 4. Since NG(v′) ⊆ V (AC) and S ′ − V (AC′ ∩BC′) ⊆ S − V (AC ∩BC),

2d− 4 6 |((Y1 ∩ V (AC′)) ∪ (S ′ − V (AC′ ∩BC′))) ∩NG(v′)|
= |((Y1 ∩ V (AC)) ∪ (S ′ − V (AC′ ∩BC′))) ∩NG(v′)|
6 |((Y1 ∩ V (AC)) ∪ (S − V (AC ∩BC))) ∩NG(v′)|
< 2d− 4,

a contradiction.
Therefore, v′ ∈ V (BC). So v′ ∈ (V (Ax)−V (Bx))∩V (BC) and hence NG(v′) ⊆ V (Ax).

Since Y1 ∩ V (AC ∩ BC) ⊆ S, if v′ ∈ Y1 ∩ V (AC ∩ BC), then v′ ∈ S, a contradiction. So
v′ 6∈ Y1 ∩ V (AC ∩ BC). Since Y1 ∩ V (BC) − V (AC ∪ Bx) ⊆ T ′, if v′ ∈ Y1 − T ′, then
v′ ∈ Y1 ∩ V (AC ∩ BC), a contradiction. So v′ 6∈ Y1 − T ′. Since v is (C ′, S ′, T ′)-dangerous,
|((Y1∩V (AC′))∪ (S ′−V (AC′ ∩BC′)))∩NG(v′)| > 2d− 4. Since |Y1∩V (Ax∩BC)| 6 d− 3
and (S ′ − V (AC′ ∩BC′))− (V (AC) ∪ V (Bx)) = ∅ and NG(v′) ⊆ V (Ax),

|NG(v′) ∩ ((Y1 ∩ V (AC)− V (BC)) ∪ (S − V (AC ∩BC))|
> |NG(v′) ∩ ((Y1 ∩ V (Ax)− V (BC)) ∪ (S ′ − V (AC′ ∩BC′))|
> |NG(v′) ∩ ((Y1 ∩ V (Ax)) ∪ (S ′ − (V (AC′ ∩BC′))))| − (d− 3)

= |NG(v′) ∩ (Y1 ∪ (S ′ − (V (AC′ ∩BC′))))| − (d− 3)

> (2d− 4)− (d− 3)

= d− 1.

In particular, v′ ∈ V (AC ∩ BC) − V (Bx). Since there exists no (C, S, T )-heavy vertex, v′
is not a (C, S, T )-heavy vertex. So v′ ∈ S, a contradiction. This proves the claim.

Claim 16.10. If (C, S, T ) is a useful triple such that there exists a (C, S, T )-dangerous
vertex, then there exists a useful triple (C ′, S ′, T ′) with C ⊆ C ′ and |C ′| 6 |C| + |V (AC ∩
BC)|+ 1 such that the set of (C ′, S ′, T ′)-dangerous vertices is strictly contained in the set
of (C, S, T )-dangerous vertices.

Proof. Note that there are at most |V (AC ∩ BC)| (C, S, T )-heavy vertices. By repeatedly
applying Claim 16.7 at most |V (AC ∩ BC)| times, there exists a useful triple (C1, S1, T1)
with C ⊆ C1 and |C1| 6 |C| + |V (AC ∩ BC)| such that there exists no (C1, S1, T1)-heavy
vertices, and the set of (C1, S1, T1)-dangerous vertices is contained in the set of (C, S, T )-
dangerous vertices. By Claim 16.9 applied to C1, there exists a useful triple (C ′, S ′, T ′)
with C1 ⊆ C ′ and |C ′| = |C1|+ 1 6 |C|+ |V (AC ∩BC)|+ 1 such that the set of (C ′, S ′, T ′)-
dangerous vertices is strictly contained in the set of (C1, S1, T1)-dangerous vertices and
hence is strictly contained in the set of (C, S, T )-dangerous vertices. This proves the
claim.

Claim 16.11. There exists a useful triple (C∗, S∗, T ∗) with |C∗| 6 a(d−1)a0 such that there
exists no (C∗, S∗, T ∗)-dangerous vertex.
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Proof. By Claim 16.6, there exists a useful triple (C0, ∅, ∅) with |C0| 6 |Z ′|d2 + |Z| + 1.
Let S0 = ∅ and T0 = ∅. So (C0, S0, T0) is a useful triple with |C0| 6 f(ξ)d2 + ξ + 1 = a0.
For i > 1, if there exists a (Ci−1, Si−1, Ti−1)-dangerous vertex, then by Claim 16.10, there
exists a useful triple (Ci, Si, Ti) such that |Ci| 6 |Ci−1|+|V (ACi−1

∩BCi−1
)|+1 and the set of

(Ci, Si, Ti)-dangerous vertices is strictly contained in the set of (Ci−1, Si−1, Ti−1)-dangerous
vertices. So |Ci| 6 ai−1 + (d − 1)ai−1 + 1 6 ai for each i > 1 by induction on i. Since
there are at most |V (AC0 ∩BC0)| 6 |C0|(d− 1) 6 (d− 1)a0 (C0, S0, T0)-dangerous vertices.
Hence there exists i∗ with 0 6 i∗ 6 (d−1)a0 such that (Ci∗ , Si∗ , Ti∗) is a useful triple with
no (Ci∗ , Si∗ , Ti∗)-dangerous vertex. Note that |Ci∗| 6 ai∗ 6 a(d−1)a0 .

Let ι∗ be the function mentioned in (U3) witnessing that (C∗, S∗, T ∗) is useful. By
Claim 16.8, we may assume that Y1 ∩ V (AC∗ ∩ BC∗) ⊆ S∗ such that ι∗(y) = y for every
y ∈ Y1 ∩ V (AC∗ ∩BC∗).

Define the following:

GB := G[(
⋂

(A,B)∈C∗
V (B)) ∪ (Z ∪ S∗ ∪ T ∗)]

YB := (Y1 ∩ V (BC∗)) ∪ (Z ∪ S∗ ∪ T ∗).

Claim 16.12. For every vertex v ∈ V (GB)− YB, NG(v) ∩ Y1 ⊆ NGB
(v) ∩ YB.

Proof. Suppose to the contrary that there exist v ∈ V (GB) − YB and y ∈ NG(v) ∩ Y1 −
(NGB

(v)∩YB). Since y ∈ Y1−YB, y ∈ V (AC∗)−V (BC∗). So v ∈ V (AC∗ ∩BC∗)−S∗. Since
there exists no (C∗, S∗, T ∗)-dangerous vertex, v is not a (C∗, S∗, T ∗)-dangerous vertex.
Since y ∈ NG(v)∩V (AC∗)− (V (BC∗)∪S∗), y 6∈ Y1−T ∗. Since y ∈ Y1, y ∈ T ∗. So y ∈ YB,
a contradiction.

Define the following:

• For every y ∈ YB, let LB(y) be a 1-element subset of L(y).
• For every v ∈ V (GB) − YB with |NGB

(v) ∩ YB| ∈ [s′ − 1], let LB(v) be a subset
of L(v) with size s′ + 2 − |NGB

(v) ∩ YB| such that LB(v) ∩ LB(u) = ∅ for every
u ∈ NG(v) ∩ YB. (Note that such a subset of L(v) exists by Claim 16.12.)

• For every other vertex v of GB, let LB(v) := L(v).

Hence LB is a restricted (s′, 2, YB)-list-assignment by Claim 16.12. Since (C∗, S∗, T ∗) is
useful and ι∗(y) = y for every y ∈ Y1 ∩ V (AC∗ ∩BC∗),

|YB| 6 |Y1 ∩ V (BC∗)|+ |S∗| − |Y1 ∩ V (AC∗ ∩BC∗)|+ |Z|+ |T ∗|
6 (|Y1| − |Y1 ∩ V (AC∗)− V (BC∗)|) + |S∗| − |Y1 ∩ V (AC∗ ∩BC∗)|+ |Z|+ |T ∗|
6 |Y1| − 1

by (U3).
Since |YB| < |Y1|, we know |V (GB)| < |V (G)|. By the minimality of |V (G)|, there

exists an (η, g)-bounded LB-coloring cB of GB. Define the following:
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• Let GA := G[V (AC∗) ∪ Z].
• Let YA := (Y1 ∩ V (AC∗)) ∪ Z ∪ S∗ ∪ T ∗ ∪ V (AC∗ ∩BC∗).
• For every y ∈ YA, let LA(y) be a 1-element subset of L(y) such that if y ∈ V (GB),

then LA(y) = {cB(y)}.
• For every v ∈ V (GA) − YA with 1 6 |NGA

(v) ∩ YA| 6 s′ − 1, let LA(v) be a subset
of L(v) with size s′ + 2 − |NGA

(v) ∩ YA| such that LA(v) ∩ LA(u) = ∅ for every
u ∈ YA ∩NGA

(v).
• For every other vertex v of GA, let LA(v) := L(v).

Then LA is a restricted (s′, 2, YA)-list-assignment of GA. Since |C∗| 6 a(d−1)a0 , |V (AC∗ ∩
BC∗)| 6 (d− 1)a(d−1)a0 < θ− ξ. So (AC∗ , BC∗) ∈ T −Z and hence |Y1 ∩ V (AC∗)| 6 3θ. By
(U3), |S∗|+|T ∗|+|Z| 6 |Y1∩V (AC∗)−V (BC∗)|+|Y1∩V (AC∗∩BC∗)| 6 |Y1∩V (AC∗)| 6 3θ.
Hence |YA| 6 |Y1 ∩ V (AC∗)|+ |S∗|+ |T ∗|+ |Z|+ |V (AC∗ ∩BC∗)| 6 3θ + 3θ + θ 6 7θ.

In particular, |V (GA)| < |V (G)|. By minimality, there exists an (η, g)-bounded LA-
coloring cA of GA.

Claim 16.13. For every v ∈ V (GA)− (V (GB)∪Y1) with NG(v)∩V (AC∗ ∩BC∗)−S∗ 6= ∅,
cB(u) 6∈ LA(v) for every u ∈ NG(v) ∩ V (GB).

Proof. Since v ∈ V (GA) − (V (GB) ∪ Y1), v ∈ V (G) − (Z ∪ V (BC∗)). So there exists
(A,B) ∈ C∗ such that v ∈ V (A) − V (B). Hence NG(v) ⊆ V (A) and |NG(v) ∩ V (AC∗ ∩
BC∗)| 6 |NG(v) ∩ V (A ∩B)| 6 d− 1.

Since v ∈ NG(AC∗ ∩BC∗) and C∗ satisfies (U2), v 6∈ Z ′. So |NG(v) ∩ Z| 6 s− 1.
Since NG(v)∩V (AC∗∩BC∗)−S∗ 6= ∅, there exists w ∈ NG(v)∩V (AC∗∩BC∗)−S∗. Since

there exists no (C∗, S∗, T ∗)-dangerous vertex, w is not a (C∗, S∗, T ∗)-dangerous vertex.
Since S∗ ⊆ V (GB), v 6∈ S∗. Since v 6∈ Y1, v 6∈ Y1−T ∗. So |NG(v)∩ ((Y1∩V (AC∗))∪ (S∗−
V (AC∗ ∩BC∗)))| 6 2d− 5.

Since T ∗ ⊆ Y1 ∩ V (AC∗),

|NG(v) ∩ YA|
6 |NG(v) ∩ V (AC∗ ∩BC∗)|+ |NG(v) ∩ Z|+ |NG(v) ∩ ((Y1 ∩ V (AC∗)) ∪ (S∗ − V (AC∗ ∩BC∗)))|
6 (d− 1) + (s− 1) + (2d− 5)

= 3d+ s− 7 = s′ − 1.

So by the definition of LA, LA(v)∩{cB(u)} = LA(v)∩LA(u) = ∅ for every u ∈ YA∩V (GB)∩
NG(v). Since NG(v) ∩ V (GB) ⊆ YA, cB(u) 6∈ LA(v) for every u ∈ NG(v) ∩ V (GB).

Let c be the L-coloring of G defined by c(v) := cA(v) if v ∈ V (GA), and c(v) := cB(v)
if v ∈ V (G)− V (GA).

Claim 16.14. Let M be a monochromatic c-component intersecting both V (GA)−V (GB)
and V (GB)−V (GA). Then every component of M ∩GA intersects YA, and every compo-
nent of M ∩GB intersects YB.
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Proof. Since M intersects both V (GA)− V (GB) and V (GB)− V (GA), every component
of M ∩GA intersects V (AC∗ ∩BC∗) ∪ Z ∪ S∗ ∪ T ∗ ⊆ YA.

Let MB be a component of M ∩ GB. Suppose that MB is disjoint from YB = (Y1 ∩
V (BC∗)) ∪ Z ∪ S∗ ∪ T ∗. Since M intersects both V (GA) − V (GB) and V (GB) − V (GA),
there exist u ∈ V (MB)∩V (AC∗∩BC∗)−S∗ and v ∈ NMB

(v)∩V (AC∗)−(V (BC∗)∪S∗∪T ∗).
Since u is not a (C∗, S∗, T ∗)-dangerous vertex, v 6∈ Y1 − T ∗. Since v 6∈ T ∗, v 6∈ Y1. So
v ∈ V (GA)− (V (GB) ∪ Y1) and NG(v) ∩ V (AC∗ ∩BC∗)− S∗ ⊇ {u} 6= ∅. By Claim 16.13,
c(v) = cA(v) 6= cB(u) = c(u). But M is a monochromatic c-component, a contradiction.
Hence every component of M ∩GB intersects YB.

Let UA be the union of the monochromatic cA-components of GA intersecting YA. Let
UB be the union of the monochromatic cB-components of GB intersecting YB. Since cA
and cB are (η, g)-bounded, |V (UA)∪V (UB)| 6 |YA|2g(|YA|) + |YB|2g(|YB|) 6 (7θ)2g(7θ) +
(|Y1| − 1)2g(|Y1| − 1) 6 g(|Y1|).

Since V (G) ⊆ V (GA) ∪ V (GB), by Claim 16.14, every monochromatic c-component
intersecting both V (GA)−V (GB) and V (GB)−V (GA) is contained in UA∪UB and hence
contains at most g(|Y1|) 6 η2g(η) vertices. Let M be a monochromatic c-component. If
V (M) ⊆ V (GA), then M is a monochromatic cA-component with at most η2g(η) vertices
since cA is (η, g)-bounded. If V (M) ⊆ V (GB), thenM is a monochromatic cB-component
with at most η2g(η) vertices since cB is (η, g)-bounded. Hence every monochromatic
c-component contains at most η2g(η) vertices.

Since Y1 ⊆ YA ∪ YB, by Claim 16.14, the union of the monochromatic c-components
intersecting Y1 is contained in UA ∪ UB, so it contains at most g(|Y1|) 6 |Y1|2g(|Y1|)
vertices. Therefore, c is an (η, g)-bounded L-coloring of G, a contradiction. This proves
the theorem.

4 Excluding Almost (6 1)-Subdivisions

Recall that an almost (6 1)-subdivision of a graph H is a graph obtained from H by
subdividing edges such that at most one edge is subdivided more than once. The following
simple observation is useful.

Lemma 17. For s ∈ N, let G be a graph and let H be a subgraph of G isomorphic to
Ks−1,t for some t >

(
s−1
2

)
+ 2. Let (X,Z) be the bipartition of H with |X| = s − 1. If

G does not contain an almost (6 1)-subdivision of Ks+1, then each component of G−X
contains at most one vertex in Z, and G−X has at least two components.

Proof. Let C1, C2, . . . , Ck be the components of G−X. For each i ∈ [k], |V (Ci)∩Z| 6 1,
as otherwise G[X ∪Z] together with a path in Ci connecting two vertices in V (Ci)∩Z is
an almost (6 1)-subdivision of Ks+1, a contradiction. Hence k > |Z| > t > 2.

The following lemma shows that a result for graphs excluding a Ks,t subgraph can be
extended for graphs excluding an almost (6 1)-subdivision of Ks+1. Let s, r ∈ N. Let G
be a graph and Y1 ⊆ V (G). An (s, r, Y1)-list-assignment of G is said to be faithful if for
every v ∈ V (G)− Y1 with |NG(v) ∩ Y1| = s, we have L(v)−

⋃
y∈Y1∩NG(v) L(y) 6= ∅.
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Lemma 18. Let G be a subgraph-closed family of graphs. Let β, r be functions with
domain N such that β(x) > x and r(x) ∈ N for every x ∈ N.

Assume that for every s ∈ N, there exist η ∈ N and a nondecreasing function g such
that for every G ∈ G with no Ks,ts subgraph, where ts := max{

(
s
2

)
+ 2, s + 2}, for every

Y1 ⊆ V (G) with |Y1| 6 η, and for every (β(s), r(s), Y1)-list-assignment L of G, there
exists an (η, g)-bounded L-coloring of G.

Then for every s ∈ N with s > 2, there exist η∗ ∈ N and a nondecreasing function
g∗ such that for every graph G ∈ G with no almost (6 1)-subdivision of Ks+1, for every
Y1 ⊆ V (G) with |Y1| 6 η∗, and for every faithful (β(s− 1), r(s− 1), Y1)-list-assignment L
of G, there exists an (η∗, g∗)-bounded L-coloring of G.

Proof. For every s ∈ N, let ηs be the number and gs be the function such that for every
G ∈ G with no Ks,ts subgraph, every Y1 ⊆ V (G) with |Y1| 6 ηs and every (β(s), r(s), Y1)-
list-assignment of G, there exists an (ηs, gs)-bounded L-coloring of G. For every s ∈ N
with s > 2, let η∗s := ηs−1 and let g∗s be the function defined by g∗s(0) := gs−1(0) and
g∗s(x) := gs−1(x) + η∗s · g∗s(x− 1) for every x ∈ N.

Fix s ∈ N − {1}. Let β′ := β(s − 1) and r′ := r(s − 1). We shall prove that for
every graph G in G with no almost (6 1)-subdivision of Ks+1, for every Y1 ⊆ V (G)
with |Y1| 6 η∗s , and for every faithful (β′, r′, Y1)-list-assignment L of G, there exists an
(η∗s , g

∗
s)-bounded L-coloring of G.

Suppose to the contrary that G is a graph in G with no almost (6 1)-subdivision of
Ks+1, Y1 is a subset of V (G) with |Y1| 6 η∗s , and L is a faithful (β′, r′, Y1)-list-assignment
of G such that there exists no (η∗s , g

∗
s)-bounded L-coloring of G. We further assume that

|V (G)| is as small as possible.
Since η∗s = ηs−1 and g∗s > gs−1, there exists no (ηs−1, gs−1)-bounded L-coloring of G.

Since η∗s = ηs−1, by the definition of ηs−1 and gs−1, G contains a Ks−1,ts−1 subgraph. Let
t′ be the maximum integer such that G contains a Ks−1,t′ subgraph. So t′ > ts−1. Let H
be a subgraph of G isomorphic to Ks−1,t′ . Let {P,Q} be the bipartition of H such that
|P | = s− 1 and |Q| = t′. By the maximality of t′, Q is the set of all vertices of V (G)−P
adjacent in G to all vertices in P .

Claim 18.1. Every component of G− P contains some vertex in Y1.

Proof. Suppose to the contrary that there exists a component C of G − P disjoint from
Y1. By Lemma 17, G− P contains at least two components and there exists at most one
vertex in C adjacent in G to all vertices in P . By the minimality of G, there exists an
(η∗s , g

∗
s)-bounded L|V (G)−V (C)-coloring c of G− V (C).

Since β′ > s − 1 and L is an (β′, r′, Y1)-list-assignment and V (C) ∩ Y1 = ∅, for every
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v ∈ V (C) with |NG(v) ∩ Y1| 6 β′ − 1, we have L(v) ∩
⋃
y∈NG(v)∩Y1 L(y) = ∅ and

|L(v)− {c(y) : y ∈ NG(v) ∩ P}|
> |L(v)| − |{c(y) : y ∈ NG(v) ∩ P − Y1}|
= β′ + r′ − |NG(v) ∩ Y1| − |{c(y) : y ∈ NG(v) ∩ P − Y1}|
= β′ + r′ − |NG(v) ∩ Y1 ∩ P | − |{c(y) : y ∈ NG(v) ∩ P − Y1}|
> β′ + r′ − |NG(v) ∩ P |
> β′ + r′ − (s− 1)

> 1.

For every v ∈ V (C) with |NG(v) ∩ Y1| > β′,

|NG(v) ∩ P | > |NG(v) ∩ Y1| > β′ = β(s− 1) > s− 1,

implying P ⊆ Y1 and |NG(v) ∩ Y1| = β′, so L(v) − {c(y) : y ∈ NG(v) ∩ P} = L(v) −⋃
y∈NG(v)∩Y1 L(y) 6= ∅ since L is faithful. So for every v ∈ V (C), L(v) − {c(y) : y ∈

NG(v) ∩ P} 6= ∅.
Let L′ be the following list-assignment of G[V (C) ∪ P ]:

• For every v ∈ P , let L′(v) := {c(v)}.
• For every v ∈ V (C) with |NG(v) ∩ P | > β′, let L′(v) be a 1-element subset of
L(v)−

⋃
u∈P L

′(u).
• Let Y ′1 := P ∪ {v ∈ V (C) : |NG(v) ∩ P | > β′}.
• For every v ∈ V (C)∩N<β′(Y ′1), let L′(v) be a subset of L(v)−

⋃
y∈NG(v)∩Y ′1

L′(y) of
size |L(v)| − |NG(v) ∩ Y ′1 − Y1| = β′ + r′ − |NG(v) ∩ Y ′1 | > r′ + 1.

• For every v ∈ V (C)∩N<β′(P )−N<β′(Y ′1), let L′(v) be a subset of L(v)−
⋃
y∈NG(v)∩P L

′(y)

of size |L(v)| − |NG(v) ∩ P − Y1| = β′ + r′ − |NG(v) ∩ P | > r′ + 1.
• For every v ∈ V (C)− (Y ′1 ∪N<β′(Y ′1) ∪N<β′(P )), let L′(v) := L(v).

Note that Y ′1 −P consists of the vertex in V (C) adjacent in G to all vertices in P . Hence
for every v ∈ V (C)∩NG(P )− Y ′1 , |NG(v)∩P | ∈ [β′− 1]. That is, V (C)∩NG(P )− Y ′1 =
V (C) ∩ N<β′(P ). So for every v ∈ V (C) ∩ NG(P ) − Y ′1 , L′(v) ∩ L′(u) = ∅ for every
u ∈ P ∩NG(v).

Clearly, L′ is an (β′, r′, Y ′1)-list-assignment of G. If v ∈ V (C)−Y ′1 with |NG(v)∩Y ′1 | =
β′, then since |Y ′1 − P | = 1, we know v ∈ N<β′(P ) − N<β′(Y ′1), so L′(v) is a set of size
at least r′ + 1 > 2 disjoint from

⋃
y∈NG(v)∩P L

′(y). Hence if v ∈ (V (C) ∪ P ) − Y ′1 with
|NG(v) ∩ Y ′1 | = β′, then L′(v)−

⋃
y∈NG(v)∩Y ′1

L′(y) = L′(v)−
⋃
y∈NG(v)∩Y ′1−P

L′(y) has size
|L′(y)| − 1 > 1. Therefore, L′ is a faithful (β′, r′, Y ′1)-list-assignment of G[V (C) ∪ P ].

Since G−P contains at least two components, |V (C)∪P | < |V (G)|. By the minimality
of G, there exists an (η∗s , g

∗
s)-bounded L′-coloring c′ of G[V (C) ∪ P ].

For every v ∈ V (C)∩NG(P ), if v ∈ N<β′(P ), then L′(v) is disjoint from
⋃
y∈NG(v)∩P L

′(y);
if v ∈ V (C) with |NG(v)∩P | > β′, then v ∈ Y ′1−P and L′(v) is disjoint from

⋃
y∈P L

′(y).
Hence every monochromatic c′-component intersecting P is contained in G[P ].
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Let c∗ be the L-coloring defined by c∗(v) := c(v) if v ∈ V (G)−V (C), and c∗(v) := c′(v)
if v ∈ V (C). Hence every monochromatic c∗-component is either contained in G−V (C) or
contained in C, so it contains at most η∗s

2g(η∗s) vertices. Since V (C)∩Y1 = ∅, the union of
the monochromatic c∗-components intersecting Y1 equals the union of the monochromatic
c-components intersecting Y1, and contains at most |Y1|2g(|Y1|2) vertices. Therefore, c∗ is
an (η∗s , g

∗
s)-bounded L-coloring of G, a contradiction.

Let C1, C2, . . . , Ck be the components of G − P . For i ∈ [k], let Gi := G[V (Ci) ∪ P ].
By Lemma 17, k > ts−1 > s + 1. By Claim 18.1, Y1 ∩ V (Ci) 6= ∅ for each i ∈ [k],
so |V (Gi) ∩ Y1| 6 |Y1| − (k − 1) 6 |Y1| − s for each i ∈ [k], and k 6 |Y1| 6 η∗s . So
|(V (Gi) ∩ Y1) ∪ P | 6 |Y1| − s+ |P | < |Y1| for each i ∈ [k].

Let L∗ be the following list-assignment of G:

• Let Y ∗1 := Y1 ∪ P .
• For each v ∈ Y ∗1 , let L∗(v) be a 1-element subset of L(v).
• For each v ∈ N<β′(Y ∗1 ), let L∗(v) be a subset of L(v)−

⋃
y∈NG(v)∩Y ∗1

L∗(y) with size
|L(v)| − |NG(v) ∩ (Y ∗1 − Y1)| = β′ + r′ − |NG(v) ∩ Y ∗1 |.

• For each v ∈ V (G)− (Y ∗1 ∪N<β′(Y ∗1 )), let L∗(v) := L(v).

Clearly, L∗ is an (β′, r′, Y ∗1 )-list-assignment of G. Let v ∈ V (G) − Y ∗1 with |NG(v) ∩
Y ∗1 | = β′. So L∗(v) = L(v). If |NG(v) ∩ Y1| = β′, then NG(v) ∩ Y ∗1 = NG(v) ∩ Y1, so
L∗(v)−

⋃
y∈NG(v)∩Y ∗1

L∗(y) = L(v)−
⋃
y∈NG(v)∩Y1 L(y) 6= ∅ since L is a faithful (β′, r′, Y1)-

list-assignment of G. If |NG(v) ∩ Y1| < β′, then |L∗(v)| = |L(v)| = β′ + r′ − |NG(v) ∩ Y1|
and L(v) is disjoint from

⋃
y∈NG(v)∩Y1 L(y), so

|L∗(v)−
⋃

y∈NG(v)∩Y ∗1

L∗(y)| = |L∗(v)−
⋃

y∈NG(v)∩Y ∗1 −Y1

L∗(y)|

> |L∗(v)| − |
⋃

y∈NG(v)∩Y ∗1 −Y1

L∗(y)|

> β′ + r′ − |NG(v) ∩ Y1| − |NG(v) ∩ Y ∗1 − Y1|
= β′ + r′ − |NG(v) ∩ Y ∗1 |
= r > 1.

Therefore, L∗ is a faithful (β′, r′, Y ∗1 )-list-assignment of G.
Since P ⊆ Y ∗1 , L∗|V (Gi) is a faithful (β′, r′, Y ∗1 ∩ V (Gi))-list-assignment of Gi. Recall

that for each i ∈ [k], |Y ∗1 ∩ V (Gi)| 6 |Y1| − 1 6 η. By the minimality of G, for each
i ∈ [k], there exists an (η∗s , g

∗
s)-bounded L∗|V (Gi)-coloring ci of Gi. Since P ⊆ Y ∗1 ∩ V (Gi)

for every i ∈ [k], we know for every v ∈ P , ci(v) = cj(v) for any i, j ∈ [k]. Let c∗ be the
L∗-coloring of G defined by c(v) := c1(v) if v ∈ P , and c(v) := ci(v) if v ∈ V (Ci) for some
i ∈ [k].

Since P ⊆ Y ∗1 ∩ V (Gi) for all i ∈ [k], the number of vertices in the union of the
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monochromatic c∗-components intersecting Y1 ∪ P is at most

k∑
i=1

|Y ∗1 ∩ V (Gi)|2g∗s(|Y ∗1 ∩ V (Gi)|) 6
k∑
i=1

(|Y1| − 1)2g∗s(|Y1| − 1)

6 η∗s · (|Y1| − 1)2g∗s(|Y1| − 1)

6 |Y1|2g∗s(|Y1|).

Furthermore, every monochromatic c∗-component disjoint from Y1∪P is a monochromatic
ci-component for some i ∈ [k], and hence contains at most η∗s

2g∗s(η) vertices. Therefore
c∗ is an (η∗s , g

∗
s)-bounded L-coloring of G. This proves the lemma.

The following lemma is equivalent to Lemma 18 except it applies for restricted list
assignments. The proof is identical, so we omit it.

Lemma 19. Let G be a subgraph-closed family of graphs. Let β, r be functions with
domain N such that β(x) > x and r(x) ∈ N for every x ∈ N.

Assume that for every s ∈ N, there exist η ∈ N and a nondecreasing function g such
that for every G ∈ G with no Ks,ts subgraph, where ts := max{

(
s
2

)
+ 2, s + 2}, for every

Y1 ⊆ V (G) with |Y1| 6 η, and for every restricted (β(s), r(s), Y1)-list-assignment L of G,
there exists an (η, g)-bounded L-coloring of G.

Then for every s ∈ N with s > 2, there exist η∗ ∈ N and a nondecreasing function
g∗ such that for every graph G ∈ G with no almost (6 1)-subdivision of Ks+1, for every
Y1 ⊆ V (G) with |Y1| 6 η∗, and for every restricted faithful (β(s − 1), r(s − 1), Y1)-list-
assignment L of G, there exists an (η∗, g∗)-bounded L-coloring of G.

Theorem 20. If s ∈ N with s > 2, then the following hold:

1. For every w ∈ N, there exist η ∈ N and a nondecreasing function g such that
for every graph G of treewidth at most w with no almost (6 1)-subdivision of Ks+1,
every subset Y1 of V (G) with |Y1| 6 η and every faithful (s−1, 1, Y1)-list-assignment
of G, there exists an (η, g)-bounded L-coloring of G.

2. For every graph H, there exist η ∈ N and a nondecreasing function g such that for
every graph G with no H-minor and no almost (6 1)-subdivision of Ks+1, every
subset Y1 of V (G) with |Y1| 6 η and every restricted faithful (s − 1, 2, Y1)-list-
assignment L of G, there exists an (η, g)-bounded L-coloring of G.

3. For every d ∈ N with d > 2 and graph H of maximum degree at most d, there
exist η ∈ N and a nondecreasing function g such that for every graph G with no
H-subdivision and no almost (6 1)-subdivision of Ks+1, every subset Y1 of V (G)
with |Y1| 6 η and every restricted faithful (s+ 3d− 7, 2, Y1)-list-assignment L of G,
there exists an (η, g)-bounded L-coloring of G.

4. There exist η ∈ N and a nondecreasing function g such that for every graph G with no
Ks+1-subdivision, every subset Y1 of V (G) with |Y1| 6 η and every restricted faithful
(4s−7, 2, Y1)-list-assignment L of G, there exists an (η, g)-bounded L-coloring of G.
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Proof. Statement 1 follows from Theorem 8 and Lemma 18 by taking G to be the set of
graphs of treewidth at most w, β(s) = s and r(s) = 1.

Statement 2 follows from Theorem 9 and Lemma 19 by taking G to be the set of graphs
with no H-minor, β(s) = s and r(s) = 2.

Statement 3 follows from Lemmas 16 and 19 by taking G to be the set of graphs with
no H-subdivision, β(s) = 3d + s− 6 and r(s) = 2. Note that β(s) > s since d > 2. And
3d+ s > 7 since d > 2 and s > 1.

Statement 4 follows from Statement 3 by taking H = Ks+1.

When Y1 = ∅, every (s, r, Y1)-list-assignment is faithful. Thus, Theorem 20 implies
that for all s, d, w ∈ N with s > 2 and d > 2, for every graph H, there exists η ∈ N such
that:

1. For every graph G with treewidth at most w and with no almost (6 1)-subdivision
of Ks+1, and for every list-assignment L of G with |L(v)| > s for every v ∈ V (G),
there exists an L-coloring with clustering η (Theorem 1 for s > 2).

2. For every graph G with no almost (6 1)-subdivision of Ks+1 and with no H-minor,
there exists an (s+ 1)-coloring of G with clustering η (Theorem 2 for s > 2).

3. If the maximum degree of H is at most d, then for every graph G with no H-
subdivision and no almost (6 1)-subdivision of Ks+1, there exists an (s + 3d − 5)-
coloring of G with clustering η (Theorem 4 for s > 2 and d > 2).

4. For every graph G with no Ks+1-subdivision, there exists a (4s − 5)-coloring of G
with clustering η (Theorem 6 for s > 2).

Note that when s = 1, graphs with noKs+1 subgraph have no edge, so they are 1-colorable
with clustering 1. This together with Lemma 15 complete the proof of Theorems 1, 2, 4
and 6.
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