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Abstract. Image synthesis from corrupted contrasts increases the diver-
sity of diagnostic information available for many neurological diseases.
Recently the image-to-image translation has experienced significant lev-
els of interest within medical research, beginning with the successful use
of the Generative Adversarial Network (GAN) to the introduction of
cyclic constraint extended to multiple domains. However, in current ap-
proaches, there is no guarantee that the mapping between the two image
domains would be unique or one-to-one. In this paper, we introduce a
novel approach to unpaired image-to-image translation based on
the invertible architecture. The invertible property of the flow-based
architecture assures a cycle-consistency of image-to-image translation
without additional loss functions. We utilize the temporal informa-
tion between consecutive slices to provide more constraints to
the optimization for transforming one domain to another in un-
paired volumetric medical images. To capture temporal structures
in the medical images, we explore the displacement between the consec-
utive slices using a deformation field. In our approach, the deformation
field is used as a guidance to keep the translated slides realistic and con-
sistent across the translation. The experimental results have shown that
the synthesized images using our proposed approach are able to archive
a competitive performance in terms of mean squared error, peak signal-
to-noise ratio, and structural similarity index when compared with the
existing deep learning-based methods on three standard datasets, i.e.
HCP, MRBrainS13 and Brats2019.
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1 Introduction

In medical imaging, the task of obtaining diagnostic images from multiple modal-
ities is necessary for accurate and comprehensive prediction of disease diagnosis.
For example, T1-weighted (T1) brain images provide clear differentiate images
of gray and white matter tissues, whereas T2-weighted (T2) images differentiate
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fluid from cortical tissue. By leveraging the information provided by both of these
image modalities, we can gain a more in-depth and completed picture of the diag-
nosis. However, obtaining separately both images is often costly, time-consuming,
and maybe corrupted by noise and artifacts. Therefore, cross-modalities synthe-
sis is a promising application to improve the clinical feasibility and utility of
multi-contrast MRI. Image-to-image translation has recently gained attention in
the medical imaging community, where the task is to estimate the corresponding
image in the target domain from a given source domain image of the same sub-
ject. Generally, the image-to-image translation methods can be divided into two
categories including: Generative Adversarial Networks (GANs) and Flow-based
Generative Networks and summarized as follows:

Generative Adversarial Networks GANs are a class of latent variable
generative models that clearly identify the generator as deterministic mapping.
The deterministic mapping represents an image as a point in the latent space
without regarding its feature ambiguity. Several different GAN-based models
have been used to explore image-to-image translation in a literature study [2, 3,
14, 16]. For example, Zhu et al. [16] proposed a cycleGAN method for mapping
between unpaired domains by using cycle-consistency dependence to constrain
the optimal solutions provided by the generative network. Balakrishnan et al.
[2] proposed a RecycleGAN to explore the temporal information by learning a
prediction of the next frame for video generation. Chen et al. [3] proposed a 3D
cycleGAN network to learn the mapping between CT and MRI. The drawback
of 3D cycleGAN is it is memory consumption and loses the global information
due to working on small patch sizes.

Flow-based Generative Networks are a class of latent variable gener-
ative models that clearly identify the generator as an invertible mapping. The
invertible mapping provides a distributional estimation of features in the la-
tent space. Recently, many efforts making use of flow-based generative networks
have been proposed to transfer between two unpaired data [4, 5, 7, 10, 12]. For
example, Grover et al. [5] introduced a flow to flow (alignflow) network for un-
paired image-to-image translation. Sun et al. [12] introduced a conditional dual
flow-based invertible network to transfer between positron emission tomography
(PET) imaging and magnetic resonance imaging (MRI) images. By using in-
vertible properties, the flow-based methods can ensure exact cycle consistency
in translation from a source domain to the target and returning to the source
domain without any further loss functions.

Limitations of Existing Methods and Our Contributions The pri-
mary drawback of the cycleGAN model is that it can not perform one-to-one
mapping for accurate and unique unpaired image translation, generates biased
image translations of the inverse mapping [11]. Different from the GANs-based
method, the flow-based method guarantees precise cycle consistency in mapping
data points from a source domain to the target and returning to the source do-
main. However, the flow-based methods do not take into account the temporal
information between consecutive slices. To address this problem, we propose a
new method by inheriting the merits of the flow-based method and exploiting
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temporal information between consecutive slices. Our approach provides more
constraints to the optimization for transforming one domain to another domain.
To capture temporal information, we employ a deformation field between con-
secutive slices by training a convolutional neural network. In our proposed ap-
proach, the deformation field plays a role of guidance to keep slices realistic and
consistent across translation.

2 Related work

2.1 Cycle-Consistent Adversarial Networks (cycleGAN)

Let {xi}Ni=1 and {yi}Mi=1 be unpaired data samples for two domains, i.e. the
source domain X and the target domain Y , respectively. Denote D and G as a
discriminator network and a generator network. The cycleGAN model [16] solves
unpaired image-to-image translation between these two domains by estimating
two independent mapping functions GX→Y : X → Y and GY→X : Y → X.
The two mapping functions GX→Y and GY→X performed by neural networks
are trained to fool the discriminator DX and DY respectively. The discriminator
DX , and DY encourage the transferred images and the real images to be similar.
Hence, the cycleGAN loss is defined as:

LcycleGAN (GX→Y , GY→X , DX , DY ) = LGAN (GX→Y , DY ) + LGAN (GY→X , DX)

+ λLcycle(GX→Y , GY→X) + βLidentity(GX→Y , GY→X) (1)

where LGAN is a GAN loss for the D network [16]. Lcycle is a cycle consistency
loss that guarantees the transferred image from a time-point is able to bring back
to the original image after appearance translation by the generator network G.
For example, the cycle consistency loss of the data translated from X → Y via
GX and mapped back to the original domain X via GY is defined as:

Lcycle(GX→Y , GY→X) = ‖GY→X(GX→Y (x))− x‖1 (2)

The identity loss Lidentity is to regularize the generator to be near an identity
mapping when real samples of the target domain are given as the input to the
generator. The λ and β control the contribution of the two objective functions.

2.2 Flow-based Generative Models

Flow-based Generative Models are a class of latent variable generative models
that clearly identify the generator as an invertible mapping h : Z → X between
a set of latent variables Z and a set of observed variables X. Let pX and pZ
indicate the marginal densities given by the model over X and Z, respectively.
Using the change-of-variables formula, these marginal densities are defined as

pX(x) = pZ(z)

∣∣∣∣ det
∂h−1

∂X

∣∣∣∣
X=x

(3)
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where z = h−1(x) because of the invertibility constraints. In particular, we use a
multivariate Gaussian distribution pZ(z) = N (µ, 0, I). Unlike adversarial train-
ing, flow models trained with maximum likelihood estimation (MLE) explicitly
require a prior pZ(z) with a tractable density to evaluate model likelihoods using
the change-of-variables formula in the equation (3).

Based on flow-based method [4], Grover et al. [5] proposed an alignflow
method for unpaired image-to-image translation. In the method, the mapping
between two domains X → Y can be represented through a shared feature space
of latent variables Z by the composition of two invertible mapping [5]:

GX→Y = GZ→Y ◦GX→Z , GY→X = GZ→X ◦GY→Z (4)

where GX→Z = G−1Z→X and GY→Z = G−1Z→Y . Due to the fact that composition
of invertible mappings is invertible, both GX→Y and GY→X are invertible [5].
On the other hand, we can obtain G−1X→Y = GY→X . Thus the equation (2) can
rewrite as

Lcycle(GX→Y , GY→X) = ‖GY→X(GX→Y (x))− x‖1
=
∥∥G−1X→Y (GX→Y (x))− x

∥∥
1

= 0
(5)

where G−1X→YGX→Y results in an identical matrix.

Equation. 5 implies that the flow-based methods can guarantee precise cycle
consistency in mapping from a source domain to the target and returning to the
source domain without additional loss functions. Hence, the alignflow objective
loss is defined as:

Lflow(GX→Y , GY→X , DX , DY ) = LGAN (GX→Y , DY ) + LGAN (GY→X , DX)

− λXLMLE(GZ→X)− λY LMLE(GZ→Y ) (6)

where λY , λY ≥ 0 are hyperparameters that control the importance of the MLE
terms for domains X and Y respectively.

Fig. 1 illustrates the difference between cycleGAN and alignflow methods.
Unlikes cycleGAN, the alignflow method is the full invertible architecture that
guarantees the cycle-consistency translations between two unpaired domains
without an additional Lcycle function.

X Y

DX DY

X Y

DX DY

Z

(a)                                                           (b)

Fig. 1. A comparison between (a) cycleGAN and (b) alignflow generative model.
Double-headed arrows denotes an invertible mapping
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Fig. 2. Deformation Guided Temporal Constraints for domain Y

3 Proposed method

Our motivation is to learn a mapping between unpaired images from different
domains by leveraging the temporal information between consecutive slices. We
use the temporal information to constrain the mapping between two domains
which should be consistent. Our method is an extension of alignflow [5] method
with making use of temporal information between consecutive slides.

3.1 Deformation Guided Temporal Constraints

To obtain the displacement between consecutive slices, we use an unsupervised
registration network [1] to learn a deformation field φ of a slice xt and its con-
secutive slices xk. The deformation field φ can be obtained using a convolutional
neural network (CNN) [1] by minimizing the loss function

L(φ) = ‖xt −
(
xk # φ(xt, xk)

)
‖2 + ‖∇φ‖2 (7)

where # denotes the spatial transformation operation. The first term ensures
that the distance between the next slice xt and the warped current slice xk#φ(.)
to be close. The second term imposes regularization on φ(.).

To guarantee the consistency of the image translation, the L1 loss is used to
measure the difference between the warping of fake images on consecutive slice
tth and the translation of reference slice kth. We define the temporal consistency
loss function for mapping X → Y and Y → X as:

Lreg(X,GX→Y ) =
n∑

k=0,k 6=t

‖GX→Y (xt)−GX→Y (xk) # φ(xt, xk)‖1

Lreg(Y,GY→X) =
n∑

k=0,k 6=t

‖GY→X(yt)−GY→X(yk) # φ(yt, yk)‖1

(8)

Fig. 2 illustrates an example for image-to-image translation from domain X → Y
using temporal constraints. Let xt, xt+1, xt+2 be consecutive slices of real images
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Fig. 3. Our flow-based deformation guidance approach for unpaired image-to-image
translation.

in the source domain X. A mapping function GX→Y generates the fake image
yt, yt+1, yt+2 on target domain Y . On the source domain, we can learn displace-
ment fields φt(.), φt+2(.) between (xt, xt+1) and (xt+2, xt+1). To constrain the
consistency of the mapping from X → Y , we minimize the distance (i) between
the warped fake image yt#φt(.) and yt+1 for mapping from tth slice and (t+1)th

slice, and (ii) between the warped fake image yt+2#φt+2(.) and yt+1 for mapping
from (t+ 2)th slice and (t+ 1)th slice.

3.2 Network diagram

Fig. 3 illustrates the proposed network diagram for unpaired image-to-image
translation. Our proposed network architecture inherits the advantages of in-
vertible property of alignflow [5]. During training, we add two additional net-
works RegX and RegY for each domain to learn the deformation field φ(.). These
additional networks only use in training time, without increasing the model com-
plexity and inference time comparison with the baseline flow-based method. The
temporal constraint via Lreg(.) losses ensures the mapping of consecutive slices
on the source domain should be consistent on the target domain. Finally, our
objective function is defined as:

Lflow reg(GX→Y , GY→X , DX , DY , φ) = Lflow(GX→Y , GY→X , DX , DY )

+ λ1Lreg(X,GX→Y ) + λ2Lreg(Y,GY→X) + β1LX(φ) + β2LY (φ)

+ γ1LTV (X) + γ2LTV (Y )

(9)

where λ1, λ2, β1, and β2 control the relative importance of the temporal consis-
tence losses and the two registration losses. LTV denotes total variation (TV) loss
to impose spatial smoothness by measuring the horizontal and vertical gradient
of generated images [15]. These TV losses are weighted by γ1, γ2.
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4 Experimental results

4.1 Datasets and Training

We used common medical datasets to measure the robustness of our method
against the existing methods: cycleGAN [16], recycleGAN [2], cycleflow [11] and
alignflow [5]. cycleGAN [16] is an unpaired image-to-image translation that works
on single slice level. RecycleGAN [2] built upon the cycleGAN and add a tempo-
ral predictor that is trained to predict future slice in a set of previous consecutive
slices. cycleflow [11] is a flow-based method, but ignores the shared latent space
Z (directly map from X → Y , instead of X → Z → Y as the alignflow method).
The synthetic image from each method was quantitatively compared with the
real paired image using the following performance metrics: mean squared er-
ror (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index
(SSIM).

Human Connectome Project (HCP) is provided by the Human Con-
nectome project [13]. We used T1 as the source domain and T2 as the target
domain. We extract the axial view of T1/T2 images into 2D images. We split
the 2D images into 1150 images for training set and 500 images for testing set.

MRBrainS13: [8] contains 15 subjects for training and validation and 6
subjects for testing. For each subject, two modalities are available that include
T1-weighted, and T2-FLAIR with an image size of 48×240×240. We extract the
dataset into 2D images with 450 images for training and 150 images for testing

Brats2019: [9] includes 210 HGG scans and 75 LGG scans. Each scan has
a dimension of 240 × 240 × 155. For each scan, we extract it to 2D images and
use 770 images for training and 250 images for testing.

Training All networks were implemented using the Pytorch framework and
trained on the 12GB GPU. The input image is resized to 128× 128 and normal-
ized to [−1, 1]. We used axial slices (10 slices around the middle slice) from the
each subject. The Adam optimizer with a batch size of two was used to train
the network. The initialization learning rate was set as 0.0002 and was decreased
ten times every 20 epochs. We trained each model for 100 epochs. The balance
weights were set as λX = λY = 1e−5, λ = λ1 = λ2 = 10, β1 = β2 = 1, γ1 =
γ2 = 1. The discriminator network is a 70 × 70 PatchGAN [6]. For alignflow
network [5], we set the number of scale was 1, number of block was 3. We use
two consecutive slices (before and later slices) to learn the temporal constraint.

4.2 Performance Evaluation

Qualitative evaluation Fig. 4 illustrates the image translation on different
datasets. The proposed methods (in the last column) provided a better syn-
thetic image, resulting in better MSE, SSIM and PSNR scores. For example, the
proposed synthetic T2 image provides a high qualitatively difference along the
tumor boundary (indicated by the red arrows in the fifth row) than in existing
methods using the available source T1 image as input.
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Fig. 4. A visualization of synthetic images on different datasets generated by (a) source
image, (b) target image, (c) cycleGAN, (d) recycleGAN, (e) cycleflow, (f) alignflow,
and (g) our method. Our method provides a good boundary on the tumor regions (red
arrows in the fifth row) compared with the existing methods

Table 1. Comparison between the proposed method against other image-to-image
translation methods on HCP, MRBrainS13, Brats19 datasets.

Method MSE ↓ PSNR ↑ SSIM ↑
T1 → T2 T2 → T1 T1 → T2 T2 → T1 T1 → T2 T2 → T1

H
C

P

cycleGAN [16] 0.0193 0.0167 23.2 24.4 0.783 0.793
recycleGAN [2] 0.0212 0.0182 22.8 24.0 0.773 0.797
cycleflow [11] 0.0213 0.0189 22.8 23.8 0.771 0.785
alignflow (baseline) [5] 0.0200 0.0158 23.1 24.6 0.785 0.811
our method 0.0179 0.0143 23.5 25.1 0.80 0.820

M
R

B
ra

in
S
1
3 cycleGAN [16] 0.0139 0.0235 24.7 22.4 0.793 0.704

recycleGAN [2] 0.0154 0.0250 24.3 22.1 0.761 0.714
cycleflow [11] 0.0158 0.0406 24.2 20.0 0.790 0.506
alignflow (baseline) [5] 0.0165 0.0254 24.0 22.0 0.781 0.728
our method 0.0128 0.0236 25.1 22.4 0.819 0.741

B
ra

ts
2
0
1
9 cycleGAN [16] 0.0178 0.0281 24.1 22.7 0.833 0.797

recycleGAN [2] 0.0190 0.0272 23.8 22.6 0.824 0.785
cyclelow [11] 0.0251 0.0304 22.7 21.8 0.800 0.788
alignflow (baseline) [5] 0.022 0.0306 23.4 21.8 0.830 0.784
our method 0.0188 0.0258 23.9 22.8 0.842 0.808
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Quantitative evaluation Tables 1 reports the MSE, PSNR and SSIM values
of the proposed method and existing methods. From the table, it is clear that the
flow-based method (such as cycleflow [11], alignflow [5] and our method) provides
competitive results with GAN-based method (such as cycleGAN, recycleGAN).
By adding temporal constraints, the proposed network outperforms the base-
line method (alignflow) on all performance metrics. Different from recycleGAN,
that exploits temporal information via future slice prediction from consecutive
slices, the proposed method measures pixel-wise temporal consistency by directly
warping the synthetic slices with the deformation field of the consecutive slices
from the source, and thus achieves better performances. This indicates the ef-
fectiveness of the proposed method in the unpaired image to image translation
for medical image.

5 Conclusion

We presented an effective method for image-to-image translation based on flow-
based methods and deformation information that allows the proposed method
to exploit the temporal information between consecutive slices to constrain the
translation image. We show that the proposed method can provide a good trans-
lation image, yielding a better MSE, PSNR, and SSIM on various MRI datasets.
Although our network is a fully invertible property, it requires more memory
resource than GAN-based methods (such as cycleGAN, recycleGAN,...).
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