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Abstract. We investigate the thermalization of Sachdev—Ye-Kitaev (SYK)
models coupled via random interactions following quenches from the perspective
of entanglement. Previous studies have shown that when a system of two SYK
models coupled by random two-body terms is quenched from the thermofield
double state with sufficiently low effective temperature, the Rényi entropies do
not saturate to the expected thermal values in the large-N limit. Using numer-
ical large-N methods, we first show that the Rényi entropies in a pair SYK
models coupled by two-body terms can thermalize, if quenched from a state
with sufficiently high effective temperature, and hence exhibit state-dependent
thermalization. In contrast, SYK models coupled by single-body terms appear
to always thermalize. We provide evidence that the subthermal behavior in the
former system is likely a large-N artifact by repeating the quench for finite N
and finding that the saturation value of the Rényi entropy extrapolates to the
expected thermal value in the N — oo limit. Finally, as a finer grained measure
of thermalization, we compute the late-time spectral form factor of the reduced
density matrix after the quench. While a single SYK dot exhibits perfect agree-
ment with random matrix theory, both the quadratically and quartically coupled
SYK models exhibit slight deviations.
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1. Introduction

The Sachdev—-Ye-Kitaev (SYK) model [1-3] has emerged in recent years as a rare
example of an exactly solvable (in a large-N limit) chaotic quantum many-body system.
Indeed, this toy model, comprising N Majorana fermions interacting via random all-
to-all interactions, exhibits spectral statistics largely consistent with those predicted
by random matrix theory (RMT) [4-6] and out-of-time-order correlators displaying
exponential decay with Lyapunov exponent saturating the chaos bound in the large-
N limit [2, 3], thereby satisfying both standard and more modern criteria for quantum
chaos. These remarkable features have prompted the study of a slew of generalizations of
the SYK model, constructed by coupling together multiple SYK systems, which we will
refer to as SYK ‘dots’ [7—10]. Such coupled SYK models exhibit a rich phenomenology,
depending on the type of interdot coupling, ranging from the realization of phases of
matter holographically dual to wormholes [11] to interesting symmetry breaking phases
[12-14]. Moreover, the coupling of multiple SYK dots with suitably local interactions
allows for the construction of SYK ‘chains’ and hence the study of chaos in higher
dimensions [15-23].

A key feature of such chaotic systems is that they are expected to rapidly thermal-
ize when taken out of equilibrium. This is formalized by the eigenstate thermalization
hypothesis (ETH) [24—26], which, loosely speaking, implies that generic quantum sys-
tems, when quenched from an initial state, should equilibrate to a ‘thermal’ state, in
which observables assume expectation values equal to those in a thermal ensemble with
temperature set by the energy density. In particular, one expects the subsystem entangle-
ment entropy to saturate to the thermal entropy at this effective temperature. Several
studies have characterized such non-equilibrium dynamics of the SYK model and its
variants [27-38]. Of particular interest for us is the surprising result of [28], in which
the authors studied an SYK chain formed by coupling SYK dots with random two-body
interaction in the large-N limit [15]. When quenched from thermofield double (TFD)
states with low effective temperature and in the limit of weak interdot coupling, the
Rényi entropies were found to not saturate to the expected thermal values, even in
the special case of a chain with only two sites. This subthermal behavior suggests a
pair of SYK dots coupled in this way does not rapidly thermalize. This is surprising,
given that this SYK chain was found to have maximal Lyapunov exponent [15] and,
moreover, the expectation values of local few-body operators in the SYK model and
its variants, including this SYK chain, have been shown to be consistent with ETH in
finite-size systems [39-41]. It was conjectured in [28], however, that this slow thermal-
ization was an artifact of the large-N and low effective temperature limits, which could
result in certain ‘heavy’ modes taking an infinite time to thermalize. We note that the
von Neumann entropy is expected to be insensitive to the tail effects in the entangle-
ment spectrum induced by such modes and hence to thermalize [42]. While one may
conclude this coupled SYK model is thermalizing by this measure, it is still of interest to
better understand the validity of this picture of non-thermalizing heavy modes and the
non-equilibrium dynamics of the Rényi entropies, which are more sensitive to outliers
in the entanglement spectrum.
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This sets the context for the present work, the goal of which is to provide a more
detailed characterization of thermalization, or the lack thereof, in coupled SYK models,
both in the large-N limit and for finite N. In particular, we consider both the two-site
version of the SYK chain, comprising two SYK dots coupled by random interactions
quartic in fermion operators, as well as a model of two SYK dots coupled by ran-
dom quadratic interactions for comparison. In addition to reconsidering the late-time
post-quench entanglement, we characterize chaos and thermalization in these models
through complementary diagnostics including an analysis of the late-time entanglement
spectrum. Before delving into our analysis, we first provide an overview of the strategies
employed and our results.

1.1. Summary of results

First, we study quenches from high-energy pure states—focusing on the Kourk-
oulou-Maldacena (KM) states [43]—in the large-N limit of both coupled SYK models.
We numerically compute the Rényi entropy exactly, allowing us to consider larger inter-
dot couplings and pure states with larger effective temperatures than those considered
in [28]. We illustrate that for sufficiently large coupling strength, the quartically coupled
model in fact exhibits state-dependent thermalization: the Rényi entropy saturates to
the expected thermal value for states with sufficiently high effective temperature and
plateaus at a subthermal value for lower effective temperatures. In contrast, at least
for the parameter regimes considered, the quadratically coupled model always thermal-
izes. We also consider quenches from TFD states in appendix A, for which we also find
state-dependent thermalization.

In order to better understand the extent to which these effects are artifacts of the
large-N limit and provide more fine-grained measures of thermalization, we next study
these coupled models for small values of N using exact diagonalization (ED). Consider-
ing first their spectral properties, we find that the spectral form factors (SFFs) of both
coupled models, which provide a measure of spectral rigidity, agree well with RMT pre-
dictions. Additionally, the eigenstate entanglement entropies of the two models appear
consistent with ETH. Moreover, we find that the Rényi and entanglement entropies sat-
urate to the expected thermal values after quenches at finite NV in both coupled models.
Indeed, when extrapolated to N — oo, the finite-/N numerics appear consistent with
thermalization, suggesting that the subthermal behavior in the large-N limit is indeed
an artifact of said limit.

We further scrutinize the late-time states obtained after these quenches by computing
the SFF of the late-time reduced density matrix (RDM) [44, 45] in both the coupled SYK
models and the regular SYK model, for comparison. Heuristically, assuming the form of
ETH proposed in [46] holds and the RDM resembles a thermal density matrix, then its
singular values should exhibit a spectral rigidity similar to that of the physical energy
spectrum, providing another means of characterizing thermalization. Indeed, we find
that the RDM SFF after a quench in the standard SYK model exhibits perfect agreement
with RMT predictions, while both coupled SYK models exhibit slight deviations. Our
analysis yields a novel perspective on the maximally chaotic nature of the single SYK
model and provides further evidence that the physical origin of the quartically coupled
model’s subthermal behavior does not persist down to finite-N. We are thus led to
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conclude that the quartically coupled model behaves as a generic non-integrable system
at finite-N and only exhibits state-dependent thermalization as a large-IN artifact.

The remainder of this manuscript is structured as follows. In section 2, we introduce
the models under consideration and the quenches we will perform. In section 3, we
review the path integral setup for evaluating the Rényi entropy, derive self-consistent
equations for the Rényi entropy for these models in the large-N limit, and present our
numerical results. We proceed to our finite N analysis of the coupled SYK models, first
investigating the spectral properties in section 4, followed by results on the entanglement
entropies after a quench as well as RDM SFF of each model in section 5. Finally, we
discuss our results and conclude in section 6.

2. Models and quench set-up

2.1. Models

The SYK model [2, 3] is a zero-dimensional system of N Majorana fermions coupled via
random all-to-all interactions, as described by the Hamiltonian

Hq = Z iq/zt]ilvvvinil cee Xiq' (21)

1<i <<y <N

Here, the couplings are sampled from a Gaussian distribution with mean and variance,
respectively, of

(¢ —1J?

7, N

=0,  (Joa) = (2.2)

1y
Our focus is on understanding the properties of systems in which two such SYK models,

which we will refer to as SYK ‘dots’, are coupled by random multi-body interactions
(7,9, 15], as described by the Hamiltonian,
4 s I A B B
H‘” - Z Z ZZJ%%"'iqxgl o 'X?,, + Z sz;i'“jg Xiy - .Xi%le o .ng
a=A,B1<i) < --<iy <N, 1<i1<---<i5<NA
ISji<<jr <Np

(2.3)

where a = A, B labels the two dots. Here, Jj.; and lel,,,jr//; are Gaussian random

variables with zero mean and variances,

S —1)J? PR, 2 —1)1’V?
(Jh..,) = la= DI Nq)l , (Vioi2)? = (T/N N) S (2.4)
a AN
We assume the variables Jy‘?lq and szq are uncorrelated and we take Ny = N =

N /2 € 27Z. For concreteness, we will also fix ¢ =4. Our main objects of study will
be the ¢ = r = 4 model, which corresponds to the two-site version of the SYK chain
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studied in [28], for which subthermal behavior was observed at large-N, and the
q = 4, r = 2 model, in which the interdot coupling is quadratic in the fermion oper-
ators. In the following, we measure all quantities in units of J = 1, unless otherwise
noted.

We note that, in the » = 2 model, the quadratic term is more relevant (in the sense
of the renormalization group) than the intradot quartic SYK coupling and hence, at
low energies, this model exhibits Fermi liquid like properties [7]. In particular, while the
r = 4 coupled SYK model exhibits a non-vanishing zero-temperature thermal entropy
(like the standard SYK model), the » = 2 model does not. A detail which will be relevant
for our finite-N analysis is that while all models under consideration conserve total
fermion parity, the r = 4 model additionally conserves the fermion parity of each SYK
dot individually. Moreover, both the r = 4 model and the original SYK model have an
(anti-unitary) particle-hole symmetry, resulting in a doubly degenerate energy spectrum
when N # 0 mod 8 [5, 6].

2.2. Quenches

We will primarily characterize the thermalization of these SYK models by computing
the late-time entanglement between the SYK dots A and B after a global quench from
a high-energy pure state. We recall that given a bipartition of a Hilbert space into
subspaces A and B and a density matrix p, the nth Rényi entropy is given by

R ! log Tra pl, (2.5)
1—n

where p, = Trg p is the RDM for region A. The n — 1 limit yields the von Neumann
entanglement entropy, S4 = —Tr p,logp,. While we can compute both the Rényi and
von Neumann entropies in our finite-N ED computations, our large-/N numerics only
give us access to the Rényi entropies; for concreteness, we will focus on n = 2. In our
large- N analysis, we will take as our criterion for thermalization whether the Rényi
entropies saturate to the value they take in a thermal ensemble with temperature set by
the energy of the initial state. Now, the Rényi entropies may not satisfy ETH when we
take the subsystem size to be nonvanishing in the thermodynamic limit [46], and so one
may argue that it is more appropriate to use the von Neumann entropies as the criteria
for thermalization. However, it is still of interest to understand how the Rényi entropies
thermalize, as they are sensitive to outliers in the entanglement spectrum, and so give
more information about the dynamics. We will continue to use them as our criterion for
thermalization.

In order to make the Rényi entropy calculation tractable in the large-N limit, we
choose our initial state such that the Rényi entropy can be represented with a simple
path integral. To that end, we consider quenches from the KM states [43], as in [23,
31]. We also discuss quenches from TFD states, as in [30, 36, 42], in appendix A for
comparison. We focus on the KM states in the main text, as the TFD states require a
doubling of the Hilbert space, making them less amenable to finite-N analysis.

https://doi.org/10.1088/1742-5468 /ac416b 6
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The KM states are constructed as follows. We first define the infinite temperature
KM state by the condition

(X;i—l + ZX;Z)’{1}> =0, a=A,B, Vi. (2-6)

This amounts to pairing up the Majorana fermions on each dot into complex fermions,
cj“ = X5_1 +1x5;, and setting them to be occupied. It is clear that this state has no
entanglement between the A and B subsystems. The finite temperature KM state is
then defined through an imaginary time evolution

1
A

where Ziy = ({1}|e ?Her|{1}). Note that a non-zero value of 3 introduces entanglement
between the A and B fermions. After a quench from a KM state, we expect equilibration
to a steady-state at effective inverse temperature on the same order as . In particular,
at least in large- NV, the late-time Rényi entropies should approach those of the canonical
ensemble described by ps = e M / Z(8), with Z(3) = Tr[e ],

The KM states are states of definite fermion parity of each SYK dot and hence total
fermion parity as well. Quenches from these states will therefore only involve half the
Hilbert space in the r = 2 model and one quarter of the Hilbert space in the r =4
model. Although this is unimportant in the large-N limit, it will prove helpful in our
finite-IV analysis to consider quenches from states mixing all fermion parity sectors when
comparing these models. To that end, we define a new state |[KMp)

[KMj) = e P2 {1}), (2.7)

RV3) = 2o e (01 Ly 11+ 1)) @ (01 1)p 4 11 1)p)] . (28)

Here, [n1,n9, -+, nn/1)q is a state with occupation number n; for the fermion ¢,; on
dot/subsystem a = A, B. This is simply a superposition of KM-like states which is nei-
ther an eigenstate of the total fermion parity nor the fermion parity in each subsystem.
As a consequence, time evolution after a quench from this state will involve the full
Hilbert space in both coupled models.

Operationally, our numerical quench experiments then proceed as follows. Starting
with either the r =2 or r = 4 Hamiltonian, we first fix the disorder realization and
then time evolve the KM state with a given § for a sufficiently long time, which will
still be O(1) relative to N in the large-N limit, until the system reaches equilibrium.
Here, by equilibrium, we mean that the macroscopic quantities of interest, like the Rényi
entanglement entropies, do not change appreciably at later times. We then repeat the
quench experiment with a different disorder realization and a KM state with the same
3%. We then average the late-time values of the quantities of interest, including the Rényi
entropy, over all disorder realizations.

3 Note that since the KM state for § # 0 depends on the Hamiltonian, the initial state we quench from also varies between disorder
realizations.
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3. State-dependent thermalization in large-N quenches

Our first goal is to characterize the thermalization of the coupled SYK models after
quenches from the KM states in the large-N limit. As noted in the introduction, the
SYK model is exactly solvable in this limit, a feature which can been exploited to
numerically compute the Rényi entropies [30, 31, 35, 36, 42, 47]. In this section, we first
briefly review the path integral setup of the Rényi entropies for the KM state quenches,
after which we present our numerical results. We will find that the » =4 model can
thermalize, provided the effective temperature of the initial state is high enough. This is
in contrast to the r = 2 model, which appears to always thermalize. As we will review,
the process of thermalization in the large- N limit is governed by an interplay between
so-called replica diagonal and non-diagonal solutions to the saddle-point equations [30,
42]. We provide additional data for TFD state quenches in appendix A.

3.1. Path integral setup of KM quench

The second Rényi entropy after a quench from the KM state can be evaluated in terms
of a path integral defined on an appropriate contour. As this setup has been discussed
previously (see e.g. [31, 32]), we outline the construction here and relegate the details
to appendix B.

As a step toward computing the Rényi entropy, let us first find a path integral
expression for the normalization Zi) in equation (2.7). We can pictorially represent
the time evolved KM state ﬁe’(i”ﬁ/ DHur|{1}) as in figure 1(a). Here, we represent the
imaginary and real time evolution of the even (e) and odd (o) fermions x§, and x§, |,
respectively with separate legs emanating from the state [{1}), represented by the dot.
The normalization Zky; can then be expressed as a path integral

Zin = ({1} e o

1
1y = / DXl e, — / ar |3 oo+ fE, | @)
b.c. C 2 i

where I¢ is evaluated on the contour C shown in figure 1(b), parameterized by 7 € [0, 5)
and obtained by taking two copies of figure 1(a) and connecting the matching legs.
The function f(7) accounts for whether we are performing imaginary time (f(7) = 1),
forward real time (f(7) = i), or backward real time (f(7) = —i) evolution at the point 7
on the contour. There is no real time evolution involved in computing the normalization,
so we have f(7) =1 for this contour. The ‘b.c.” in the integral limit indicates that the
fields are subject to the boundary conditions

X2j-1(T7 = 0) = —ixq; (T = 0), X2j-1(T = B) = ixy;(T = B), (3.2)

imposed by the condition of equation (2.6). Now, as the pictorial representation of the
contour suggests, and as we review in appendix B, we can re-express the path integral
as one over N /2 Majorana fermions y?(s) defined on s € [0,20); the reparameterization
of the contour in terms of s is depicted in figure 1(b).

Our interest is in the disorder averaged quantity —log Ziy, where the overline indi-
cates the average over all realizations of the couplings. Although the disorder average
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T=0 T=0
e <—ﬁ| e 38) _oommIIIIIII S S e
§ = o -
5/2 - ,,

; / e e N

K1} {13} K1)
! o o 0 L 0
0 b2 s=28 s=0 4sy 8}—:>281 """""""""" 251 s =0

T{: 2s1 T =35 T :I 0

(a) (b) ()

Figure 1. (a) Pictorial representation of |KMg). The dot represents the boundary
condition of equation (2.6) and the two branches labeled by e and o the evolution
of the x§,_; and x4, fermions, respectively. The curved (horizontal) lines represent
imaginary (real) time evolution by /2 (t). (b) Contour C used in the evaluation
of Zxn. Here, 7 parameterizes the imaginary time evolution by 8 of the e and
o fermions. The contour can be reparameterized by new fermions x?(s), where s
increases counter-clockwise around the contour. (¢) Contour C’' used in the evalua-
tion of Sf?, where 7 parameterizes the evolution of the e and o fermions. The dashed
lines indicate the boundary conditions of the fermions. The variable s parameterizes
the contour and increases counter-clockwise around each replica. Here, s; = 2t + 3.

can be handled with a replica trick, we will make the standard assumption of a disorder
replica diagonal solution in the treatment of SYK models, allowing us to approximate
—log Zxm ~ —log Zxnm. We can thus directly average the path integral over all disor-
der realizations. Following standard manipulations [3], we can introduce the Lagrange
multiplier fields X,(s, s’) to enforce the constraint

Guls, o) = 3 ST (). (33

On-shell, ¥,(s, s') and G,(s, s") represent the self-energies and Green functions, respec-
tively, of the x® Majorana fermions. Note that we have introduced separate Green
functions for the a = A, B fermions, as when we next consider the Rényi entropy compu-
tation, they will obey distinct boundary conditions in s. Now, upon disorder averaging
and integrating out the fermions in favor of the above bilocal fields, we obtain the
effective action (we will henceforth drop overlines as disorder averages will always be
assumed)

I 1 1
€ — _"logdet |0, —%, +/dsds’
8 g 8Je

— F(S,S/)P(S,Sl) (JqZGa<SaS/)q + 2V GA(SVS/)%GB(S?S/y )] ’

r

ZZG(S, $)Gu(s,8")
! (3.4)

[Nl

a

where F'(s,s") = f(s)f(s'). The subscript a on 0; is included to keep track of the temporal
boundary conditions for the x4 and ¥” fermions. In computing the normalization, both
obey the same, standard fermionic boundary conditions. In deriving the effective action,
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it is necessary to introduce the function P(s,s’), which is defined as

1 s, s'both on an e or o contour leg
P(s,s") = (3.5)
0 otherwise.
The corresponding saddle-point or Schwinger—Dyson, equations are given by,
Ga - (as - Za)717
‘ (3.6)

Ya(s,8) = P(s,s)F(s,s) | J*Gi (s, s) + V2G> !(s, NG (s, 8]

where if a = A, then @ = B and vice versa. The Schwinger—Dyson equations can be
discretized and solved numerically via a standard self-consistent iterative procedure,
the details of which are provided in appendix B. In the large-N limit, the path integral
is dominated by this saddle-point contribution, and so evaluating equation (3.4) on-shell
thus gives us the normalization, Zky, of the KM state.

The computation of the Rényi entropy after a KM state quench proceeds analogously.
We must evaluate

=51 = Ty [(Tr [ KM) (KM

1
)] = 7] Dx/'xle e, (3.7)
KM .C.

where we have again used a path integral representation. Here I~ takes the form of
equation (3.1), evaluated on the contour C’, shown in figure 1(c) and parameterized by
T € [0,2s1), where we set s; = 2t + . We arrive at the contour C' by taking two replicas
of the KM density matrix, formed from figure 1(a). The boundary conditions for the
X¢ fermions, indicated by the dashed lines in figure 1(c), follow from the partial traces
in the above expression for the Rényi entropy. Again by introducing new fermions and
reparameterizing the contour by s € [0,4s;) (see appendix B) we find that the disorder-
averaged action—assuming once more a disorder replica diagonal solution—takes the
form of equation (3.4) evaluated on the contour C" and with both F(s,s’) and P(s,s)
appropriately modified. In particular, we indicate where f(s) = +1,+i, —i on the con-
tour by, respectively, curved segments, horizontal segments with a leftward pointing
arrow, and horizontal segments with a rightward pointing arrow. After numerically
solving the saddle-point equations, we finally compute the second Rényi entropy as

S () = —Ip + 21, (3.8)

where the actions I and I, are evaluated on-shell.

3.2. Numerical results

We now present our numerical results for the post-quench Rényi entropies. We focus
on the KM states here and provide additional discussion for TFD state quenches in
appendix A. While we reproduce some prior results in the literature (e.g. the same
numerical computation was considered for » = 4 and a TFD quench in [42]), our main
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Figure 2. Time dependence of the second Rényi for the (a) r =4 with V' = 0.35J
and (b) r = 2 with V' = 0.1J models after a quench from the 5 = 0 KM state. The
solid (dashed) lines represent the replica diagonal (non-diagonal) saddle-points.

observation which, to our knowledge, has not been previously reported is the state-
dependent thermalization of the Rényi entropies in the » = 4 model for certain parameter
ranges.

We first consider a quench from the g =0 KM state in both the r =2 and r =4
models, taking a moderate value of V' < J. As shown in figure 2, there are two solu-
tions to the saddle-point equations. The first is the replica-diagonal saddle-point
[30, 42|, so named as it does not involve correlations between the replicas involved
in the Rényi entropy calculation (i.e. G,(s, s') vanishes for s and s’ belonging to discon-
nected x* contours in figure 1(c)). This saddle-point yields the linearly increasing entropy
indicated by the solid lines. The second saddle-point is replica non-diagonal, involving
correlations between the replicas, and appears as a solution above a critical value of t.
This saddle-point has a nearly t-independent action, indicated by the horizontal dashed
lines. In particular, the non-diagonal saddle-point yields the maximal Rényi entropy of
S = (N/2)log+/2 for an equal bipartitioning of a system of N Majorana fermions,
and so describes an equilibrium state at infinite temperature, as expected for a quench
from a 8 = 0 KM state. The physical value of the entropy after the quench is given by
the minimum entropy of the two saddle-points. So we see that in both models, after
a period of linear growth governed by the replica diagonal saddle-point, the system
switches in O(1) time to the replica non-diagonal saddle-point, at which point the sys-
tem has thermalized. Hence the Rényi entropies in the r = 4 model can thermalize, at
least for effectively infinite temperature states?.

Quenches from KM states for » = 4 with non-zero § exhibit qualitatively distinct
behavior, as shown in figure 3(a), in which we plot the Rényi entropy for V =0.35
and different values of 5. Notice that the entropy for the non-diagonal saddle-point
is now shifted down from the maximal value due to finite 3. In this case we shall
instead compute the Rényi entropy in the canonical thermal ensemble at the same

4We note that similar behavior in effective infinite temperature quenches has been observed in related models, such as the Brownian
SYK model [36] and non-unitary SYK chain (including when non-Hermitian couplings are turned off) [23]. This behavior for the
r =4 model was also discussed in a quench in the microcanonical ensemble in [42].

https://doi.org/10.1088/1742-5468 /ac416b 11


https://doi.org/10.1088/1742-5468/ac416b

Thermalization of randomly coupled SYK models

os| — 0.5 ; /{____4,
|':‘ 0.4 It:l 04 /
303 5'03_/
2 =" — B=20.0
AE(].Z —_— B=4.0 ,50_2 —_— B=15.0
g — g=20 % — B=10.0
01 B=15 S g=4.0
- 10 20 30 40 50 60 70 80 90 005 5 10 15 20 25 30
t t
(a)V=O.35,J=l (b)V=0.35,J=0

Figure 3. Second Rényi after a quench from the KM state with different 5 in
the 7 = 4 model for V' =0.35 and (a) J =1, (b) J =0. The solid (dashed) lines
represent the replica diagonal (non-diagonal) saddle-points. The black lines indicate
the Rényi entropy in the canonical ensemble for each 3. Note that in (b), the thermal
data for different 3 are too close to distinguish.

0.5 A / e R S
Iy 0.4 f—— Lo
5 &
e o
So3 / — B=15.0 z
Z02| / — B=10.0 £
% — B=6.0 %

0.1 — g=20

0'00 5 10 15 20 25 30 0 00 5 10 15 20 25 30

' t
(a) r =2,V =0.35J (b)r=2,V=01J

Figure 4. Second Rényi after a quench from the KM state in the » = 2 model with
different 5, J =1, and (a) V =0.35J, (b) V = 0.1J. The plots follows the same

labeling conventions as in figure 3.

effective temperature S—which is the ensemble we expect to describe the late-time
behavior—using the same numerical techniques [47] (see appendix B). These values are
indicated by the horizontal black lines in figure 3, from which we see the non-diagonal
solution yields an entropy corresponding exactly to the expected thermal value, and
hence still describes a fully thermalized state. However, as shown in figure 3(a), for
B 2 2, the diagonal solution plateaus to a value below that of the non-diagonal solution.
That is to say, the system does not equilibrate to the expected effective temperature,
and so we thus reproduce the subthermal behavior of the Rényi entropy reported in
earlier works. On the other hand, we also see that for § < 2, the diagonal saddle-point
crosses the non-diagonal saddle-point in O(1) time. For this and smaller values of /3, the
system is thus in a thermal state at late times. If we completely turn off the intradot
couplings (i.e. set J = 0) then, as shown in figure 3(b), the system thermalizes for all
B considered. Though we cannot say for certain, following the trend for increasing 8 in
this case suggests that the system will thermalize for all values of .

What we have thus illustrated is that the » = 4 model in fact exhibits state-dependent
thermalization: for a moderate value of V' /.J, the Rényi entropy reaches a thermal (sub-
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thermal) value after a quench from a KM state with effective temperature below (above)
some critical value B.. In appendix A, we point out that the same is true for TFD
quenches. In fact, in that case, the system never thermalizes for sufficiently small values
of V and any 8 # 0, while for J = 0 there remains a range of § for which the system
still exhibits a subthermal Rényi entropy. Although increasing g in the KM and TFD
states introduces additional entanglement between A and B in the initial state, it also
suppresses the contribution from higher-energy states, indicating that the » = 4 model
exhibits different behavior at different energy scales. In particular, in the limit 8 — oo,
both |[KMjg) and py; = e ##)/Z(3) should describe the ground state (provided it has
non-zero overlap with [{1})). However, we see from figure 3(a) that the entanglement
of |[KMjp) must saturate to a value below that of the ground state value as f§ increases;
this is suggestive of the possibility that, in the large-N limit, some degrees of freedom
are ‘frozen’ and do not contribute to the entanglement.

This appears to be consistent with [28], which argued that the observed
subthermal behavior may be a consequence of ‘heavy’ modes becoming local-
ized in the large-N limit. These heavy modes were also identified as contribut-
ing to the zero-temperature thermal entropy of the r =4 model. One may then
expect that a model with vanishing zero-temperature thermal entropy in the large-
N limit would not support such frozen heavy modes and hence would always
thermalize.

As noted above, the r = 2 coupled model is precisely such a system. With this in
mind, we turn to finite-3 quenches in this model, the data for which is plotted in figure 4.
We again find both replica diagonal and non-diagonal saddle-points, and the system
always appears to reach the diagonal solution in finite time and thus thermalizes. Of
course, we cannot rule out the possibility that the r = 2 model does not thermalize for
sufficiently large 3 and small V. However, as we see from figure 4, increasing (3 appears to
increase the initial Rényi entropy faster than the late-time non-diagonal value decreases,
suggesting that even if the replica-diagonal saddle-point saturates at late-time, it will
likely saturate to a value above the non-diagonal solution, even as 5 — co. Again, we
cannot say this with certainty, but we will continue under the assumption that the r = 2
model does indeed always thermalize.

Before proceeding, we note that as claimed in [42] in which the r = 4 model was
studied at large-V, it is possible that the entanglement entropy may thermalize even if
the Rényi entropies do not, if there are indeed an extensive number of non-thermalizing
‘heavy’ modes. This is a consequence of the sensitivity of the Rényis to tails in the
entanglement spectrum induced by the presence of these non-thermalizing modes. Addi-
tionally, it was noted in [42] that the Rényi entropies in the r = 4 model can thermalize
after a quench in the microcanonical ensemble. Although one may thus object to describ-
ing the system as ‘subthermal’ based on the equilibrium values of the Rényi entropies,
we will continue in our use of this terminology, as our interest lies in part in the fact
that the Rényi entropies are sensitive to outliers in the entanglement spectrum and in
providing further evidence that indeed there are non-thermalizing heavy-modes.
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4. Finite-N spectral properties

Having illustrated the state-dependent thermalization of the » = 4 model in the large-
N limit, we now wish to see whether vestiges of this behavior also appear in finite
N systems. To this end, in the balance of this manuscript, we investigate the coupled
SYK models using ED. For concreteness, we fix V' = 0.35 in both the »r =2 and r =4
coupled models here and in all subsequent analysis. Before reexamining the entanglement
dynamics after quenches in these models in section 5, we first make a brief detour in
the present section and discuss their spectral properties to build some intuition as to
whether or not they should thermalize.

4.1. Spectral form factor

To begin, we consider the SFF, defined as

K(r) = <Zei<EzE-f>T> , (4.1)

which has become a vital tool in the study of quantum many-body chaos [6, 48]. Here,
E; are the energies, 7 is a fictitious time, and the angular brackets indicate a disorder
average. This quantity captures correlations between energy levels, with the distance
between the energy levels being probed parameterized by 77 !. The expectation is that
‘chaotic’ systems should have an SFF similar to that of a random matrix ensemble with
the appropriate symmetries. In particular, RMT predicts that the SFF first decreases as
a function of 7, a feature known as the ‘slope’, then increases linearly—the ‘ramp’—as a
function of 7, and then finally saturates to a ‘plateau’. The spectral rigidity characteristic
of random Hamiltonians is what leads to the ramp. We may also compute the connected
part of the SFF,

Ki(r) = K(r) - <Z> 2, (+2)

which subtracts out non-universal correlations at small 7 in the slope.

Now, if the large-IN subthermal behavior of the r =4 model is a consequence of
localized or conserved quantities, this should manifest in weakened energy level repulsion
and hence in a deviation of the SFF from RMT predictions. To that end, we present
numerical computations of the SFF for the coupled models compared against that of the
single SYK model in figure 5. We take N = 32 so that all three models fall in the same
RMT symmetry class. We see that the SFFs of both coupled models are qualitatively
similar to that of the single SYK model, exhibiting the characteristic slope-ramp-plateau
structure of SFFs for Gaussian random matrices. While the » = 2 ramp agrees quite
well with the single SYK ramp, the » = 4 ramp appears linear albeit with a slightly
larger slope. Nevertheless, the persistence of the ramp over the same range of 7 as the
single SYK implies the presence of energy level anti-correlation, albeit perhaps slightly
weakened, over the same energy scales.

Additionally, all three models exhibit an ‘overshoot’ of the ramp from the slope in the
connected SFF, which is more pronounced in the coupled SYK models. These deviations
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Figure 5. (a) SFFs and (b) connected SFFs for the r = 2 and r = 4 models with
V = 0.35J compared against the single SYK model for N = 32, averaged over 100
disorder realizations.

from RMT are perhaps to be expected, as the coupled SYK Hamiltonians are necessarily
more sparse than that of the single SYK, being more local and hence involving fewer
couplings, and so should resemble less a truly random matrix. In spite of this enhanced
locality, we see that the coupled SYK models are still clearly quantum chaotic by this
measure of spectral rigidity. Hence, any potentially localized heavy modes present in the
large-N limit, which may lie at the origin of subthermal behavior in that limit, likely
do not manifest at finite values of V.

4.2. Eigenstate entanglement

As a measure of the thermal character of the eigenstates of these models, we next
compute the entanglement and Rényi entropies between the two dots for each eigenstate
of fixed even total fermion parity. The results are plotted in figure 6. For states near
the middle of the spectrum, being effectively at infinite temperature, we expect their
subsystem entanglement to be close to that of a random pure state by ETH. For the
von Neumann entropy, this value is given by the Page value [49],

Dy

— 4.
o (43)

SA,Page = lOg Dy —
where D, p are the Hilbert space dimensions of subsystem A and its complement B.
Likewise, the average Rényi entropy in a random pure state is given by [50]

9 DyDp+1
Sﬁx&vage = log (DADB : (4.4)

For the 7 =2 model, D, p = 2V/* while D45 = 2V/*"! for the r = 4 model, as each
eigenstate also has definite fermion parity on each dot; hence each eigenstate only has
support on half the Hilbert space of each dot.

We see from figure 6 that the entanglement entropy of states near the middle of
the spectrum for both models remain close to the Page value for each system size N,
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Figure 6. Entanglement and Rényi entropies between the A and B dots in each
eigenstate with even fermion parity for the (a) r =4 and (b) r = 2 models with
V = 0.35 and system sizes N = 16,24, 32, averaged over 1600, 320, and 25 disor-
der realizations, respectively. The solid lines represent the entropy averaged over R
disorder realizations and the shaded regions one standard deviation. The dashed
horizontal lines indicate the Page value at the corresponding system size. The hori-
zontal axis is labeled by n/D, where D is the Hilbert space dimension and n indexes
the eigenstates in order of increasing energy.

indicating volume law entanglement. Additionally, both the entanglement and Rényi
entropies vary continuously with the energy density, and so we do not appear to observe
violations of ETH. We note, however, that the two models exhibit distinct behavior
near the edges of the spectrum. In the r = 2 model, the entanglement of the lowest
and highest energy eigenstates remains high. This is not surprising, as the quadratic
interdot coupling term is more relevant (in the sense of the renormalization group)
than the quartic intradot coupling, and hence will dominate the low energy physics. In
contrast, for the r = 4 model the entanglement drops off considerably as one approaches
the edges of the spectrum. As V' < J and the interdot coupling is marginal, we expect the
intradot to dominate, resulting in lower interdot entanglement at low energies. Thus, all
we can conclude here is that the eigenstate entropies in each model are consistent with
ETH. In conjunction with the SFF results, we thus do not expect to see non-thermal
late-time behavior in either coupled model.

5. Thermalization in finite-N quenches

5.1. Rényi and entanglement entropy

We now move on to reexamining the late-time entanglement of the coupled SYK models
after a KM state quench. Again, we fix V' = 0.35J. For initial states at effectively infinite
temperature, the expected saturation value of the entanglement and Rényi entropies are
given by the corresponding Page values, of equations (4.3) and (4.4). For initial states
with 8 > 0, we will test for thermalization by comparing the saturation value with
the entanglement entropy of an eigenstate with (nearly) the same energy. Here we are
appealing to ETH and assuming that observables computed in an eigenstate take values
representative of those in the microcanonical ensemble at the corresponding eigenenergy;
we believe this to be reasonable based on the eigenstate entanglement discussed above.
Since the KM states have definite fermion parity, we choose reference eigenstates with
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Figure 7. Entanglement and Rényi entropies after quenches from KM states for
different values of /5 in the (a) 7 =4 and (b) r = 2 coupled models with N = 32
and V = 0.35J, averaged over 210 disorder realizations. The dashed lines indicate
the entropy of an eigenstate with energy close to the corresponding KM state,
averaged over 30 disorder realizations. The insets plot the saturation value of the
entropy (blue) against the eigenstate entropy (orange) as functions of 3.

fermion parity equal to the initial state (which ensures the r = 4 eigenstates have fixed
fermion parity on each dot).

In figure 7 we plot the disorder averaged entanglement and second Rényi entropies
after a quench from a KM state in both coupled SYK models for various  and N = 32.
In both models, we see that the entropies saturate to the expected values for § < 4. For
8 =4, the Rényi entropy in the » =4 model and both entropies in the r = 2 model
saturate slightly below the expected values. This is likely a finite-size effect, since, com-
paring with figure 6, we see that these entropy values correspond to states near the edge
of the spectrum, where the density of states is lower and hence the nearest reference
state may be far away enough in energy to not accurately represent the microcanonical
ensemble centered at the KM state energy. We expect this deviation to be reduced for
larger N. Nevertheless, since the deviation is relatively small, we conclude that both
coupled SYK models appear to always thermalize for the values of 8 considered.

We next perform an extrapolation of the finite-N data to N — oo to compare with
our large-N results. Specifically, we linearly fit the saturation values of the Rényi
entropies as functions of 1/N for each  to extract the N — oo result. For each
and N, we average over enough disorder realizations such that the saturation value does
not change appreciably with additional realizations. In figure 8, we plot the results of
the linear extrapolations compared against the large- N saturation values after quenches
from KM states. In the case of the » = 2 model, we see that the extrapolated data
agrees relatively well with the large-INV results. The deviation between the two grows
with increasing (3, which we again attribute to finite size effects. Turning to the r =4
model, in figure 8(b), we plot both the large-N replica non-diagonal saddle-point as
well as the diagonal saddle-point when the system does not thermalize. Although our
large- N numerics predicted subthermal behavior for 8 > 2 we see that the finite-N data
appears to extrapolate most closely to the replica non-diagonal saddle-point, which
would suggest the system thermalizes in the large-N limit.

Based on the Rényi and entanglement entropies, our ED results thus all imply ther-
malization at finite N and appear to predict thermalization in the limit N — oco. One
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Figure 8. Extrapolated values of the saturation values of the second Rényi from
finite- N numerics compared against large-N saddle point results as functions of 3
for the (a) r = 2 and (b) » = 4 models with V' = 0.35.J. The error bars are obtained
from the covariance matrix for the linear fits and are negligible. The fits were
performed using data from system sizes N = 24-40 and N = 24-36 for » = 2 and
r = 4, respectively.

must of course take the extrapolation of our finite-N data with a grain of salt, given
the small system sizes to which we have access. But taken at face value, our data seems
consistent with the interpretation of [28], namely that heavy modes, which contribute
to the zero-temperature thermal entropy of the » = 4 model, take an infinite time to
thermalize in the large-N limit. At fixed, finite values of IV, there is of course no zero-
temperature entropy and hence one would not expect to see any slowly thermalizing
degrees of freedom. One might then expect that the large- /N subthermal behavior might
give way to thermalization when subleading corrections are taken into account. We will
speculate on this briefly in section 6.

5.2. Reduced density matrix spectral form factor

The results of the preceding section tell us that the subthermal behavior observed at
large N for the r = 4 coupled model does not appear to persist down to finite N. How-
ever, entanglement entropy, as a single number, provides a very coarse characterization
of the RDM. Indeed, by examining the full entanglement spectrum, one might hope to
find some difference between how the coupled SYK models thermalize. To that end, we
proceed to compute the SFF of the RDM after equilibrium is reached following a quench
from a KM state. Following [44], we consider the singular values \; of the RDM p, and
define the RDM SFF as

g(r) = <ZeiT(A7¢—AJ-)>’ (5.1)

where 7 is a fictitious time. We can also define a connected RDM SFF as

9¢(1) = g(7) — |<Zem> % (5.2)
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which subtracts out non-universal contributions at small values of 7. Akin to the SFF
of the Hamiltonian, the RDM SFF provides a probe of repulsion between the singular
values of the RDM.

Now, as argued in [44], the RDM SFF of a state obtained by evolving an initially
short-range entangled state with a chaotic Hamiltonian will display universal behavior
governed by the appropriate Wishart random matrix ensemble (to be reviewed below)
including the standard slope, ramp, and plateau features. Indeed, ETH implies that the
RDM should take the form p4 ~ e 4, where H 4 is the physical Hamiltonian projected
to subsystem A [46]. So, if H describes a chaotic system and hence has level statistics
described by RMT, one expects the same to be true for p,. Thus, computing the RDM
SFF amounts to a finer test of ETH.

Now, when quenched from a pure state with infinite effective temperature, we expect
a chaotic many-body system to equilibrate to a random state. Bipartionining the Hilbert
space into subregions H,4 and Hp, we can write such a random state in a Schmidt-
decomposed form:

Dy Dp

[0) = > X V) |Vy), (5:3)

i=1 J=1

where D4 p are the dimensions of Hilbert spaces Hap, |¥5/,) are complete bases of
states for each subregion, and X;; are random complex Gaussian variables, subject
to the normalization constraint Tr[XX'] = 1. The RDM for region A is then sim-
ply given by p, = XX'. We can model such a distribution of random RDMs using
the Wishart—Laguerre random matrix ensemble [48, 51, 52]. Indeed, if we consider an
unconstrained D4 X Dp matrix Y, with independent complex entries sampled from the
Gaussian distribution

P({Yi;}) =N " exp(—Dp Tr(YY1), (5.4)

then the matrix W = YY" belongs to the unitary Wishart random matrix ensemble.
The RDM for the random Page state can then be constructed as

YYT

PA = W (5.5)

In the limit D4 5 — oo with the ratio D4/Dp held fixed, the denominator has mean D4
with vanishing fluctuations, and so we can write the RDM in terms of an unconstrained
matrix drawn from the Wishart ensemble: p, = YY'/D , [44]. The SFF computed from
the Wishart ensemble thus serves as a benchmark for a maximally random RDM.

We now proceed to an analysis of the late-time connected RDM SFFs® for both
coupled SYK models for different values of § and system sizes N. For comparison,
we also compute the RDM SFF for the single SYK model (the subsystems A and B
correspond to an arbitrary, equal bipartitioning of the fermions). Now, we recall that
since the KM state is a state of definite fermion parity on both subsystems A and B

5We focus on the connected RDM SFF, as the ramp is suppressed in the full RDM SFF for an equal bipartition of the Hilbert
space [44].
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Figure 10. Late-time connected RDM SFFs after a quench from the yR_M 5—0) state
in the r = 4, r = 2, and single SYK models for different values of 3, averaged over
210 disorder realizations with a system size of N = 32, compared against the RMT
prediction.

and only the r =4 coupled SYK Hamiltonian conserves fermion parity separately on
both subsystems, the effective Hilbert space dimension involved in the time evolution in
the KM quench is different between the three models. For ease if/ comparison, we will
thus consider quenches from the indefinite fermion parity state |[KMjp) of equation (2.8),
which mixes all parity sectors and results in time evolution involving the full Hilbert
space in all three models, in this section.

5.2.1. B =0. The results for a § = 0 quench are depicted in figure 9, with the RMT
predictions presented as dashed lines. We see that the late-time RDM SFFs of all three
models display clear slope-ramp-plateau structures. In particular, the single SYK RDM
SFF exhibits perfect agreement with RMT. In contrast, while the RDM SFFs of the
coupled SYK models agree well with RMT, they exhibit a slight overshoot where the
slope joins the ramp, which grows with system size and is more pronounced in the r = 4
model.
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Let us set these observations in the context of other non-integrable models. In [44],
it was found that the late-time RDM SFF of an energy non-conserving Floquet model
agreed perfectly with the RMT prediction, while an energy conserving Ising model
exhibited an overshoot of the ramp like that we see in the coupled model (though
significantly more pronounced). The authors argued that the disagreement with RMT
in the Ising model was a consequence of energy conservation acting as a constraint on
the evolution of the wave function, inhibiting the development of chaos. However, the
late-time RDM SFF of the single SYK model is exactly consistent with RMT, suggesting
that energy conservation is not, on its own, sufficient to inhibit thermalization. Though
this was not the main object of our study, we emphasize that this is an interesting result
in its own right. Indeed, the fact that the late-time RDM SFF exactly resembles that of
a completely random state provides a novel characterization of the sense in which the
SYK model is maximally scrambling, in spite of its energy conservation.

The mild overshoot of the ramp in the coupled models can thus likely not be
attributed only to energy conservation alone. The fact that the overshoot develops for
both coupled models indicates that its origin does not lie with the fermion parity con-
servation in the A and B dots of the 7 = 4 model. The primary distinction between the
coupled and single SYK models is that the former have some notion of locality—the
models describe two clusters of Majorana fermions which can be interpreted as being
spatially separated—and hence the Hamiltonian will be more sparse than that of the
latter model. It thus seems reasonable to conclude that the non-local nature of the cou-
plings in the single SYK model are what lead to the perfect agreement of the RDM SFF
with the RMT prediction. In particular, the fact that similar deviations from RMT are
present in both coupled models suggest that they are not linked with a potential source
of subthermal behavior in the » = 4 model at large-N. In fact, the small magnitude of
deviations suggests that both are in fact excellent scramblers.

5.2.2. 8 # 0. Finally, we inspect the RDM SFFs after quenches from |[KMj) states
with non-zero [, the data for which is shown in figure 10. We recall that, for g > 2, the
r = 4 model reaches a subthermal state in large-N. Nevertheless, the connected RDM
SFFs of both the » = 2 and » = 4 models exhibit similar behavior. In particular, already
at 0 = 1.5, the RDM SFFs exhibit significant departures from a linear ramp for smaller
7, while there is no vestige of linear growth for any 7 at larger values of 3. In contrast,
the RDM SFF of the single SYK model still exhibits a clear linear ramp, indicating the
retention of spectral rigidity in the RDM spectrum. Evidently the single SYK model
remains an excellent scrambler over a large temperature range.

Now, we emphasize that the definition of |[KMg) for finite 5 depends on the choice of
Hamiltonian, so we cannot directly compare the RDM SFFs of the three models, as they
have been quenched from different states. Additionally, since we are now quenching from
states which do not correspond to infinite temperature, we should not necessarily expect
a priort that the system should equilibrate to a completely random state. However, we
take the fact that the RDM SFFs of the r = 2 and » = 4 models are at least qualitatively
similar as further evidence of the claim that the origin of the subthermal behavior of
the r = 4 model observed in large-N is an artifact of that limit and does not manifest
at finite N.
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6. Discussion and conclusion

We have presented a thorough characterization of the post-quench entanglement of
randomly coupled SYK models, motivated by the analytic calculations of [28], which
found subthermal behavior in the large-N limit after a quench from a TFD state in
the large effective temperature limit. In our large-N analysis, we expanded on previous
analytic and numerical results and illustrated that the r = 4 coupled SYK model exhibits
state-dependent thermalization for sufficiently strong interdot coupling, while the r = 2
model appears to always thermalize (at least for the parameter ranges considered). We
then proceeded to characterize these coupled systems at finite-/NV using ED. We did not
find concrete signatures of the large-N subthermal behavior in these finite-size systems.
Instead, they appeared to be chaotic, as characterized by the SFF, and both the Rényi
and von Neumann entropies saturated to the expected thermal values after quenches.

As a finer-grained characterization of thermalization and chaos, we computed the
SFF of the late-time RDM after these quenches, comparing the results with the stan-
dard SYK model. We found that for § = 0 quenches, corresponding to infinite effective
temperature, the single SYK model agreed perfectly with RMT predictions while the
two coupled models exhibited slight deviations. For 5 # 0 quenches, the single SYK still
agreed well with RMT, while the coupled models exhibited greater deviations. Given
the similar behavior of the coupled SYK models, we could not connect these deviations
to an origin for the large- N subthermal behavior. However, a side result of this analysis
was another characterization of the sense in which the single SYK model is a perfect
scrambler. We thus conclude that the subthermal behavior of the » = 4 model in the
large- N limit is an artifact of said limit.

Though our analysis is consistent with the conjecture in [28] that the subthermal
value of the late-time Rényi entropy is a consequence of heavy degrees of freedom which
are frozen/localized in the large-N limit, it remains to be seen whether this picture
can be made more precise. In particular, it would be interesting to see whether tak-
ing into account subleading corrections of the large-N calculation would show how a
late-time thermal state emerges. It is tempting to speculate that tunneling between the
replica diagonal and non-diagonal saddle-points, described by non-perturbative instan-
ton processes, may lead to the expected finite-N thermalization. Instantons in large-N
(Brownian) SYK systems have been discussed, but in the separate physical context
of measurement induced purification transitions [53]. It would also be interesting to see
whether the state-dependent thermalization of the »r = 4 model may be addressed within
a holographic computation [54-57].

We have focused our attention on a system of two coupled SYK dots, however,
this two-site model was studied in [28] as a simple limiting case of a full SYK chain,
which exhibits the same subthermal properties at large-N. The numerical methods
employed here can be used to investigate entanglement propagation in the full SYK
chain in the large-N limit (as has already been done in the context of measurement-
induced transitions in SYK chains [23]). In particular, it would be of interest to
better understand the potentially sub-linear scaling of Rényi entropy in the time
regime identified in [28] following the initial linear growth. Understanding how the

https://doi.org/10.1088/1742-5468 /ac416b 22


https://doi.org/10.1088/1742-5468/ac416b

Thermalization of randomly coupled SYK models

membrane picture [58-62], which has emerged as a means of understanding entan-
glement growth in chaotic systems via a space-time minimal surface determined by
the subregion geometry, should be modified to account for potentially sublinear entan-
glement growth and subthermal saturation presents an open intriguing problem. We
anticipate investigating the entanglement dynamics of such SYK chains in future
work.
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Appendix A. Thermofield double state quenches

In this appendix we provide, for comparison, data for quenches from TFD states,
as have been considered in [30, 36, 42|. To define the TFD state, we start by dou-
bling the Hilbert space such that we have two copies of the coupled SYK model,
labeled by the index b = 1,2. We denote the fermions in this doubled system by 2.
This pair of coupled SYK systems are decoupled between the two Hilbert spaces
and are described by the Hamiltonian Hp = Hi +Hy, = H,, ®1+1® HT . where

qr?

HI = (-1)?H}+ (=1)?HP + (=1)"/?H,. This doubled system is illustrated in

figure 11(a). Next, we define the infinite temperature TFD state |I);» via the
condition

X+ i) =0 Vi, a=A,B. (A1)
In this state, the y** fermions are maximally entangled with the y** fermions, while there
is no entanglement between the x4’ and y? fermions. The TFD state at inverse tem-
perature 3 is given by |TFD;) = Z(8)~ /2 e #Ho/4|I),, where Z(3) = Tr[e~*Hr]. While
|ITFDg) is an eigenstate of Hy — Ho, it is not an eigenstate of the Hamiltonian Hp.
Indeed, using the fact that the TFD is annihilated by H; — H,, we can write the
time-evolved TFD state as

TED,(0) = |1 (A2)

TFDs(t)) = ——11)10. A2

Z(B)
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Figure 11. (a) Setup of the TFD quench. The circles represent the different SYK
dots and the green dashed line the entanglement cut. (b) Pictorial representation
of TFD density matrix. Curved lines indicate imaginary time evolution by (/2
and horizontal lines real time evolution by 2¢, with the direction from right to
left. The lower (upper) curves represent [TFDg) ((TFDg|). (¢) Contour over which
equation (A4) is evaluated. The dashed lines indicate the boundary conditions for
the fermions. The contour is parameterized by s, which increases clockwise around
each replica. Here, sy = 2t + [3/2.

Note that, on tracing out the b = 2 fermions in the TFD state, one obtains a thermal
RDM for the b = 1 fermions: p; oc e ##er and vice versa. While each side of the TFD
state is thermal by construction, a subsystem containing, say, the y! and x#? fermions
need not be thermal. If the system thermalizes after a quench from the TFD state,
the Rényi entropies should saturate to values corresponding to those computed in the

thermal state pg oc e #(Hi+H2),

A.1. Large-N quenches

As illustrated in figure 11(a), we wish to compute the post-quench n = 2 Rényi entropy
of the Al and A2 fermions,

Sfquz = —log Traiuaz P,Qauqua (A3)

where p 4,45 is the RDM for the fermions in region A1 U A2. As for the KM state quench,
this quantity can be conveniently expressed as a path integral. Indeed, we can pictorially
represent the full TED density matrix, p = |TFD3)(TFDg| as in figure 11(b). Here, the
lower and upper line segments represent |TFDj) and (TFDj|, respectively. The curved
and horizontal portions of each segment represent the imaginary and forward real time
evolutions of the b = 1 Hilbert space, respectively, read from right to left. Computing
the second Rényi involves taking two copies, or replicas, of the density matrix, as in
figure 11(c). The partial traces over A and B dictate the boundary conditions for y#
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and x? fermions, indicated by the dashed lines. We can then write the second Rényi
entropy in terms of a Keldysh path integral over a single copy of the Hilbert space,

1 1
Tra1042 Paroas = Z00) /Dxfxf el I = /,,ds [52)(;"83)(;" + f(s)H,, (A4)

i,a

where Icr is computed over the contour C” depicted in figure 11(c). Here, the variable
s parameterizes the contour, increasing clockwise around each replica, and takes values
in s € [0,4s,) where, for brevity, we have defined s, = 2t 4+ /2. Again, f(s) keeps track
of whether we are performing imaginary time or forward/backward real time interval at
s. Additional details on the setup of this path integral may be found in appendix B.

On disorder averaging, akin to the KM state calculation, we obtain the effective
action

ICH - 1 1 , , ,

N =1 log det <(ZS Ea> + 4/”dsds [Za:Ea(s,s)Ga(s,s)
(A5)

J? 2V? . :
- F(S, S,) (qza:Ga<Sa S/)q + TGA(S7 S,)EGB<55 S/)i)]
where F'(s,s") = f(s)f(s'). The saddle-point equations are then given by
Ga = (as - Za)_la

(A6)

Yu(s,8) = F(s,s) [Jng’l(s, s') + VzGZ/Q’l(s, s’)Gg/Q(s, s')} )

We thus find for the second Rényi entropy S,(421)u 142(t) = —Icr + 215, where Ipr is evaluated
on-shell and Iy = —log(Z(/3)) is the action for a single copy of the coupled SYK model
at inverse temperature 3. As in the KM state quench, the Schwinger—Dyson equations
can be evaluated numerically.

We present the results of our large-N numerics in figure 12 for » = 4, with V' = 0.5
and V =1 as well as different values of 5. We see that for V' = 0.5, the diagonal solution
plateaus to a value below that of the non-diagonal solution, as was noted previously in
[42]. In fact, our numerics suggest that for sufficiently small values of V' (including
moderate ones like V' = 0.5), the diagonal saddle-point never crosses the non-diagonal
saddle-point, even in the limit § — 0, and hence the system never thermalizes for 5 # 0
even though it does for § = 0. This non-analytic behavior is quite peculiar and we
suspect is an artifact of the large-INV limit. Specifically, our results are suggestive of
an order-of-limits issue in that taking § — 0 and then N — oo leads to thermalization
whereas taking the limits in the opposite order can lead to subthermal behavior.

As we increase V', the plateau value of the replica-diagonal saddle-point increases.
Indeed, as shown in figure 12(b), for V' = 1, the diagonal saddle-point crosses the non-
diagonal saddle-point in O(1) time for § = 0.01. For this and smaller values of /3, the
system is thus in a thermal state at late times. But, for larger values of 3, the system
remains in a subthermal state. In fact, as we see from figure 12(c), even if we set V =1
and J = 0, there exists a critical 8 above which the » = 4 model does not thermalize.

https://doi.org/10.1088/1742-5468 /ac416b 25


https://doi.org/10.1088/1742-5468/ac416b

Thermalization of randomly coupled SYK models

12 12 12

v

me > o ——
&©0.8 - - 08 %08 [
2 : g g
= 0. 206 [ g_a.e
=04 — B=5.0 %Dd — B=5.0
—B=10 | % — B=10
g - 02 —— B=0.01 oz — p=20

(a) V =0.5J (b)V=1J ©V=1J=0

3

sy
sty

Figure 12. Second Rényi after a quench from different TFD states in the r =4
model for different values of V and J. The plots follows the same labeling
conventions as in figure 3.
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Figure 13. Second Rényi after a quench from different TFD states in the r = 2
model for different values of V.

This additional TFD data thus provides additional examples of the state-dependent
thermalization of the » = 4 model. In contrast, from figure 13, we see that the r = 2
model again appears to always thermalize, as was the case in the KM state quench.
Lastly, we note that one may ask whether the state-dependent thermalization in the
g = 4, r = 2 model is a consequence of the interdot coupling being more relevant (in the
sense of the renormalization group) than the interdot coupling. We have also performed
quenches with ¢ = 6, » = 4 and again found state-dependent thermalization—the key
point then is whether the interdot coupling is quadratic, not whether it is relevant.

A.2. Finite-N quenches

We now briefly present data for finite-N quenches. Figure 14 shows the disorder aver-
aged entanglement and second Rényi entropies after a quench from a TFD state in the
r = 4 coupled SYK model with N = 16 for various . The Page values in each plot are
determined by equation (4.3) in the von Neumann case and equation (4.4) in the Rényi
case, where D4 = Dp = 2V/>7! for r = 4 (as the TFD state has definite fermion parity on
A=A UAyand on B = B, UB,), and D4 = D = 2"/? for r = 2. Similar to the KM
case, in the long time limit the entanglement and Rényi entropies from a TFD quench
become the same as (or very close to) the Page values. Note that the small discrepancy
between the Page values and the long-time TFD values at § =0 in the case of r =4
can be attributed to the fact that the eigenstates in the single Hilbert space (which we
use to construct the TFD state) have slightly smaller entropies than the corresponding
Page values, as shown in figure 6(b). Finally, it can be numerically shown that there
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Figure 14. Entanglement and Rényi entropies after quenches from TFD states for
different values of 8 in the (a) r =4 and (b) » = 2 coupled models with N = 16
and V = 0.5J, averaged over about 80 disorder realizations. The solid horizontal
line in each plot indicates the corresponding Page value of the entropy.

does not exist eigenstates that have the same symmetries as the TFD state, therefore
unlike the KM case in figure 7 here we do not have the eigenstate entropies to compare
with.

Appendix B. Details of the large-N path integrals

In this Appendix, we provide additional details on the path integral setup for the KM
and TFD state quenches as well as the Rényi entropy in the canonical ensemble. Here
we primarily follow [23, 47] for the KM state and [30] for the TFD state quenches.

B.1. Kourkoulou—Maldacena state

B.1.1. Path integral details. In the main text, we described how to arrive at the
contour of figure 1(c) using a pictorial representation of the KM state. Here, we pro-
vide a more detailed exposition of the path integral setup. Let us first consider the
computation of the normalization, Zky;. In order to handle the non-trivial boundary

conditions of the Majorana fermions given by equation (3.2), we define a new fermion
field,

—ix5i 1 (B/2—s)  s€[0,8/2)
Xi(s) = < x5:(s — B/2) s € [8/2,35/2) (B1)
—ix5i1(58/2—s) s €[3B/2,28)
which satisfies
XH(B/27) = X4B/2T),  XI(BB/2T) = —R(3B/27). (B2)

This redefinition allows us to re-express the path integral as one over N /2 fermion fields
with the usual antiperiodic boundary conditions.
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In order to derive the effective action, we proceed in the usual fashion, first averaging
over all disorder realizations, assuming a disorder replica diagonal solution. On inserting
a resolution of identity in the form

1
1 o /DZQDGG exp <—2/dsds’22a(s,s’)

AR sz<s>>zz<s>]) (B3)

into the path integral, we can integrate out the fermions in favor of the bilocal fields
¥, and G,. To arrive at equation (3.4), we note that the disorder averaged action
and boundary conditions are invariant under the simultaneous transformations x3, , —
X3is X5 — —X5:_1, which enforces that G,(s,s") =G(5—s,8—5") for s, € [B/2,0)
and G,(s,s") = G35 —s,38 — &) for s,s' € [3,38/2). On making use of this symme-
try when integrating out the fermions in favor of the bilocal fields ¥, and G,, we may
express the effective action in the form of equation (3.4). In doing so, it is necessary to
introduce the projection function P(s,s’) defined in the main text. For the evaluation
of Zxwm, with the parameterization of the contour given in figure 1(b), we have

Pls,s) = {1 s,s' €0,8/2)U[38/2,28)ors,s" €[B/2,38/2] | (B4

0 otherwise

Note also that we have F(s,s’) =1, as the normalization only involves imaginary time
evolution.

The derivation of the effective action for the evaluation of 81(42), given by equation (3.4)
evaluated on the contour C” given by figure 1(c), follows in the same vein. Letting |a) and
|a’) represent complete bases of states for the a = A, B dots and defining U = e(7#+5/2H
we can explicitly write equation (3.7) as,

Ziye™ = 3 {UUNABNABUIN {1UABYABUKLY, (g5

AA' BB

The graphical representation of this trace is then given by figure 1(c)—the four overlaps
in the above expression correspond to the four half-contours, both read from right to left.
The boundary conditions for the x¢(7) fermions indicated by the dashed lines are found
by matching up the bras and kets above. The dots in figure 1(c) correspond to boundary
conditions of the of form equation (3.2) at 7 =0, sy, s{,2s;. As in the computation of
Zxu these can be accounted for by defining N /2 new fermions as

—ix%_1(51/2 — s+ 3asy) S € [2a89, 81/2 + 2u89)
Xi(8)" =< x5:(s — 51/2 — asy) S € [81/2 4 2a89,351/2 4 289) (B6)
—iX4;_1(551/2 — 5+ 3as) s € [351/2 4 2as9, 251 + 2aus9),
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for a = 0,1 and where s € [0, 4s;) reparameterizes the contour, as depicted in figure 1(c).
The remaining boundary conditions indicated by the dashed lines are, explicitly,

X2s7) =xN07), X)) =X, xXPO07) =x7(Esy), X (Bst) = X7 (s1)
Xs7) = xM(2s7), XM(Bsy) = X (Bs1) X7 (28)) = X7 (2s1), X (3sy) = X7 (s7).
(

On performing the disorder average, we again arrive at the effective action equation (3.4),
now evaluated on the contour C”. Here, from inspection of figure 1, we have that

Plo.sl) = {1 5,8 €100,51/2) U[3s1/2,581/2) U [Ts1/2,4s1]or s, 8 € [s1/2,351/2] U [5s1/2,751/2], (BS)

0 otherwise

where s; = 2t + (. Since we now have real time evolution, F'(s,s") = f(s)f(s’) is non-
trivial. Explicitly,

1 s € [t,t+ B)U[B+3t,28+3t)
fls)=<—i se[0,t)U[28+ 3t,25+ 4t) (B9)
i se B+t 5+3t).

For s € [2s1,4s1), we set f(s) = f(s — 2s1).

Now, when we discretize the path integral, the distinct boundary conditions for the
Majorana fermions will be encoded in the matrix used to define the time derivative
operator. Following [30], we employ the fact that 9, = (G%)~!, where G(s,s') is the

a
free propagator with the appropriate boundary conditions for the a = A, B fermions.
In the evaluation of Ziy, the x* fermions obey the same standard fermion boundary
conditions, and so

GO(s, §) = % sen(s — ), a=A,B. (B10)

In the evaluation of Sf), we instead have distinct boundary conditions for the a = A, B
fermions; explicitly,

gn(s—s')  s,s on the same a contour

1
Gos,s) =4 2" (B11)
0

otherwise.

For instance, we can read off from figure 1(c) that GY(¢/2,7t+ 48) =0, while
G%(t/2,7t+48) = —1/2.

B.1.2. Numerical evaluation. In order to numerically solve the Schwinger—Dyson
equations, equation (3.6), and evaluate the action, equation (3.4), we discretize the
contour into L points, turning the Green functions and self-energies into L x L matri-
ces. In particular, we divide each real time interval (e.g. s € [0,¢)) into 7" points and
each imaginary time interval (e.g. s € (¢,t + ()) into B points, so that L = 8T + 4B.

https://doi.org/10.1088/1742-5468 /ac416b 29


https://doi.org/10.1088/1742-5468/ac416b

Thermalization of randomly coupled SYK models

After discretization, we have that ds — As;, where As; = t/T or As; = /B, depending
on whether s; is in a real or imaginary time interval. Additionally, we have

1

. I P ) O —
5(s — 50, — (Ga) a5 8) = A A

Za mn»y B12

where additional factors of As,, are included in the discretization of 9, to retain
the correct units, while the rescaling of 3, is done for convenience. The discretized
Schwinger—Dyson equations then take the form

@&m:@fim%,(&Mn:Rm&Jﬁ%”+V@W“%ﬂ As,As,. (B13)

mn

We solve the Schwinger—Dyson equations using a standard self-consistent iterative pro-
cedure. Starting with some ansatzé for the Green functions on iteration [ =1, Gg,l:()),
we compute the self-energies [¥,]) using the Schwinger-Dyson equations and perform
a weighted update of the Green functions:
-1

G = (1 -2)G0 + (@) -0 (B14)
where we typically take x = 0.5. The Green functions of the /th iteration are then used
as input for the subsequent iteration. We say the procedure has converged once the
(G ) = (G )l /(2L7) drops
below a threshold of € = 107 and the Schwinger—Dyson equations are satisfied to the
same tolerance. We then use these values to compute the action, equation (A5). We
repeat this computation for several values of L and then perform a linear extrapolation
in 1/L to extract the L — oo value. As our initial ansdtze for the Green functions, we
set either G=° = GY or G = GY%; the former tends to converge to the replica-diagonal
saddle-point and the latter to the non-diagonal saddle-point.

change in Green functions between iterations >

B.2. Thermofield double state

Next, we briefly outline the setup of the contour of figure 11(c) starting from
equation (A3). Let us first define, for notational convenience, U, = e~ (2*%/2H1  Now,
since |I)15 is an infinite temperature TFD state (i.e. a product state of Bell pairs
between the b =1 and b = 2 Hilbert spaces, as indicated by equation (Al)), we have
that TI‘BQ(|I>12 12<I|) = |I>A1UA2 AIUA2<I| (24 131, where |I>AIUA2 AIUA2<I| is the infinite tem-
perature TFD state for A1U A2 and 1p; the identity on B1l. Making use of this fact
and inserting complete bases of states in the trace, we find

@ 1 D/ / I A DIN/ A T / A T
Z(B)ye 5 = Y (ABI|UJ|AB)) (A B |U\| A\ B)) (A BA|UJ| A\ B)) (A, By U1 | A, By).

Ay A -,z}h%/l
B1,B}.B1,B}

(B15)

Here, |a1), |a}), and |a;) represent complete bases of states for the a = A, B dots in the
b = 1 Hilbert space. Note that the b = 2 Hilbert space has been traced out. The second
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Rényi entropy thus has a Keldysh path integral representation given by equation (A4).
Indeed, read from left to right, the four overlaps in equation (B15) correspond to the four
contour segments in figure 11(c), read from top to bottom. The boundary conditions for
the fermions, indicated by the dashed lines connecting the segments, can be deduced
by matching up the bras and kets in equation (B15), as we described for the KM
quench. The free Green functions for the a = A, B fermions again takes the form of
equation (B11).

B.3. Rényi entropy in thermal ensemble

Finally, we outline the computation of the Rényi entropy between the A and B dots in
the Gibbs state p; = e 7 /Z(f), against which we compared the large-N non-diagonal
saddle-points, following [47]. Explicitly,

1
S = Joan O (ABle A AB e M|AB). (B16)
(/B) A,A’,B,B/

Expressed as a path integral, the contour takes the standard ‘pants’ geometry. The
replica boundary conditions implied by the above expressions yield for the free Green
functions,

G%(t,7") = = sgn(r —7') 7,7 €0,2p),

N = N

GY%(r,7) =~ sgn(t —7) 7,7 €[0,8)or 7,7 € [B,28),

where 7 € [0,20). The Rényi entropy in the Gibbs state can then be evaluated by using
these free Green functions in equation (A5) and solving the saddle-point equations, as
in the preceding two subsections.
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