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Acid-base homeostasis is a fundamental property of living cells
and its persistent disruption in human cells can lead to a wide
range of diseases. We have conducted computational modeling
and analysis of transcriptomic data of 4750 human tissue sam-
ples of nine cancer types in the TCGA database. Built on our
previous study, we have quantitatively estimated the (average)
production rate of OH– by cytosolic Fenton reactions, which
continuously disrupt the intracellular pH homeostasis. Our
predictions indicate that all or a subset of 43 reprogrammed
metabolisms (RMs) are induced to produce net protons (H+)
at comparable rates of Fenton reactions to keep the intracel-
lular pH stable. We have then discovered that a number of well-
known phenotypes of cancers, including increased growth rate,
metastasis rate and local immune cell composition, can be nat-
urally explained in terms of the Fenton reaction level and the
induced RMs. This study strongly suggests the possibility to
have a unified framework for studies of cancer-inducing stres-
sors, adaptive metabolic reprogramming, and cancerous behav-
iors. In addition, strong evidence is provided to demonstrate
that a popular view of that Na+/H+ exchangers, along with lac-
tic acid exporters and carbonic anhydrases are responsible for
the intracellular alkalization and extracellular acidification in
cancer may not be justified.
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Introduction
Acid-base homeostasis is a most fundamental property that
all living cells must maintain as the pH sets the stage for
performing accurately all the biochemistry needed in support
of the livelihood and the functionalities of the cells. pH is
an essential part of probably all cellular processes of a liv-
ing organism, which ensures the correct folding of proteins,
biomolecular binding and interactions with the right affinity
and specificity, conducting reactions at the desired rates in
enzymatic pathways, among other biological functions. For
normal human tissue cells, the intracellular (or cytosolic) pH,
pHi, is generally neutral or slightly acidic at the range of 6.8–
7.1 while the extracellular pH, pHe, is slightly basic at ∼7.2
with pHi < pHe (1). Individual cellular compartments may
have distinct pH levels required for executing their functions,
with lysosomes having the most acidic pH at ∼4.0–5.0 and
mitochondria having the highest one at ∼8.0 (2). Because of

the vital importance of the pH, all living cells have designated
systems to keep the stability of their pHi and pHe.

In human cells, a HPO4
2 – /H2PO4

– -based and a
HCO3

– /H2CO3-based buffering system are used to
maintain the stability of pHi and pHe, respectively, plus a
suite of proton importers and exporters such as V-ATPase,
Na+ /H+ exchanger and Na+ /HCO3

– symporter. Under
physiological conditions, certain metabolisms may produce
large quantities of protons such as de novo nucleotide
biosynthesis (3) and the Warburg effect (4) while some other
metabolisms may consume protons such as the conversion
of NADH to NAD+ (5). Excess protons or hydroxides (or
equivalents) produced dynamically by such acidifying or
alkalizing processes are generally absorbed by the pH buffer
and/or counterbalanced by proton transporters to keep the
stability of the pH.

Persistent pathological conditions such as chronic inflamma-
tion are known to disrupt the stability of the local pH; and
extracellular acidosis has been widely reported in (6–8). For
example, cells in Alzheimer’s disease tissues are known to
be under both extracellular and intracellular acidosis (9, 10).
Similar observations have been reported about other neu-
rodegenerative diseases (11). Diabetes is another example
where the diseased tissue cells have been reported to have
more acidic extracellular pH than the matching healthy tis-
sues (12, 13). Knowing the vital importance of the cellular
pH stability, one could imagine the profound impacts of such
changes on the whole cellular biochemistry. This is the rea-
son that persistently altered pH has been suggested as a fun-
damental cause to a wide range of the altered metabolisms,
hence considerable cellular behaviors, in neurodegenerative
diseases, diabetes, and cancer.

It is noteworthy that for pathological conditions giving rise
to persistent overproduction of protons or hydroxides, the pH
buffer, along with the proton transporters, has only a limited
power in maintaining the pH stability. The reason is two-
fold: (1) each pH buffer has a fixed capacity, which could
absorb only limited protons (or hydroxides) (14, 15) persis-
tently generated under pathological conditions; and (2) pro-
ton transporters generally do not work in a sustained man-
ner as such transporters fall into two types, electroneutral
co/antiporters and electrogenic transporters. For electroneu-
tral co/antiporters, protons are released from or loaded into
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cells at the expense of extruding or absorbing another ion,
e.g., Na+ or Cl– . Hence their persistent utilization will dis-
rupt the homeostasis of the other ion, making them not a sus-
tainable solution. Similar can be said about a H+ importer or
exporter (or equivalent), since it is electrogenic and its per-
sistent utilization will violate the electroneutrality of the host
cells, another fundamental property that cells must keep to
remain viable (16).
Cancer is an intriguing case in terms of the altered pHi and
pHe as it has been well established that the pHi of cancer
tissue cells becomes basic, at∼7.4 or 7.5 while their pHe be-
comes acidic ranging from 6.4 to 6.8 (1), hence a reversal of
pHi < pHe compared to normal tissue cells. Multiple pro-
posals have been made regarding the possible causes for the
reversal of the pHi and pHe levels. These include (i) upreg-
ulated proton exporters such as V-ATPase, Na+ /H+ exchang-
ers, and lactic acid exporters in cancer (17–19); (ii) increased
utilization of carbonic anhydrases that convert extracellular
CO2 released by cancer cells to HCO3

– and H+ (20, 21); (iii)
hypoxia due to poor blood supply and “respiratory bursts” by
innate immune cells (22). These proposals have addressed
the possible reasons for the extracellular acidosis in cancer
tissues, which is probably needed by the local immune cells
(6) but did not actually answer the question: what has made
the intracellular pH alkaline as we will demonstrate in this
report.
V-ATPase is generally employed in the membrane of intracel-
lular compartments and used to acidify compartments like en-
dosome or lysosome (23, 24). It is used in plasma membrane
for acidification of the extracellular space only in specialized
cells such as osteoclasts and kidney cells. However, there
have been no experimental data supporting the proposal that
V-ATPase is localized in plasma membrane of cancer tissue
cells, to the best of our knowledge, except by studies report-
ing that the proton pump is localized to the plasma membrane
of certain metastasizing cancer cell lines (25, 26). Na+ /H+

exchangers are an interesting case, which are driven by both
the gradients of Na+ and H+ with Na+-in being with the gra-
dient and H+-out against the gradient when reversing pHi and
pHe. We will demonstrate here that the potential generated
by Na+-in is not sufficient to drive H+-out in cancer tissues.
Lactic acid (CH3CH(OH)CO2

– + H+) exporters like MCT1
are used by possibly all cancers in a sustained manner, as long
as the acid is continuously produced by cancer cells (27). We
will demonstrate that for cells relying on the Warburg effect
for ATP production, lactic acid exporters do not contribute to
intracellular alkalization.
Overall, the existing proposals did not adequately answer the
question about the observed reversal of the pHi and pHe lev-
els. Hence further studies are needed. We have previously
proposed a fundamentally different reason for the consider-
able alkalization of the intracellular pH in cancer tissue cells
for most, possibly all cancer types (28).
Chronic inflammation is known to be causally linked to can-
cer onset and development (29), giving rise to increased local
concentrations of H2O2. Once the H2O2 concentrations reach
beyond a certain level, local red blood cells may become

senescent due to the oxidation of their plasma membranes
and their lack of a membrane repair mechanism (30), lead-
ing to their engulfment by macrophages (30) and local accu-
mulation of irons released by macrophages after engulfment
(31). Under the condition of immune responses, local epithe-
lial cells will sequester the free irons (32), leading to overload
of intracellular irons. It has been widely reported that mul-
tiple chronic inflammatory diseases (33) and many, possibly
all cancer tissues have iron overload (34). It is noteworthy
that when both the H2O2 and Fe2+ levels are sufficiently high,
Fenton reaction: Fe2+ + H2O2 −−→ Fe3+ + HO• + OH– , an
inorganic reaction without involving any enzyme, will hap-
pen (35), regardless being cancer or non-cancerous tissues.
Fenton reactions have been widely observed in cancer tissues
(36–38), and their levels are generally considerably higher in
cancer vs. related non-cancerous disease tissues as shown in
Figure S1. Our previous work has discovered that all cancer
tissue cells have Fenton reactions in their cytosol, mitochon-
dria, extracellular matrix, and cell surface, respectively, and
the reactions will continue if there are reducing molecules
nearby that can convert Fe3+ back to Fe2+ such as super-
oxide (O2

• – ), NADH or Vc (28). In addition, all cancers
use O2

• – , generated by local immune cells and mitochondria
of the cancer cells, as the main reducing molecules, which
drives the cytosolic Fenton reactions continuously in the fol-
lowing form: O2

• – + H2O2 −−→HO• + OH– + O2 , referred
to as the Haber-Weiss reaction with Fe2+ serving as a cata-
lyst (39, 40). Furthermore, the rates of the cytosolic Fenton
reactions in cancer can quickly saturate the intracellular pH
buffer, hence driving the cytosolic pH up if the persistently
produced OH– is not neutralized. It is noteworthy to empha-
size that persistent intracellular Fenton reaction is the result
of chronic inflammation coupled with local iron overload,
without involving any enzymes. One reliable way for compu-
tationally estimating the level of (cytosolic) Fenton reaction
is through checking the level of 20S proteasome genes. The
20S proteasome is solely responsible for degradating protein
aggregates formed due to interaction between hydroxyl rad-
ical (HO•) and proteins, where HO• can only be produced
intracellularly by Fenton reaction (28).

Now the question is: how do such Fenton reaction-affected
cells keep their pHi within a viable range? We have previ-
ously proposed a model regarding how cancer tissue cells
reprogram numerous metabolisms (RMs) to produce pro-
tons together at rates comparable to those of the cytosolic
Fenton reactions, hence keeping their intracellular pH sta-
ble. The model is strongly supported by the observation that
each of these RMs is found to produce more protons or con-
sume fewer protons than its original metabolism (41). The
key RMs include (a) de novo biosynthesis of nucleotides;
(b) the Warburg effect for ATP production; (c) simultaneous
biosynthesis and degradation of triglyceride; and (d) over-
production and deployment of sialic acids and gangliosides.
Here, we present a computational modeling analysis to pro-
vide further evidence that the RMs in each cancer tissue are
indeed induced to produce protons collectively at a rate com-
parable to the average rate of the cytosolic Fenton reaction.
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We also demonstrate that phenotypes known to be associated
with specific cancer (sub)types can be naturally explained in
terms of the induced RMs.

Results
We have conducted a modeling analysis to estimate quanti-
tatively the level of cytosolic Fenton reaction in each cancer
tissue and a regression analysis to predict which RMs are in-
duced to produce protons to keep the intracellular pH stable
in the sample, followed by an association analysis between
the known phenotypes or specific (sub)types and selected
RMs in the relevant tissue samples. Overall, we applied our
analyses to 4750 cancer samples, along with 503 matching
control samples, in nine cancer types (11 subtypes), all based
on transcriptomic data from the TCGA database and single
cell RNA-seq data (scRNA-seq) of head and neck cancer and
melanoma to validate our results.

pH reversal by transporters?. Multiple proposals have
been made regarding the possible causes of intracellular al-
kalization and extracellular acidification in cancer. One pop-
ular model is that Na+/H+ exchangers, particularly NHE1
(SLC9A1), are the main reason for the reversal of pHi and
pHe in cancer tissues, along with monocarboxylate-H+ efflux
cotransporters MCT1 and MCT4 (SLC16A1 and SLC16A3)
and carbonic anhydrase for CO2 hydration (1). Here we
demonstrate that this possibility is low.
We have noted that among the nine cancer types under study,
SLC9A1 is upregulated in only three (BRCA, HNSC, THCA)
and downregulated in six types, as detailed in Table S1, in-
dicating that SLC9A1 may not play a key role in most of the
cancer types.
While ATP is known to be involved in the activation of
SLC9A1, ATP is not involved in driving the transport (42).
Hence the transporter is driven solely by gradients. Note that
reversal of pHi and pHe requires the transporter to move the
intracellular H+ against the gradient out of the cell, indicating
that the act must be driven by the gradient between the extra-
cellular and intracellular Na+ concentrations. It is known that
the normal intracellular sodium concentration ranges from 10
to 15 mmol/L, hence 12 mmol/L being used here, and the ex-
tracellular one is 140 mmol/L (43). The total sodium concen-
tration (TSL) in cancer (TSLC ) is generally 2–3 fold of the
matching normal one (TSLN ) (44, 45). The ratio between
the extracellular and intracellular volume in a unit tissue is
20:80 (46). Our goal is to estimate the intracellular sodium
concentration (ISL) in cancer (ISLC ), assuming the extracel-
lular sodium concentration (= blood sodium concentration)
remains roughly stable. Hence, we have

TSLC = kTSLN , with 2≤ k ≤ 3; and
TSL = 0.2×ESL + 0.8ISL

(1)

By plugging the relevant numbers, we have

TSLC = 0.2×140 + 0.8× ISLC ; and
TSLN = 28 + 0.8× ISLN = 37.6

(2)

For k = 2, we have TSLC = 28 + 0.8× ISLC = 2TSLN =
75.2. So ISLC = 47.2/0.8 = 59. For k = 3, we have ISLC =
106. We conclude that the intracellular sodium concentration
of a cancer tissue is on average 4.91 to 8.83-fold of that of the
matching normal tissue. Therefore, the intracellular sodium
concentration in cancer should range from 4.91× 12 ≈ 59
mmol/L to 106 mmol/L. Hence, the free energy gained for
moving Na+ into the cells from the extracellular space for
cancer cells can be calculated as

∆GNa+ ≥ ZFV + RT ln
(

Na+
in

Na+
out

)

= 1×96485.3× (−0.07) + 8.31×310ln
(

59
140

)
,

(3)
where Z = 1; F = 96485.3 is the Farady constant; and V
is the transmembrane potential (-0.07 meV inside membrane
and 0 outside the membrane); and R is the gas constant and
T is the temperature (room temperature). Similarly, the free
energy needed for moving an intracellular H+ out of a cancer
cell is, using pHe = 6.6 and pHi = 7.4:

∆GH+ ≥ ZFV + RT ln
(

H+
out

H+
in

)

= 1×96485.3×0.07 + 8.31×310ln
(

10−6.6

10−7.4

)
,

(4)
Therefore, the total free energy for Na+-in and H+-out is
∆GNa+ + ∆GH+ . Note that the first terms in the two free
energies cancel each other, and the total free energy is:

∆GNa+ + ∆GH+ ≥ 8.31×310×
(

ln
(

59
140

)
+ ln

(
10−6.6

10−7.4

))
= 8.31×310×0.978 = 2519J

(5)
The positive free energy indicates that the energy generated
by Na+ import is not sufficient to change the pHe to 6.6 and
the pHi to 7.4, actually not even to pHe = 6.8 and pHi = 7.2
by SLC9A1. This calculation result is also experimentally
supported (42). It is noteworthy that we are using the lower
bound for the intracellular sodium concentration in cancer.
Hence a higher level of such concentration will make it more
unlikely for the sodium gradient to drive the reversal of pHe
and pHi. Furthermore, the blood sodium levels in cancer pa-
tients are generally reduced, a widely known fact (47), sug-
gesting that the actual ∆GNa+ + ∆GH+ is higher than the
number given in Eq. (5).

Interestingly, the reversal of pHe and pHi is potentially
achievable by SLC9A1 in normal tissue cells, where the ratio
between intracellular and extracellular Na+ is 12:140 with
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∆GNa+ + ∆GH+ ≥ 8.31×310×
(

ln
(

12
140

)
+ ln

(
10−6.6

10−7.4

))
= 8.31×310× (−0.615) =−1583J

(6)
suggesting the possibility of reversing pHe and pHi by
SLC9A1.
The conclusion here is that SLC9A1 could not accomplish
the observed reversal of pHe and pHi because the Na+-in po-
tential is considerably reduced in cancer due to the decreased
ratio between intracellular and extracellular Na+ concentra-
tions.
Lactic acid exporters SLC16A1 and SLC16A3 have also
been suggested to play a role in intracellular alkalization in
cancer. We can see from the following that this also is not
true, when coupled with the Warburg effect. Note that ATP
production by fermenting glucose is pH neutral as given be-
low (48):

glucose+2ADP3− +2HPO4
2−−−→ 2 lactate− +2ATP4−

(7)
which generates only a lactate but not lactic acid (lactate +
H+) per ATP produced. Now, the question is where the H+

comes from when SLC16A1/3 releases a lactic acid. Note
that ATP hydrolysis (or consumption) produces one net H+

regardless of how the ATP is produced:

ATP4− + H2O−−→ADP3− + HPO4
2− + H+ (8)

Hence the Warburg effect coupled with ATP hydrolysis pro-
duces one net H+, which is co-released with the lactate. As
a side note, ATP production by respiration consumes one H+

for each ATP produced:

ADP3− + HPO4
2− −−→ATP4− + OH− (9)

Hence ATP production by respiration coupled with ATP hy-
drolysis is pH neutral. This is a fundamental difference be-
tween the two ATP production pathways.
We conclude: while SLC16A1/3 contributes to the extracel-
lular acidification, it does not contribute to the intracellular
alkalization. Our previous work has provided strong evidence
that cancer cells release the lactic acids mainly for modulat-
ing immune responses rather than pH homeostasis (49).
Carbonic anhydrases, particularly CA4 and CA7, have been
suggested to play important roles in extracellular acidifica-
tion in cancer. As we can see from Table S2, CA4 is either
downregulated or expressed at very low level across all can-
cer types except for STAD, where the expression increases a
little but remains at a very low level. Similarly, CA7 is down-
regulated or expressed at very low level except for THCA.
These indicate that the two genes do not play much role in
extracellular acidification in all the nine cancer types.

Estimation of hydroxide production rates by cytosolic
Fenton reactions. Our goal here is to construct a reliable
metabolic network leading to cytosolic Fenton reaction and

to estimate accurately the rate of the hydroxide (OH– ) pro-
duction by the Fenton reaction based on transcriptomic data
of the available cancer tissues.
To model the rate of the persistent cytosolic Fenton reaction:
O2

• – +H2O2−−→HO• +OH– +O2 with Fe2+ as the catalyst,
we need to estimate the concentration of each of the three re-
actants: H2O2, O2

• – , and Fe2+ and how each product is re-
lated to the reactants. Figure 1A depicts our constructed map
of iron metabolic reactions in a human cell, which consists of
three sources to the cytosolic Fe2+ pool, namely ferrous ion
import, ferric ion import, and reduction, and heme import
and reduction; four sinks for the cytosolic Fe2+, namely mi-
tochondrial Fe – S cluster and heme synthesis, ferrous ion ex-
port, and Fenton reaction; and sources and sinks of the O2

• –

and H2O2, totaling eight. The fifteen metabolic branches
were each considered as a metabolic module, each contain-
ing one to a few dozen of metabolic genes, whose expression
levels were utilized to estimate their metabolic flux. Detailed
information about gene names and rationale is given in Table
S3.
We have recently developed a graph neural network-based
method for predicting sample-specific metabolic rate, named
scFEA (single-cell flux estimation analysis) (50). Specifi-
cally, scFEA models metabolic fluxes in each tissue based
on gene-expression data of a large number of tissue samples,
under a few simple and reasonable assumptions. They are
(1) the total influx of each metabolite is approximately the
same as its total outflux; and (2) changes in the outflux of
each metabolite can be modeled as a (non-linear) function
of changes in the expression levels of genes involved in pro-
ducing the metabolite. Note that assumption (1) is generally
true unless some major in-/out-flux for a metabolite is not
considered. Assumption (2) is a combination of two simpler

A

B

Fig. 1. Estimating Fenton reaction rates. A. A predicted map for iron metabolism
relevant to cytosolic Fenton reaction in human cell. Reactions and metabolites are
represented by blue rectangles and green ovals, respectively. B. Computational
model of scFEA. Each metabolic reaction (or module) is modeled as a neural net-
work of genes involved in the module. The parameters of the neural network were
derived by minimizing the total flux imbalance of intermediate metabolites, an indi-
cator for the quality of a predicted model.
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assumptions: (i) the concentration of an enzyme is an (in-
versible) function of the concentrations of its reactants; and
(ii) this concentration is also a (non-linear) function of the
expression level of its encoding gene, with both functions
being invariant across different samples of different cancer
types. Both assumptions (i) and (ii) are supported by pub-
lished studies (51–53). Intuitively, one can think this model
as an integrated Michaelis-Menten model, whose parameters
are implicitly estimated using the large number of available
gene-expression data.

Figure 1B outlines the workflow with further details given in
Materials and Methods. Specifically, based on the two as-
sumptions, scFEA models the metabolic flux of each module
by a three layer fully connected neural network of genes in-
volved in the module, which minimizes the total imbalance
of the intermediate substrates across all tissue samples. For
a network with X modules, there are 12X × (# genes) un-
knowns to be estimated with (# genes) being the number of
genes encoded in each reaction-representing module, which
is generally a small integer; and there are K×N constraints,
where K and N are the numbers of intermediate substrates
and samples, respectively. Hence a network like the one in
Figure 1A, a transcriptomic dataset of more than 2000 sam-
ples such as the TCGA pan-cancer (and two selected scRNA-
seq) data, should enable reliable estimation of the unknowns.

We have validated the scFEA algorithm on human global
metabolic map and central metabolic pathways by using two
sets of matched scRNA-seq and tissue metabolomics data
(50). Here we further validated scFEA on the curated iron ion
metabolic modules by applying the method on our recently
collected scRNA-seq data of 168 patient-derived pancreatic
cancer cell lines Pa03c under four conditions: normoxia
(N), hypoxia (H), normoxia and knock-down of APEX1 (N-
APEX1-KD), and hypoxia and knock-down of APEX1 (H-
APEX1-KD). APEX1 plays a central role in the cellular re-
sponse to oxidative stress (54). Our recent studies identi-
fied that knockdown of APEX1 results in increased oxida-
tive stress and cell death in Pa03c cells (55). scFEA pre-
dicts the level of Fenton reaction, proteasome activity and
iron-sulfur cluster biosynthesis in normoxic cells are higher
than hypoxic cells (Figure S2). These observations match (1)
decreased level of Fenton reactions under hypoxia condition
due to the lack of oxygen and hydrogen peroxide, and (2) de-
creased levels of TCA cycle-related iron-sulfur cluster con-
taining proteins. In addition, we have observed that the level
of ferric iron reduction is largely suppressed in APEX1-KD
cells, as the overrepresented ROS may deplete ferrous iron
pool in the cell (Figure S2).

These observations demonstrated that the scFEA prediction
can capture the major variations in iron ion metabolisms
under different biochemical conditions. We have also con-
ducted a robustness analysis by using TCGA data. Similar to
our past validation of scFEA (50), we randomly shuffled the
gene expression profile of each iron ion metabolic genes in a
certain proportion of samples and evaluated the total loss with
respect to the level of perturbation. We observed higher total
losses when perturbing more samples, which further demon-

strated that the iron ion metabolic gene expressions truly
form certain dependency over the curated metabolic modules
(Figure S3).

Iron metabolism in human cancer. We have first applied
scFEA on all the samples of nine cancer types and 11 sub-
types (see Materials and Methods) vs. controls to predict the
flux rates of the iron metabolism in Figure 1A. Key prediction
results are summarized in Figure 2.
Figure 2A summarizes the predicted uptake level of iron.
Overall, five cancer (sub)types have elevated uptake level,
namely BRCA_TNBC (P = 0.043), COAD (P = 2E −
16), KIRC (P = 0.02), LUAD (P = 1E − 10), and STAD
(P = 1E− 7); three have reduced iron uptake level, namely
HNSC (P = 0.02), KIRP (P = 1E − 5), and THCA (P =
3E − 15); and three have approximately the same level:
BRCA_Luminal, BRCA_HER2, and PRAD. We have also
predicted the levels of five exits for cytosolic Fe2+, namely
ferritin synthesis, heme, Fe – S cluster, Fe2+ export, and Fen-
ton Reaction, in cancer vs. controls, as shown in Figure 2B.
Overall, we note that 10 out of the 11 cancer (sub)types have
higher cytosolic Fe2+ exit level in cancer compared to their

0 0

1 1

2 2

3 3

4

Fig. 2. Predicted iron fluxes. The predicted fluxes are relative flux levels scaled
by a hyperparameter. A. The (predicted) average iron import rate (y-axis) in cancer
and adjacent control samples of each cancer type (x-axis). B. Predicted average
cytosolic Fe2+ metabolic rates (y-axis) by ferritin synthesis, mitochondrial heme and
Fe – S cluster synthesis, Fe2+ export, and Fenton reaction, in cancer and adjacent
control samples of each cancer type (x-axis). C. Predicted average cytosolic Fenton
reaction level (y-axis) in cancer and adjacent control samples of each cancer type
(x-axis). D. Predicted averaged proteasome level (y-axis) in cancer and adjacent
control samples of each cancer type (x-axis). In (A–D), * and ** suggest p-value <
0.1 and p-value < 0.05, respectively. E. Correlation between the difference of rela-
tive Fenton reaction rates in cancer and control tissues (x-axis) and cancer growth
rate (y-axis). F. Correlation between the predicted proteasome activity level (x-axis)
and cancer growth rate (y-axis).
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adjacent controls (P < 1E− 3, except for KIRP), which is
mostly due to the increased Fe – S biosynthesis and Fenton re-
action, as detailed in Figure 2B. Furthermore, all the 11 can-
cer subtypes have increased Fenton reaction rates compared
to control tissues (Figure 2C), among which COAD (P =
6E− 18), HNSC (P = 0.02), KIRP (P = 9E− 12), LUAD
(P = 8E − 21), PRAD (P = 0.004), STAD (P = 0.01),
and THCA (P = 9E − 17) show significant changes while
BRCA_TNBC, BRCA_Luminal, BRCA_HER2, and KIRC
show slight but insignificant increases. On average, our pre-
diction suggests that the Fenton reaction involves 39%–44%
of the cytosolic Fe2+ utilization across the 11 cancer subtypes
while more than 95% of the produced Fe3+ stored in ferritin.
Statistics of all the iron ion metabolic modules in the TCGA
cancer types are provided in Table S4.
We have also evaluated the level of the 20S proteasome which
degrades particularly protein aggregates formed due to reac-
tion with hydroxyl radicals (56) generated by Fenton reac-
tions. Significantly increased proteasome level has been ob-
served in all cancer types compared to controls (P < 1E−5,
Figure 2D), providing an independent support for that can-
cer tissues have higher levels of cytosolic Fenton reactions
than controls, knowing that hydroxyl radicals can only be
produced intracellularly by Fenton reactions. The cytosolic
Fenton reaction level could be related to the cell growth rate
(Figure 2E-F), which is discussed in detail below.

RMs induced for proton production by alkalizing in-
tracellular pH. We have previously hypothesized that RMs
observed in cancer tissue cells of the same cancer type are
predominantly induced by cytosolic Fenton reactions to neu-
tralize the hydroxides produced by the reactions. The ratio-
nale for this hypothesis is a highly significant observation
that two totally unrelated sets of reactions, namely cytoso-
lic Fenton reactions and the total hydroxides produced by the
observed RMs are strongly statistically correlated (41). In
addition, multiple evidence strongly suggests that these two
sets of reactions are causally linked and furthermore, Fenton
reactions drive the induction of the RMs observed in each
tissue sample but the other way around. Specifically, Fen-
ton reaction is solely the result of increased innate immune
responses, giving rise to increased H2O2 concentration and
local iron overload and intracellular sequestration. In addi-
tion, none of the H+-producing RMs studied contribute to in-
creased immunity or iron overload, based on our extensive
literature review. Furthermore, OH– -producing Fenton re-
action form a natural driver for the simultaneous induction
of numerous reprogrammed metabolisms, which are distinct
across different cancer types, to keep the intracellular pH sta-
ble. The other way around might require a biological pro-
gram, which is orders of magnitude more complex than our
current model. Based on these considerations, we have tested
our hypothesis using our more reliable way for estimating the
quantities of the involved reaction rates.
43 RMs are used here with their names and marker genes
given in Table 1, including amino-acid biosynthesis and
degradation, purine and pyrimidine biosynthesis, lipid and
fatty acid biosynthesis and others. For each RM, its level is

assessed using single-sample Gene Set Enrichment Analysis
(ssGSEA) on individual samples (see Materials and Meth-
ods) (57).
A linear regression of the predicted rate of the cytosolic Fen-
ton reaction against the levels of the 43 RMs across all sam-
ples of the nine cancer types (and 11 subtypes) with the L1
penalty for variable selection (see Materials and Methods).
Table 2 shows the RMs, along with the numbers of H+ and
CO2 produced, that are commonly and positively associated
with Fenton reaction rates across all the samples, where the
averaged contribution score and the rate of contribution rep-
resent the averaged regression parameter and the proportion
of cancer types that the RMs were selected, respectively. Ta-
ble S5 gives the selected RMs for each of the 11 cancer sub-
types.
Positive associations of the following RMs were identi-
fied in at least 40% of cancer types: purine deoxyribonu-
cleotide (dRN) salvage synthesis, proline synthesis, trypto-
phan degradation, pyrimidine ribonucleotide (RN) salvage
synthesis, pyrimidine dRN salvage synthesis, phospholipid
synthesis, phospholipid degradation, mevalonate pathway,
gluconeogenesis-specific, sialic acid synthesis, fatty acid
transporter, and beta-oxidation, hence possibly representing
the most commonly selected RMs in all cancers.
The selected RMs together achieve higher than 0.8 R2 in ex-
plaining the Fenton reaction rate across all samples of the 11
cancer subtypes (Figure 3). Specifically, purine, pyrimidine
and proline synthesis and tryptophan degradation have the
strongest associations with the predicted Fenton reaction rate
and are commonly induced in more than 80% cancer types.
It is noteworthy that nucleotide biosynthesis represents the
most powerful acidifier, knowing that de novo synthesis of a
purine produces 8–9 net protons and that of pyrimidine pro-
duces 3–5 net protons per nucleotide. Proline synthesis is
known to accelerate the glycolysis pathway (58) and also an
effective producer of acids, as detailed below (41):

glutamate+ATP+G6P→ proline+ADP+Pi+R5P+CO2
(10)

which produces one CO2 per proline synthesized. Can-
cer generally utilizes a truncated tryptophan degrada-
tion pathway, whose end-product is kynurenine or 3-
hydroxyanthrranliate rather than the usual acetyl-CoA for the
full degradation pathway. There could be two possible rea-
sons for the employment of the truncated pathway, one being
that this process produces net protons and the other being
that both end-products promote cell survival under immune
attacks (59).

Linking cancer phenotypes to Fenton reaction levels
and induced RMs. We aim to elucidate possible relation-
ships between the phenotypes of a cancer and the RMs in-
duced, knowing that cellular phenotypes are dictated by the
metabolisms of the cell.

Cancer growth rate and cytosolic Fenton reaction level
For each of the 11 cancer subtypes, we have collected the
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average time needed for a tumor to double its volume, as de-
tailed in Table 3. We have observed a strong positive corre-
lation, Pearson Correlation Coefficient (PCC) = 0.635 (P =
0.036) (Figure 2E), between the increment in the relative
Fenton reaction rates in cancer tissues vs. adjacent control
tissues, defined as the proportion of Fenton reaction among
the total flux of the five cytosolic Fe2+ outfluxes (Figure 2B),
and the tumor-growth rate, defined as 365

days for tumor doubling . In
addition, a stronger correlation was observed between the av-
eraged 20S proteasome level and tumor growth rate, at PCC
= 0.838 (P = 0.001) (Figure 2F). These provide strong evi-
dence that the cytosolic Fenton reaction level plays a key role
in dictating the rate of cancer growth.

Cancer metastasis and sialic acid accumulation Previous
studies have suggested that the high-level of sialic-acid accu-
mulation on cancer surface is associated with high metastasis
rate. We have collected the metastasis rate of each cancer
type under consideration and the synthesis of sialic acids.
A positive correlation, PCC =0.55 (P = 0.09), between the
combined predicted sialic acids synthesis and degradation
rate and the metastasis rate of a cancer has been observed,
hence providing strong evidence to the aforementioned spec-
ulation. In addition, we have also conducted a regression
analysis to fit the cancer type-specific metastasis rate against
the expressions of sialic acid synthesis and degradation gene
NEU1, giving rise to the following relationship:

metastasis rate = 1.91 · sialic acid synthesis−0.039 ·NEU1
(11)

with p-values 0.071 and 0.076 for the two contributors, re-
spectively. Hence the analysis suggests a positive association
between metastasis rate and sialic acids synthesis and a neg-
ative association with sialic acid degradation, which together
implies the rate of accumulation (Figure 3).
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Fig. 3. Fenton reaction rate vs H+ producing RMs. The first 11 panels each show
a scatter plot with the predicted Fenton Reaction (y-axis) rate vs. the repression
model prediction (x-axis) in 11 cancer (sub)types. The bottom right panel shows
the known cancer metastasis rate (y-axis) vs the against sialic acid synthesis rate
and sialic acid degradation gene NEU1’s expression.

Local immune and stromal cell populations and Fenton re-
actions For each cancer type, we have selected the 25% of
the samples with the highest Fenton reaction levels, termed
as samples with high Fenton reactions; and do the same on
the 25% samples with the lowest Fenton reactions, termed
as samples with low Fenton reactions. To study if the lev-
els of cytosolic Fenton reactions may be associated with cer-
tain immune and stromal cell types, we have applied ICTD
(identification of cell types and deconvolution), an in-house
deconvolution method (60), to estimate the relative propor-
tion of immune and stromal cells of different types in a can-
cer samples of the nine cancer types. Our previous analysis
demonstrated ICTD could robustly identify and estimate the
relative proportion of 21 immune and stromal cell types and
proportions of the populations by each cell type in TCGA
samples (see Materials and Methods).
In all the nine cancer types, the samples with high Fenton re-
actions tend to have fewer stromal cells, namely fibroblast
cells, endothelial cells, muscle cells, adipocytes, and neu-
ral cells (Figure 4A). And such samples are negatively as-
sociated with the CD4+ T-cells and cytokine releasing neu-
trophils, all compared to the samples with low Fenton reac-
tions. Furthermore, samples with high Fenton reactions have
higher MHC class-I/II expressing cells, total T-cells, total B-
cells, granulocytes and cytotoxic CD8+ T-cells (Figure 4A).
We also compared the immune and stromal cell populations
between the cancer samples with high and low OH– levels
(Figure 4B). We note that cancer samples with high OH–

levels are negatively associated with stromal cell populations
and positively associated with MHC class II antigen present-
ing cells, total T and B-cells, especially the cytotoxic CD8+
T-cell.
We have further conducted similar analyses on single-cell
RNA-seq of human melanoma and head and neck cancer
(HNSC). Our prediction suggests that in both cancer types,
cancer cells have the highest Fenton reaction level (Fig-
ure 4C, E) and the proteasome level (Figure 4D, F) among
all cell types, which confirms the above bulk data-based pre-
dictions using the TCGA samples. Other cell type specific
iron metabolic fluxes of these two datasets were provided in
Figures S4 and S5.

Discussion
Acid-base homeostasis and its persistent disruption are
known to play key roles in, possibly at the roots of, the de-
velopment of a wide range of chronic illness ranging from
type II diabetes, Alzheimer’s disease, Parkinson’s disease
(9, 11–13) to cancer. Here we have provided strong evidence
that such disruption of the intracellular pH, resulted from
chronic inflammation and local iron accumulation, has a driv-
ing role in the induction of a range of RMs for cell survival.
Based on our analysis results, each cancer (sub)type utilizes
a unique combination of RMs at specific levels (Table S5),
together serving as a stabilizer of the disrupted intracellular
pH. Our modeling results strongly suggest that these induced
RMs have given rise to the distinct phenotype of each can-
cer (sub)type. This, for the first time, provides a unified and
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effective framework for studying all the RMs and cancerous
behaviors in a systematic manner.
While our analysis is largely correlation-based, it has strong
causal implications since Fenton reactions are the results of
chronic inflammation, and such reactions precede a major-
ity of the metabolic reprogramming in diseases (manuscript
in preparation). With this understanding, our framework can
be considered as that Fenton reactions drives metabolic re-
programming, which determines the altered cellular behav-
iors. In this sense, we state that Fenton reactions may dictate
a specific cancerous behavior. Note that we have focused
on cytosolic Fenton reactions in this study while Fenton re-
actions in other subcellular locations, namely mitochondria,
extracellular matrix and cell surface as we have previously
suggested (28), may lead to some other cancerous behaviors,
which we did not discuss here.
Our analyses have demonstrated that all the nine cancer types
have selected de novo nucleotide biosynthesis as one of the
top acidifiers to keep the intracellular pH stable. We have
observed that most of the nine cancer types utilize biosynthe-
sis and deployment of sialic acids and gangliosides as a key
acidifier. In addition, lipid metabolism was another major
acidifier in a few cancer types.
Our previous work has provided strong evidence that the rate
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Fig. 4. Variations of tumor microenvironments associated with Fenton re-
action and OH– level. A. Differences in immune and stromal cell populations
between samples of high and low Fenton reaction rates. B. Differences in im-
mune and stromal cell populations between samples of high and low OH- levels.
C–D. Predicted Fenton reaction rates and proteasome levels in each cell type in the
GSE72056 dataset. E–F. Predicted Fenton reaction rates and proteasome levels in
each cell type in the GSE103322 dataset. The y-axis of C–F represents predicted
relative flux rates.

of de novo biosynthesis of nucleotides may dictate the rate of
cell proliferation (28), hence explaining why different cancer
(sub)types may have distinct proliferation rates as shown in
the Results section. In addition, the rate of sialic acid accu-
mulation has strong implications to the rate of cancer metas-
tasis (61), hence giving an explanation of why non-small cell
lung cancer, kidney renal papillary cell carcinoma, head and
neck cancer, and HER2+ breast cancers tend to have higher
metastasis rates compared to others. Furthermore, different
compositions of immune and stromal cell types in the can-
cerous tissues are associated with different levels of Fen-
ton reactions. We anticipate that a variety of other pheno-
types of a cancer could also be naturally explained using this
framework, possibly once Fenton reactions in other subcel-
lular locations being considered, such as the levels of resis-
tance to different drugs, the possible secondary locations of
metastasizing cancers, and the possibilities of development
of cachexia.
It should be noted that this framework not only provides a
capability for explaining why a cancer (sub)type has specific
phenotypes in terms of the induced RMs, but also enables
studies of the possible relationships among different pheno-
typic characteristics of a cancer such as growth vs. metastatic
rates. For example, we have learned from the Results section
that the relationship between the rates of cancer cell prolif-
eration and metastasis could be strongly correlated with nu-
cleotide biosynthesis and sialic acid synthesis, respectively,
which tend to serve as the top and the dominating acidifiers
in cancer. Hence for a given level of hydroxide production
in a cancer, a relatively higher level of nucleotide biosynthe-
sis may imply a lower level for the sialic acid synthesis since
they together are utilized as the key acidifier. We expect that
similar arguments can be made about the relationships among
other top acidifiers for a given cancer type.

Fenton reaction and ferroptosis. Both local iron overload
and Fenton reactions have been long and widely observed
across numerous cancer types (28). A natural question is:
do cancer tissue cells tend to have ferroptosis? We have
noted that the key enzymes, ACSL4, LPCAT3 and ALOX15,
for converting polyunsaturated fatty acids (PUFAs) to PUFA-
OOH, the main source of lethal lipid peroxides, whose pro-
duction leads to ferroptosis, tend to be downregulated for at
least two out of the three enzymes in seven out of nine cancer
types except for HNSC and STAD, both of which have two
enzymes upregulated, as detailed in Table S6. Further anal-
yses have revealed that the levels of the cytosolic Fenton re-
actions have negative Spearman correlations with the marker
genes for the cellular response to hydroperoxides except for
LUAD, as detailed in Table S7.
We have also analyzed the differential expressions in tissues
samples at different stages I–IV based on the clinical data re-
trieved from TCGA. At least one of the three key markers for
ferroptosis, ACSL4, LPCAT3, and ALOX15, is downregulated
in all cancer types and stages except for COAD and STAD.
On average, 44 out of the 66 Fenton reaction marker genes
are upregulated in all cancers and stages. These differentially
expressed genes also display a trend: the genes become more
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up- or downregulated in advanced stages than in early stages.
Detail statistics of the differential expression of Fenton reac-
tion and ferroptosis related genes are given in Table S8.
These indicate that cytosolic Fenton reactions in general do
not contribute to but possibly prevent the production of lethal
lipid peroxides, which leads to ferroptosis. Knowing that cy-
tosolic Fenton reactions generally take place in either labile
iron pool or in some iron-containing proteins like heme in
cancer and hydroxyl radical generally travels no more 1 nano
meter (62), we speculate that the hydroxyl radicals produced
by Fenton reactions may not reach lipids, say in the mem-
brane in cancers, and may even take away some Fe2+ from
taking part in lipid peroxidation as our statistics suggest.

Perspective. A key realization from the study here is that
the links from chronic inflammation and iron overload to pH-
related stress and then to induced RMs and further to pheno-
typical features of each cancer type may represent the back-
bone of the development of a cancer while other changes such
as genomic mutations and epigenomic alterations may pre-
dominantly serve as facilitators for realization of this evo-
lutionary process as some authors have suggested (63), in-
cluding our own (41). Compared to signaling and regulatory
processes, metabolic events are considerably more stable as
shown by common RMs shared by multiple cancer types. An
important implication is that the issue of “drug resistance”
could be potentially avoided by focusing on metabolisms
rather than signaling/regulatory processes since the issue of
“drug resistance” essentially reflects the redundance (or ro-
bustness) nature of the signaling or regulatory processes in
human cells and organs, hence suggesting a possibly new di-
rection of enzyme-centric cancer treatment, i.e., to inhibit key
enzymes that acidify the cancer intracellular space and hence
kill the cells.
It is noteworthy that this study examines the acid-base home-
ostasis and RMs from a perspective of chemical balances. We
did not touch on issues related to the signaling and regulatory
processes that connect disrupted homeostasis and induction
of certain RMs nor touch on roles played by genomic muta-
tions as well as epigenomic activities in these inductions and
their downstream activities. These could represent as future
research directions to provide further mechanistic informa-
tion about the functional role played by signaling and regu-
latory molecules in the induction of acidifying metabolisms.
A related issue is to elucidation of the possible reasons for
why certain metabolisms are induced reprogrammed in some
cancer types but not in other types, hence possibly leading
to deepened understanding about specific cancer types and
specific cancerous behaviors.

Materials and methods
Data used in this study.

TCGA transcriptomic data TCGA RNA-seq v2 FPKM
data of the nine cancer types (11 subtypes) were retrieved
from the Genomic Data Commons (GDC) data portal using
TCGAbiolinks (64). Table 4 lists the names of the cancer

types along with the information of the numbers of cancer
and control samples. FPKM values were converted to Tran-
scripts per Million (TPM) values as the latter is more stable
across samples. Clinical data were obtained in XML format
from GDC and parsed with an in-house script. GENCODE
gene annotations used by the GDC data processing pipeline
was downloaded directly from the GDC reference files web-
page.

Single cell RNA-seq data We have collected two scRNA-
seq datasets from the GEO database, namely:
GSE72056: This dataset is collected on human melanoma
tissues. The original paper provided cell classification and
annotations including B-cells, cancer-associated fibroblast
cells, endothelial cells, macrophage cells, malignant cells,
NK cells, T-cells, and unknown cells (65).
GSE103322: This dataset is collected on head and neck can-
cer tissues. The original paper provided cell classification
and annotations including B-cells, dendritic cells, endothelial
cells, fibroblast cells, macrophage cells, malignant cells, mast
cells, myocyte cells, and T-cells (66). Notably, as indicated
by the original work, malignant cells have high intertumoral
heterogeneity. Basic processing was conducted by using Seu-
rat (version 3) (67) with default parameters to filter out cells
with high expressions of mitochondrial genes. The cell type
label and sample information provided in the original work
were directly utilized.

Software and statistical methods.

ssGSEA We applied the ssGSEA2.0 R package to estimate
the levels of the selected RMs on individual samples (57).
The ES score computed by ssGSEA was utilized to represent
the level of each RM. Gene sets of the RMs were collected
and annotated in our previous work (50).

scFEA We have applied our scFEA method (50) on the
TCGA and two scRNA-seq data against the iron metabolic
map.

Regression analysis of Fenton reaction rate vs. RM levels
We have conducted a linear regression to fit the Fenton re-
action rate against the RM levels across all samples of each
cancer type. GLMnet R package was utilized for the regres-
sion analysis (68). An L1 penalty was utilized for variable se-
lection. The hyperparameter lambda was determined through
cross validation. The RMs positively associated with the Fen-
ton reaction rate in at least 40% of the cancer types under
study were summarized.

Samples with high and low Fenton reactions and OH – levels
We have extracted the top and bottom 25% samples in terms
of their predicted Fenton reaction level in each cancer type as
cancer type specific high and low Fenton reaction samples.
Similarly, we have done that in terms of the OH– levels.

Deconvolution analysis We have utilized our in-house de-
convolution method, ICTD (identification of cell types and
deconvolution) to estimate the relative proportions among 21
immune and stromal cell types in each TCGA sample (60).
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Statistical test of differential analysis We have utilized
Mann Whitney test for all differential analysis, including dif-
ferential gene expression analysis and the difference of pre-
dicted flux.

Data availability
The TCGA data used in this study can be downloaded from
the Genomic Data Commons (https://portal.gdc.cancer.gov/).
Two scRNA-Seq data sets were collected from the
GEO database with accession numbers GSE72056 and
GSE103322.

Code availability
The code for performing the analyses in this study
can be found at https://github.com/changwn and
https://github.com/y1zhou.
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Tables
Table 1. 43 reprogramed metabolisms with names and marker genes

Reprogrammed Metabolism Marker genes

Arginine transportation SLC7A1, SLC7A2, SLC7A4
Beta-oxidation ACAD10, ACAD9, ACADVL, CPT1A, ECH1, ECHS1, HSD17B10,

EHHADH
Ceramide synthesis SPTLC3, SPTLC1, SPTLC2, SPTSSA, KDSR, CERS1, DEGS1, SMPD1,

SMPD2, SMPD4, SGMS1, SGMS2, SAMD8
Choline production SLC44A1, SLC44A2, SLC44A3, CHKA, CHKB, PCYT1A, PCYT1B,

CEPT1, CHPT1, AGMO, LYPLA1, LYPLA2, GDPD5, GPCPD1, HSD11B2,
HSD17B2, AGPS, AGPAT1, LPIN1, PLA2G4A

Chondroitin sulfate synthesis XYLT1, XYLT2, B4GALT7, B3GALT6, B3GAT1, B3GAT2, B3GAT3,
CSGALNACT1, CSGALNACT2, CHSY3, CHPF, CHSY1, UST, CHST1,
CHST2, CHST3, CHST7, CHST11, CHST12, CHST13, CHST15

Circadian rhythm NPAS2, PER3, PER2, CSNK1D, CRY1, BHLHE41, BHLHE40, NR1D1,
CRY2, CSNK1E, PER1, CLOCK, ARNTL

Fatty acid synthesis FASN, MCAT, RPP14, RPP14, ACACA, ACACB
Fatty acid transporter SLC27A1, SLC27A2, SLC27A3, SLC27A4, SLC27A5, SLC27A6, FABP1,

FABP2, FABP3, FABP4, FABP5, FABP6, FABP7, FABP9, PMP2
Gluconeogenesis-specific MDH1, MDH2, PC, PCK1, ENO1, ENO2, ENO3, BPGM, PGAM1, PGAM2,

PGK1, PGK2, GAPDH, GAPDHS, ALDOA, ALDOB, ALDOC, FBP1, FBP2,
GPI, G6PC, G6PC2, G6PC3, HK1, HK2, HK3, GCK, HKDC1, PFKL, PFKM,
PFKP, TPI1, PKLR, PKM

Glutaminolysis ME1, GOT2, GLS, SLC25A1, MDH2, ACLY, CS, SLC25A11, SLC25A13,
OGDH, SDHA, SDHB, SDHC, SDHD, FH

Heparan sulfate synthesis XYLT1, XYLT2, B4GALT7, B3GALT6, B3GAT1, B3GAT2, B3GAT3,
EXTL2, EXTL3, A4GNT, EXT1, EXT2, EXTL1, HS2ST1, GLCE, NDST1,
NDST2, NDST3, NDST4, HS3ST1, HS3ST3A1, HS3ST3B1, HS3ST2,
HS3ST4, HS3ST5, HS3ST6, HS6ST1, HS6ST2, HS6ST3

Hyaluronic acid synthesis PGM1, PGM2, UGP2, UGDH, GFPT1, GFPT2, GNPNAT1, PGM3, UAP1,
HAS1, HAS2, HAS3

Keratan sulfate synthesis CHST1
Lysine degradation AASS, ALDH7A1, AADAT, DHTKD1, GCDH, ECHS1, HADH, HSD17B10,

ACAT1, ACAT2
Mevalonate pathway ACAT1, ACAT2, HMGCS1, HMGCS2, HMGCR, MVK, PMVK, MVD, IDI1,

IDI2, GGPS1, FDPS
N-glycosylation complex synthesis phase MGAT1, MAN2A1, MAN2A2, MGAT2, FUT8, MGAT3, MGAT4A,

MGAT4B, MGAT4C, MGAT5, MGAT5B, B4GALT1, ST3GAL3, ST6GAL1
N-glycosylation initial phase DPAGT1, ALG13, ALG1, ALG2, ALG11, ALG3, DPM1, DPM2, DPM3,

ALG9, ALG12, ALG5, ALG6, ALG8, ALG10, OST4, STT3B, STT3A
N-glycosylation processing phase MOGS, PRKCSH, GANAB, MANEA, MAN1C1, MAN1A2, MAN1B1
O-glycosylation GALNT1, GALNT10, GALNT11, C1GALT1, ST3GAL1, ST3GAL2, GCNT1,

GCNT3, GCNT4, GCNT7, B3GNT3
Phospholipid degradation PLA2G6, PTGS1, PTGS2, PTGIS, PTGDS, HPGDS, PTGES, PTGES2, PT-

GES3, TBXAS1, ALOX5, LTA4H, LTC4S, GGT5, GGT3P, DPEP2, DPEP1
Phospholipid synthesis-PA PGS1, PTPMT1
Phospholipid synthesis-PC CHKA, CHKB, PCYT1A, PCYT1B, CEPT1, CHPT1
Phospholipid synthesis-PE ETNK1, ETNK2, CHKB, PCYT2, CEPT1, EPT1
Phospholipid synthesis-PI CDIPT
Phospholipid synthesis-PS PTDSS1
Proline synthesis ALDH18A1, PYCR1, G6PD, PGLS, PGD, PYCR2
Purine dRN de novo synthesis PPAT, GART, PFAS, PAICS, ADSL, ATIC, IMPDH1, IMPDH2, GMPS,

GUK1, NME4, NME1, NME2, NME7, RRM1, RRM2, RRM2B, ADSSL1,
ADSS, AK5, AK8, AK3
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Purine dRN salvage synthesis PNP, APRT, ADK, ADA, HPRT1, IMPDH1, IMPDH2, GMPS, GUK1, RRM1,
RRM2, RRM2B, NME1, NME2, NME4, NME7, ADSSL1, ADSS, ADSL,
AK5, AK8, AK3, DGUOK, DCK

Purine RN de novo synthesis PPAT, GART, PFAS, PAICS, ADSL, ATIC, IMPDH1, IMPDH2, GMPS,
GUK1, NME4, NME1, NME2, NME7, RRM1, RRM2, RRM2B, ADSSL1,
ADSS

Purine RN degradation ADA, PNP, PGM2, RPE, RPIA, TKT, TALDO1
Pyrimidine dRN de novo synthesis CAD, CMPK1, NME1, NME2, CTPS2, CTPS1
Pyrimidine dRN salvage synthesis DCK, CDA, TK1, TK2, TYMS, RRM1, RRM2, RRM2B, NME4, NME1,

NME2, NME7, DUT, ENPP3, ENPP1, ITPA, DTYMK, NTPCR, CANT1
Pyrimidine RN de novo synthesis CAD, DHODH, UMPS, CMPK1, CMPK2, NME4, NME1, NME2, NME7,

CTPS1, CTPS2
Pyrimidine RN degradation CDA, UPP2, UPP1, DPYD, DPYS, UPB1
Pyrimidine RN salvage synthesis CDA, UCK1, UCK2, UCKL1, CMPK1, CMPK2, NME4, NME1, NME2,

NME7, CTPS1, CTPS2
Reprogrammed lipid metabolism ACER1, ACER2, ACER3, CERS1, SGPP1, SGPL1, ACLY, FASN, SCD,

FFAR1, FFAR2, FFAR3, FFAR4, GPR84, SLC27A3, HADH, HSD17B10,
CPT1A, PPP1R14A, ACSL3, PCCB, DGAT1, DGKA, MOGAT1, LPCAT3,
LIPE, PNLIP, LPL, DAGLA, DAGLB, CHKA, PTDSS1, CDIPT, SMPD2,
SMPD1, SGMS1, SGMS2, S1PR1, S1PR2, S1PR3, PTGS1, PTGS2, ALOX5,
TBXAS1, PTGIS, PTGES, PTGES2, PTGES3, PTGDS, LTA4H, LTC4S,
GGT5, GGT3P, DPEP1, DPEP2, SPHK1

Retinol biosynthesis RDH8, RDH10, RDH12, PNLIP, LIPC, RBP2, RBP1, RBP5, BCO1
Retinol metabolism RDH16, SDR16C5, ALDH1A2, ALDH1A1, ALDH1A3, XDH, LRAT, CES1,

CES2, RBP4, CES5A, CES4A
Serine synthesis PHGDH, PSAT1, VPS29, PSPH, SLC1A4, SLC1A5
Sialic acid synthesis GNE, NANS, NANP, CMAS, SLC35A1
Triglyceride degradation LIPE, PNLIP, DAGLB, DAGLA
Triglyceride synthesis GPAM, GPAT2, AGPAT1, MBOAT1, MBOAT7, MOGAT3, MOGAT1,

DGAT2, DGAT1, LPCAT1, AGPAT6, LPPR3, LPPR4
Tryptophan degradation TDO2, IDO1, IDO2, AFMID, KMO, KYNU, HAAO, ACMSD, ALDH8A1,

DHTKD1, GCDH, ECHS1, HADH, HSD17B10, ACAT1, ACAT2, GOT2, AA-
DAT, CCBL1, CCBL2

Table 2. Contribution scores of RMs that are positively correlated with Fenton reaction rates

Reprogrammed metabolisms Averaged contribution score Rate of contribution Net proton

Purine dRN salvage synthesis 0.287 0.818 +1 per purine
Proline synthesis 0.23 1 +1 CO2 per proline
Tryptophan degradation 0.112 0.818 +1 per tryptophan
Pyrimidine RN salvage synthesis 0.094 0.727 +1 per pyrimidine
Pyrimidine dRN salvage synthesis 0.091 0.636 0 or +1 per pyrimidine
Phospholipid synthesis-PE 0.06 0.636 +1 CO2 per PE
Phospholipid synthesis-PA 0.054 0.818 +1 per PA
Phospholipid synthesis-PI 0.053 0.636 +1 per PI
Phospholipid synthesis-PS 0.052 0.455 +4 per PS
Phospholipid degradation 0.047 0.727 0 or +1 per phospholipid
Mevalonate pathway 0.041 0.545 +1 CO2 per farnesyl diphosphate
Gluconeogenesis-specific 0.041 0.545 +1 per pyruvate
Sialic acid synthesis 0.041 0.636 +2 per sialic acid
Fatty acid transporter 0.033 0.909 +1 per fatty acid
Beta-oxidation 0.032 0.455 +1 per fatty acid
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Note: +n in column 4 denotes n protons produced. PE, phosphatidylethanolamine; PA, phosphatidic acid; PI, phosphatidyli-
nositol; PS, phosphatidylserine.

Table 3. Average time needed to double the tumor size across 11 cancer subtypes

Cancer type Median doubling time (days)

BRCA
TNBC 103
ER+ 241
HER2 162

COAD 10
HNSC 99
KIRC 667
KIRP 504
LUAD 214
PRAD 900
STAD 300
THCA 803

Table 4. Tumor and normal sample sizes in each cancer type

Abbreviation Cancer type Tumor sample count Normal sample count

BRCA Breast invasive carcinoma 1091 113
COAD Colon adenocarcinoma 456 41
HNSC Head and neck squamous cell carcinoma 500 44
KIRC Kidney renal clear cell carcinoma 530 72
KIRP Kidney renal papillary cell carcinoma 288 32
LUAD Lung adenocarcinoma 513 59
PRAD Prostate adenocarcinoma 495 52
STAD Stomach adenocarcinoma 375 32
THCA Thyroid carcinoma 502 58
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Supplementary material
Figure S1 Fenton reaction levels in cancer and non-cancerous chronic disease tissues. The y-axis shows the
log2(fold change) of 20S proteasome genes in disease versus control tissues. RNA-Seq data of chronic disease tissues were
retrieved from GSE123661, GSE163416, GSE159008, and GSE84346. Differential expression analysis was performed using
DESeq2.

Figure S2 Predicted flux of nine selected modules under four conditions. The conditions shown on the x-axis are
normoxic APEX1 knockdown (si), normoxic control (sc), hypoxic APEX1 knockdown (si_h), and hypoxic control (sc_h).

Figure S3 Total loss of scFEA computed with different ratios of samples perturbed. The x-axis shows the ratio of
samples perturbed. The baseline loss is shown as a red dashed line. Here the perturbation was conducted by first randomly
selecting a certain proportion of samples and then randomly shuffling each row of the samples.

Figure S4 Predicted flux of six selected modules in human melanoma. The x-axis shows the eight cell types from the
GSE72056 human melanoma scRNA-seq data set.

Figure S5 Predicted flux of six selected modules in human head and neck cancer. The x-axis shows the nine cell
types from the GSE103322 human head and neck cancer scRNA-seq data set.

Table S1 Average expression levels of SLC9A1 across all samples in control and four stages of each of nine
cancer types.

Table S2 Average expression levels of CA4 and CA7 in control and each stage in nine cancer types.

Table S3 Genes used to estimate the flux of the 15 metabolic modules.

Table S4 P values-of the difference of each iron ion metabolic module between each (sub)cancer type vs. normal
control sample.

Table S5 Selected reprogrammed metabolisms for each of the 11 cancer subtypes.

Table S6 Average expression levels of three key enzyme genes involved ferroptosis.

Table S7 Correlation coefficients between Fenton reaction level and hydroperoxide marker genes.

Table S8 Log2 fold-change of Fenton reaction and ferroptosis related genes.
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