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Abstract

We study the sample complexity of teaching, termed as “teach-
ing dimension” (TDim) in the literature, for the teaching-
by-reinforcement paradigm, where the teacher guides the
student through rewards. This is distinct from the teaching-
by-demonstration paradigm motivated by robotics applica-
tions, where the teacher teaches by providing demonstrations
of state/action trajectories. The teaching-by-reinforcement
paradigm applies to a wider range of real-world settings where
a demonstration is inconvenient, but has not been studied sys-
tematically. In this paper, we focus on a specific family of
reinforcement learning algorithms, Q-learning, and character-
ize the TDim under different teachers with varying control
power over the environment, and present matching optimal
teaching algorithms. Our TDim results provide the minimum
number of samples needed for reinforcement learning, and we
discuss their connections to standard PAC-style RL sample
complexity and teaching-by-demonstration sample complexity
results. Our teaching algorithms have the potential to speed up
RL agent learning in applications where a helpful teacher is
available.

1 Introduction
In recent years, reinforcement learning (RL) has seen appli-
cations in a wide variety of domains, such as games [31, 24],
robotics control [16, 2] and healthcare [17, 30]. One of the
fundamental questions in RL is to understand the sample
complexity of learning, i.e. the amount of training needed for
an agent to learn to perform a task. In the most prevalent RL
setting, an agent learns through continuous interaction with
the environment and learns the optimal policy from natural
reward signals. For standard algorithms such as Q-learning,
naive interaction with MDP suffers exp complexity [19]. In
contrast, many real-world RL scenarios involve a knowl-
edgable (or even omniscient) teacher who aims at guiding
the agent to learn the policy faster. For example, in the ed-
ucational domain, a human student can be modeled as an
RL agent, and a teacher will design a minimal curriculum to
convey knowledge (policy) to the student (agent) [6].

In the context of reinforcement learning, teaching has
traditionally been studied extensively under the scheme of
teaching-by-demonstration (TbD), where the teacher pro-
vides demonstrations of state/action trajectories under a good

Preprint.

policy, and the agent aims to mimic the teacher as closely as
possible [12]. However, in many applications, it is inconve-
nient for the teacher to demonstrate because the action space
of the teacher is distinct from the action space of the learner.
In contrast, it is usually easier for the teacher to teach by
reinforcements (TbR), i.e. with rewards and punishments. For
example, in dog training, the trainer can’t always demonstrate
the task to be learned, e.g. fetch the ball with its mouth, but
instead would let the dog know whether it performs well by
giving treats strategically [6]; In personalizing virtual assis-
tants, it’s easier for the user to tell the assistant whether it has
done a good job than to demonstrate how a task should be
performed. Despite its many applications, TbR has not been
studied systematically.

In this paper, we close this gap by presenting to our knowl-
edge the first results on TbR. Specifically, we focus on a
family of RL algorithms called Q-learning. Our main contri-
butions are:
1. We formulate the optimal teaching problem in TbR.
2. We characterize the sample complexity of teaching,

termed as ”teaching dimension” (TDim), for Q-learning
under four different teachers, distinguished by their power
(or rather constraints) in constructing a teaching sequence.
See Table 1 for a summary of results.

3. For each teacher level, we design an efficient teaching
algorithm which matches the TDim.

4. We draw connections between our results and classic re-
sults on the sample complexity of RL and of TbD.

2 Related Work
Classic Machine Teaching Since computational teaching
was first proposed in [29, 8], the teaching dimension has been
studied in various learning settings. The vast majority focused
on batch supervised learning. See [40] for a recent survey.
Of particular interest to us though is teaching online learners
such as Online Gradient Descent (OGD) [20, 18], active
learners [9, 26], and sequential teaching for learners with
internal learning state [11, 23, 5]. In contrast to OGD where
the model update is fully determined given the teacher’s data,
the RL setting differs in that the teacher may not have full
control over the agent’s behavior (e.g. action selection) and
the environment’s evolution (e.g. state transition), making
efficient teaching more challenging. Several recent work also
study data poisoning attacks against sequential learners [39,



Table 1: Our Main Results on Teaching Dimension of Q-Learning

Teacher Level 1 Level 2 Level 3 Level 4
Constraints none respect agent’s at st+1 : P (st+1|st, at) > 0 st+1 ∼ P (·|st, at)

TDim S S(A− 1) O

(
SAH

(
1

1−ε

)D)
O

(
SAH

(
1

(1−ε)pmin

)D)

22, 14, 38, 28, 21, 37]. The goal of data poisoning is to force
the agent into learning some attacker-specified target policy,
which is mathematically similar to teaching.

Teaching by Demonstration Several recent works studied
teaching by demonstrations, particularly focusing on inverse
reinforcement learning agents (IRL) [35, 15, 3, 10, 4, 36].
IRL is a sub-field of RL where the learners aim at recovering
the reward function from a set of teacher demonstrations to
infer a near-optimal policy. Teaching in IRL boils down to
designing the most informative demonstrations to convey a
target reward function to the agent. Their main difference
to our work lies in the teaching paradigm. IRL belongs to
TbD where the teacher can directly demonstrate the desired
action in each state. The problem of exploration virtually
disappears, because the optimal policy will naturally visit all
important states. On the other hand, as we will see next, in
the TbR paradigm, the teacher must strategically design the
reward signal to navigate the learner to each state before it
can be taught. In other words, the challenge of exploration
remains in reinforcement-based teaching, making it much
more challenging than demonstration-based teaching. It is
worth mentioning that the NP-hardness in finding the opti-
mal teaching strategy, similar to what we establish in this
paper (see Appendix A), has also been found under the TbD
paradigm [36].

Empirical Study of Teaching-by-Reinforcement Empir-
ically, teaching in RL has been studied in various settings,
such as reward shaping [25], where teacher speeds up
learning by designing the reward function, and action ad-
vising [34, 1], where the teacher can suggest better actions
to the learner during interaction with the environment. Lit-
tle theoretical understanding is available in how much these
frameworks accelerate learning. As we will see later, our
teaching framework generalizes both approaches, by defining
various levels of teacher’s control power, and we provide
order-optimal teaching strategies for each setting.

3 Problem Definitions
The machine teaching problem in RL is defined on a system
with three entities: the underlying MDP environment, the RL
agent (student), and the teacher. The teaching process is de-
fined in Alg. 1. Whenever the boldface word “may” appears
in the protocol, it depends on the level of the teacher and will
be discussed later. In this paper, we assume that there is a
clear separation between a training phase and a test phase,
similar to the best policy identification (BPI) framework [7]
in classic RL. In the training phase, the agent interacts with

the MDP for a finite number of episodes and outputs a pol-
icy in the end. In the test phase, the output policy is fixed
and evaluated. In our teaching framework, the teacher can
decide when the training phase terminates, and so teaching is
regarded as completed as soon as the target policy is learned.
Specifically, in the case of Q-learning, we do not require that
the estimated Q function converges to the true Q function
w.r.t. the deployed policy, which is similarly not required in
the BPI or PAC-RL frameworks, but only require that the
deployed policy matches the target policy exactly.

Algorithm 1 Machine Teaching Protocol on Q-learning

Entities: MDP environment, learning agent with initial
Q-table Q0, teacher with target policy π†.

1: while πt 6= π† do
2: MDP draws s0 ∼ µ0 after each episode reset. But the

teacher may override s0.
3: for t = 0, . . . H − 1 do
4: The agent picks an action at = πt(st) with its

current behavior policy πt. But the teacher may
override at with a teacher-chosen action.

5: The MDP evolves from (st, at) to produce immedi-
ate reward rt and the next state st+1. But the teacher
may override rt or move the system to a different
next state st+1.

6: The agent updates Qt+1 = f(Qt, et) from experi-
ence et = (st, at, rt, st+1).

7: Once the agent learns π†, the teacher ends the teaching
phase, and the learned policy is fixed and deployed.

Environment M: We assume that the environment is an
episodic Markov Decision Process (MDP) parameterized by
M = (S,A, R, P, µ0, H) where S is the state space of size
S, A is the action space of size A, R : S × A → R is
the reward function, P : S × A × S → R is the transition
probability, µ0 : S → R is the initial state distribution, and
H is the episode length. Next, we define two quantities of
interest of an MDP that we will use in our analysis.

Definition 1. Let the minimum transition prob-
ability pmin of an MDP be defined as pmin =
mins,s′∈S,a∈A,P (s′|s,a)>0 P (s′|s, a).

Definition 2. Let the diameter D of an MDP be defined
as the minimum path length to reach the hardest-to-get-to
state in the underlying directed transition graph of the MDP.



Specifically,

D = max
s∈S

min
T,(s0,a0,s1,a1,...,sT=s)

T (1)

s.t. µ0(s0) > 0, P (st+1|st, at) > 0,∀t

RL agent L: We focus on a family of Q-learning agents
L ∈ L with the following properties:
1. Behavior policy: The agent behaves according to the ε-

greedy policy for some ε ∈ [0, 1], i.e.

πt(s) :=

{
arg maxaQt(s, a) w.p. 1− ε
Unif(A\ arg maxaQt(s, a)), w.p. ε.

Note this definition is slightly different but equivalent
to standard ε-greedy exploration, where we merged the
probability of choosing arg maxaQt(s, a) in the second
branch into the first. This simplifies our notation later.

2. Learning Update: Given experience et =
(st, at, rt, st+1) at time step t, the learning update
Qt+1 = f(Qt, et) only modifies the (st, at) entry of
the Q-table. Furthermore, the Q-table is “controllable”:
for any st, at, st+1, there exists a reward r such that the
ranking of at within Qt+1(st, ·) can be made first, last or
unchanged, respectively.

This family includes common Q-learning algorithms such as
the standard ε-greedy Q-learning, as well as provably efficent
variants like UCB-H and UCB-B [13].

Teacher: In this paper, we study four levels of teachers
from the strongest to the weakest:
1. Level 1: The teacher can generate arbitrary transitions

(st, rt, st+1) ∈ S ×R×S , and override the agent chosen
action at. None of these needs to obey the MDP (specifi-
cally µ0, R, P ).

2. Level 2: The teacher can still generate arbitrary current
state st, reward rt and next state st+1, but cannot override
the agent’s action at. The agent has “free will” in choosing
its action.

3. Level 3: The teacher can still generate arbitrary reward
rt but can only generate MDP-supported initial state and
next state, i.e. µ0(s0) > 0, and P (st+1|st, at) > 0. How-
ever, it does not matter what the actual nonzero MDP
probabilities are.

4. Level 4: The teacher can still generate arbitrary reward rt
but the initial state and next state must be sampled from
the MDPs dynamics, i.e. s0 ∼ µ0 and st+1 ∼ P (·|st, at).

In all levels, the teacher observes the current Q-table Qt and
knows the learning algorithm Qt+1 = f(Qt, et).

In this work, we are interested in analyzing the teaching
dimension, a quantity of interest in the learning theory lit-
erature. We define an RL teaching problem instance by the
MDP environment M , the student L with initial Q-table Q0,
and the teacher’s target policy π†. We remark that the target
policy π† need not coincide with the optimal policy π∗ for
M . In any case, the teacher wants to control the experience
sequence so that the student arrives at π† quickly. Specifi-
cally,

Definition 3. Given an RL teaching problem in-
stance (M,L,Q0, π

†), the minimum expected
teaching length is METaL(M,L,Q0, π

†) =
minT,(st,at,rt,st+1)0:T−1

E [T ] , s.t. πT = π†, where the
expectation is taken over the randomness in the MDP
(transition dynamics) and the learner (stochastic behavior
policy).

METal depends on nuisance parameters of the RL teaching
problem instance. For example, ifQ0 is an initial Q-table that
already induces the target policy π†, then trivially METal=0.
Following the classic definition of teaching dimension for
supervised learning, we define TDim by the hardest problem
instance in an appropriate family of RL teaching problems:

Definition 4. The teaching dimension of an
RL learner L w.r.t. a family of MDPs M is
defined as the worst-case METal: TDim =
maxπ†∈{π:S→A},Q0∈RS×A,M∈MMETaL(M,L,Q0, π

†).

4 Teaching without MDP Constraints
We start our discussion with the strongest teachers. These
teachers have the power of producing arbitrary state transition
experiences that do not need to obey the transition dynamics
of the underlying MDP. While the assumption on the teach-
ing power may be unrealistic in some cases, the analysis that
we present here provides theoretical insights that will facili-
tate our analysis of the more realistic/less powerful teaching
settings in the next section.

4.1 Level 1 Teacher
The level 1 teacher is the most powerful teacher we consider.
In this setting, the teacher can generate arbitrary experience
et. The learner effectively becomes a “puppet” learner - one
who passively accepts any experiences handed down by the
teacher.

Theorem 1. For a Level 1 Teacher, any learner L ∈ L, and
an MDP familyM with |S| = S and a finite action space,
the teaching dimension is TDim = S.

It is useful to illustrate the theorem with the standard
Q-learning algorithm, which is a member of L. The worst
case happens when arg maxaQ0(s, a) 6= π†(s),∀s. The
teacher can simply choose one un-taught s at each step, and
construct the experience (st = s, at = π†(s), rt, st+1 = s′)
where s′ is another un-taught state (Alg. 2 handles
the end case). Importantly, the teacher chooses rt ∈{

maxQt(st,·)+θ−(1−α)Qt(st,at)
α − γmaxQt(s

′, ·) : θ > 0
}

,
knowing that the standard Q-learning update rule
f is Qt+1(st, at) = (1 − α)Qt(st, at) + α(rt +
γmaxa∈AQt(s

′, a)). This ensures that Qt+1(s, π†(s)) =
maxa6=π†(s)Q0(s, a) + θ > maxa6=π†(s)Q0(s, a), and thus
the target policy is realized at state s. Subsequent teaching
steps will not change the action ranking at state s. The same
teaching principle applies to other learners in L.

4.2 Level 2 Teacher
At level 2 the teacher can still generate arbitrary reward rt
and next state st+1, but now it cannot override the action



at chosen by the learner. This immediately implies that the
teacher can no longer teach the desired action π†(s) in a sin-
gle visit to s: for example, Q0 may be such that Q0(s, π†(s))
is ranked last among all actions. If the learner is always
greedy with ε = 0 in (1), the teacher will need to visit s
for (A − 1) times, each time generating a punishing rt to
convince the learner that the top non-target action is worse
than π†(s). However, for a learner who randomly explores
with ε > 0 it may perform π†(s) just by chance, and the
teacher can immediately generate an overwhelmingly large
reward to promote this target action to complete teaching at
s; it is also possible that the learner performs a non-target
action that has already been demoted and thus wasting the
step. Despite the randomness, interestingly our next lemma
shows that for any ε it still takes in expectation A− 1 visits
to a state s to teach a desired action in the worst case.
Lemma 2. For a Level 2 Teacher, any learner in L, and an
MDP family M with action space size A, it takes at most
A − 1 visits in expectation to a state s to teach the desired
action π†(s) on s.

Proof Sketch: Let us consider teaching the target action
π†(s) for a particular state s. Consider a general case where
there are A− c actions above π†(s) in the current ordering
Qt(s, ·). In the worst case c = 1. We define the function
T (x) as the expected number of visits to s to teach the target
action π†(s) to the learner when there are x higher-ranked
actions. For any learner in L, the teacher can always provide
a suitable reward to either move the action selected by the
learner to the top of the ordering or the bottom. Using dy-
namic programming we can recursively express T (A − c)
as

T (A− c) = 1 + (c− 1)
ε

A− 1
T (A− c) +

(1− ε+ (A− c− 1)
ε

A− 1
)T (A− c− 1).

Solving it gives T (A − c) = A−c
(1−(c−1) ε

A−1 )
, which implies

maxc T (A− c) = T (A− 1) = A− 1.

Lemma 2 suggests that the agent now needs to visit each
state at most (A−1) times to learn the target action, and thus
teaching the target action on all states needs at most S(A−1)
steps:
Theorem 3. For a Level 2 Teacher, any learner in L, and an
MDP familyM with state space size S and action space size
A, the teaching dimension is TDim = S(A− 1).

We present a concrete level-2 teaching algorithm in Alg. 3
in the appendix. For both Level 1 and Level 2 teachers, we
can calculate the exact teaching dimension due to a lack of
constraints from the MDP. The next levels are more challeng-
ing, and we will be content with big O notation.

5 Teaching subject to MDP Constraints
In this section, we study the TDim of RL under the more real-
istic setting where the teacher must obey some notion of MDP
transitions. In practice, such constraints may be unavoidable.
For example, if the transition dynamics represent physical
rules in the real world, the teacher may be physically unable
to generate arbitrary st+1 given st, at (e.g. cannot teleport).

5.1 Level 3 Teacher
In Level 3, the teacher can only generate a state transition to
st+1 which is in the support of the appropriate MDP transi-
tion probability, i.e. st+1 ∈ {s : P (s | st, at) > 0}. How-
ever, the teacher can freely choose st+1 within this set regard-
less of how small P (st+1 | st, at) is, as long as it is nonzero.
Different from the previous result for Level 1 and Level 2
teacher, in this case, we are no longer able to compute the
exact TDim of RL. Instead, we provide matching lower and
upper-bounds on TDim.

Theorem 4. For Level 3 Teacher, any learner in L with ε
probability of choosing non-greedy actions at random, an
MDP familyM with episode length H and diameter D ≤ H ,
the teaching dimension is lower-bounded by

TDim ≥ Ω

(
(S −D)AH

(
1

1− ε

)D)
. (2)

proof. The proof uses a particularly hard RL teaching
problem instance called the “peacock MDP” in Figure 1 to
produce a tight lower bound. The MDP has S states where
the first D states form a linear chain (the “neck”), the next
S −D − 1 states form a star (the “tail”), and the last state
s(⊥) is a special absorbing state. The absorbing state can
only be escaped when the agent resets after episode length
H . The agent starts at s(0) after reset. It is easy to verify
that the peacock MDP has a diameter D. Each state has A
actions. For states along the neck, the a1 action (in black) has
probability p > 0 of moving right, and probability 1− p to
go to the absorbing state s(⊥); all other actions (in red) have
probability 1 of going to s(⊥). The a1 action of s(D−1) has
probability p to transit to each of the tail states. In the tail
states, however, all actions lead to the absorbing state with
probability 1. We consider a target policy π† where π†(s)
is a red action a2 for all the tail states s. It does not matter
what π† specifies on other states. We define Q0 such that a2
is arg minaQ0(s, a) for all the tail states.

The proof idea has three steps: (1) By Lemma 2 the agent
must visit each tail node s for A− 1 times to teach the target
action a2, which was initially at the bottom of Q0(s, ·). (2)
But the only way that the agent can visit a tail state s is
to traverse the neck every time. (3) The neck is difficult to
traverse as any ε-exploration sends the agent to s(⊥) where it
has to wait for the episode to end.

We show that the expected number of steps to traverse
the neck once is H( 1

1−ε )D even in the best case, where the
agent’s behavior policy (1) prefers a1 at all neck states. In
this best case, the agent will choose a1 with probability 1− ε
at each neck state s. If a1 is indeed chosen by the agent,
by construction the support of MDP transition P (· | s, a1)
contains the state to the right of s or the desired tail state
(via the transition with probability p > 0). This enables the
level 3 teacher to generate such a transition regardless of
how small p is (which is irrelevant to a level 3 teacher). In
other words, in the best case, the agent can move to the right
once with probability 1− ε. A successful traversal requires
moving right D times consecutively, which has probability
(1 − ε)D. The expected number of trials (to traverse) until
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Figure 1: The “peacock” MDP

success is ( 1
1−ε )D. A trial fails if any time during a traversal

the agent picked an exploration action a other than a1. Then
the support of P (· | s, a) only contains the absorbing state
s(⊥), so the teacher has no choice but to send the agent to
s(⊥). There the agent must wait for the episode to complete
until resetting back to s(0). Therefore, any failed trial incurs
exactly H steps of wasted teaching. Putting things together,
the expected number of teaching steps until a successful neck
traversal is done is at least H( 1

1−ε )D.
There are S −D − 1 tail states. Each needs an expected

A− 1 neck traversals to teach. This leads to the lower bound

(S−D−1)(A−1)H( 1
1−ε )D = Ω

(
(S −D)AH

(
1

1−ε

)D)
.

Our next result shows that this lower bound is nearly tight,
by constructing a level-3 teaching algorithm that can teach
any MDP with almost the same sample complexity as above.

Theorem 5. Under the same conditions of Theorem 4, the
level-3 teaching dimension is upper-bounded by

TDim ≤ O

(
SAH

(
1

1− ε

)D)
. (3)

proof. We analyze a level-3 teaching algorithm NavTeach
(Navigation-then-Teach) which, like any teaching algorithm,
provides an upper bound on TDim. The complete NavTeach
algorithm is given in Alg 4 in the appendix; we walk through
the main steps on an example MDP in Figure 2(a). For the
clarity of illustration the example MDP has only two actions
a1, a2 and deterministic transitions (black and red for the
two actions respectively), though NavTeach can handle fully
general MDPs. The initial state is s(0).

Let us say NavTeach needs to teach the “always take action
a1” target policy: ∀s, π†(s) = a1. In our example, these
black transition edges happen to form a tour over all states,
but the path length is 3 while one can verify the diameter of
the MDP is only D = 2. In general, though, a target policy
π† will not be a tour. It can be impossible or inefficient for
the teacher to directly teach π†. Instead, NavTeach splits the
teaching of π† into subtasks for one “target state” s at a time

over the state space in a carefully chosen order. Importantly,
before teaching each π†(s) NavTeach will teach a different
navigation policy πnav for that s. The navigation policy πnav

is a partial policy that creates a directed path from s(0) to s,
which is similar to the neck in the earlier peacock example.
The goal of πnav is to quickly bring the agent to s often
enough so that the target policy π†(s) = a1 can be taught
at s. That completes the subtask at s. Critically, NavTeach
can maintain this target policy at s forever, while moving on
to teach the next target state s′. This is nontrivial because
NavTeach may need to establish a different navigation policy
for s′: the old navigation policy may be partially reused,
or demolished. Furthermore, all these need to be done in
a small number of steps. We now go through NavTeach on
Figure 2(a). The first thing NavTeach does is to carefully plan
the subtasks. The key is to make sure that (i) each navigation
path is at most D long; (ii) once a target state s has been
taught: π†(s) = a1, it does not interfere with later navigation.
To do so, NavTeach first constructs a directed graph where
the vertices are the MDP states, and the edges are non-zero
probability transitions of all actions. This is the directed graph
of Figure 2(a), disregarding color. NavTeach then constructs a
breadth-first-tree over the graph, rooted at s(0). This is shown
in Figure 2(b). Breadth-first search ensures that all states are
at most depth D away from the root. Note that this tree may
uses edges that correspond to non-target actions, for example
the red a2 edge from s(0) to s(1). The ancestral paths from
the root in the tree will form the navigation policy πnav for
each corresponding node s. Next, NavTeach orders the states
to form subtasks. This is done with a depth-first traversal on
the tree: a depth-first search is performed, and the nodes are
ranked by the last time they are visited. This produces the
order in Figure 2(c). The order ensures that later navigation
is “above” any nodes on which we already taught the target
policy, thus avoiding interference.

Now NavTeach starts the first subtask of teaching
π†(s(3)) = a1, i.e. the black self-loop at s(3). As mentioned
before, NavTech begins by teaching the navigation policy
πnav for this subtask, which is the ancestral path of s(3)
shown in Figure 2(d). How many teaching steps does it take
to establish this πnav? Let us look at the nodes along the an-
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Figure 2: NavTeach algorithm demo

cestral path. By Lemma 2 the agent needs to be at the root s(0)
A− 1 times in expectation in order for the teacher to teach
πnav(s(0)) = a2; this is under the worst case scenario where
the initial agent state Q0 places a2 at the bottom in state s(0).
We will assume that after a visit to s(0), the remaining episode
is simply wasted. 1 Therefore it takes at mostH(A−1) teach-
ing steps to establish πnav(s(0)) = a2. After that, it takes at
most H(A− 1)( 1

1−ε ) expected number of teaching steps to
teach πnav(s(1)) = a1. This is the same argument we used
in Theorem 4: the teacher needs to make the agent traverse
the partially-constructed ancestral path (“neck”) to arrive
at s(1). The worst case is if the agent performs a random
exploration action anywhere along the neck; it falls off the
neck and wastes the full episode. In general to establish a
nagivation policy πnav with path length d, NavTeach needs
to teach each navigation edge at depth i = 1 . . . d with at
most H(A− 1)( 1

1−ε )i−1 teaching steps, respectively. After
establishing this πnav for s(3), NavTeach needs to go down
the neck frequently to ensure that it visits s(3) (A− 1) times
and actually teach the target policy π†(s(3)) = a1. This takes
an additional at most H(A− 1)( 1

1−ε )d teaching steps.
When the s(3) subtask is done, according to our ordering

in Figure 2(c) NavTeach will tackle the subtask of teaching
π† at s(1). Our example is lucky because this new subtask
is already done as part of the previous navigation policy.
The third subtask is for s(2), where NavTeach will have to
establish a new navigation policy, namely πnav(s(0)) = a1.
And so on. How many total teaching steps are needed? A key
insight is NavTeach only needs to teach any navigation
edge in the breadth-first tree exactly once. This is a direct
consequence of the depth-first ordering: there can be a lot of
sharing among navigation policies; a new navigation policy
can often re-use most of the ancestral path from the previous

1It is important to note that the teacher always has a choice of
rt so that the teaching experience does not change the agent’s Qt

state. For example, if the agent’s learning algorithm f is a standard
Q-update, then there is an rt that keeps the Q-table unchanged.
So while in wasted steps the agent may be traversing the MDP
randomly, the teacher can make these steps “no-op” to ensure that
they do not damage any already taught subtasks or the current
navigation policy.

navigation policy. Because there are exactly S − 1 edges in
the breadth-first tree of S nodes, the total teaching steps spent
on building navigation policies is the sum of S − 1 terms of
the form H(A − 1)( 1

1−ε )i−1 where i is the depth of those
navigation edges. We can upperbound the sum simply as
(S−1)H(A−1)( 1

1−ε )D. On the other hand, the total teaching
steps spent on building the target policy π† at all target states
is the sum of S terms of the form H(A− 1)( 1

1−ε )d where d
is the depth of the target state. We can upperbound the sum
similarly as SH(A− 1)( 1

1−ε )D. Putting navigation teaching
and target policy teaching together, we need at most (2S −

1)H(A− 1)( 1
1−ε )D = O

(
SAH

(
1

1−ε

)D)
teaching steps.

We remark that more careful analysis can
in fact provide matching lower and upper
bounds up to a constant factor, in the form of
Θ
(
(S −D)AH(1− ε)−D +H 1−ε

ε [(1− ε)−D − 1]
)
.

We omit this analysis for the sake of a cleaner presentation.
However, the matching bounds imply that a deterministic
learner, with ε = 0 in the ε-greedy behavior policy, has
the smallest teaching dimension. This observation aligns
with the common knowledge in the standard RL setting that
algorithms exploring with stochastic behavior policies are
provably sample-inefficient [19].

Corollary 6. For Level 3 Teacher, any learner in L with
ε = 0, and any MDP M within the MDP family M with
|S| = S, |A| = A, episode length H and diameter D ≤ H ,
we have TDim = Θ (SAH) .

5.2 Level 4 Teacher
In Level 4, the teacher no longer has control over state transi-
tions. The next state will be sampled according to the transi-
tion dynamics of the underlying MDP, i.e. st+1 ∼ P (·|st, at).
As a result, the only control power left for the teacher is
the control of reward, coinciding with the reward shaping
framework. Therefore, our results below can be viewed as
a sample complexity analysis of RL under optimal reward
shaping. Similar to Level 3, we provide near-matching lower
and upper-bounds on TDim.



Theorem 7. For Level 4 Teacher, and any learner in L, and
an MDP family M with |S| = S, |A| = A ≥ 2, episode
length H , diameter D ≤ H and minimum transition prob-
ability pmin, the teaching dimension is lower-bounded by

TDim ≥ Ω

(
(S −D)AH

(
1

pmin(1−ε)

)D)
.

Theorem 8. For Level 4 Teacher, any learner in L, and
any MDP M within the MDP family M with |S| = S,
|A| = A, episode length H , diameter D ≤ H and min-
imum transition probability pmin, Alg. 4 can teach any
target policy π† in a expected number of steps at most

TDim ≤ O
(
SAH

(
1

pmin(1−ε)

)D)
.

The proofs for Theorem 7 and 8 are similar to those for
Theorem 4 and 5, with the only difference that under a level
4 teacher the expected time to traverse a length D path is at
most H(1/pmin(1− ε))D in the worst case. The pmin factor
accounts for sampling from P (· | st, at). Similar to Level
3 teaching, we observe that a deterministic learner incurs
the smallest TDim, but due to the stochastic transition, an
exponential dependency on D is unavoidable in the worst
case.

Corollary 9. For Level 4 Teacher, any learner in A with
ε = 0, and any MDP M within the MDP family M with
|S| = S, |A| = A, episode length H , diameter D ≤ H
and minimum transition probability pmin, we have TDim ≤

O

(
SAH

(
1

pmin

)D)
.

6 Sample efficiencies of standard RL, TbD
and TbR

In the standard RL setting, some learners in the learner family
L, such as UCB-B, are provably efficient and can learn a
δ-optimal policy in O(H3SA/δ2) iterations [13], where δ-
optimal means that the cumulative rewards achieved by the
output policy is only δ-worse than the optimal policy, i.e.
V ∗(µ0) − V π(µ0) ≤ δ. One direct implication of such a
measure is that the remote states that are unreachable also
hardly affect the policy’s performance, so quantities like the
diameter of the MDP does not appear in the bound.

In contrast, in our TbR work, we aim at learning the exact
optimal policy, and will thus suffer exponentially if some
states are nearly unreachable. However, if we assume that all
states have reasonable visiting probabilities, then even the
weakest teacher (Level 3 and 4) can teach the optimal policy
in O(HSA) iterations, which is of H2 factor better than the
best achievable rate without a teacher. More interestingly,
even the learners with a not as good learning algorithm, e.g.
standard greedy Q-learning, which can never learn the op-
timal policy on their own, can now learn just as efficiently
under the guidance of an optimal teacher.

Teaching-by-demonstration is the most sample efficient
paradigm among the three, because the teacher can directly
demonstrate the optimal behavior π†(s) on any state s, and
effectively eliminate the need for exploration and navigation.
If the teacher can generate arbitrary (s, a) pairs, then he
can teach any target policy with only S iterations, similar

to our Level 1 teacher. If he is also constrained to obey the
MDP, then it has been shown that he can teach a δ-optimal
policy in O(SH2/δ) iterations [32, 27], which completely
drops the dependency on the action space size A compared
to both RL and TbR paradigms. Intuitively, this is due to the
teacher being able to directly demonstrate the optimal action,
whereas, in both RL and TbR paradigms, the learner must try
all actions before knowing which one is better.

In summary, in terms of sample complexity, we have

RL > TbR > TbD. (4)

7 Conclusion and Discussions
We studied the problem of teaching Q-learning agents un-
der various levels of teaching power in the Teaching-by-
Reinforcement paradigm. At each level, we provided near-
matching upper and lower bounds on the teaching dimension
and designed efficient teaching algorithms whose sample
complexity matches the teaching dimension in the worst case.
Our analysis provided some insights and possible directions
for future work:
1. Agents are hard to teach if they randomly explore:

Even under an optimal teacher, learners with stochastic
behavior policies (ε > 0) necessarily suffer from exponen-
tial sample complexity, coinciding with the observation
made in the standard RL setting [19].

2. Finding METaL is NP-hard: While we can quantify the
worst-case TDim, for a particular RL teaching problem
instance we show that computing its METaL is NP-hard
in Appendix A.

3. The controllability issue: What if the teacher cannot
fully control action ranking in agent’s Qt via reward r
(see agent “Learning Update” in section 3)? This may
be the case when e.g. the teacher can only give rewards
in [0, 1]. The TDim is much more involved because the
teacher cannot always change the learner’s policy in one
step. Such analysis is left for future work.

4. Teaching RL agents that are not Q-learners: In the
appendix, we show that our results also generalize to
other forms of Temporal Difference (TD) learners, such
as SARSA. Nevertheless, it remains an open question
of whether even broader forms of RL agents (e.g. policy
gradient and actor-critic methods) enjoy similar teaching
dimension results.
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Appendices

A The Computational Complexity of Finding METaL
In this section, we discuss another aspect of teaching, namely the computational complexity of finding the exact minimum
expected teaching length of a particular teaching problem instance, i.e. METal(M,L,Q0, π

†). Note this differs from TDim in
that it is instance-specific.

For Level 1 and Level 2 teachers, the exact METaL can be found with polynomial-time algorithms Alg. 2 and Alg. 3. Now, we
show that for the less powerful Level 3 teacher, finding METaL of a particular instance is NP-hard. In particular, it is as hard as
the Asymmetric TSP problem.

Definition 5. An Asymmetric TSP problem [33], characterized by a directed graph G = (V,E) and a starting vertex v ∈ V , is
defined as finding the minimum length path that starts from v and visits all vertices v′ ∈ V at least once.

Theorem 10. Finding the METaL of a Level 3 teaching problem instance is at least as hard as the Asymmetric Traveling
Salesman Problem(ATSP), which is NP-hard; This also means that the best polynomial-time approximation algorithm can only
achieve a constant-factor approximation.

Proof. We show a polynomial-time reduction from ATSP problem to a Level 3 METaL problem. Specifically, we show that for
every ATSP problem instance G = (V,E), there exists a Level 3 METaL problem instance (M,L,Q0, π

†) such that the ATSP
problem instance has a solution l if and only if the corresponding METaL instance has a solution l.

The reduction is as follows. Given an ATSP problem instance {Graph G = (V,E), start vertex = s0}, we provide a construc-
tion to a level 3 METal problem instance (M,L,Q0, π

†). We start by constructing the MDP first. The vertex set V forms the
state space of the MDP. Each state s has exactly two actions a(0) and a(1). The support of the transition probability distributions
P (· | s, a(0)) and P (· | s, a(1)) are the same: they are the outgoing edges of s in the graph G. The exact value of these
probabilities and the reward function does not matter, since a level 3 teacher has the power to override them. The initial state
distribution µ0 is concentrated on s0. We construct a Q0 that favors action a(0) in each state, and the target policy π†(s) = a(1)

for each state s ∈ S. The horizon is H = D2 , where D is the diameter of the graph G. The learner is in L.
Claim 1: If an ATSP problem instance {G = (V,E), s0} has a solution l, then the level 3 METaL problem instance

(M,L,Q0, π
†) has a solution l.

To verify Claim 1, note the teacher needs to make the learner visit every state exactly once to teach the target action a(1) in
that state. This is because initially every state is untaught (by construction Q0 prefers a(0)). Further, each state s has exactly two
actions and no matter which action the learner takes, the teacher can provide a suitable reward to push the target action a(1) to the
top of Q-value ordering. If the ATSP problem has a solution si0 = s0 → si1 → · · · sil−1

, it is possible for the teacher to provide
the state transitions si0 = s0 → si1 → · · · sil−1

that visits all the states in the least number of time steps and thus teach the target
policy optimally. This is because for every edge si → sj in the graph, the transition P (· | si, a) supports sj for both the actions.

Claim 2: If the level 3 METaL problem instance (M,L,Q0, π
†) has a solution l, then the ATSP problem instance {G =

(V,E), s0} has a solution l.
We prove this by contradiction. Let say the METal problem instance (M,L,Q0, π

†) has a solution l. Clearly, all states must
have been visited in this optimal teaching length l at least once. So, the corresponding ATSP problem instance must have a
solution ≤ l. But if ATSP has a solution m < l, by Claim 1, the METaL problem instance will have a solution m < l, thus a
contradiction. Hence, the ATSP problem has a solution l.

By establishing this reduction, we prove that the METaL problem for a level 3 teacher is at least as hard as ATSP problem
which is itself NP-hard.

B Level 1: Algorithm and Proof

Proof of Theorem 1. For a level 1 teacher, the worst-case teaching problem instance is the one in which for all states s ∈ S,
the target action π†(s) is not the top action in the Q0(s, ·). In that case, the teacher would need to make the learner visit
each state s at least once so that the learner has a chance to learn π† as s, i.e. to produce and maintain the eventual condition
QT (s, π†(s)) > maxa6=π†(s)QT (s, ·). Thus, TDim ≥ S. On the other hand, a level-1 teacher can teach a state in just a single
visit to it by replacing the agent chosen action with the target action and rewarding it with a sufficiently high reward (step 8 in
the algorithm). Further, at any time step, it can also make the agent transition to an untaught state to teach the target action in
that state. Thus, for the worst teaching problem instance, the level-1 teacher can teach the target policy in S steps and hence
TDim = S.



Algorithm 2 Optimal Level 1 Teaching Algorithm

def Teach(M,L,Q0, π
†):

1: A state s needs to be taught if Q0(s, π†(s)) ≤ maxa6=π†(s)Q0(s, a). Terminate if the MDP has no state to be taught.
Otherwise arbitrarily order all MDP states that need to be taught as s(0), s(1), · · · , s(n) where 0 ≤ n ≤ S − 1.

2: The teacher provides the state s0 ← s(0).
3: for t = 0, 1, · · · , n do
4: The agent performs an action according to its current behavior policy at ← πt(st).
5: The teacher replaces the chosen action with target action at ← π†(st).
6: The teacher provides the reward rt, and next state st+1

7: where st+1 ← s(min(t+1,n))

8: rt : Qt+1(st, at) > maxa 6=at Qt+1(st, a).
9: The agent performs an update Qt+1 ← f(Qt, et) using experience et = (st, at, rt, st+1)

C Level 2: Algorithm and Proof

Algorithm 3 Optimal Level 2 Teaching Algorithm

def Teach(M,L,Q0, π
†):

1: A state s needs to be taught if Q0(s, π†(s)) ≤ maxa6=π†(s)Q0(s, a). Terminate if the MDP has no state to be taught.
Otherwise arbitrarily order all MDP states that need to be taught as s(0), s(1), · · · , s(n) where 0 ≤ n ≤ S − 1.

2: t← 0, i← 0, the teacher provides initial state s0 ← s(0)

3: while i ≤ n do
4: The agent picks a randomized action at ← πt(st).
5: if at = π†(st) then
6: st+1 ← s(min(i+1,n))

7: i← i+ 1 // move on to the next state
8: rt : Qt+1(st, at) > maxa 6=at Qt+1(st, a) //promote action π†(st) to top
9: else

10: if {a: Qt(st, a) ≥ Qt(st, π†(st))} = {at, π†(st)} then
11: st+1 ← s(min(i+1,n))

12: i← i+ 1 // move on to the next state
13: else
14: st+1 ← s(i) // stay at this state
15: rt : Qt+1(st, at) < mina 6=at Qt+1(st, a) // demote action at to bottom
16: The agent performs an update Qt+1 ← f(Qt, et) with experience et = (st, at, rt, st+1)
17: t← t+ 1

Remark: Line 10 checks whether at is the only no-worse action than π†(st): if it is, its demotion also completes teaching at st.

Proof of Lemma 2. We focus on teaching the target action π†(s) at a particular state s. In general let there be n ∈ {1, . . . , A−1}
other actions better than π†(s) in Q(s, ·). For simplicity, we assume no action is tied with π†(s), namely

Q(s, ai1) ≥ · · · ≥ Q(s, ain) > Q(s, ain+1
= π†(s)) > Q(s, ain+2

) ≥ · · · ≥ Q(s, aiA). (5)

Define the upper action set U := {ai1 · · · ain} and the lower action set U := {ain+2
· · · aiA}. Define T (n) to be the expected

number of visits to s to teach the target action π†(s) at state s, given that initially there are n other actions better than π†(s). By
“teach” we mean move the n actions from U to L. When the agent visits s it takes a randomized action according to at ← πt(s),
which can be any of the A actions. We consider three cases:

Case 1: at ∈ U , which happens with probability 1 − ε + (n − 1) ε
A−1 . The teacher provides a reward to demote this action to the

bottom of Q(s, ·). Therefore, U has one less action after this one teaching step, and recursively needs T (n− 1) expected steps
in the future.

Case 2: at = π†(s), which happens with probability ε
A−1 . The teacher provides a reward to promote at to the top of Q(s, ·) and

terminates after this one teaching step (equivalently, T (0) = 0).



Case 3: at ∈ L, which happens with probability (A − n − 1) ε
A−1 . The teacher can do nothing to promote the target action π†(s)

because at is already below π†(s). Thus, the teacher provides a reward that keeps it that way. In the future, it still needs T (n)
steps.

Collecting the 3 cases together we obtain

T (n) = 1 +

[(
1− ε+ (n− 1)

ε

A− 1

)
T (n− 1) +

ε

A− 1
T (0) + (A− n− 1)

ε

A− 1
T (n)

]
. (6)

Rearranging,

(
1− A− n− 1

A− 1
ε

)
T (n) = 1 +

(
1− A− n

A− 1
ε

)
T (n− 1). (7)

This can be written as

(
1− A− 1− n

A− 1
ε

)
T (n) = 1 +

(
1− A− 1− (n− 1)

A− 1
ε

)
T (n− 1). (8)

This allows us to introduce

B(n) :=

(
1− A− 1− n

A− 1
ε

)
T (n) (9)

with the relation

B(n) = 1 +B(n− 1). (10)

Since T (0) = 0, B(0) = 0. Therefore, B(n) = n and

T (n) =
n

1− A−1−n
A−1 ε

. (11)

It is easy to show that the worst case is n = A− 1, where T (A− 1) = A− 1 regardless of the value of ε. This happens when
the target action is originally at the bottom of Q(s, ·).

Proof of Theorem 3. We construct a worst-case RL teaching problem instance. We design Q0 so that for each state s ∈ S the
target action π†(s) is at the bottom of Q0(s, ·). By Lemma 2 the teacher needs to make the agent visits each state A− 1 times in
expectation. Thus a total S(A− 1) expected number of steps will be required to teach the target policy to the learner.



D Level 3 and 4: Algorithm and Proofs

Algorithm 4 The NavTeach Algorithm

def Init(M ):
1: D ←∞. // select the initial state with the shortest tree
2: for s in {s | µ0(s) > 0} do
3: Construct a minimum depth directed tree T (s) from s to all states in the underlying directed graph of M , via breadth first

search from s. Denote its depth as D(s).
4: if D(s) < D then
5: depth D ← D(s); root sS ← s.
6: Let s1, . . . , sS−1, sS correspond to a post-order depth-first traversal on the tree T (sS).

def NavTeach(M,L,Q0, π
†, δ):

1: t← 0, st ← sS , ask for randomized agent action at ← πt(st)
2: for i = 1, . . . , S do
3: // subtask i: teach target state si with the help of navigation path pi
4: Let pi ← [si0 = sS , si1 , ..., sid = si] be the ancestral path from root sS to si in tree T (sS)
5: while arg maxaQt(s

i, a) 6= {π†(si)} do
6: if st = si then
7: // st = si: the current subtask, establish the target policy.
8: Randomly pick st+1 ∈ {s′ : P (s′ | st, at) > 0}.
9: if at = π†(st) then

10: rt ← CarrotStick(‘promote’, at, st, st+1, Qt, δ)
11: else
12: rt ← CarrotStick(‘demote’, at, st, st+1, Qt, δ)
13: else if st ∈ pi then
14: // build navigation if MDP allows
15: if P (pi.next(st) | st, at) > 0 then
16: st+1 ← pi.next(st).
17: rt ← CarrotStick(‘promote’, at, st, st+1, Qt, δ).
18: else
19: Randomly pick st+1 ∈ {s′ : P (s′ | st, at) > 0}.
20: rt ← CarrotStick(‘demote’, at, st, st+1, Qt, δ).
21: else
22: // st is off subtask i or an already taught state, maintain the Q(st, at)
23: Randomly pick st+1 ∈ {s′ : P (s′ | st, at) > 0}.
24: rt ← CarrotStick(‘maintain’, at, st, st+1, Qt, δ).
25: Give experience et ← (st, at, rt, st+1) to the agent.
26: t← t+ 1
27: if t%H = H − 1 then
28: st ← sS . // episode reset
29: Ask for randomized agent action at ← πt(st)

def CarrotStick(g, a, s, s′, Q, δ):
1: // make a unambiguously the worst action or the best action (with margin δ)or keep it as it is.
2: if g = ‘promote’ then
3: Return r ≥ 0 such that Qt+1(s, a) = arg max

b6=a
Qt+1(s, b) + δ after Qt+1 = f(Qt, (s, a, r, s

′)).

4: else if g = ‘demote’ then
5: Return r ≤ 0 such that Qt+1(s, a) = arg min

b 6=a
Qt+1(s, b)− δ after Qt+1 = f(Qt, (s, a, r, s

′)).

6: else
7: Return r such that Qt+1(s, a) = Qt(s, a) after Qt+1 = f(Qt, (s, a, r, s

′)).

Proof of Tighter Lower and Upper bound for Level 3 Teacher. We hereby prove the claimed matching
Θ
(
(S −D)AH(1− ε)−D +H 1−ε

ε [(1− ε)−D − 1]
)

lower and upper bounds for Level 3 Teacher. The key observa-
tion is that for an MDP with state space size S and diameter D, there must exist D states whose distance to the starting state is



0, 1, . . . , D − 1, respectively. As a result, the total time to travel to these states is at most

D−1∑
d=0

H(
1

1− ε
)d = H

1− ε
ε

[(
1

1− ε
)D − 1] (12)

In the lower bound proof of Theorem 4, we only count the number of teaching steps required to teach the tail states. Now, if we
assume in addition that the neck states also need to be taught, and the target actions are similarly at the bottom of the Q0(s, a),
then it requires precisely an additional H 1−ε

ε [( 1
1−ε )D − 1] steps to teach, which in the end gives a total of

(S −D − 1)(A− 1)H(
1

1− ε
)D +H

1− ε
ε

[(
1

1− ε
)D − 1] (13)

steps.
In the upper bound proof of Theorem 5 we upper bound the distance from s0 to any state by D. However, based on the

observation above, at most S −D states can have distance D from s0, and the rest D states must have distance 0, 1, ..., D − 1.
This allows us to upperbound the total number of teaching steps by

(2S − 1− 2D)(A− 1)H(
1

1− ε
)D +H

1− ε
ε

[(
1

1− ε
)D − 1] (14)

These two bounds matches up to a constant of 2, and thus gives a matching Θ
(
(S −D)AH(1− ε)−D +H 1−ε

ε [(1− ε)−D − 1]
)

lower and upper bound. Setting ε = 0 (requires taking the limit of ε→ 0) induces Corollary 6.
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Figure 3: The “peacock tree” MDP

Proof of Theorem 7. We construct a hard level 4 teaching problem instance, very similar to “peacock MDP” and call it “peacock
tree MDP”. We then show that this MDP admits the given lower bound. The “peacock tree MDP” has a linear chain of length
D − d− 1(the “neck”) and a d depth binary tree(the “tail”) attached to the end of the neck. For a given (S,D), we can always
find d such that 2d + (D− d+ 1) ≤ S ≤ 2d+1 + (D− d). Note that the depth of this MDP is D. To simplify the analysis of the
proof, from now on, we will assume that the binary tree is complete and full, i.e. S = 2d+1 + (D − d).

As in the case of “peacock MDP”, every state has A actions. The action a1 in the chain transits to next state with probability
pmin and to the absorbing state s(⊥) with probability 1− pmin. The action a1 in the non-leaf states of the binary tree transits to
its top child with probability pmin and to s(⊥) with probability 1− pmin, the action a2 there transits to the bottom child with
probability pmin and to s(⊥) with probability 1− pmin. All other A− 1 actions in the non-leaf states and the chain states lead to
s(⊥) with probability 1. Further, all A actions in the leaf states lead to s(⊥) with probability 1. The target policy is to select a1 at
every state. We consider an initial Q0 which favors the target policy at all non-leaf and chain states. For all the leaf states s the
target action a1 is arg minaQ0(s, a), namely at the bottom and needs to be taught.

For the lower bound analysis, we consider teaching each leaf state when the traversal path to it is already optimal (Note that
in reality, the path has to be taught for each leaf states, but that will eventually add to the lower bound, so we omit it for this
analysis). For a leaf state s, there exists a path from the root to it. This requires the teacher to provide the correct transition to the



next state along the path, and the learner to choose actions a1 all along the chain and then a combination of a1 and a2 actions to
reach that leaf s. Given that the traversal path to the leaf is already optimal, a successful episode consists of the learner choosing
the greedy action at each step and the teacher transitioning the learner to the correct next state on the path to the leaf, which
happens with a probability of (pmin(1− ε))D. Thus, the expected number of episodes required to make the learner visit the leaf
and teach it once there is ( 1

pmin(1−ε) )
D. Note that in a successful episode, the learner takes D steps to reach the leaf and the rest

of the steps in that episode is wasted, thus accounting for a total of H steps. Similarly, any failed episode wastes a total of H
steps. Hence, the expected number of steps required to visit and teach a leaf state once is at least H( 1

pmin(1−ε) )
D. The teacher

has to make the learner visit all 2d leaf states A− 1 times in expectation (since by our construction, the target action of each leaf
is at the bottom of the Q-value ordering). Collectively, this would require at least 2d(A− 1)H( 1

(pmin(1−ε) )
D steps. We note that,

S = 2d+1 + (D − d) ≤ 2d+1 +D = 2 · 2d +D =⇒ 2d ≥ 1
2 (S −D). Thus, the expected number of steps to teach the target

policy is ≥ 1
2 (S −D)(A− 1)H( 1

pmin(1−ε))D ) =⇒ TDim ≥ Ω((S −D)AH( 1
pmin(1−ε))D )).

Proof of Theorem 8. The proof follows similarly to the upper bound proof for the teaching dimension of a level 3 teacher and
uses NavTeach algorithm Alg. 4. For a given MDP, the teacher first creates a breadth-first tree and then starts teaching the
states in a post-order depth-first traversal. Note that the breadth-first tree is still constructed using the transition edges that are
supported by the underlying MDP. A level 4 teacher, while transitioning out from a particular state, can only choose a desired
transition-edge with a probability ≥ pmin. Thus, the probability that the teacher can make the learner transit from one state to
another using a greedy action chosen by the learner is at least pmin(1− ε).

The teaching goal is broken into S subtasks, one for each state. The sub-task for a state further consists of teaching a navigation
path to reach that state and then teaching the target action in that state. Because of the post-order depth-first teaching strategy, a
large part of the navigation path is shared between two subtasks. Also, this strategy requires a navigation action at each non-leaf
state to be taught just once. We further note that in depth-first teaching strategy, a navigation action from a parent state si to
a child state sj is taught only after a navigation path to the parent si is laid. Similarly, the target action at a state sj is taught
only after a navigation path to it is laid. Thus, the expected number of steps required to reach a state at depth i and teach once
there is at most ( 1

pmin(1−ε) )
i. For a simpler analysis, we assume that once the agent falls off the path leading to the target state,

the remaining steps in that episode are wasted. Similarly, once an agent reaches a target state and is taught by the teacher, the
remaining episode steps are wasted. Thus, the expected number of steps required to visit a state at depth i and teach the navigation
action there is (A− 1)H( 1

pmin(1−ε) )
i ≤ (A− 1)H( 1

pmin(1−ε) )
D. Noting the fact that there are at most S − 1 non-leaf states

and the teacher needs to teach the navigation action at each of them exactly once, the expected number of steps required to teach
all the navigation actions is at most

(S − 1)(A− 1)H
( 1

pmin(1− ε)

)D
. (15)

Similarly, the expected number of steps required to visit a state at depth i and teach the target action there is (A −
1)H( 1

pmin(1−ε) )
i ≤ (A− 1)H( 1

pmin(1−ε) )
D. Adding it up, the expected number of steps required to teach the target action at

all states is at most

S(A− 1)H
( 1

pmin(1− ε)

)D
. (16)

Combining 15 and 16, we conclude that the expected number of steps required to teach the target policy using Alg. 4 is at most

(2S − 1)(A− 1)H(
1

pmin(1− ε)
)D =⇒ TDim ≤ O(SAH

( 1

pmin(1− ε)

)D
). (17)

Remark: A more careful analysis that leads to a tight lower and upper bound is also possible for the level 4 teacher, but the
calculation and the eventual bound one gets become much more complicated, and thus we defer it to future works.

E Generalization to SARSA
SARSA is different from standard Q-learning in that its update is delayed by one step. In time step t, the agent is updating the

(st−1, at−1) entry of the Q table, using experience et = (st−1, at−1, rt−1, st, at). This delayed update makes the student learn
slowly. In particular, we show that it can take twice as many visits to a state to enforce the target action compared to Q-learning.

Lemma 11. For a Level 2 Teacher, any SARSA learner, and an MDP familyM with action space size A, it takes at most 2A− 2
visits in expectation to a state s to teach the desired action π†(s) on s.



Algorithm 5 Machine Teaching Protocol for SARSA

Entities: MDP environment, learning agent with initial Q-table Q0, teacher.

1: MDP draws s0 ∼ µ0 after each episode reset. But the teacher may override s0.
2: for t = 0, ...,H − 1 do
3: The agent picks an action at = πt(st) with its current behavior policy πt. But the teacher may override at with a

teacher-chosen action.
4: if t = 0 then
5: The agent updates Qt+1 = Qt.
6: else
7: The agent updates Qt+1 = f(Qt, et) from experience et = (st−1, at−1, rt−1, st, at).
8: The MDP evolves from (st, at) to produce immediate reward rt and the next state st+1. But the teacher may override rt

or move the system to a different state st+1.

Proof Sketch: The key in proving Lemma 11 is to see that if the agent visits the same state two times in a row, then the lesson
provided by the teacher during the first visit has not been absorbed by the learner, and as a result, during the second visit, the
learner will still prefer the same (undesirable) action. This, in the worst case (ε = 0), will be a completely wasted time step,
which implies that the total number of visits required will double compared to Q-learning, giving us 2A− 2.

The wasted time step in Lemma 11 will only occur when the agent visits one state twice in a roll. This can be avoided in Level
1 and 2 teachers as long as S ≥ 2. Therefore, the teaching dimension for level 1 and 2 teachers will only increase by 1 due to the
delayed update of the learner. For Level 3 and Level 4 teacher, the new Lemma 11 only results in at most 2 times increase in the
teaching dimension, which does not change the order of our results. Therefore, Level 3 and Level 4 results still hold for SARSA
agents.
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