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The metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treat-

ment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to

establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate

this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to

infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically re-

constructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on

scRNA-seq data, and a novel graph neural network–based optimization solver. The intricate information cascade from tran-

scriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between

enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set

with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this

data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched

metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and

identified context- and cell group–specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series

of downstream analyses including identification of metabolic modules or cell groups that share common metabolic varia-

tions, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell–tissue

and cell–cell metabolic communications.

[Supplemental material is available for this article.]

Metabolic dysregulation is a hallmark of many disease types in-
cluding cancer, diabetes, cardiovascular disease, and Alzheimer’s
disease (Mattson and Chan 2001; Rask et al. 2001; Matsuzawa
2006; Dunn et al. 2014; Hirschey et al. 2015; Kochanek et al.
2019; Sun et al. 2020). In cancer, the diseased cells are well under-
stood to rewire theirmetabolism and energy production to support
rapid proliferation, sustain viability, and promote acquired drug
resistance (Thompson et al. 2005; DeBerardinis et al. 2008;
Hanahan and Weinberg 2011; Ward and Thompson 2012). Here,
the diseased cells often react differently to the microenvironmen-
tal stress. Such heterogeneity often results in an increased reper-
toire of possible cellular responses to compromise the efficacy of
drug therapies, leading to the enhanced survival of the entire dis-
eased cell population (Bishop et al. 2007; Lidstrom and Konopka
2010). The metabolome is an excellent indicator of phenotypic
heterogeneity owing to its high dynamics and plasticity (Zenobi
2013). Current high-throughput metabolic profiling has been
largely applied to bulk cell or tissue samples from which we could

only observe an averaged metabolic signal over a large number of
cells, whereas single-cell metabolomics is still in its infancy
because of its relatively low throughput and low sensitivity
(Zenobi 2013; Fessenden 2016; Emara et al. 2017; Zampieri et al.
2017; Ali et al. 2019, 2020; Duncan et al. 2019). Overall, our under-
standing of metabolic dysregulation of human disease has been
immensely limited by our technology to study themetabolic land-
scape at the single-cell level and in the context of their tissue mi-
croenvironment (Jaenisch and Bird 2003; Feinberg 2007;
Heintzman et al. 2007; Harris et al. 2010; The ENCODE Project
Consortium 2012; Roadmap Epigenomics Consortium et al.
2015; Robertson-Tessi et al. 2015; Kim and DeBerardinis 2019).

Single-cell RNA-seq (scRNA-seq) data has been widely used to
characterize cell type–specific transcriptional states and its under-
lying phenotypic switches in a complex tissue (Vasdekis and
Stephanopoulos 2015; Damiani et al. 2019; Evers et al. 2019;
Honkoop et al. 2019; Saurty-Seerunghen et al. 2019; Xiao et al.
2019, 2020; Rohlenova et al. 2020; Zhang et al. 2020; Levine
et al. 2021). Realizing the strong connections between transcrip-
tomic and metabolomic profiles (Hirayama et al. 2009; Lee et al.
2012; Mehrmohamadi et al. 2014; Damiani et al. 2019; Xiao6These authors contributed equally to this work.

Corresponding authors: czhang87@iu.edu, mfishel@iu.edu,
shacao@iu.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.271205.120.
Freely available online through the Genome Research Open Access option.

© 2021 Alghamdi et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution-NonCommercial 4.0 Interna-
tional), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Method

31:1867–1884 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/21; www.genome.org Genome Research 1867
www.genome.org

 Cold Spring Harbor Laboratory Press on March 30, 2022 - Published by genome.cshlp.orgDownloaded from 

mailto:czhang87@iu.edu
mailto:mfishel@iu.edu
mailto:shacao@iu.edu
https://www.genome.org/cgi/doi/10.1101/gr.271205.120
https://www.genome.org/cgi/doi/10.1101/gr.271205.120
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com


et al. 2019b; Wagner et al. 2021), scRNA-seq data has found its ap-
plication in portraying metabolic variations. Using scRNA-seq
data, the existing research studiedmetabolic changes of predefined
cell groups relying on differential expression and enrichment anal-
ysis of key metabolic enzymes and pathways (Vasdekis and
Stephanopoulos 2015; Evers et al. 2019; Honkoop et al. 2019;
Saurty-Seerunghen et al. 2019; Xiao et al. 2019, 2020; Rohlenova
et al. 2020; Levine et al. 2021). However, for this type of analysis,
the node/edge structures in a metabolic pathway graph or the
mass balance constraints of metabolic network is not considered.
Studies coupling single-cell transcriptomics data and the flux bal-
ance analysis (FBA) at steady-state framework have only recently
emerged (Damiani et al. 2019; Zhanget al. 2020). The FBAdescribes
the potential flux over the topological structure of ametabolic net-
work, with a set of equations governing themass balance at steady
state. The advantage of incorporating FBA into the model is two-
fold: considering the chemical stoichiometry in FBA could lead
to more accurate estimation of the metabolite abundance; and
flux estimation for each individual metabolite can be solved, lead-
ing to high-resolution characterization of the metabolic profiling.
Damiani et al. (2019) developed scFBA that uses the cell group–spe-
cific gene expression status derived from scRNA-seq data to regular-
ize the network topology for FBA. Wagner et al. (2021) proposed a
method, namely, Compass, that maximizes the coherence be-
tween scRNA-seq expression profile and predicted flux in solution
spaceof FBA.However, as stated in theoriginalworks (Wagner et al.
2021), the stringent flux balance and steady-state assumption in
scFBA and Compass may not be rational for certain disease types
with constantly severe “imbalance” of manymetabolites, namely,
cancer. Another limitation of the FBA-based methods is that the
single cells’ gene expression is not used directly tomodelmetabolic
flux. Both scFBA and Compass used single-cell gene expression as
certain constraints to guide the search in the solution space of
flux balance condition. In addition, both models are intended for
modeling the fluxes for cells of predefined groups instead of at a
single-cell resolution, and they are restricted to a small portion of
the whole metabolic map. Therefore, it remains an urgent task to
design advanced computational tools for reliable estimation of
cell-wise metabolic flux and states by translating single-cell tran-
scriptomes to single-cell fluxomes. Such a tool is vital to unravel
the principles of how the disease microenvironment may affect
the metabolic phenotypes for the heterogeneous cell types
(Damiani et al. 2019; Evers et al. 2019).

Computational challenges to estimate cell-wise metabolic
flux arise from the following aspects: (1) multiple key factors deter-
mine cells’ metabolic states, including exogeneous nutrient avail-
ability, leading to the discrepancy of cell type–specificmarkers and
metabolic phenotypes and states; (2) thewholemetabolic network
is of high complexity, hence, a proper computational reduction
and reconstruction of the network is needed to reach a balance be-
tween resolution ofmetabolic state characterization and computa-
tional feasibility; (3) the intricate nonlinear dependency between
transcriptomic expressions and metabolic reaction rates calls for a
more sophisticatedmodel to fully capitulate the relationships; and
(4) alternative enzymes with similar functions may result in com-
mon metabolic phenotypes, however, exactly which enzymes
share such common effect to the metabolic flux change remains
largely unknown.

In this study, we developed a novel computational method,
namely, single-cell flux estimation analysis (scFEA), to estimate
the relative rate of metabolic flux at single-cell resolution from
scRNA-seq data. Specifically, scFEA can effectively solve the afore-

mentioned challenges with the following computational innova-
tions: (1) an optimization function derived based on a
probabilistic model to consider the flux balance constraints
among a large number of single cells with varied metabolic flux-
omes, (2) a metabolic map reduction approach based on network
topology and gene expression status, (3) a multilayer neural net-
work model to capture the nonlinear dependency of metabolic
flux on the enzymatic gene expressions, and (4) a novel graph neu-
ral network architecture and solution to maximize the overall flux
balance of intermediate substrates throughout all cells. The central
hypotheses of scFEA are (1) the flux variations of ametabolic mod-
ule can be modeled as a nonlinear function of the transcriptomic-
level changes of the catalyzing enzymes; and (2) the total flux im-
balance of all intermediate substrates should be minimized
throughout all single cells. The cell-wise fluxome estimated by
scFEA enables a series of downstream analyses, including identifi-
cation of cell- or tissue-levelmetabolic stress, sensitivity evaluation
of individual enzymes to the whole metabolic network, and infer-
ence of cell–tissue and cell–cell metabolic exchanges. To validate
scFEA, we generated an scRNA-seq data set with matched tissue-
level metabolomic profiles under different biochemical perturba-
tions. Applications of scFEA on synthetic data sets, the newly gen-
erated data set withmatched scRNA-seq andmetabolomic profiles,
and six other independent real-world data sets, validated the pre-
diction accuracy, robustness, and biological interpretability of
scFEA.

Results

Systems biology considerations, hypotheses, and analysis pipeline

of scFEA

The reaction rate of a simple enzyme catalyzed metabolic reaction
follows the Michaelis–Menten kinetic model: V=Kcat ([E][S]/Km+
[S]), which is a nonlinear function of enzyme concentration [E],
substrate concentration [S], and kinetic parameters Kcat and Km.
On one hand, the reaction rate is approximately a linear function
of the enzyme concentration when the substrate concentration is
much larger than Km, that is, when [S]/(Km+ [S]) is∼1; on the other
hand, the enzyme concentrations could often serve as a surrogate
for the substrate concentration considering the regulatory effect of
substrate availability on the enzyme transcription. Overall, we
consider the reaction rate to be a (non)linear function of the en-
zyme concentration. Obviously, the flux of a reaction chain is
mostly determined by the rate-limiting steps, which depend on
the flux distribution, substrate concentration, and kinetic param-
eters. Hence, the rate-limiting steps are often context specific
and unknown because of the dynamics of the physiological and
biochemical conditions of the cells. Based on these considerations,
we developed scFEA to estimate cell-wise metabolic flux from
scRNA-seq data. scFEA consists of threemajor computational com-
ponents: (1) network reduction and reconstruction, (2) estimation
of cell-wisemetabolic flux, and (3) downstream analyses including
estimation of metabolic stress, perturbation of metabolic genes,
and clustering of cells with different metabolic states (Fig. 1).
The required input of scFEA is an scRNA-seq data set, whereas op-
tional inputs, including cell group labels or the subset ofmetabolic
reactions of interest, can be specified for additional analysis.

To reduce the complexity of the metabolic map, we recon-
structed it into a factor graph composed by connected metabolic
modules as variables and intermediate metabolites as factors (Fig.
1A). Specifically, connected reactions aremerged into onemodule,
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if changes in the reaction rates within themodule do not affect the
rates of the rest of the reactions, given a fixed flux rate of the mod-
ule. In other words, the estimated flux of a module stays the same,
with orwithoutmerging the reactions, under the flux balance con-

dition. This approach increases the robustness of flux estimation
and reduces the computational complexity.

The central computational component of scFEA is a novel
graph neural network architecture, which models the cell-wise

B

A

C

Figure 1. The computational framework of scFEA. (A) Metabolic reduction and reconstruction. A metabolic map was reduced and reconstructed into a
factor graph based on network topology, significantly non-zero gene expressions, and users’ input. (B) A novel graph neural network architecture–based
prediction of the cell-wise fluxome. A loss function (L) composed by loss terms of flux balance, non-negative flux, coherence between predicted flux and
gene expression, and constraint of flux scale, were used to estimate cell-wise metabolic flux from scRNA-seq data. See detailed models and formulations in
Results and Methods. (C) Downstream analysis of scFEA is provided, including inference of metabolic stress, cell and module clusters of distinct metabolic
states, and the genes of the top impact to the whole metabolic flux.

Single-cell metabolic flux estimation
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metabolic flux of each metabolic module using gene expression
levels of the catalyzing enzymes (Fig. 1B). We hypothesize that
themetabolic flux throughout all the single cells in a tissue sample
shouldminimize the overall imbalance of the influx/outflux of in-
termediate substrates. The rationality of this assumption is that
cells within the same tissue exchangemetabolites with each other,
hence the total flux balance constraint on all the single cells from
one tissue sample is more robust than in individual cells. In scFEA,
we use the gene expression variations to reflect the protein level
change of enzymes and transporters. Note that this assumption
is supported bymany existing studies that reveal the high explain-
ability of the transcriptome for the proteome (Schnell 2014;
Roadmap Epigenomics Consortium et al. 2015; Liu et al. 2016).
We assume the flux variations of a module generally impact its
neighboring modules, which can be reflected by aggregating the
expression variations of the genes in its neighborhood over the
metabolic network. The nonlinear dependency between gene ex-
pression andmetabolic flux is modeled as a fully connected neural
network of 2–4 layers, which could be considered as a nonlinear
approximation of the Michaelis–Menten model. To solve the neu-
ral network parameters, scFEAminimizes a loss function thatmim-
ics the overall flux imbalance of all modules in all cells, with
further non-negativity and other prior assumptions on themodule
fluxome. The large number of single cells in scRNA-seq data grants
sufficient statistical power to detect the flux variations and avoids
the overfitting of the neural network training (for details, see
Methods). It is noteworthy that the parameters of the neural net-
work could serve as sensitivity measures of the metabolic flux bal-
ance to the variations of the genes. In other words, genes with
higher impact are likely to be associated with rate-limiting reac-
tions under the particular context.

The estimated cell-wise metabolic flux enables the prediction
of (1) the metabolites or pathways with high imbalance in certain
cell groups, (2) groups of metabolic modules or cells with varied
metabolic states, and (3) the metabolic genes whose perturbation
highly impacts the overall metabolic flux (Fig. 1C). In this study,
we mainly focus on solving cell-wise metabolic flux and states
and method validations in human cells. A capability for mouse
data analysis is also provided in the software package of “scFEA.”

Metabolic map reduction and reconstruction

The whole metabolic network in human and mouse have been
well studied. However, although databases including the Kyoto
Encyclopedia of Genes and Genomes (KEGG) provide well catego-
rized metabolic pathways and the comprehensive set of metabolic
genes (Kanehisa and Goto 2000), the network topological struc-
ture needs to be further optimized for fluxome estimation because
of the following reasons: (1) the flux balance constraints depend
on the optimization goal or computational assumption, such as
the balance of carbon, redox, or pH; (2) the network complexity
needs to be reduced to enable computational feasibility; and (3)
a manual correction and annotation of the directions of reactions
and transporters is needed. In addition, cells of different types or
physiological states naturally have varied metabolic states. In
scFEA, we first manually curated and annotated the metabolic
map of human and mouse retrieved from the KEGG database.
The global metabolic map is further reduced and reconstructed
into a factor graph based on its topological property. scFEA also al-
lows the selection of a connected subnetwork in the global meta-
bolic network for flux estimation.

Collection of human and mouse metabolic map

Themetabolicmap consists of pathways and reactions that fall un-
der four major types, namely, import, metabolism, biosynthesis,
and export. To ensure a comprehensive coverage of the globalmet-
abolicmap, we collected reactions ofmetabolism and biosynthesis
as well as transporters for import and export from different data
sources. Specifically, metabolic reactions were directly retrieved
from the KEGG database (Kanehisa and Goto 2000); the transport-
ers and annotations of import and export reactions were accessed
from the transporter classification database (Saier et al. 2006); bio-
synthesis reactions were collected from the biosynthesis pathways
encoded inKEGGandcuratedbyusingadditional literature (for de-
tails, see Supplemental Methods). The final metabolic map covers
themetabolism, transport, and biosynthesis of carbohydrate, ami-
no acids, fatty acids and lipids, glycan, and nucleic acids in human
and mouse, including 862 genes of 390 enzymes, 1880 reactions,
1219 metabolites, and 116 transporter genes of 35 metabolites in
human. Complete lists of genes and reactions of the collected hu-
man metabolic map is given in Supplemental Table S1.

Reconstruction of the metabolic map into a factor graph

Themetabolic reactionmapnaturally forms a directed factor graph
when considering each reaction as a variable and each metabolite
as a factor. A directed factor graph was first reconstructed by the
stoichiometric matrix of all reactions in the global metabolic
map. In the factor graph, variable, factor, and directed edge are re-
actions, metabolites, and whether or not a reaction involves a me-
tabolite as the substrate or product, respectively. In this study, we
use a flux balance assumption of carbon-based metabolites.
Therefore, 273 compounds that do not affect the flux balance of
carbon-based molecules were excluded from the stoichiometric
matrix, such as H2O, ATP, NADH, or other cofactors (for a com-
plete list, see Supplemental Table S1).We further reduced the com-
plexity of the factor graph based on its topological structure. In this
step, connected reactions weremerged into amodule if (1) none of
the merged intermediate metabolites had more than one influx
or outflux reaction that corresponded to more than one module’s
inputs or outputs; and (2) none of themerged intermediatemetab-
olites had an influx or outflux other than the merged reactions or
the module input and output. We have proved that under these
two conditions and the flux balance condition, changes of the re-
actions inside the module will not affect the reactions outside the
module conditional on a fixed flux rate of the module. In other
words, solving the flux of each individual reaction in a merged
module is equivalent to solving the flux of the module (for details,
see Supplemental Methods). The merged reactions will form a var-
iable node containingmultiple reactions in the factor graph, while
the factor nodes are still individual metabolites. In addition, we
identified certain classes of metabolites, including different types
of fatty acids, pyrimidines, purines, and steroid hormones, that
form highly connected web-like metabolic pathways. Instead of
solving the flux for each individual metabolite, we consider the
metabolites of the same class as one factor. The network reduction
approach enables a more robust flux estimation of reaction mod-
ules instead of individual reactions and a more efficient computa-
tion over the simplified network topological structure.

We reconstructed the human metabolic map into a factor
graph consisting of 169 modules of 22 supermodule classes, 862
genes, and 128 metabolites, of which 66 are intermediate sub-
strates. Here, each supermodule is a manually curated group of
modules with similar functions (Table 1). More details on the
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factor graphs can be found in Supplemental Table S1 and
Supplemental Figure S1. Figure 2A illustrates the functional group
and complete topological structure of the collected metabolic
modules and supermodules in human. Figure 2B illustrates several
examples of how network motifs in the input metabolic network
are merged into one metabolic module.

For a given scRNA-seq data and a user defined task, scFEA fur-
ther refines the task-specific metabolic factor graph by (1) limiting
the analysis to user-selectedmetabolic networks, and (2) excluding
the modules without significantly expressed genes. For (2), scFEA
will first determine for all the genes whether they have a signifi-
cant non-zero expression state, using our in-house left-truncated
mixture Gaussian model (Methods; Wan et al. 2019). By default,
scFEA considers a module as blocked if it becomes disconnected
with other modules after removing the reactions whose associated
genes do not have a non-zero expression state. The blocked mod-
ules will be excluded from further analysis. On account of the com-
mon dropout events in scRNA-seq data, scFEA allows keeping a
module as long as at least one of the genes involved in thismodule
has significantly non-zero expressions.

The topological structure of metabolic modules including in-
put, output, and intermediate metabolites and genes associated
with each module, serve as the input to our graph neural network
model.

Mathematical formulation of metabolic flux estimation

in individual cells

For a clear model setup, we first formulate the metabolic network
as a directed factor graph. Here, each metabolic module is repre-
sented as a variable, and each compound is represented as a factor
node carrying a loss function that evaluates the level of flux imbal-
ance among modules, and the direction represents whether a
metabolite is the input or output of a metabolic module (Supple-
mental Fig. S1). We denote FG(C1×K, RM1×M, E= {EC→R, ER→C}) as

the factor graph, where C1×K= {Ck, k=1, …, K} is the set of K com-
pounds; RM1×M= {Rm, m=1, …, M} is the set of M metabolic mod-
ules; and ER→C and EC→R represent direct edges from module to
compound and from compound to module, respectively. For the
kth compound Ck, we define the set of reactions producing
and consuming Ck as FCk

in = { Rm|(Rm � Ck) [ ER�C} and
FCk
out = { Rm|(Ck � Rm) [ EC�R }, which is derived from the stoi-

chiometric matrix of the whole metabolic map. For an scRNA-
seq data set with N cells, we denote Fluxm,j as the flux of the mth
module in the cell j, j=1…N, and let Fj = {Flux1,j, …, FluxM,j}. Our
computational hypothesis is that the total flux imbalance of the
intermediate metabolites throughout all the collected cells should
be minimized, based on which we developed the likelihood func-
tion of the flux of all modules throughout all cells as

f(C, F) =
∏N

j=1

∏K

k=1

f(Ck,j|Fj)w(Fj),

where

f(Ck,j|Fj) = f(Ck,j|FCk
in , F

Ck
out)

/ e
−
l

∑
m[F

Ck
in
Fluxm,j −

∑
m′[F

Ck
out

Fluxm′ ,j

( )2

2

and φ(Fj) represents the prior distribution of the fluxome in cell
j, and λ is a tuning hyperparameter. scFEAmodels the flux of reach
reaction, Fluxm,j, as a nonlinear function of the expression changes
of the genes associated with the module. Denote
Gm = {Gm

1 , . . . , G
m
im } as the genes associated with the reactions in

Rm, and Gm
j = {Gm

i1,j
, . . . , Gm

im ,j} as their expressions in sample j,
where im stands for the number of genes in Rm. We model
Fluxm,j = f mnn(G

m
j | um) as a multilayer fully connected neural net-

work with the input Gm
j , where θm denotes the parameters of the

neural network (Fig. 3). It is noteworthy that the cell group and tis-
sue context–specific distribution of the flux φ(Fj) and the reaction
parameters θm are always unknown. Apparently, without further
constraints, Fluxm,j≡0 is a trivial solution. To provide a robust
and rational solution, we introduced two additional constraints
to Fluxm,j, namely, (1) the predicted flux, Fluxm,j, should be non-
negative; and (2) within a supermodule (Fig. 2A), the total predict-
ed flux should be correlated with gene expression variation. The
second assumption assumes that the metabolic flux variation
within large metabolic modules should be coherent to their gene
expression change, which is supported by recent studies (Damiani
et al. 2019;Wagner et al. 2021). This assumption effectively avoids
the trivial solution. Hence, instead of directly maximizing ϕ(C, F),
we solve the θm and cell-wise flux Fluxm,j by minimizing the fol-
lowing loss function L:

L =
∑N

j=1

∑K

k=1

∑

m[F
Ck
in

Fluxm,j −
∑

m′[F
Ck
out

Fluxm′ ,j

⎛
⎜⎝

⎞
⎟⎠

2

+a
∑N

j=1

∑M

m=1

(|Fluxm,j| − Fluxm,j)

+ b
∑N

j=1

[1− |cor(FluxSM
:,j , GESM

:,j )|]+ g
∑N

j=1

∑M

m=1

|Fluxm,j| − TAj

( )2

,

where α, β, and γ are hyperparameters; cor represents Pearson cor-
relation coefficient; FluxSM and GESM are two NSM×N matrices,
here NSM is number of supermodules; FluxSMm,j represents the sum
of the flux of the modules in the supermodulem; GESM

m,j represents
the sum of expression of the genes in the supermodulem, in cell j;
and TAj is a surrogate for total metabolic activity level of cell j,

Table 1. Supermetabolic module information

Supermodule
ID Supermodule class

Number
of

modules
Number
of genes

1 Glycolysis + TCA cycle 14 83
2 Serine metabolism 18 114
3 Pentose phosphate 1 28
4 Fatty acids metabolism/

synthesis
2 81

5 Aspartate metabolism 5 35
6 Beta-alanine metabolism 5 48
7 Propionyl-CoA metabolism 2 25
8 Glutamate metabolism 5 13
9 Leucine + valine + isoleucine 8 99
10 Urea cycle 8 30
11 Spermine metabolism 2 7
12 Transporters 35 80
13 Hyaluronic acid synthesis 5 26
14 Glycogen synthesis 1 4
15 Glycosaminoglycan

synthesis
1 14

16 N-linked glycan synthesis 12 88
17 O-linked glycan synthesis 4 17
18 Sialic acid synthesis 3 12
19 Glycan synthesis 1 5
20 Purine synthesis 17 67
21 Pyrimidine synthesis 17 49
22 Steroid hormone synthesis 3 177
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which is assigned as the total expression of metabolic genes in cell
j. The first, second, third, and fourth terms of L are related to con-
straints on flux balance, non-negative flux, the coherence between
predicted flux and total gene expression level of each supermod-
ule, and the relative scale of flux, respectively. Here Pearson’s cor-
relation, which is scale-free, is used to model the coherence
between gene expression and predicted flux, as genes may have
varied intrinsic expression range. Our empirical and robustness

analyses suggested that α=1, β=0, γ= 1, and α=1, β= 1, γ=1 result
in a good leverage of the flux balance loss and other constraints for
Smart-seq2 and 10x Genomics data, respectively (for details, see
robustness analysis and Supplemental Methods).

The preceding formulation defines a new graph neural net-
work architecture for flux estimation over a factor graph: on one
hand, each variable is defined as a neural network of biologically
meaningful attributes, that is, the genes participating in eachmet-

abolicmodule; on the other hand, the in-
formation aggregation between adjacent
variables is constrained by the balance of
the influx and outflux of each intermedi-
ate metabolite. The number of interme-
diate constraints (K) and large number
of cells (N) of scRNA-seq data ensures
the identifiability of θm for themultilayer
f mnn at a certain complexity level. Detailed
analysis of the computational feasibility,
scalability, tuning of hyperparameters,
and options of additional loss terms are
provided in Methods and Supplemental
Methods.

The challenges to minimize the loss
function L include the following: (1) the
balance of one intermediate substrate is
influenced by multiple modules, hence
updating the module flux one at a time
may not be computationally efficient;

B

A

Figure 2. Reduced and reconstructed human metabolic map. (A) Collected human metabolic modules and supermodule classes. (B) Examples of how
the network motifs in the metabolic map are simplified into metabolic modules, where the reactions and metabolites are represented by black and blue
rectangles, andmodules andmetabolites are colored by green and pink. Chainlike reactions can be directly simplified; a complicatedmodule connected by
multiple branches can be shrunk into one point linked with the multiple in/out branches; and complicated intersections cannot be simplified.

Figure 3. A toy model of the factor graph of metabolic modules, flux balance conditions, and the flux
model for the module R2 (top right). In the factor graph, each C (metabolites) corresponds to one flux
balance condition and serves as a factor, and each R (can be a reaction or a module) is a variable. For ex-
ample, C0(R0, R1, R2|Lc0 ) simply represents that the metabolite C0 is determined by the flux balance loss
of R0, R1, R2, where Lc0 is the flux balance term of C0. Import and export/degradation reactions are con-
sidered as having no input or output substrates.
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and (2) the updating strategy for a large group of fluxes cannot be
theoretically derived. The two challenges prohibit a direct usage of
back propagation or gradient descending methods. We developed
an effective optimization strategy for L by adopting the idea of in-
formation transfer in belief propagation, which has been com-
monly used in analyzing cyclic networks such as Markov
random field (Lan et al. 2006). Specifically, L is minimized by iter-
ativelyminimizing the flux imbalance ofCk and theweighted sum
of the flux imbalance of the Hop-2 neighbors of Ck in the factor
graph, as the L∗

k defined below:

L∗
k =

∑N
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whereCk′ are theHop-2 neighbors ofCk, andWk′ is proportional to
the current total imbalance of all theHop-2neighbors ofCk′ except
for Ck itself (for more details, see Methods). Here the Hop-2 neigh-
bors of a compound (or module) on the factor graph is defined as
all other compounds (or modules) having a connection with the
modules (or compounds) who connect to the compound (or mod-
ule). Such a regional perturbation strategy over the whole graph
can effectively leverage the search of globalminimumand compu-
tational feasibility.

The output of scFEA includes f mnn, θm for eachmodule and pre-
dicted cell-wisemetabolic flux Fluxm,j. The predicted flux Fluxm,j is
a relativemeasure of unfixed scale. However, Fluxm,j is comparable
among cells (Fluxm,) or metabolic modules (Flux,j).

Method validation on an scRNA-seq data with perturbed

metabolic conditions and matched metabolomics data

To validate the cell-wise flux estimated by scFEA, we generated an
scRNA-seq data set consisting of 162 patient-derived pancreatic
cancer cells (Pa03c cell) under two crossed experimental condi-
tions: APEX1 knockdown (APEX1 KD) or control, and under hyp-
oxia or normoxia conditions (for detailed experimental procedure
and data processing, see Methods). Metabolomics profiling of 14
metabolites were collected on bulk wild-type Pa03c cells and
APEX1 inhibition cells under the normoxia conditions, each
with three replicates (Supplemental Table S2). The 14 metabolites
include glucose, glucose-1 phosphate, glucose-6 phosphate, pyru-
vate, and lactate in the glycolysis pathway, citrate, 2-oxoglutarate,
succinate, fumarate, malate in the TCA cycle, and amino acids glu-
tamate, glutamine, serine, and ornithine.We used the Smart-seq2-
fluidigm protocol for single-cell RNA sequencing. It allows for sat-
urated gene detection of each single cell, to enable a more accurate
modeling of metabolic flux. APEX1 is a multifunctional protein
that interacts withmultiple transcriptional factors (TFs) to regulate
cellular responses to hypoxia and oxidative stress (Kelley et al.
2012). Our previous studies identified significant roles of APEX1
in the regulation of Pa03c cells’ response to metabolic environ-
ment changes (Shah et al. 2017; Wan et al. 2019).

To the best of our knowledge, scFEA is the first computational
tool to estimate metabolic flux at single-cell level. Without base-
line methods for comparisons, we validate scFEA by examining
the consistency between the metabolic flux variation predicted
by scFEA and experimental observations. We identified 126 up-
regulated and 443 down-regulated genes in APEX1 KD versus con-

trol under the normoxia condition, and 260 up-regulated and
1496 down-regulated genes under hypoxia condition. Pathway en-
richment analysis showed that the TCA cycle (normoxia: P=0.003,
hypoxia: P=1.12×10−7) and oxidative phosphorylation (nor-
moxia: P=3.17×10−4, hypoxia: P=1.77×10−8) pathways are sig-
nificantly enriched by down-regulated genes, under both
normoxia and hypoxia conditions. This suggests that the knock-
down of APEX1 may lead to inhibited cellular aerobic respiration.
In addition, genes regulated by hypoxia-inducible factor 1-alpha
(HIF1A), including glycolysis and TCA cycle genes, were observed
to be up-regulated in hypoxia conditions compared with nor-
moxia conditions in the control Pa03c cells. This is consistent
with the common knowledge of hypoxia response. Of the 14 me-
tabolites, we have seen an increase of abundance in glucose, glu-
cose-1 phosphate, glucose-6 phosphate, and lactate, and decrease
in 2-oxoglutarate, succinate, fumarate, and malate in APEX1-KD
versus control cells under the normoxia condition. In summary,
analysis of the single-cell gene expression and bulk cell metabolo-
mic data revealed that knockdown of APEX1 affects the cells’ glu-
cose metabolism and inhibits the cells’ TCA cycle pathway under
both normoxia and hypoxia condition. Figure 4A illustrates the
variation of genes and metabolites involved in glycolysis, pentose
phosphorylation, TCA cycle, glutaminolysis, and aspartate metab-
olism pathways in APEX1-KD versus control under the normoxia
condition. We conducted a qRT-PCR experiment to confirm the
down-regulated genes in glycolysis, TCA cycle, and oxidative
phosphorylation pathways (Supplemental Fig. S2). A complete
list of differentially expressed genes and pathway enrichment re-
sults are provided in Supplemental Table S3.

Consistency between the scFEA-predicted flux variation
and the metabolomics data

We applied scFEA to the aforementioned scRNA-seq data of the
four conditions, with hyperparameters α=1, β=0, and γ=1. We
first focus on the normoxia conditions in which matched single-
cell expression andmetabolomics data are available. scFEA-predict-
ed decreased metabolic flux for the modules in glycolysis and TCA
cycle in APEX1-KD versus control, that is, glucose → D-Glucose 1-
phosphate (G1P)→ alpha-D-Glucose 6-phosphate (G6P)→ glycer-
aldhyde-3P (G3P) → 3-Phospho-D-glyceroyl phosphate (3PD) →
pyruvate→ acetyl-CoA→ citrate→ 2-Oxoglutarate (2OG)→ succi-
nate-CoA→succinate→ fumarate→malate→ oxaloacetate (OAA)
and pyruvate → lactate. Particularly, the reactions toward the
downstream from this reaction chain has even lower flux in
APEX1-KD versus control (Fig. 4B). We then examined the
Pearson’s correlation between the averaged predicted flux change
with the observed metabolomic change of intermediate metabo-
lites in glycolysis and TCA cycle pathways. In APEX1-KD versus
control cells undernormoxiacondition,weobserved aPearson cor-
relation coefficient (PCC) of 0.86 (P=0.006) (Fig. 4B), suggesting
the high consistency between predicted flux variationwith the ob-
served metabolic changes. Using metabolomics data, we observed
an increase of production for glucose, G1P, G3P, and lactate, and
a decrease of production for 2OG, succinate, fumarate, and malate
in APEX1-KD versus control (Fig. 4C). By the Michaelis–Menten
model, the substrates of largely varied concentration determine
the reaction rate in a nonlinear manner (close to linear when the
reaction is less saturated). Hence, variations in the concentration
of the metabolites with one dominating outflux could partially re-
flect the changes of the outflux rate. We also correlated themetab-
olomic change with the averaged expression change of the

Single-cell metabolic flux estimation

Genome Research 1873
www.genome.org

 Cold Spring Harbor Laboratory Press on March 30, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271205.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271205.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.271205.120/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


E F

BA

C

D

G

Figure 4. Application of scFEA on matched scRNA-seq and metabolomics data of Pa03C cells. (A) Gene expression and metabolomic variations of the
glycolysis, pentose phosphate, TCA cycle, glutamine, and aspartate metabolic pathways in APEX1-KD versus control under normoxia condition. Genes/
metabolites are shown in rectangular boxes with black/blue borders, up-regulated/down-regulated genes are colored in red/green, increased and de-
creased metabolites are colored in yellow/blue, respectively. The darker color suggests a higher variation. (B) Predicted flux fold change (left, x-axis: met-
abolic module, y-axis: predicted flux change) in control versus APEX1-KD, and correlation between fold change of predicted flux and observed metabolite
change (right, x-axis: fold change of predicted flux, y-axis: fold change of observed metabolite abundance, each data point is one metabolite). (PYR) py-
ruvate; (CIT) citrate; (FUM) fumarate; (SUC) succinate; (MAL) malate. (C) Observed metabolomic change (left, x-axis: metabolites, y-axis: abundance dif-
ference observed in the metabolomics data) in control versus APEX1-KD, and correlation between log fold change of gene expressions involved in each
reaction and observed metabolomics change (right, x-axis: log fold change of the averaged expression of the genes involved in each reaction, y-axis:
fold change of observed metabolites abundance observed in the metabolomics data, each data point is one metabolite). (D) Predicted metabolic stress
(left, x-axis: metabolites, y-axis: predicted abundance difference) in control versus APEX1-KD and correlation between predicted metabolic stress and ob-
served difference in metabolite abundance (right, x-axis: top scFEA-predicted imbalance of the influx/outflux of intermediatemetabolites, y-axis: difference
of observed metabolomic abundance, in control versus APEX1-KD, each data point is one metabolite: (LAC) lactate; (SER) serine; (GLU) glutamine; (ORN)
ornithine. In B–D, all comparisons weremade by comparing control versus APEX1-KD under normoxia. The fold change ofmetabolomic abundance is used
in calculating the correlation in B–C and difference of metabolomic abundance is used in D. The green and red dashed blocks represents the accumulated
(green) and depleted (red) metabolites in Control versus APEX1-KD. (E) Profile of the predicted fluxome of 13 glycolytic and TCA cycle modules. Here, each
column represents the flux between twometabolites (shown on the x-axis) for all the cells of the four experimental conditions (shown on the y-axis). For two
neighboring fluxes, the product of the reaction on the left is the substrate of the reaction on the right, and in a perfectly balanced flux condition, the two
neighboring fluxes should be equal. (F) Clusters of metabolic modules inferred by using the network connectivity structure only. (G) Clusters of metabolic
modules inferred by using the network topological structure (weight of 0.3) combined with the predicted fluxome (weight of 0.7).
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enzymes catalyzing the reactions. However, no significant correla-
tion was observed (PCC=−0.03, P=0.943) (Fig. 4C), suggesting
that single-cell gene expression alone does not produce a good es-
timate of single-cell metabolomic landscape. In addition, single
sample gene set enrichment analysis (ssGSEA) has been used to
model cell-wise pathway activity in scRNA-seq data (Chen et al.
2020). Again, the correlation between the metabolomic changes
and the differences in averaged ssGSEA score in APEX1-KD versus
control cells is not significantly large (PCC=0.42, P=0.299)
(Supplemental Fig. S3). Here, we showed that scFEA-predictedmet-
abolic flux is much more consistent to the true metabolomics
changes, as it leveraged the nonlinear relationships between gene
expression and enzymatic reaction rate and the flux balance con-
straints of the metabolites.

High consistency of the predicted metabolic stress with experimentally
observed metabolomic changes

scFEA allows us to investigate the cell-wise metabolic stress, which
was defined as the imbalance of the influxes/outfluxes of each in-
termediate metabolite in each cell. Figure 4D shows that the G1P,
G6P, and lactate were accumulated while 2OG, succinate, suc-
cinyl-CoA, and fumarate were depleted in APEX1-KD versus con-
trol. A PCC of 0.75 (P=0.004) was observed between the
predicted metabolic stress and the true metabolic change on 12
metabolites with both measured metabolomic profile and predict-
ed metabolic stress. This shows the high accuracy of the predicted
and observed metabolic stress level. Details on the predicted and
observed metabolic imbalance were provided in Supplemental Ta-
ble S3. Figure 4E shows the predicted cell-wise fluxome of the gly-
colysis and TCA cycle modules for cells of the four conditions. We
observed, in general, higher flux of the glycolytic modules than
the TCA cycle modules, with the largest average flux gap seen on
pyruvate → acetyl-CoA and acetyl-CoA → citrate. In addition, the
flux of the downstream reactions (citrate → 2OG → succinyl-CoA
→ succinate) of the TCA cycle is lower than the upstream reactions
(succinate → fumarate → malate → OAA). A possible explanation
for the leaky metabolic flux is that some of the intermediate sub-
strates flow to other branches, primarily for biosynthesis of amino
acids. Among the four conditions, we identified that the hypoxia
control group has the highest flux rate of glycolysis and TCA cycle
modules. Clearly, the inhibition of APEX1 significantly decreased
themetabolism rate of glucose. Seeing the accumulations of glyco-
lytic substrates and depletions of TCA cycle substrates, we specu-
late that the knockdown of APEX1 may directly impact the
downstream part of glycolysis, the whole TCA cycle and further
oxidative phosphorylation, leading to accumulation of G1P and
G6P as a result of the blockage. Up-regulation of glucose transport-
ers was also observed in APEX1 KD versus control, further suggest-
ing the accumulation of glycolytic substrates.

Perturbation analysis to detect key flux determining genes

We also conducted a perturbation analysis to detect the key genes
with high impact on each metabolic module (for details, see Meth-
ods). The followinggeneswere identified tohave thehighest impact
on metabolic flux: HK1 and HK2 (Glucose→G6P, EC: 2.7.1.1);
ALDOA, PFKL, and GPI (G6P→G3P, EC: 5.3.1.9); GAPDH and
PGK1 (G3P→3PD, EC: 1.2.1.12, 2.7.2.3); ENO1, PGAM1, and PKM
(3PD→Pyruvate, EC: 5.4.2.11, 4.2.1.11); PDHA2 (Pyruvate→acetyl-
CoA, EC: 1.2.4.1); LDHA (Pyruvate→Lactate, EC: 1.1.1.27); ACLY
(acetyl-CoA+OAA→Citrate, EC: 2.3.3.8); IDH2 (Citrate→2OG, EC:
1.1.1.42); DLD and OGDH (2OG→Succinyl-CoA, EC: 1.2.4.2);

SUCLG1 (Succinyl-CoA→Succinate, EC: 6.2.1.4); SDHA (Succin-
ate→Fumarate, EC: 1.3.5.1); FH (Fumarate→Malate, EC: 4.2.1.2);
and MDH1 (Malate→OAA, EC: 1.1.1.37). Detailed results of the
perturbation analysis were illustrated in Supplemental Figure S4. A
qRT-PCR experiment was conducted to confirm the down-regula-
tion of the aforementioned key metabolic genes, including HK1,
PFKL, ACLY, SDHA, and IDH2 (Supplemental Fig. S2). We also com-
pared thepredictedhighimpactenzymes inthemodules containing
multiple enzymes (seven in total) with the rate-limiting enzymes re-
ported in the rate-limiting enzymes database (RLEdb) (Zhao et al.
2009). We observed that six of the seven predicted high impact en-
zymes, namely, 2.7.1.1, 1.2.1.12, 2.7.2.3, 5.4.2.11, 1.2.4.1, and
1.2.4.2, have been reported in RLEdb, suggesting a significant en-
richment (P=0.0005 by Fisher’s exact test) of our predictions to
RLEdb. We further conducted a module level perturbation analysis
by increasingor decreasing the expression of genes in a certainmod-
ule (Methods). Consistent to our experimental observations, a
decrease of expression ongenes of the downstreampart of glycolysis
pathway in the control cells will lower the flux of the TCA cycle,
causing the accumulation of glycolytic intermediate substrates and
depletion of TCA cycle metabolites.

Detecting groups of metabolic modules with similar variations and cells with
distinct metabolic states

We also applied scFEA to a larger metabolic map, with the 11 met-
abolic supermodules and transporters. Figure 4F illustrated five dis-
tinct groups of metabolic modules derived using a spectral
clustering method purely based on their network topology (see
Methods), namely, (1) glycolysis, (2) TCA cycle and glutamineme-
tabolism–related modules, (3) tyrosine and serine metabolism, (4)
urea cycle–related modules, and (5) acetyl-CoA-related metabo-
lisms such as fatty acids and propanoyl-CoA metabolisms. To ex-
amine the high-level structure based on the flow of flux, we
conducted a clustering analysis of the metabolic modules by con-
sidering both the network connectivity and flux similarity. The
distance between two modules Ri and Rj is defined as αd(Ri, Rj) +
(1− α)dF (Ri, Rj), where d(Ri, Rj) is the normalized spectral distance
based on the metabolic network connectivity, and dF (Ri, Rj) is the
normalized similarity based on the estimated flux of all the nor-
moxia cells (Methods). Here, α=0.3 is used in the analysis. Figure
4G shows themetabolicmodule clusters by integrating topological
structure and flux similarity. Four distinct clusters were identified,
including (1) glycolysis and fatty acids metabolism of decreased
flux and accumulated substrates in APEX1-KD versus control, (2)
TCA cycle and pyruvate metabolism with decreased flux and de-
pleted substrates, (3) metabolism of amino acids and other metab-
olites with unchanged flux and metabolites, and (4) a few other
modules of 0 flux rates, respectively. This observation further val-
idated the rationality of the scFEA-predicted fluxome.

We also conducted cell clustering based on the estimated sin-
gle-cell flux (Methods). It is no surprise that the cell clusters coin-
cide with experimental conditions, forming five groups of cells of
high, intermediate, and low metabolic rates, high lactate produc-
tion, and low TCA cycle rate (Supplemental Fig. S5).

Method validation and robustness analysis on synthetic and

independent real-world data sets

Method validation on independent real-world data

We also validated scFEA on an independent scRNA-seq data of
perivascular adipose tissue derived mesenchymal stem cells (PV-
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ADSC) (NCBI Gene Expression Omnibus [GEO; https://www.ncbi
.nlm.nih.gov/geo/] accession numberGSE132581) (Gu et al. 2019)
by using hyperparameters α=1, β=0, and γ=1. To the best of our
knowledge, this data set, in addition to our newly generated data
set, are the only two scRNA-seq data withmatched tissue-level tar-
geted metabolomics profiling available in the public domain. We
first reconducted cell clustering analysis and identified two dis-
tinct PV-ADSC cell clusters corresponding to different levels of dif-
ferentiation, as reported in the original work (Fig. 5A; Gu et al.
2019). Here, the clusters were visualized using UMAP (McInnes
et al. 2018). Owing to the small sample size (85 cells), scFEA was
applied to estimate only the fluxome of glycolysis and TCA cycle
pathways. We observed an increased flux of glycolytic reactions
(P<1.56×10−6), lactate production (P=0.002), and the reactions
from cis-aconitate to oxaloacetate in the TCA cycle (P<0.02) in
the more differentiated (MD) versus the high stemness (HS) PV-
ADSC cells. The reactions from acetyl-CoA to citrate were not sig-
nificantly changed (P=0.887) (Fig. 5B). This is consistent with
the observations made on the metabolomics data in the original
work; that is, the glycolytic intermediate metabolites, lactate pro-
duction, andmetabolites in the later part of TCA cycle were elevat-
ed in the MD cells, but citrate was not significantly changed. We
also analyzed themetabolicmodules of two amino acid supermod-
ules with metabolomics profile reported in the original study,
namely, valine and isoleucine metabolism and glutamate and glu-

tathione metabolism (Supplemental Fig. S6). Elevated valine and
isoleucinemetabolic flux inMD versus HS cells has been predicted
by scFEA, which is consistent to the original report. scFEA also pre-
dicted an increased flux of the modules from glutathione→ gluta-
mate → glutamine → TCA cycle; this could explain the increased
flux rate of TCA cycle but less increase in citrate production. The
original study only reported a depletion of glutathione and gluta-
mate; our metabolic stress analysis also predicted more decreased
glutathione and glutamate inMDversus HS cells. Our analysis sug-
gested that the elevated glutamate and glutathione metabolism is
to fuel the substrate source for TCA cycle in MD cells, which de-
pleted the concentration of glutathione and glutamate.

Method validation on randomly shuffled gene expression profile

In scFEA, we assume that the flux distribution in each single cell
should be constrained by the flux balance condition, whereas
the reaction rate of each module could be modeled as a nonlinear
function of the gene expressions involved in this module. These
two assumptions suggested that the distribution of the gene ex-
pressions involved in the metabolic modules was constrained by
a set of equations governed by the metabolic flux distribution
and the flux balance condition.One existing evidence that directly
supports our assumptions is that the expression of closely related
metabolic genes tend to be co-up-regulated or co-down-regulated

E F

BA C D

G H

Figure 5. Method validations on real-world and synthetic data sets. (A) UMAP-based clustering visualization of the GSE132581 PV-ADSC data, in which
HS andMD stand for PV-ADSC of HS andmore differentiation, respectively. (B) Distribution of predicted cell-wise flux of glycolytic and TCA cycle modules.
Each row is one cell, and row side color bar represents HS and MD PV-ADSC by blue and orange, respectively. Each column is one module. The left five
columns (red) are glycolytic modules from glucose to acetyl-CoA, the CIT column (orange) is the reaction from acetyl-CoA to Citrate, the LAC column (yel-
low) is the reaction from pyruvate to lactate, and the right six columns (green) are TCA cycle modules from citrate to oxaloacetic acid. (C) The total loss (y-
axis) for cases in which different proportion (x-axis) of cell samples have randomly shuffled gene expressions of the pancreatic cancer cell line data. The
baseline loss 0.1579 was computed using the original expression profile of all 166 cells. (D) The sample-wise andmodule-wise correlation (y-axis) between
the true and predicted module flux in synthetic data-based method validation with multiple repetitions, in which Cor = 0.5775 (P=0.05) and 0.5778 (P=
0.05) correspond to the sample-wise and module-wise correlation, respectively. (E) Total loss (y-axis) computed under 5-fold/10-fold cross-validation (x-
axis) versus baseline loss. (F) Convergency of the total loss and four loss terms during the training of neural networks on the pancreatic cancer cell line data.
(G) Total loss (y-axis) computed from the robustness test by adding 0%–35% artificial dropouts to the original data (50.22% zero rate) versus baseline loss.
(H) Sample-wise andmodule-wise correlation (y-axis) of themodule flux predicted from the datawith 0%–35% additional artificial dropouts with themod-
ule flux predicted from the original data.
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(van der Knaap and Verrijzer 2016; Li et al. 2018). To further vali-
date our assumption, we randomly shuffled the expression profile
of each gene in a certain proportion (10%, 20%, 40%, 60%, and
80%) of cells in our pancreatic cancer cell line data and applied
scFEA to each shuffled data (for details, see Supplemental
Methods). We observed that the minimized total loss is positively
associated with the level of perturbations (Fig. 5C) and the original
scRNA-seq data achieved the smallest total loss, which partially
supports our underlying assumption.

Method validation on synthetic data

We simulated matched metabolic flux and gene expression data
on 1000 single cells. For the 1000 cells, we first randomly generat-
ed a different flux distribution of 169 connectedmodules from the
solution space satisfying flux balance condition of these modules.
The expression profile of the genes involved in each module was
reversely simulated by assuming that its flux follows a fixed non-
linear function of the gene expressions. A detailed data simulation
approach was provided in Supplemental Methods. We applied
scFEA on the simulated single-cell gene expression profile and
compared the fluxome predicted by scFEA and the known flux-
ome. We observed that scFEA-predicted fluxes are highly consis-
tent to the true flux distribution, on both directions of the cells
and metabolic modules (Fig. 5D). Specifically, >99.6% single cells
achieved at least 0.0620 (P= 0.05) sample-wise correlation and
>84.79% modules achieved at least 0.1501 (P=0.05) module-
wise correlation. Our analysis showed that under the assumption
of scFEA, that is, if the flux balance constraint and nonlinear
dependency between gene expression andmetabolic hold, the for-
mulation and solution strategy of scFEA could accurately estimate
the cell-wise fluxome from single-cell gene expression data.

Robustness analysis based on perturbed sample inputs, cross-validation, and
analysis of hyperparameters

We also tested the robustness of scFEA by 5-fold/10-fold cross val-
idations on the pancreatic cancer cell line data. Comparedwith the
baseline total loss achieved by using all cells, the total loss of the
testing data does not change significantly when using different
training cells to train the model (Fig. 5E). In training the neural
networks, scFEA used Adam as the optimizer (Kingma and Ba
2015), which can adaptively adjust the learning rate. To choose
the most suitable hyperparameters of the four terms in the loss
function, we conducted experiments by changing the relative
scale of any two terms and fixing the remaining twoon the pancre-
atic cancer cell line data. We changed the relative ratio of two
hyperparameters from 10 to 1000. Our experiments suggested a
similar optimal solution can always be achieved under our hyper-
parameter perturbation range (Supplemental Fig. S7). Figure 5F
showcases the convergence of the four loss terms and total loss
in the model fitting of the pancreatic cancer cell line data. In addi-
tion, the applications on six real-world data (see further results)
and simulated data suggested that the default hyperparameters al-
ways generate results of good convergence of the total loss and
high biological implications. The default hyperparameters of the
current version and details in hyperparameter running codes
were provided via GitHub (https://github.com/changwn/scFEA).

Robustness analysis with respect to a different level of dropout

To further examine the method’s robustness, we simulated differ-
ent levels of additional dropout events to our pancreatic cancer cell

line data. Our data was collected by using the Smart-seq2-fluidigm
protocol, whose original ratio of zero expressions of the metabolic
genes is 50.22%. We simulated additional dropout rate ranging
from 4.34% to 34.78%, to reach a typical dropout level of a drop-
let-based scRNA-seq data (∼85%), and applied scFEA on the tam-
pered data (for details, see Supplemental Methods). We observed
that the total loss slightly increases from 0.1649 to 0.2722 when
the zero ratio increased from 50% to 85% (Fig. 5G). The module-
wise and cell-wise correlation between the flux estimated from
the original data and the tampered data are consistently higher
than 0.7437 and 0.8505 (Fig. 5H), suggesting the high robustness
of scFEA with respect to different levels of dropout events.

Application of scFEA on scRNA-seq data of tumor and brain

microenvironment revealed distinct metabolic stress, exchange,

and varied metabolic states in different types of cells

In this section, we primarily focused on validating the computa-
tional concept and applicability of scFEA on five real-world data
sets, including two scRNA-seq data of cancer microenvironment,
one single nuclei RNA-seq data of brain tissue, and one spatial tran-
scriptomics data of breast cancer tissue. The data information is de-
tailed in SupplementalMethods. All 169metabolicmodules across
the whole metabolomic network were used in the analysis. Owing
to the lack of matched metabolomics information, we focused on
demonstrating the capability of scFEA in inferring metabolic flux,
metabolic stress, and subgroups of cells and metabolic modules
having distinct variations on these data sets.

Application on scRNA-seq data of cancer microenvironment

We applied scFEA on two publicly available scRNA-seq data sets
collected from the microenvironment of melanoma (GEO
GSE72056) and head and neck cancer (GEO GSE103322) by using
hyperparameters α=1, β=0, and γ=1. In both data sets, we gener-
ated UMP-based cell and cell group visualization by using predict-
ed fluxomes of the 169modules (Fig. 6A–D).We identified that the
metabolic flux distributions are quite homogeneous within cancer
cells while being distinct from immune and stromal cells in both
data sets (Fig. 6A,C). Distinct cell clusters of immune and stromal
cells corresponding to varied metabolic fluxomes were also identi-
fied (Fig. 6B,D). A possible explanation is that cancer cells having
a reprogrammed metabolism are more robust to the biochemi-
cal variations than immune and stromal cells in the tumor
microenvironment.

We observed that the malignant cells have the highest meta-
bolic rates in most metabolic reactions compared to other cell
types in both melanoma and head and neck cancer, especially
for the glucose and amino acids metabolic modules (Fig. 6E,F).
On average, the TCA cycle and lactate production account for
43.4% and 52.5% of the total glycolysis flux in head and neck
cancer, and 65.3% and 46.1% of the total glycolysis flux (with ad-
ditional carbon flow from other metabolites such as glutaminoly-
sis) inmelanoma, respectively. In the nonmalignant cells, the ratio
of lactate production is much lower. Our observation clearly sug-
gested the existence of Warburg effect and metabolic shift in can-
cer cells, which is consistent to our previous findings of high
lactate production in melanoma (Xu et al. 2012).

We identified that the malignant cells have the highest met-
abolic stress, which is defined as the total imbalance of intermedi-
ate substrates, followed by fibroblast and endothelial cells and
then immune cells. Similar to the pancreatic cancer cell line
data, we identified that both cancer and stromal cells in both
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cancer types tend to have depleted glucose, G1P, and G6P. In addi-
tion, cancer cells tend to suffer from a high depletion level of ace-
tyl-CoA. On the other hand, TCA cycle intermediates and amino
acids tend to be accumulated in cancer cells. These observations

are consistent with the findings derived from quantitative metab-
olomics data collected on solid cancer (Hirayama et al. 2009).

We noticed that the direction of imbalance for most interme-
diate metabolites seem to be the same throughout different cell

E F

BA C D

I KJ

G H

Figure 6. Application on two tumor scRNA-seq data sets, ROSMAP, and one breast cancer spatial transcriptomics data set. (A) UMAP-based clustering
visualization using predicted metabolic fluxes of the GSE72056 melanoma data; the cell label was provided in the original work (Tirosh et al. 2016).
(B) UMAP-based clustering visualization using predictedmetabolic fluxes of the GSE72056; k-means clusteringwas used for cell clustering. (C ) UMAP-based
clustering visualization using predicted metabolic fluxes of the GSE103322 head and neck cancer data; the cell label was provided in the original work
(Puram et al. 2017). (D) UMAP-based clustering visualization using predictedmetabolic fluxes of the GSE103322; k-means clustering was used for cell clus-
tering. (E) Distribution of predicted cell-wise flux of glycolytic and TCA cycle modules of GSE72056melanoma data. Each row is one cell, and row side color
bar represents eight cell types. Each column is one module. The left five columns are glycolytic modules from glucose to acetyl-CoA, the sixth column is the
reaction from acetyl-CoA to Citrate, the seventh column is the reaction from pyruvate to lactate, and the right-most six columns (columns 8–13) are TCA
cycle modules from citrate to oxaloacetic acid. (F) Distribution of predicted cell-wise flux of glycolytic and TCA cycle modules of GSE103322 head and neck
cancer data. Each row is one cell, and row side color bar represents nine cell types, respectively. The columns are the same as E. (G) UMAP-based clustering
visualization using predicted metabolic fluxes of the ROSMAP data; k-means clustering was used for cell clustering. (H) Convergency curve of the total loss
and four loss terms during the training of neural networks on the ROSMAP data. (I) Top accumulated and depletedmetabolites predicted in the AD neuron
cells in the ROSMAP data. The y-axis is metabolism stress level (or level of accumulation and depletion), where a positive value represents accumulation and
a negative value represents depletion. The x-axis are metabolites in a decreasing order of the accumulation level. (J) scFEA-predicted flux rate of lactate
product on the spatial breast cancer data. The color of each point represents the spatial-wise predicted lactate product rate. The spatial plot is overlaid
on the tissue slice image. (K ) scFEA-predicted flux rate of TCA cycle (citrate to 2OG) on the spatial breast cancer data.
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types, although the imbalance level is much lower in stromal cells
compared to cancer cells. A possible explanation is that these cells
were collected in a small region of the same microenvironment,
and the similar stresses, such as hypoxia and altered pH level, cause
a similar impact on the metabolic landscape of cells of different
types. The predicted cell type–specific fluxome and imbalance lev-
el of metabolites were given in Supplemental Table S4.

Application on droplet-based snRNA-seq data of Alzheimer’s disease

Wealso applied scFEA on the ROSMAP single nuclei RNA-sequenc-
ing (snRNA-seq) data collected from cells in the central nervous
systems of Alzheimer’s disease (AD) patients and healthy donors
(Mathys et al. 2019) by using hyperparameters α=1, β=1, and γ
=1. Specifically, the ROSMAP snRNA-seq data was collected using
the 10x Genomics Chromium droplet-based protocol. Comparing
to the Smart-seq based scRNA-seq data, droplet-based data often
have lower total expression signals and a higher dropout rate.
scFEA has been successfully applied on this data set. Changes of
the total loss over the running epochs suggested the total loss con-
verge to a small value during the training of the scFEA model (Fig.
6G). Specifically, the flux imbalance loss forms themajor loss term
in the beginning of the training and quickly converges to a small
value, suggesting a solution with good flux balance condition
has been identified in this data set. Based on the scFEA-predicted
flux, we identified that metabolic activity is higher in neuron cells
than in other brain cell types. Cell clusters of different metabolic
states were computed (Fig. 6H), in which a large cluster consisting
of cells withmore activemetabolismhas been identified (in green).
We further studied themetabolic stress of this cell cluster, which is
enriched by neuron cells fromAD patients (Fig. 6I). We found that
glucose, glycolytic and TCA cycle substrates, and glutathione are
among the top accumulated metabolites. Suppressed glycolysis
and dysfunctional TCA cycle that may lead to increased glucose
and other intermediate metabolites, and elevated glutathione in
response to reactive oxygen species, have been reported in AD
(Atamna and Frey 2007; Mandal et al. 2019; Le Douce et al.
2020). On the other hand, molecules involved in DNA synthesis
and valine/leucine/isoleucine metabolism are most depleted in
the AD neuron cells, which are consistent to the recently reported
observations of suppressed DNA synthesis and valine metabolism
in AD (Yurov et al. 2011; Polis and Samson 2020).We predicted as-
partate and metabolites involved in glycosaminoglycan synthesis
are largely depleted in the ADneuron cells. Previous studies report-
ed the association of these metabolites to AD (Doraiswamy 2003;
Huynh et al. 2019), however their abundance change has been
less studied. We anticipate that the cell-wise metabolic stress pre-
diction enabled by scFEA could offer novel and systematic insight
for biomarker prioritization.

Application on spatial transcriptomics data

As discussed above, distinct cell clusters of different metabolic
states were identified in two cancer microenvironment data
(GSE72056 and GSE103322) by using hyperparameters α=1, β=
0, and γ=1. We speculate that the different metabolic states are
caused by varied biochemical conditions, such as hypoxia or oxi-
dative stress level, in the tumormicroenvironment. To further val-
idate this hypothesis and the method, we applied scFEA on a
spatial transcriptomics data of human breast cancer collected
from 10x Genomics visium protocol by using hyperparameters α
=1, β= 0, and γ=1. Clearly, cells that are spatially near each other
should be exposed to similar biochemical stress conditions. We

predicted spatial spot-specific metabolic flux by first applying
scFEA on the spatial gene expression profile and then conducting
associations of the predicted flux with spatial positions. scFEA
identified two distinct spatial regions of high lactate production
flux (Fig. 6J) and six spatial regions of high TCA cycle flux (Fig.
6K). Ratio of pyruvate → lactate flux and pyruvate → TCA cycle
flux were computed, and the two high lactate production regions
were predicted as of high hypoxia level, which were further vali-
dated by the high expression level of HIF1A-regulated genes in
cells of these regions.

Discussion

Despite the ample knowledge we have gained on metabolic dysre-
gulation for many disease types, there are still major gaps in our
understanding of the integrated behavior andmetabolic heteroge-
neity of cells in the context of tissue microenvironment.
Essentially, the metabolic behavior can vary dramatically from
cell to cell driven by the need to cope with various dynamic met-
abolic stress. A large amount of scRNA-seq has proven its potential
in delivering information on a cell functioning state and its under-
lying phenotypic switches. Designing advanced computational
tools to harness the power of large-scale scRNA-seq data for reliable
prediction of cell-wise metabolic flux and states is crucial to bridge
the technological gap of single-cell metabolomics. Knowledge de-
rived therefromwill substantially benefit our understanding of the
metabolic regulation intrinsic to diseased cells and on microenvi-
ronmental factors imposed upon the diseased cells and shed light
on potential therapeutic vulnerabilities.

scFEA is developed to predict metabolic flux at single-cell res-
olution from scRNA-seq data, to construct a compendium of met-
abolic states for different cell types and tissue contexts, and
understand their relevance to various disease phenotypes. To ex-
perimentally validate scFEA, we generated an scRNA-seq data of
a patient-derived pancreatic cancer cells under four conditions of
perturbed oxygen level and metabolic regulators and matched tis-
sue-level metabolomics data and qRT-PCR profiles of keymetabol-
ic genes. We validated that the variations of metabolic flux
predicted by scFEA are highly consistent with the observedmetab-
olomic changes under different conditions. We also applied scFEA
on in-drop or droplet-based scRNA-seq data and spatial transcrip-
tomics data. Our analysis suggested that scFEA could robustly pre-
dict cell and cell group–specific metabolic shift for the data
generated from different protocols. The fluxome estimated by
scFEA enables a series of downstream analysis including identifica-
tion of cell or tissue-level metabolic stress, sensitivity evaluation of
enzymes to the whole metabolic flux, and inference of cell–tissue
and cell–cell metabolic exchanges.

The scFEAmodel has the following advantages: (1) themodel
characterizes true biological flux by leveraging the metabolic net-
work structure, and it is generally applicable as it requires only
the input of scRNA-seq data; (2) the number of constraints, that
is, the number of flux balance conditions multiplied by the sin-
gle-cell number, is larger than the number of parameters, avoiding
possible overfitting; and (3) the neural network–based flux estima-
tion canwell handle the nonlinear dependency between enzymat-
ic gene expression and reaction rates. In the network reduction
and reconstruction of scFEA, connected reactions were merged to
form one metabolic module. The neural network model allows
for a nonlinear dependency between gene expression andmodule
flux. Theoretically, the flux rate could be determined by an “OR”
operation of the high expression of any gene involved in the
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module. scFEAuses neighboring genes on themetabolicmap to in-
fer the metabolic flux of connected metabolic reactions, which in-
creases robustness to dropout events and prediction accuracy. Our
analysis suggested that scFEA is capable of identifying the interac-
tive effect of multiple rate-limiting enzymes in one module.

scFEA seeks for a constrained optimization of flux balance,
and each flux was modeled as a nonlinear function of the relevant
enzymatic gene expression levels. The flux of each module is con-
strained by three additional loss terms, namely, (1) non-negativity,
(2) consistency between predictedmetabolic flux and gene expres-
sion level, and (3) the cell-wise total metabolic activity, TAj.
Although our current setting has been validated using matched
scRNA-seq and metabolomics data, applications to publicly avail-
able cancer data suggested a similar trend metabolic “imbalance”
for both cancer and stromal cells. Our analysis suggested that set-
ting Amj for each supermodulem in cell jmay increase the flexibil-
ity of cell-specific metabolic imbalance, but at the price of possible
overfitting. A more sensitive approach is to train a specific model
for each predefined cell group. The biological rationale is that
the neural network parameters contain the information of “kinetic
parameters” that link gene expression with metabolic rate, which
may differ among distant cell types, or cells under different condi-
tions. Hence it is rational to assume cell type–specific parameters.

In this study,we did not provide a theoretical proof of the cor-
rectness of the scFEA model. Future efforts on generating high
quality validating data or more comprehensive systems biological
derivations could improve the understanding of the dependency
between gene expression and metabolic state in individual cells.
Comparedwith the existing FBA-based solutions, which tend to ig-
nore kinetics and assume stringent flux balance condition, our
new model treating flux balance as a loss function and seeking
for modeling the nonlinear dependency between transcriptome
and fluxome is more flexible, robust, and scientifically reasonable.
Unlike other FBA-based approaches, scFEA does not require a prior
knowledge of the imports and exports of the whole system. The
flux distribution, including the influxes/outfluxes of the system,
is estimated by minimizing the loss terms through a large number
of cells. We consider such a consideration is more suitable for cell-
wise flux estimation because the influxes and outfluxes are always
cell and context specific and unknown. Although the flux balance
in the scFEAmodel is robust to the stoichiometric coefficients, the
predicted fluxome is represented by relative reaction rates scaled
by total metabolic activity.

The neural network–based optimization framework of scFEA
could enable a potential integration of metabolomics data, kinetic
parameters, spatial information, or other prior knowledge of met-
abolic imbalance, to better characterize cell and tissue-level meta-
bolic shifts of the target system. One future direction is to use
metabolomics data, kinetic parameters, or other prior knowledge
to better design the first layer of the neural network in modeling
the flux of each module. Spatial information can be used to prese-
lect a group of cells for training a spatially dependent model.
Another future direction is to implement the current flux estima-
tion analysis in spatial transcriptomics to infer (1) metabolic shifts
specific to spatial patterns and (2)metabolic exchange between ad-
jacent cells. This application to spatial transcriptomics data will be
particularly interesting for cancer studies, to reveal how themetab-
olism and macromolecule biosynthesis in stromal cells such as
cancer-associated fibroblasts, affect the adjacent cancer cells.

Overall, scFEA can efficiently delineate the sophisticatedmet-
abolic flux and imbalance specific to certain cell groups. We antic-
ipate that it has the potential to deciphermetabolic heterogeneity,

tease out themetabolomic susceptibility to certain drugs, and ulti-
mately warrant novel mechanistic and therapeutic insights of a
diseased biological system at an unprecedented resolution.

Methods

Collection of the human metabolic map

We consider the humanmetabolic network as composed of differ-
ent reaction types including metabolism, transport (including up-
take and export), and biosynthesis. As detailed in Results, the
reconstructed network consists of 22 supermodule classes of 169
modules. All reactions related to metabolism were collected from
the Kyoto Encyclopedia of Genes and Genomes database (KEGG)
(Kanehisa and Goto 2000). In total, 11 metabolism-related super-
modules were manually summarized and are made up of glycoly-
sis, the TCA cycle, pentose phosphate, fatty acids metabolism
and synthesis; metabolism of amino acids, namely, serine, aspar-
tate, beta-alanine, glutamate, leucine/valine/isoleucine; and the
urea cycle, propionyl-CoA, and spermidine metabolism (Cao
et al. 2017). The 11 metabolism supermodules contain 1388 reac-
tions, 317 enzymes, which corresponds to 563 genes.

Transporters enable the trafficking of molecules in and out of
cell membranes. We collected the human transporter proteins,
their corresponding genes, and metabolite substrates from the
Transporter Classification Database (Lin et al. 2015; Bhutia et al.
2016). In total, 80 transporter genes and 35 related metabolites
were collected.

An essential part of the metabolic map are the biosynthesis
pathways. The KEGG database and literature (Moffatt and Ashi-
hara 2002; DeAngelis et al. 2013; Zhang et al. 2015a,b; Krasnova
and Wong 2016; Zulueta et al. 2016; Lv et al. 2017; Sun et al.
2018, 2020; Gao and Edgar 2019) are the main information sourc-
es used for building biosynthesismodules.We collected 69 biosyn-
thesis modules forming 10 supermodules, namely, biosynthesis of
hyaluronic acid, glycogen, glycosaminoglycan, N-linked glycan,
O-linked glycan, sialic acid, glycan, purine, pyrimidine, and ste-
roid hormones. Overall, the biosynthesis modules include 459
genes of 269 enzymes catalyzing 869 reactions.

More details of the collection of the human metabolic map
and the statistics of the mouse metabolic map are provided in
Supplemental Methods.

Selecting genes of significant expression

We applied our in-house method, Left Truncated Mixture
Gaussian model (LTMG), to determine the expression status of
each gene in each single cell. LTMG considers the multimodality
of the expression profile of each gene throughout all the single
cells, by assuming that the gene’s expression follows a mixture
of suppressed state and activated states as represented by the fol-
lowing likelihood function (Wan et al. 2019):

∏N

j=1

∑S

i=1

aipi(xj|ui, si)+ aS+1pS+1(xj|uS+1, sS+1)

( )
,

where xj, j=1…N is the expression profile of gene x in N cells;
the index 1…S are the S active expression states and S+1 is the
suppressed expression state; ai is the proportion of each state
with a1 + · · · + aS+1 = 1; a1…S>0 and aS+1≥0; and pi, ui, and σi are
the pdf, mean, and standard deviation of each expression state.
Specifically, LTMG considers the distribution of eachmixing com-
ponent, pi, as a left-truncated Gaussian distribution to account for
the noise of dropout events. In this work, LTMG was used to fit to
each gene’s expression and a gene was determined to have
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significant expression if
∑S

i=1 ai ≥ 0.1; that is, the gene has active
expression states in at least 10% cells.

Prefiltering of active modules based on gene expression

Each metabolic module contains an input, an output, and a num-
ber of enzymes catalyzing the reactions. A reaction is considered as
disconnected if none of the genes encoding its catalyzing enzymes
is significantly expressed. A metabolic module is considered as
blocked if there is no connected path from the input to the output.
Considering the common dropout events in scRNA-seq data, espe-
cially for the drop-seq data, we adopted a conservative approach to
pretrim the metabolic modules: essentially, a module will be re-
moved from further analysis if none of the genes involved in all re-
actions of this module has significantly active expressions.

scFEAmodel setup and a belief propagation–based solution of the

flux model

Model setup

We developed a novel optimization strategy to minimize L
similar to the idea of belief propagation (Yedidia et al. 2001).
Specifically, the flux balance of each metabolite Ck,

LK W
∑N

j=1
∑

m[F
Ck
in
Fluxm,j −

∑
m′[F

Ck
out

Fluxm′ ,j

( )2

, will be iteratively

optimized, by taking into account all the Hop-2 neighbors in the
factor graph (metabolites), denotedasNe(Ck), andHop-4neighbors
(metabolites), that is, Ne2(Ck) := {Ck′ |Ck′ [ Ne(Ne(Ck))\Ck }.
Specifically, for a more efficient optimization, we adopt the
idea of belief propagation by minimizing a reweighted
flux imbalance: L∗

K W LK +∑
Ck′[Ne2(Ck) Wk′Lk′ at each iteration,

where Wk′ is a weight value in (0, 1] representing the reliability
of the current flux balance of Ck′ . We set

Wk′ = exp −∑
Ck′′[Ne(Ne(Ck′ ))\{Ck′ , Ck} Lk′′/|Ne2(Ck′ )\{Ck′ , Ck}|

( )
as an

exponential function of the negative averaged imbalance level of
2-hop neighbors (metabolite) of Ck′ excluding Ck, with higher
Wk′ denoting lower imbalance level of the metabolites. The intui-
tion is that the more reliable the current flux is estimated for the
modules involving Ck′ , which is reflected by the averaged imbal-
ance levelof its 2-hopneighbors, ahigherweightWk′ shouldbegiv-
en to Ck′ . Therefore, that when minimizing LK, a disruption of the
flux balance of Ck′ of higher weight will be more heavily penalized
and less desirable.

Neural network model setup

For eachmodule, a neural network is used to represent the nonlin-
ear dependency between gene expressions and reaction rates. Each
neural network has a1 hidden layers, each with a2 hidden nodes,
and one output node. In this study, we took a1 = 3 and a2 = 8. A
Hyperbolic Tangent activation function, Tanhshrink(x) = x−
tanh(x), is used. The number of nodes and the number of hidden
layers determines the complexity of network structure, which im-
pacts the convergence time of optimization. A too simple structure
may not fully capture the nonlinear relationship, but a too com-
plex structure may make it difficult to train all parameters and
reach convergence. Our organized metabolic modules have an av-
erage gene number of eight, which determines the input nodes of
scFEA. Because scFEA has 169 parallel subnetworks for each meta-
bolic module, we decide that three hidden layers can leverage the
level of nonlinearity and overfitting and ensure a feasible compu-
tational cost (for details, see Supplemental Methods).

Clustering analysis of cells with distinct metabolic states

scFEA adopts an attributed graph clustering approach to identify
the groups of cells and metabolic modules forming a distinct met-
abolic state. Two clustering approaches were provided to the re-
sults of scFEA for different purposes, namely, clustering of (1)
metabolic modules based on the metabolic map and the predicted
flux, and (2) cells sharing a common state on the overall metabolic
map based on the predicted flux.

Clustering of metabolic modules

Denote the adjacency matrix of the context-specific metabolic
map as AM×M and predicted metabolic flux as FluxM×N, where
Fluxm,j represents the predicted flux rate of the module m in cell
j, and a two-stage spectral clusteringwas applied to cluster themet-
abolic modules based on AM×M and FluxM×N. Specifically, denote
AF, M×M as the Euclidean distance of the M modules calculated us-
ing FluxM×N, and DM×M and DF, M×M as two diagonal matrices, in

whichDii =
∑M

j=1 Aij andDF
ii =

∑M
j=1 A

F
ij. Thenormalized graphLap-

lacian matrices for the network topology and attributes similarity
were defined as L = I −D−1/2AD−1/2 and LF= I−DF−1/2 AF DF−1/2.
The normalized graph Laplacianmatrices scale the topological sim-
ilarity and attributes similarly into the same scale. Denote d(Ri, Rj)
and dF (Ri, Rj) as the Euclidean distance between the metabolic
modules Ri and Rj calculated using the smallest P1 eigenvectors of
L and the smallest P2 eigenvectors of LF, respectively, the modules
were clusters by the k-means method with the following distance
measure:

ad(Ri, Rj)+ (1− a)dF(Ri, Rj),

where α, P1, and P2, and thenumber of clusters are hyperparameters.
Our empirical analysis suggested a default setting as α=0.3, which
assigns a higher weight to the similarity of the predict flux;
P1 = max{3, floor(# SM/2) }, where # SM is the number
of supermodules in the current metabolic map; and
P2 = max{3, floor(# M/17) }, where # M is the number of non-
zero modules in the current metabolic map. The number of clusters
should be predetermined by users and depends on the number of
cells, cell types, and metabolic modules.

Analysis of cell group–specific metabolic stress and metabolic

exchanges among cell groups

The cell-wise metabolic flux estimated by scFEA enables the anal-
ysis of metabolic stress. For a predefined cell group such as cells
of the same type, the total imbalance of each compound will be
computed and ranked. A one-way t-test was applied to test if the
imbalance is significantly different from 0. The metabolic ex-
change among different cell groups from one tissue sample was
identified as the metabolites with different signs of metabolic im-
balance in different cell groups, such as accumulation and deple-
tion, or exporting or importing. Tissue-level metabolic stress is
computed as the total imbalance throughout multiple cells.

Perturbation analysis

In scFEA, to evaluate the impact of the change in gene expression
on the whole metabolic map, a perturbation analysis is conducted
that includes three components: (1) the direct impact of each gene
Gm

i to the fluxmodulem can be directly computed by its derivative
df mnn/dG

m
i for all the modules containing Gm

i ; (2) the impact of the
flux change of one module A on a target module B could be esti-
mated as the variations of flux in B calculated under different val-
ues of flux in A, while keeping the other parameters/input fixed,
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that is, aMonte Carlo–basedmethod; (3) the impact of each gene’s
expression to the flux of distant modules can be evaluated by inte-
grating (1) and (2) using a chain rule, that is, by first computing the
flux change of the modules containing the gene and then evaluat-
ing the change of other modules.

Patient-derived cell line models of pancreatic cancer

Pa03C cells were obtained from Dr. Anirban Maitra’s laboratory
at The Johns Hopkins University (Jones et al. 2008). All cells
were maintained at 37°C in 5% CO2 and grown in DMEM
(Invitrogen)with 10% serum (Hyclone). Cell line identitywas con-
firmed by DNA fingerprint analysis (IDEXX BioResearch) for spe-
cies and baseline short tandem repeat analysis testing in
February 2017. All cell lines were 100% human, and a nine-marker
short tandem repeat analysis is on file. Theywere also confirmed to
be mycoplasma free.

scRNA-seq experiment

Cells were transfected with either Scrambled (SCR) (5′-CCAU
GAGGUCAGCAUGGUCUG-3′, 5′-GACCAUGCUGACCUCAUGG
AA-3′) or siAPEX1 (5′-GUCUGGUACGACUGGAGUACC-3′, 5′-UA
CUCCAGUCGUACCAGACCU-3′ siRNA). Briefly, 1 ×105 cells are
plated per well of a six-well plate and allowed to attach overnight.
The next day, Lipofectamine RNAiMAX reagent (Invitrogen) was
used to transfect in the APEX1 and SCR siRNA at 20 nM following
the manufacturer’s indicated protocol. Opti-MEM, siRNA, and
Lipofectamine was left on the cells for 16 h and then regular
DMEM media with 10% serum was added.

Three days posttransfection, SCR/siAPEX1 cells were collect-
ed and loaded into 96-well microfluidic C1 Fluidigm array
(Fluidigm). All chambers were visually assessed, and any chamber
containing dead or multiple cells was excluded. The SMARTer sys-
tem (Clontech) was used to generate cDNA from captured single
cells. The dscDNA quantity and quality was assessed using an
Agilent Bioanalyzer (Agilent Technologies) with the High
Sensitivity DNA Chip. The Purdue Genomics Facility prepared li-
braries using a Nextera kit (Illumina). Unstrained 2×100 bp reads
were sequenced using the HiSeq 2500 on rapid run mode in one
lane.

scRNA-seq data processing and analysis

FastQC was applied to evaluate the quality of the single-cell RNA
sequencing data. Counts were called for each cell sample by using
STAR alignment pipeline (Dobin et al. 2013) against human
GRCh38 reference genome. Cells with fewer 250 or more than
10,000 non-zero expressed genes were excluded from the analysis.
Cells with >15% counts mapped to the mitochondrial genome
were excluded as low-quality cells, resulting in 40 APEX1 KD and
48 Control cells under hypoxia condition and 27 APEX1 KD and
46 Control cells under normoxia condition for further analysis.

We used our in-house left truncated mixture Gaussian model
to identify differentially expressed genes (Wan et al. 2019).
Pathway enrichment analysis of the genes in the identified biclus-
ters are computed using a hypergeometric test against the 1329 ca-
nonical pathways in the MSigDB database (Liberzon et al. 2011),
with P<0.001 as a significance cutoff.

Metabolomic profiling and data analysis

To address the function of the mitochondria, S-1 MitoPlates
(Biolog) Mitochondrial Function Assays were performed following
the manufacturer’s protocol. The assay covers 14 metabolites in
central metabolic pathways, namely, glucose, glucose-1 phos-

phate, glucose-6 phosphate, pyruvate, and lactate in the glycolysis
pathway; citrate, 2-oxoglutarate, succinate, fumarate, malate in
the TCA cycle; and amino acids glutamate, glutamine, serine,
and ornithine. Specifically, assay mix (60 min at 37°C) was added
to the plates to dissolve the substrates. We collected, counted, re-
suspended PDAC cells in provided buffer and plated them at 5×
104 cells/well after treatment. Readings at 590 nm were taken ev-
ery 5min for 4 h at 37°C. Experiments were performed in triplicate
with three biological replicates for the siAPEX1 and control PDAC
cells under the normoxia condition. Raw data was analyzed using
GraphPad Prism 8, and statistical significance was determined us-
ing the two-way ANOVA, and P-values < 0.05 were considered stat-
istically significant.

qRT-PCR

qRT-PCR was used to measure the mRNA expression levels of the
various genes identified from the scRNA-seq analysis. Following
transfection, total RNA was extracted from cells using the Qiagen
RNeasy Mini kit (Qiagen) according to the manufacturer’s instruc-
tions. First-strand cDNA was obtained from RNA using random
hexamers and MultiScribe reverse transcriptase (Applied
Biosystems). Quantitative PCR was performed using SYBR Green
Real Time PCR master mix (Applied Biosystems) in a CFX96 Real
Time detection system (Bio-Rad). The relative quantitative mRNA
level was determined using the comparative Ctmethod using ribo-
somal protein L6 (RPL6) as the reference gene. Experiments were
performed in triplicate for each sample. Statistical analysis per-
formed using the 2−ΔΔCT method and analysis of covariance
(ANCOVA) models, as previously published (Fishel et al. 2015).

Data access

The raw andprocessed scRNA-seqdata generated in this studyhave
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession numbers
GSE99305 (normoxia) andGSE173433 (hypoxia). The scFEA pack-
age, full set of process scRNA-seq data, metabolomic profile, and
analysis codes used in this work are available at GitHub (https://
github.com/changwn/scFEA) and as Supplemental Code.
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