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Abstract—In this paper, we propose a Spatial Robust Mixture
Regression model to investigate the relationship between a
response variable and a set of explanatory variables over the
spatial domain, assuming that the relationships may exhibit
complex spatially dynamic patterns that cannot be captured
by constant regression coefficients. Our method integrates the
robust finite mixture Gaussian regression model with spatial
constraints, to simultaneously handle the spatial nonstationarity,
local homogeneity, and outlier contaminations. Compared with
existing spatial regression models, our proposed model assumes
the existence a few distinct regression models that are estimated
based on observations that exhibit similar response–predictor
relationships. As such, the proposed model not only accounts for
nonstationarity in the spatial trend, but also clusters observations
into a few distinct and homogenous groups. This provides an
advantage on interpretation with a few stationary sub-processes
identified that capture the predominant relationships between
response and predictor variables. Moreover, the proposed method
incorporates robust procedures to handle contaminations from
both regression outliers and spatial outliers. By doing so, we ro-
bustly segment the spatial domain into distinct local regions with
similar regression coefficients, and sporadic locations that are
purely outliers. Rigorous statistical hypothesis testing procedure
has been designed to test the significance of such segmentation.
Experimental results on many synthetic and real-world datasets
demonstrate the robustness, accuracy, and effectiveness of our
proposed method, compared with other robust finite mixture
regression, spatial regression and spatial segmentation methods.

Index Terms—robust mixture regression, spatial information,
hybrid, Markov random field (MRF), spatial inference

I. INTRODUCTION

Many problems in the environmental, economic, and bi-
ological sciences involve spatially collected data, and a main
problem of interest is investigation of the relationship between
a response variable and a set of explanatory variables over
the spatial domain using regression modeling. Notably, the
relationships between response variables and covariates may
exhibit complex spatially dynamic patterns that cannot be
captured by constant regression coefficients. Instead, such
relationships may abruptly change at a certain boundary of two
neighboring spatial clusters, but stay relatively homogeneous
within clusters. Detecting clusters of observations that display
similarity in both regression relationships and spatial proxim-
ity allows straightforward interpretations of local associations
between response variables and covariates. For example, the

residential real estate pricing could be quite similar in a local
community, but drastically differ for two houses across the
street [1]; a major goal of analyzing functional magnetic
resonance imaging (fMRI) data is to detect spatially distributed
and functionally linked regions that continuously share infor-
mation with each other in reaction to different stimuli [2].
For all these real-world application settings, the collected data
may often contain outliers, which may severely corrupt the
analysis results if not properly handled. Overall, the spatial
nonstationarity, local homogeneity, and model robustness are
three main challenges in spatial regression modeling.

In the nonspatial setting, finite mixture regression models
have been used in many areas as an effective exploratory
approach to identify heterogeneity in response–predictor rela-
tionships. For an overview, see [3, 4]. To account for outliers
or heavy-tailed noises, many algorithms have been developed
to estimate the parameters robustly [5]. To seek for robust
parameter estimation in the presence of outliers, methods have
been developed that replaced the least-square criterion in the
M-step of the expectation maximization (EM) algorithm by
more robust criterion [6, 7, 8, 9, 10, 11, 12]. To enable simulta-
neous model estimation and outlier removal, penalized mean-
shift mixture model [13], and the least trimmed likelihood
estimator [14, 15, 16, 17] were proposed. While these methods
could robustly capture the heterogeneous relationship between
response and predictor variables, they are not designed to
model the spatial dependency.

In modeling the spatial dependency, conventional non-
stationary spatial regression models such as geographically
weighted regression (GWR) [18, 19, 20] and Bayesian spa-
tially varying coefficient (SVC) [21, 22] models fit as many
regression models to the data as there are observations, at the
cost of a large computational burden for large spatial datasets,
and sometimes may lead to overfitting. In addition, interpre-
tation of the GWR and SVC models require visual inspection
of the coefficient maps to pursue local homogeneity, and can
not automatically capture the spatially clustered patterns. In
order to automatically detect spatially homogeneity cluster, a
penalized spatial regression model has been proposed [23],
where a fused-lasso [24] type of penalty has been developed
to account for the spatial homogeneity in the linear regression
setting. Nevertheless, the spatial smoothness assumption in
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the above spatial regression models could be problematic and
violated due to natural or man-made discontinuities in the
spatial domain. In addition, none of these methods is designed
to handle outliers.

Model-based spatial segmentation is another type of meth-
ods to deal with spatial data using spatially constrained Gaus-
sian mixture model [25, 26]. Spatial segmentation incorporates
spatial information between neighboring pixels into the Gaus-
sian mixture model based on Markov random field (MRF),
with a goal to cluster all variables (e.g. pixels in image), where
the distance of two instances is dependent on both their feature
expressions and spatial proximity. This comes at a high com-
putational cost. While robust spatial segmentation algorithms
are available [25, 26], they fail to intentionally model the linear
relationship between the response and predictors, but instead
simply treat the response and predictors as different features.

In summary, none of the existing methods could robustly
model the spatial clustering patterns of linear dependency be-
tween response and predictors, and we propose a novel Spatial
Robust Mixture Regression (SRMR) model that enables a
simultaneous detection of spatial regions in which variables
have a strong linear dependency.

The key contributions of work include: (1) We developed
the very first computational concept of spatially dependent
mixture regression analysis. (2) We provided the SRMR model
that efficiently solves the spatially dependent mixture regres-
sion problem, which is also empowered by a statistical in-
ference approach to assess regression significance. (3) SRMR
enables a new type of spatial segmentation analysis to detect
overlapped spatial regions of varied dependencies among
subset of features, which have high contextual meaningfulness.

II. PRELIMINARY

A. Notations

We denote scalar value, vector, and matrix as lowercase
character x, bold lowercase character x, and uppercase char-
acter X , respectively. Let {(x(si), y(si)), i = 1, . . . , n} rep-
resent a set of spatial data that is observed at spatial locations
s1, . . . , sn ∈ R2, where the response variable y(si) is assumed
to be spatially correlated, x(si) = (x1(si), . . . , xp(si))

T is
the p-dimensional vector of explanatory variables for the ob-
servation located at si, and si = (c1i , c

2
i ) is the 2-dimensional

coordinate of the ith location. In this study, we only describe
and validate the SRMR model on 2-dimensional spatial data.
Noted, the approach can be directly applied to K-dimensional
(K > 2) spatial data.

B. Problem statement

To capture the spatially dependent structure for the response
variable, we write a standard generalized linear regression
model (GLM) for the i-th spatial location as follows,

g(E(y = y(si) | x = x(si))) =

p∑
j=1

xj(si)βji + εi

where βji, j = 1, 2, . . . , p, are the regression coefficients
for the p predictors, and εi represents random noise with

mean 0 and variance σ2
i , and g(·) is the link function. In

this work, we assume identify link for linear regression.
The intercept can be accommodated by including 1 as an
entry of x(si). Apparently, unless with sufficient number of
repeated measurements for each location, the βji, σi are non-
identifiable. In many cases, there is only a single observation
for each spatial location, certain spatial constraints will be
enforced to ensure the identifiablity of the model parameters.

Definition 1: Spatially Dependent Mixture
Regression. Given a dataset consisting of n observations
{(x(si), y(si)), i = 1, . . . , n} from spatial locations
s1, . . . , sn, the goal of spatially dependent mixture regression
is to identify spatial regions Π1, . . . ,ΠK and the number K,
s.t.,

y(si) =

p∑
j=1

xj(si)β
k
j + εi, if si ∈ Πk

, where βk
j , j = 1, ..., p, k = 1, ...,K are regression parameters

for the p predictors in the k-th cluster; εi ∼ N (0, σk), where
σk represents the noise level of cluster k.

To account for the presence of outliers, we assume that
ΠK are non-overlapping subsets of the whole set {1, ..., n},
and denote the outlier set as Π0, such that Π0 = {1, ..., n} \⋃K

k=1 Πk Two type of outliers will be considered here:
Type 1 Outliers: y(si) 6=

∑p
j=1 xk(si)β

k
j + εk, ∀k = 1, ...,K

Type 2 Outliers: ∃k, y(si) =
∑p

j=1 xk(si)β
k
j + εk, si 6∈ Πk

Here the Type 1 Outliers represent the samples do not fit any
regression model while the Type 2 Outliers represent the ones
fit a certain model but do not locate nearby the spatial region.

Noted, pre-assumptions of the spatial regions Π1, . . . ,ΠK

are needed to enable a valid solution of the spatially dependent
mixture regression problem. Such assumptions include a con-
nected spatial region, a compact shape, or high enrichment
to a certain region. Noted, as spatially dependent mixture
regression assigns each sample into one spatial region Πk,
it directly forms a spatial segmentation method.

C. Related works

Mixture regression and robust estimators. Consider an
finite mixture Gaussian regression model parameterized by
θ = {(πk,βk, σ

2
k)}Kk=1, the conditional density of y given x

is f(y|x, θ) =
∑K

k=1 πkN (y;xTβk, σ
2
k), where N (y;µ, σ2)

is the normal density function with mean µ and variance
σ2. Many algorithms have been developed to estimate the
parameters robustly [5] by replacing the least-square criterion
in the M-step with more robust criterion in the EM algorithm
[8, 10, 11, 12]. To enable simultaneous model estimation
and outlier detection, usually a hyperparameter regarding the
proportion of outlying samples needs to be specified, such as
in the penalized mean-shift mixture model [13], and the least
trimmed likelihood estimator [14, 27].

Spatially smooth regression. Conventional nonstationary
spatial regression models such as geographically weighted
regression (GWR) [18, 19, 20] and Bayesian spatially varying
coefficient (SVC) [21, 22] models allow regression coeffi-
cients to vary smoothly as a function of the spatial domain.
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For GWR, assuming a linear model with y denoting the
observed response vector and X the design matrix, the re-
gression coefficient at the i th location is estimated from
β̂i = (XTW iX)−1XTW iy, where W i is a diagonal
weight matrix defined by a kernel function of distance of all
other points to point i. The challenge with GWR and SVC
models is that they fit as many regression models to the data
as there are observations, at the cost of a large computational
burden, possible over-fitting and interpretation. A penalized
spatial regression model has been developed to automatically
detect clusters [23] by incorporating a fused-lasso penalty
constructed based on spatial proximity.

Spatial segmentation. Model-based spatial segmentation
aims perform a segmentation task to all samples (e.g. pixels
in image) based on the input features. Model-based spatial
segmentation adopts an energy function U(Π) to integrate
the spatial information such as neighborhoods with a regular
clustering analysis of the features. Intrinsically, such meth-
ods leverage spatial and data consistency to segment spatial
regions, i.e., only considering the covariance of independent
variables, which cannot solve the spatially dependent regres-
sion problem.

III. METHOD

To solve the problem of spatially dependent mixture re-
gression, computational challenges arise from three aspects:
(1) the mixture regression model and spatial consistency do
not form one unified likelihood function, which prohibits a
direct solution by using EM algorithm, (2) detection spatial
regions should depend on both goodness of fitting and spatial
consistency, and (3) there is lack of a validate approach to
assess the statistical significance of mixture regression models.

A. SRMR algorithm and mathematical considerations

In sight of the challenge, we developed the spatial robust
mixture regression (SRMR) algorithm to conduct simultaneous
outlier detection and spatially dependent mixture regression
estimation. The underlying idea is that by assuming a like-
lihood function of spatial regions pspa and introducing a
tuning parameter λ ∈ (0, 1) to link pspa with the likelihood
of mixture regression preg , a surrogate likelihood function
(1 − λ)preg + λpspa is developed to enable a modified EM-
algorithm (Algorithm 1). The inputs of Algorithm 1 include
the response and independent variables, spatial coordinates,
and the hyper parameter λ. It conducts a simplified spatially
dependent mixture regression fitting by assuming there is only
Type 2 outliers, i.e., the sample fit one mixture model but
do not locate in the corresponding spatial region. Hence,
Algorithm 1 fits a conventional mixture regression model
and computes the spatial regions that are top enriched by
the samples fit each regression component. In this study, we
assume the spatial likelihood follows pspa(zi = k|si, w) ∝
||si, w||2, where zi represents the class of sample i and
||si, w||2 represents the Euclidean distance between the spatial
coordinate of the sample si and the centers of the spatial
regions w, i.e., assuming the spatial regions form a compact

shape. Specifically, a voting step (C-step) is introduced in
Algorithm 1, which identifies Type 2 outliers by the ones
whose most likely regression component and spatial region
are not consistent. Noted, as all the input samples are utilized
in the estimation of the mixture regression model, Algorithm
1 is always convergent.

Based on the Algorithm 1, we developed the SRMR frame-
work (Algorithm 2). In SRMR, we iteratively conduct the
Type 2 outlier only spatially dependent mixture regression by
using the Algorithm 1 and identify Type 1 outliers by running
a robust linear regression on all the samples predicted to
each spatial region. The underlying consideration is that only
one regression component is consisted within each identified
spatial region, which could be effectively identified by a
conventional robust regression approach (RLM). In SRMS,
we implement the trimmed likelihood estimation based robust
mixture regression. The inputs of SRMR is the same as the
input of Algorithm 1 plus the maximal iteration number L0

and a random seed. The outputs of SRMR include the identi-
fied mixture regression models and outliers. The component of
each non-outlier samples can be further assigned by maximal
likelihood. In SRMR, we utilize the same BIC function for
conventional robust mixture regression analysis.

B. Statistical Inference

1) Hypothesis testing for spatial regions: We conducted
a geometry based approach to estimate the significance to
observe a spatial region of a certain size. Noted, we utilized
the compact spatial shape assumption in SRMR, which could
be considered as a round shape. For a round shape with a
diameter of r, the number of the shapes needed to cover a
rectangular spatial region can be computed by 0.28m×n/r2,
which serves as a weight to correct the p value assessed from
each single component robust regression as detailed following.

2) Hypothesis testing for robust linear regression: We
discuss hypothesis testing of the significance a robust linear
regression model parameterized by θ̂ = {β̂, σ̂, η̂}, which
represents the robust regression coefficients estimator, standard
deviation estimator, and the index of the outlying samples
respectively. A bootstrap procedure is adopted to test the null
hypothesis θ = θ̂. We perform the following steps.

Step 1: Calculating the residuals for all observations, in-
cluding the outlier samples, under regression parameter β̂, σ̂,
denoted as ε = {ε1, ..., εn}. Let εout be the residuals cor-
responding to outlying samples, and ε0 be smallest absolute
residual in εout.

Step 2: Generate iid sample ε̃1, . . . , ε̃n from the normal
distribution N (0, σ̂), denoted as ε̃ = (ε̃1, . . . , ε̃n).

Step 3: Calculate the percentage of samples in ε̃ whose
absolute values are larger than ε0, and denote it as p0.

Step 4: Repeat steps 2-3 for B times, and the statistical
significance is evaluated as the average of p0 for the B times.

C. Discussion

Several prominent features make our proposed approach
attractive. First instead of using a robust estimation criterion
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Algorithm 1: Hybrid Mixture Regression (HMR)

Input: Response vector Y ; independent variables in matrix XN×(P+1); the number of mixing component K; size of
initialization random sample n0; 2-dimentional spatial coordinates SN×2; hyperparameter λ.

Output: Partition C∗ =
⋃K

k=1 Ck; Mixture regression model parameter estimate θ∗; spatial centriod parameter w∗ ;
type 2 outlier set U∗

Initialization: C = {C1, ..., CK}, Ci ⊆ {1, ..., N} based on coordinate S; compute centroid point w = {w1, ..., wK}
with C

1 for m = 0, ..., L0 or until convergence do
2 E-step: Compute for i = 1, ..., N and k = 1, ...,K , the hybrid posterior probabilities p(m)

ik by
3 p

(m)
ik = (1− λ)preg(zi = k|xi, yi,θ

(m)) + λpspa(zi = k|Si,:, w
(m))

4 C-step: For i = 1, ...,K , assign C(m)
k = {i| argmax

l∈{1,...,K}
p
(m)
il = k, i = 1, ..., N}, and let n(m)

k be the size of C(m)
k ,

U
(m)
k = {i|zir 6= zis, zir = argmax

zir∈{1,...,K}
preg, zis = argmax

zis∈{1,...,K}
pspa}

5 M-step: For k = 1, ...,K , the parameters are then updated by π(m+1)
k =

n
(m)
k∑K

l=1 n
(m)
l

,

(β
(m+1)
k , σ

2(m+1)
k ) = OLS(Y

C
(m)
k

, X
C

(m)
k ,:

) , wk = 1

n
(m)
k

∑
i∈Ck

Si,:

6 end

or complex heavy-tailed distributions to robustify the mixture
regression model, our method is built upon a spatial regression
model so as to facilitate computation and model interpreta-
tion. Second we adopt a sparse and scale-dependent mean-
shift parameterization. Each observation is allowed to have
potentially different outlying effects across different regression
components, which is very flexible. Compared to existing
spatial regression methods, our approach allows an efficient
solution via the celebrated penalized regression approach, and
different information criteria (such as AIC and BIC) can be
used to adaptively determine the proportion of outliers. In the
next section, we utilized extensive simulations to demonstrate
the performance of SRMR and its highly robustness to both
gross outliers and high leverage points.

IV. EXPERIMENTS ON SYNTHETIC DATA

We evaluated the performance of SRMR and selected base-
line methods on a comprehensive setup of synthetic datasets,
and evaluated the overall performance of SRMR in solving the
spatially dependent mixture regression problem with different
number of mixture models, level of linear dependency, spatial
distribution, and ratio of outliers.

A. Baseline Methods

We collected in total nine existing methods to represent the
current works. In the field of mixture regression, Pan et al.
[28] proposed DC-ADMM which cluster mixture content in
a group pursuit way. It has an implementation as “PRclust”
1 R package. In the field of robust mixture regression, we
collected two state-of-the-art algorithms, Trimmed Likelihood
Estimation (TLE) and Component-wise adaptive Trimming
Likelihood Estimation (CTLE) from R package “RobMixReg”
2 in CRAN [27]. In the field of spatial smooth regression,

1https://github.com/ChongWu-Biostat/prclust
2https://cran.r-project.org/web/packages/RobMixReg/

we collected four algorithms, spatially clustered coefficient
regression (SCC)3 [23], Spatialculster 4 [29], Spdep 5 [30],
and ClustGeo 6 [31]. However, only ClustGeo can be executed
under our formulation. In the field of segmentation methods
based on Markov Random Field, we collected two methods
FRGMM 7 [26] and mrf2d 8 [32]. However, these two meth-
ods aim to clustering image pixels, which requires natural
spatial orders from neighborhood pixels as input, and hence
cannot be applied to solve our problem. Finally, we used four
baseline methods DC-ADMM, TLE, CTLE, and ClustGeo to
perform comparison experiments. All baseline methods used
with their default parameters, except nit parameter in TLE and
CTLERob were set as 10. For DC-ADMM, we used stability-
prclust function to select the best parameter, followed by the
instruction. For ClustGeo, we used choicealpha function to
select best parameter.

B. Experimental setup

To simulate spatially dependent linear relationships, we first
generate a univariate independent variable x from uniform
distribution X ∼ U(−2, 2) and dependent variable y by
yi = βkxi +σk, k = 1, ...,K, i = 1, ..., n, where K is number
of mixture models and β is regression coefficient. Spatial
coordinate of each sample si was generated from a multivariate
normal distribution N (µ,Σ), where µ determines the center
and Σ determines the range and shape of each spatial region.
We use µ1 = [1, 1]T , µ2 = [−1,−1]T ,Σ = diag(0.1, 0.1)
as the default experimental setting, i.e. K = 2 of two distinct
and non-uniformly distributed spatial regions. The two types of

3https://github.com/furong-tamu/Supplementary-files-for-SCC
4https://github.com/mpadge/spatialcluster
5https://github.com/r-spatial/spdep/
6https://cran.r-project.org/web/packages/ClustGeo/
7https://sites.google.com/site/nguyen1j/home/10-code
8https://freguglia.github.io/mrf2d/
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Algorithm 2: Spatial Robust Mixture Regression (SRMR)
Input: Response vector Y ; independent variables in matrix XN×(P+1); the number of mixing component, K; size of

initialization random sample, n0; the maximum number of iteration L0; the number of random starts J
Output: Partition C∗ =

⋃K
k=1 Ck; robust FMGR parameter estimate θ∗ = θJ0 ; outlier set U∗ = UJ0

1 for j = 0, ..., J do
2 Initialization: U (old) = {1, ..., N};U (cur) = ∅;L = 0
3 for k=1,...,K do
4 Draw a random sample of size n0 from set {1, ..., N}, indexed by Ik
5 Run robust linear regression: (Mk, βk, σk) =: RLM(yIK ∼ XIk)
6 Initialize posterior probability: pik = N (yi − xTi βk; 0, σ2

k), i = 1, ..., N
7 end
8 while U (old) 6= U (cur)&L < L0 do
9 Let U (old) = U (cur);L = L+ 1

10 for k=1,...,K do
11 Let Ik be sample indices most likely in cluster k
12 Let U (cur)

k be type 1 outliers of YIk ∼ XIk,:, using least trimmed suares robust regression
13 end
14 U

(cur)
reg =

⋃
k U

(cur)
k ;S = {1, ..., N} − U (cur)

reg

15 Update (θ, w) by HMR with the rest of samples in S, let U (cur)
spa be type 2 outliers, and W be the hybrid

posterior probability
16 end
17 U j = U

(cur)
reg + U

(cur)
spa ,θj = θ, wj = w

18 Let F j be a length-N binary vector whose i−th entry is 1 only if i ∈ U j

19 end
20 Denote J0 as the one such that FJ0

is closet to the mean of {Fj , j = 1, ..., J}

outliers wer further simulated. We simulated Type 1 outliers by
a rejection sampling approach. Specifically, we first samples
independent (x, y) from (U(−2, 2), U(−8, 8)) and only accept
the ones whose Euclidean distance to the regression lines
larger than two as Type 1 outliers. To simulate the Type 2
outliers of a certain ratio, we randomly select the ratio of
samples and reverse their spatial coordinate si = (c1i , c

2
i ) by

soi = (−c1i ,−c2i ).

We conducted the synthetic data based experiments for three
types of method evaluation:
(1) We evaluated the general performance of SRMR and
baseline methods in solving the spatially dependent mix-
ture regression problem by the following experimental se-
tups (Fig 1A). Each time we perturbed one of the five
factors and fixed the others, including number of mix-
ture regression models K = {2, 3, 4}, total sample size
N = {100, 200, 400}, error of linear regression σ =
{0.1, 0.2, 0.5}, rate of samples belong to (model1, model2,
outliers)={(0.4, 0.4, 0.2), (0.5, 0.3, 0.2), (0.6, 0.2, 0.2)} (only
for K=2), and coefficients of linear regression model β =
{(1.5, 1.0), (1.5, 0.1), (1.5,−1.2)} (only for K=2).
(2) We validated the robustness of SRMR and baseline meth-
ods in handling the two types of outliers, namely Type 1 and
2 outliers by perturbing their ratio from 10% to 20% (Fig 1B).
(3) We validated the capability of SRMR and baseline methods
in detecting different shapes and distributions of spatial re-
gions. We simulated the spatial coordinates from a multivariate

normal distribution or a multivariate uniform distribution, the
former one simulates a round and dense spatial region while
the later one generates uniformly distributed 2D coordinates.
The simulated shapes are showcased in Fig 1C. In addition,
we also evaluated if SRMR is sensitive to different relative
positions of the spatial regions. We simulated two types
of relative location of spatial regions, namely (i) diagonal
distribution by setting µ1 = [1, 1]T , µ2 = [−1,−1]T and
(ii) horizontal distribution by setting µ1 = [0.5, 0]T , µ2 =
[−0.5, 0]T . To simulate spatial regions of imbalanced densities,
we perturbed the covariance matrix of the spatial coordinates
from diag(0.1, 0.1) to diag(0.5, 0.1).

In summary, we set ten perturbation scenarios (Fig 1), each
contains 2-3 different parameter settings. We conducted 100
replicates for each parameter set in each scenario. In total,
we obtained 2,500 synthetic data sets. The mean value of
evaluation metrics were used for performance evaluation.

C. Evaluation Metrics

We evaluated the performance of SRMR and baseline
methods on synthetic datasets, based on how accurate the
methods can identify the simulated mixture regression models
and corresponding spatial regions, and distinguish the two
types of outliers. Four evaluation metrics were utilized in the
synthetic data based evaluations:

1) Rand Index (RI): = number of agreeing pairs
number of total pairs computes a sim-

ilarity measure between two clusters by considering counting
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Fig. 1. Experiment Setting. Sub-figures without grid represent linear relationship and sub-figures with grid represent spatial coordinates. For (b) and (c), we
only show partial plot which control factor is changed instead of full plot (linear relationship and spatial coordinate) as (a). (a) contains five different scenarios
in terms of mixture regression. (b) contains two scenarios to deal with Type 1 and Type 2 outliers. (c) contains three scenarios for detecting different shapes
and distributions of spatial regions.
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the sample pairs that are assigned in the same or different
clusters in the predicted and true clusters.

2) Adjust Rand Index (ARI): = RI- Expected (RI)
max(RI) - Expected(RI) , which is

a corrected-for-chance version of RI.
3) Accuracy Rate (ACC) for outliear detection. ACC: =

detected true outliers
true outliers measures the accuracy for distinguishing the

Type 1 and Type 2 outliers.
4) Error of Predicted Coefficients (PCE): =

∑K
k=1(βk −

βp
l(k))

2 measures the distance between the true regression
coefficient βk of the regression components k = 1, ...,K and
predicted regression coefficient βp. Here l(k) = argmin

j
(βk−

βp
j )2, i.e., βp

l (k) is the predicted coefficient closest to βk.

D. Performance

We organized the synthetic data experiment results in Table
1 into three sections: mixture regression, robustness and spatial
patterns. Overall, SRMR outperforms baseline methods in all
10 experiment settings under almost all evaluation metrics.

In Table 1, the first section (1st- 5th blocks) illustrated the
performance of SRMR and other methods in terms of the
accuracies in detecting the heterogeneous linear dependencies
in different scenarios, with regards to sample size, number
of components, noise level, cluster balance and strength of
regression coefficients. SRMR could detect the clusters and
regression coefficients for each cluster very accurately, for
different sample sizes, components, and it is robust to the
different noise levels, imbalance of cluster sizes and small
regression coefficients. Notably, because it incorporates spatial
information, it is able to differentiate two clusters with very
similar regression coefficients but different spatial locations.
Since DC-ADMM and ClustGeo are designed for clustering,
but not regression, the evaluation metrics ACC and PCE for
these two methods are filled with NaN. Although DC-ADMM
proposed using a novel formulation for clustering, it cannot
handle outliers or incorporate spatial information. Thus, the
performance of DC-ADMM is the lowest in most of cases. As
noise level of regression line increased, the power of ordinary
robust mixture regression methods TLE and CTLE decreased,
leading to lower RI and ARI score. When the clusters become
more and more imbalanced, the RI and ARI scores of all of
the baseline methods get much worse. When two clusters have
very similar regression parameters, but are far away in terms of
spatial locations, TLE and CTLE cannot differentiate the two
clusters, as they didn’t account for spatial proximity, causing
low RI and ARI score.

The second section (6th-7th blocks) of Table 1 illustrated
the performance of all methods in terms of robustness to
outlier contamination, including Type 1 outliers and Type 2
outliers. SRMR is highly robust to both regression outliers and
spatial outliers, and the clustering accuracies and parameter
estimates are almost unaffected in the presence of outliers.
This is because SRMR adopted a trimmed likelihood approach,
and it is expected that the outliers will not be taken into
model estimations. Since DC-ADMM and ClustGeo are not
designed to handle the neither Type 1 or Type 2 outliers, their

performance consistently worse than TLE, CTLE, and SRMR.
While TLE and CTLE could handle regression outliers, they
have no control over the spatial proximity, and hence they are
very sensitive Type 2 outliers, i.e., spatial outliers. ACC of
TLE and CTLE is around 70% due to spatial heterogeneity
while SRMR has 100% accuracy rate in all scenarios.

The third section (8th-10blocks) in Table 1 illustrate the per-
formance of all methods for different spatial patterns, regard-
ing the shape, center and density of the spatial clusters. SRMR
is designed to detect heterogeneious linear dependencies that
is robust to both regression outliers and spatial outliers, and its
performance is consistently desirably with regards to different
spatial patterns. When the spatial distribution of the clusters
are changed from multivariate normal to multivariate uniform,
it means the shape of the clusters are less sphear, and more
diffused. When the center of spatial coordinate changed from
diagonal to horizontal, the boundary of two spatial centers
became blurred, meaning there are more overlap between
neighbouring clusters. The performance of TLE, CTLE and
ClustGeo got worse with more cluster overlaps, while SRMR
is robust to this complex situation thanks to the integration of
both regression and spatial similarity. ClustGEO is sensitive
to the imbalanced density of different clusters, while SRMR
is unaffected.

In summary, SRMR is the only method that could model the
linear dependency between response and predictors that vary
in the spatial domain, and detect clusters of observations with
both similarities in regression parameters and spatial proxim-
ity. And it is robust to both outliers in regression fitting and
spatial locations. It has produced highly favorable performance
in different simulation settings, with regards to different levels
of regression/spatial noise, outliers, and mixture imbalance.

V. EXPERIMENTS ON REAL-WORLD DATA

We further validated SRMR on two real-world datasets,
namely (1) a geospatial economics data collected from 298
cities of China and (2) a spatial transcriptomics data collected
from 3,798 spatial spots on a 2D breast cancer tissue. The
synthetic data based experiments clearly suggested that SRMR
is the only method that can effectively solve the spatially
dependent mixture regression problem compared to the base-
line methods. In the real-world data based experiments, we
mainly focused on illustrating the contextual meaning of the
spatial regions and corresponding regression models identified
by SRMR. We also evaluated the goodness of fitting and
significance of the spatially dependent mixture regression
models as well as the running time of the tested methods.

A. Application on Geospatial Economics Data

We collected 7 economic features, namely total GDP, public
income, public spend, educational spend, technology spend,
population, and averaged personal income, and latitude and
longitudes, for 298 cities in China. We evaluated SRMR and
baseline methods to this data set. We utilized each of the
eight features as a dependent variable and selected others
as independent variables When applying SRMR and other
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RI ARI ACC PCE RI ARI ACC PCE RI ARI ACC PCE

DC-ADMM 0.66 0.14 NaN NaN 0.77 0.15 NaN NaN 0.79 0.15 NaN NaN

TLE 0.67 0.89 0.79 0.03 0.76 0.97 0.75 2.65 0.74 0.94 0.72 2.84

CTLE 0.88 0.88 0.67 0.01 0.93 0.97 0.58 0.01 0.94 0.96 0.51 0.01

ClustGeo 0.73 0.95 NaN NaN 0.75 0.68 NaN NaN 0.83 0.76 NaN NaN

SRMR 0.92 1 0.98 0.01 0.95 1 1 0.01 0.95 1 1 0.01

DC-ADMM 0.66 0.14 NaN NaN 0.66 0.14 NaN NaN 0.65 0.15 NaN NaN

TLE 0.67 0.88 0.79 0.03 0.67 0.89 0.8 0.02 0.67 0.89 0.79 0.01

CTLE 0.88 0.89 0.67 0.01 0.88 0.89 0.67 0.01 0.88 0.89 0.67 0

ClustGeo 0.53 0.53 NaN NaN 0.52 0.5 NaN NaN 0.51 0.51 NaN NaN

SRMR 0.92 1 0.98 0.01 0.92 1 0.99 0.01 0.92 1 0.99 0

DC-ADMM 0.66 0.15 NaN NaN 0.66 0.15 NaN NaN 0.66 0.15 NaN NaN

TLE 0.67 0.88 0.79 0.02 0.65 0.77 0.79 0.08 0.61 0.57 0.79 0.22

CTLE 0.88 0.89 0.67 0.01 0.84 0.79 0.67 0.02 0.76 0.6 0.63 0.14

ClustGeo 0.53 0.51 NaN NaN 0.74 0.97 NaN NaN 0.53 0.53 NaN NaN

SRMR 0.92 1 0.99 0.01 0.88 1 0.97 0.02 0.82 1 0.94 0.07

DC-ADMM 0.66 0.15 NaN NaN 0.66 0.17 NaN NaN 0.65 0.21 NaN NaN

TLE 0.67 0.89 0.8 0.03 0.69 0.86 0.82 0.18 0.62 0.72 0.85 0.47

CTLE 0.88 0.9 0.67 0.01 0.88 0.91 0.67 0.01 0.85 0.94 0.34 0.37

ClustGeo 0.52 0.5 NaN NaN 0.73 0.98 NaN NaN 0.67 0.91 NaN NaN

SRMR 0.92 1 0.99 0.01 0.92 1 0.99 0.01 0.91 1 0.98 0.01

DC-ADMM 0.66 0.15 NaN NaN 0.71 0.28 NaN NaN 0.74 0.25 NaN NaN

TLE 0.67 0.89 0.79 0.03 0.69 0.96 0.79 0.03 0.72 0.98 0.79 0.13

CTLE 0.88 0.89 0.67 0.01 0.91 0.96 0.67 0.01 0.91 0.98 0.67 0.01

ClustGeo 0.72 0.94 NaN NaN 0.51 0.56 NaN NaN 0.5 0.52 NaN NaN

SRMR 0.92 1 0.99 0.01 0.94 1 1 0.01 0.94 1 1 0.01

DC-ADMM 0.61 0.11 NaN NaN 0.66 0.14 NaN NaN

TLE 0.64 0.87 0.72 0.05 0.67 0.88 0.79 0.03

CTLE 0.86 0.88 0.5 0.01 0.88 0.89 0.67 0.01

ClustGeo 0.55 0.42 NaN NaN 0.52 0.52 NaN NaN

SRMR 0.94 1 0.98 0.01 0.92 1 0.99 0.01

DC-ADMM 0.73 0.24 NaN NaN 0.75 0.21 NaN NaN

TLE 0.72 0.98 0.79 0.17 0.7 0.97 0.69 0.17

CTLE 0.92 0.98 0.67 0.01 0.87 0.98 0.5 0.01

ClustGeo 0.71 0.9 NaN NaN 0.46 0.53 NaN NaN

SRMR 0.94 1 1 0.01 0.89 1 1 0.01

DC-ADMM 0.74 0.25 NaN NaN 0.74 0.24 NaN NaN

TLE 0.72 0.98 0.79 0.09 0.71 0.98 0.78 0.14

CTLE 0.92 0.98 0.67 0.01 0.92 0.98 0.67 0.01

ClustGeo 0.7 0.89 NaN NaN 0.73 0.96 NaN NaN

SRMR 0.94 1 1 0.01 0.94 1 0.99 0.01

DC-ADMM 0.66 0.14 NaN NaN 0.66 0.14 NaN NaN

TLE 0.67 0.89 0.8 0.04 0.67 0.87 0.79 0.03

CTLE 0.88 0.89 0.67 0.01 0.88 0.88 0.67 0.01

ClustGeo 0.73 0.96 NaN NaN 0.66 0.78 NaN NaN

SRMR 0.92 1 0.99 0.01 0.86 0.99 0.97 0.01

DC-ADMM 0.66 0.14 NaN NaN 0.66 0.14 NaN NaN

TLE 0.67 0.89 0.78 0.03 0.67 0.89 0.79 0.04

CTLE 0.88 0.9 0.67 0.01 0.88 0.9 0.67 0.01

ClustGeo 0.52 0.51 NaN NaN 0.5 0.41 NaN NaN

SRMR 0.92 1 0.99 0.01 0.91 1 0.98 0.01

Table 1. Synthe c Data Performance
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Fig. 2. Real-world data based experiments. a1: SRMR, a2: SRMR, a3: TLE, a4: CTLE, a5: DC-ADMM, a6: ClustGeo; a1,a3-a6: ES ∼ GDP , a2:
Income ∼ GDP . a1-a6: cities of different regression components are red, blue, green and orange colored, while the outliers are colored by grey. b1: original
tissue image of ST, b2: total UMI over spatial distribution, b3: general spatial segmentation, b4: SRMR identified two distinct spatial regions, b5: the linear
dependency between gene CD79A and CD79B

regression models, while all the features were utilized as
the input of ClustGeo. Similar to the synthetic data based
experiments, SRMR is the only method can identify spa-
tially dependent mixture regression models. In contrast, TLE,
CTLERob, and DC-ADMM only detected spatial independent
regression models, and ClustGeo output a spatial segmentation
based on all features.

For a clear visualization and explanation, we illustrated two
univariate regressions of Educational Spend (ES) ∼ GDP
and Income ∼ GDP . For both ES and Income, SRMR
identified four spatial regions corresponding to the north-
east, middle-east, south-east and west regions of China (Fig
2a1,2a2). The spatial regions detected by SRMR show distinct
different dependency of ES and Income with GDP . Specif-
ically, ES is positively associated with GDP in the middle-
east (ES = 0.24 ·GDP + 10.9) and north-east China (ES =
0.4 ·GDP +9.17). The south-east cities have more stable ES,
which less depends on GDP (ES = 0.8·GDP+4.19), while a
negative association of ES and GDP are observed in the west
cities (ES = −0.39 ·GDP + 17.09). The high dependency in
middle-east and north-east cities and less dependency in south-
east cities are consistent to our knowledge, as the middle-east
and north-east China are promoting the education system basis
while the education systems south-east China are relatively
stable. We also checked the cities in the west China that have
high GDP but low ES. Such cities include Dongying, Ordos,
Karamay, etc., which are developing more neo energy business
rather than education in the recent years. Similar observations
were also made in the Income ∼ GDP model (Fig 2a2). The

SRMR outputs suggested the personal Income in the north-
east, south-east and west cities less depends on GDP while
more positive dependency between Income and GDP was
observed in middle-east cities, especially the well developed
cities Beijing, Shanghai, Tianjin, Hangzhou, etc. On the other
hand, on both Educational Spend (ES) ∼ GDP and
Income ∼ GDP , TLE and CTLERob failed to identify such
spatial dependent and contextual meaningful patterns while
both of them tend to over-fit the mixture of regressions (Fig
2a3, 2a4). DC-ADMM identified all cities as one class (Fig
2a5) while ClustGeo identified three distinct non-overlapping
spatial regions without offering explainable regional specific
feature dependencies (Fig 2a6).

B. Application on Spatial Transcriptomics Data

10x Genomics spatial transcriptomics (ST) is a recent
commercialized technique to measure spatial coordinates asso-
ciated gene expression signal from a biological tissue sample,
which it has a broad utilization in biomedical research. A
typical ST data is a matrix consisting of ∼15,000 genes (rows)
in ∼4,000 individual spatial spots (columns), and each spot
has a 2D spatial coordinate (Fig 2b1). The spatial spots are
uniformly distributed. A key challenge in ST data analysis
is to infer the spatially dependent and biologically meaningful
functional variations from the high dimensional feature matrix
(genes by spatial spots). Here we illustrate that SRMR enables
a new type of ST data analysis by simultaneously identify
spatial regions in which the expression level of genes show
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different level of dependency, which directly annotate the
biological meaning of each detected region.

We applied SRMR and baseline methods on the v1.1 ST
data of breast cancer provided by 10xgenomics.com, con-
sisting of 13,161 genes and 3,798 spatial spots. We first
selected 500 genes that having high expression level and
having known tumor micro-environment related functions. We
fit the regression model Gene1 ∼ Gene2 for each pair of the
500 genes by using SRMR, TLE, CTLERob and DC-ADMM
and conducted ClustGeo by using all the 500 genes. Similar to
the synthetic and Geospatial data, SRMR is the only method
that detected spatially dependent mixture regression models in
the ST data. General spatial segmentation, such as ClustGeo,
identifies spatial regions by using the whole feature matrix (Fig
2b3), which is consistent to the distribution of the averaged
gene expression signal level (Fig 2b2). On the other hand,
we identified more than 500 overlapped spatial regions by
using SRMR, each having varied dependency among certain
genes. Fig 2b4 showcased two distinct spatial regions only
identified by SRMR, which have varied dependency between
the CD79A and CD79B genes as shown in Fig 2b5. CD79A/B
are key genes involved in maturation and functional variation
of B cells. The varied dependency of CD79A and CD79B
characterizes distinct sub-regions in one breast cancer tissue
that potentially have different immune activities and responses
to immuno-therapy.

In summary, compared with baseline methods, SRMR is
the only method can effectively solve the spatially dependent
mixture regression problem on the two real-world data. For the
analysis of a single regression model in the real-world data,
the running time of SRMR, TLE and CTLERob are about 15s,
10s and 2s, respectively. The running time of SRMR is slower,
but also comparable to the baseline robust mixture regression
approaches. The running time of DC-ADMM and ClustGeo
are about 0.01s.

VI. CONCLUSION

We developed a new statistical model of high dimensional
data with matched spatial information, namely spatially de-
pendent mixture regression. We also developed spatial robust
mixture regression (SRMR) analysis as an effective solution of
the problem. SRMR is empowered by an inference scheme to
assess statistical significance of spatial dependent finite mix-
ture regression models. On both synthetic and real-world data
based experiments, we demonstrated that SRMR is the only
capability can solve the spatially dependent mixture regression
problem. Particularly, SRMR enables a new type of spatial
segmentation analysis by detecting large sets of spatial regions
having varied dependency among certain features. Compared
with conventional spatial segmentation analysis, the regions
identified by SRMR characterize more spatial dependent vari-
ations conceived in the data and enable better contextual
explanation. The source codes of SRMR and the analysis of
this study are provided at https://github.com/changwn/SRMR.
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