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Quadrotor State Estimation with IMU and Delayed
Real-time Kinematic GPS

Kanishke Gamagedara, Taeyoung Lee, and Murray Snyder

Abstract—This paper presents an estimation scheme for the six
degree-of-freedom position and attitude of an aerial vehicle by
integrating an inertial measurement unit and a low-cost real-time
kinematic GPS unit, which delivers a precise relative position
measurement corrupted by a time delay. Assuming that the time
delay is known, the extended Kalman filter is generalized to
fuse the time-lagged position measurement from GPS with the
synchronous attitude and angular velocity measurements from
IMU. More specifically, it is formulated as an optimal prediction
where the past state is corrected by the position measurement
before being propagated up to the current time with the history
of the IMU measurements. This provides a compact formulation
to merge multiple sensors with varying time-delays in an optimal
fashion. The efficacy of the proposed approach is illustrated by
a numerical example, experimental data collected over a Navy
research vessel, and an outdoor autonomous flight of a quadrotor
unmanned aerial vehicle.

I. INTRODUCTION

The capability to estimate the position and the attitude of
any unmanned aerial vehicle (UAV) is critical to complete its
mission safely and successfully. For indoor flights, the position
is often measured by motion capture systems with higher band-
width and accuracy, or using vision based techniques. Whereas
in outdoor flights, the most common approach for position
measurement is using navigation satellite systems such as
GPS. However, the commonly used single point position GPS
sensors have a considerable error, typically with a standard
deviation of 1 m. The disturbances to signals broadcasted
by satellites, such as multi-path error or atmospheric delays,
contribute to this error [1].

The real-time kinematic (RTK) GPS systems minimize these
errors by integrating two GPS receivers, namely a base GPS
receiver and a rover GPS receiver. The base GPS receiver
sends its observations to the rover GPS receiver through a
telemetry unit. If both GPS units are in close proximity to
each other, it can be assumed that the sources of external
measurement errors are similar on both of them. The rover
GPS receiver compares the base measurements with the GPS
signals it received, and corrects for the external disturbances,
thereby providing a centimeter level accuracy [2]. This cor-
rection takes a non-trivial amount of time for calculation,
especially for low-cost RTK GPS units built in a small form
factor. When the telemetry communication delay is added on
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top of the computational delay, the position measurement from
RTK GPS is not suitable for autonomous flight of UAV.

Another challenge is that the attitude should be estimated
concurrently with the position. It is commonly measured
with an inertial measurement unit (IMU) that measures the
acceleration, angular velocity, and magnetic field resolved in
the body-fixed frame. A typical IMU provides those measure-
ments in real-time with a higher frequency. As such, it is
required to integrate the delayed measurements of GPS with
the synchronous IMU measurements for the estimation of the
six-dimensional position and attitude of UAV.

Inertial measurement sensors provide attitude and accelera-
tion measurements at a high frequency. While the position can
be estimated by integrating accelerometer measurement, its
accuracy degrades quickly over time. In contrast, GPS sensors
provide an absolute positioning with a lower frequency. This
complementary nature of the IMU and GPS sensors yields
a natural way of providing improved and reliable navigation
solutions [3]. For this reason, integrating IMU and GPS
measurements for navigation has been well studied over the
last few decades [4], [5], [6].

In general, GPS and IMU integration can be primarily
categorized into two types: tightly coupled and loosely coupled
systems [7]. Tightly coupled systems process raw IMU and
raw GPS observations, and they can provide a solution even
when less than four satellites are available [8]. The loosely
coupled systems use measurements already processed by sep-
arate IMU and GPS sensors to provide an integrated solution.
This method is cheaper as the algorithms can be applied to
off-the-shelf sensors, but may not perform well if the number
of satellites visible to the GPS sensor is low. Several variations
of both of these methods have been tested on UAVs by various
researchers [9], [10], [11].

In this work, we focus on loosely coupled integration of
IMU measurements and RTK GPS with a non-trivial delay.
Incorporating the delayed measurements in a Kalman filter
has been discussed in [12], where a minimum mean squared
error estimator is presented for a linear Gaussian system.
Alternatively, delayed measurements are considered by re-
calculating the states through the delay period [13]. To reduce
the computational cost associated with the re-calculation, it is
proposed to update the covariance matrix as if the measure-
ment was arrived without a delay, given that the measurement
transition matrix and the measurement noise covariance matrix
are known. Then, when the delayed measurement actually
arrives, the state correction is executed with an additional
correction term which has a cheaper computational cost. This
makes the estimates suboptimal during the delay period, but
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becomes optimal when the delayed measurement arrives.
The above approaches assume that the filter states are not

corrected by any other measurements during the delay period,
i.e., all of the sensors are subject to the same time delay.
To overcome this problem, alternative approaches have been
suggested. To ensure the optimality of the estimates through
the delay period, in [14], it is proposed to run a secondary
estimator in a parallel fashion through the delay period, and to
fuse it to the main filter once the delayed measurement arrives,
thereby improving [13]. Alternatively, it is also proposed
to extrapolate the delayed measurement to the current time,
and then to add a correction to the estimated state after
incorporating the measurement. This approach is applicable
to the cases where the measurement transition matrix and the
measurement noise covariance matrix are unknown through
the delay period.

A similar approach has been used in [15] to integrate de-
layed GPS measurement with non-delayed IMU measurements
to autonomously navigate a UAV, but using versions of sigma-
point Kalman filters. Given the delay is known, this method
augments the state vector and the covariance matrix with the
ones when the measurement is supposed to arrive. Then, the
augmented state and covariance matrix are propagated until
the delayed measurement actually arrives, which are used to
calculate the cross covariance between the measurement and
the delayed state.

The above mentioned techniques assume that the delay is
known. Authors in [16] have presented a linear Kalman filter
that incorporates delays using covariance union technique,
which is applicable when the delay is unknown.

In this paper, we consider a pose estimation with RTK GPS
and IMU, where only the position and velocity measurements
from RTK GPS are delayed by a given fixed time, and all the
other measurements from IMU are acquired frequently without
any latency. The proposed approach has an intuitive interpreta-
tion as an optimal prediction, where the current measurement
is used to predict prospective states. When the delayed position
measurement becomes available, the prior state corresponding
to the measurement instance is corrected, and then it is prop-
agated over the delayed period up to the current time while
being adjusted by the saved IMU measurements. As such, it is
a generalization of [13] to the sensor fusion between multiple
sensors where only a part of measurements is delayed. Instead
of making an approximation to the covariance matrix, the
IMU measurements are sub-sampled while the corrected prior
state is propagated to the current time. As such, this approach
incorporates all of the information available to estimate the
current state without sacrificing the optimality while utilizing
the improved computing power and the higher memory ca-
pacity of modern computing modules. There is no additional
inherent approximation to depreciate optimality, except sub-
sampling IMU measurements. The desirable properties of the
proposed approach are illustrated by a numerical example
with a detailed benchmark study against other techniques.
They are further demonstrated by experimental results where
the proposed estimator is applied to autonomous flight of a
quadrotor UAV connected to a low cost RTK GPS unit. We
further present the detailed software structures to implement

Fig. 1. Frame definitions: red - fixed north-east-down frame, blue: body frame
fixed on the body of the UAV, green: frame fixed on the IMU frame used for
its measurements

the proposed estimation scheme.

II. PROBLEM FORMULATION

In this section, we present the mathematical model of the
six degree of freedom kinematics considered in this paper, and
the measurements from IMU and GPS.

A. Kinematics

Let the b-frame be the body-fixed frame of the quadrotor
UAV with the origin located at its center of gravity. The local
north-east-down (NED) frame is defined as the f -frame, with
the origin at the base GPS sensor. We distinguish the frame
fixed to the IMU, in which the IMU measurement readings are
resolved, from the b-frame, and it is denoted by the i-frame.
These frames are illustrated in Figure 1. The orientation of
the IMU with respect to the body-fixed frame is described
by a fixed rotation matrix Rbi ∈ SO(3), where the three-
dimensional special orthogonal group is given by

SO(3) = {R ∈ R3×3 |RTR = I3×3, det[R] = +1}.

Let x ∈ R3 be the position of the origin of the b-frame, or
the center of gravity of the UAV. The corresponding velocity
and acceleration are denoted by v ∈ R3 and a ∈ R3,
respectively. All of x, v, and a are resolved in the f -frame.
The rotation matrix from the b-frame to the f -frame is denoted
by R , Rfb ∈ SO(3). Further, Ω ∈ R3 is the angular velocity
of the quadrotor resolved in the b-frame. The equations of
motion for (x, v,R) are given by

ẋ = v, (1)
v̇ = a, (2)

Ṙ = RΩ̂. (3)

Here, the hat map ∧ : R3 → so(3) is defined such that x̂y =
x × y and x̂T = −x̂ for any x, y ∈ R3. The inverse of hat
map is denoted by the vee map ∨ : so(3)→ R3. The set of 3
by 3 skew-symmetric matrices are denoted by so(3) = {S ∈
R3×3 |S = −ST }.

Let the acceleration measurement and the angular velocity
measurements from the IMU be aIMU, and ΩIMU ∈ R3, which
are treated as an exogenous time-varying signal resolved in
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the b-frame. The acceleration measurement along the gravity
is corrupted by an additive noise wa ∈ R and a bias ba ∈ R,
where the noise is Gaussian with wa ∼ N (0, Qa) for a noise
covariance Qa ∈ R, and the bias is driven by a Wiener process
Wba ∈ R as

dba = BadWba , (4)

for a scaling factor Ba ∈ R. This implies that ba(τ) − ba(t)
follows the Gaussian distribution ofN (0, |τ−t|BaB

T
a ) for any

t, τ > 0. We consider the accelerometer bias along the third
component only, as it turned out that the biases along the other
components are negligible in the experiments presented in
Section V. However, it is readily generalized to include all of
biases. Also, the angular velocity measurement is affected by
an additive noise wΩ ∈ R3 following a Gaussian distribution
wΩ ∼ N (0, QΩ) for QΩ ∈ R3×3.

More specifically, the acceleration and the angular velocity
in (2)-(3) are written in terms of the IMU measurements as

a = RRbi(aIMU + wa) + e3ba + ge3, (5)
Ω = Rbi(ΩIMU + wΩ), (6)

where g ∈ R is the gravitational acceleration and e3 =
[0, 0, 1] ∈ R3.

B. IMU Measurements

As discussed above, the measurements of the acceleration
and the angular velocity from IMU are considered as a time-
varying signal driving (1)–(3). In addition, IMU measures the
orientation of the i-frame with respect to the f -frame, namely
Rfi = RRbi ∈ SO(3). The actual output of the IMU, namely
RIMU ∈ SO(3)

RIMU = RRbi exp ζ̂R. (7)

where exp : so(3) → SO(3) is the matrix exponential and
ζR ∈ R3 corresponds to the measurement noise for RIMU,
and it is assumed that ζR ∼ N (0, VR) for a covariance matrix
VR ∈ R3×3.

C. RTK GPS Measurements

RTK GPS provides the measurements for the position x
and the velocity v in the f -frame, corrupted by additive noise.
Furthermore, the measurement is delayed by a fixed, known
duration tD > 0. More explicitly, the GPS measurements that
become available at t are given by

xGPS(t) = x(t− tD) + ζx, (8)
vGPS(t) = v(t− tD) + ζv, (9)

where the additive measurement noise ζx and ζv ∈ R3

are Gaussian with ζx ∼ N (0, Vx) and ζv ∼ N (0, Vv) for
covariance matrices Vx, Vv ∈ R3×3.

D. Estimation Problem

Suppose that the initial position and the velocity satisfy

x(0) ∼ N (x̄0, Px0
), v(0) ∼ N (v̄0, Pv0

),

for the prescribed mean values and the covariances. Further,
the initial attitude is a random matrix given by

R(0) = R̄0 exp(η̂0),

where R̄0 ∈ SO(3) is the initial mean attitude, and η0 ∈
N (0, PR0

) for PR0
∈ R3×3 represents the distribution of the

initial attitude about its mean attitude. The initial bias is also
distributed as ba(0) ∼ N (0, Pb0).

The objective is to construct the distribution of
(x(t), v(t), R(t), ba(t)) conditioned by the IMU attitude
measurements RIMU(τ) and the GPS measurements
(xGPS(τ), vGPS(τ)) available up to τ ≤ t, for a given
delay tD and the history of other IMU measurements
(ΩIMU(τ), aIMU(τ)).

III. EXTENDED KALMAN FILTER WITH TIME-DELAY

The proposed approach is based on the extended Kalman
filter with Gaussian distributions, where the mean is prop-
agated though the kinematics equation in the absence of
the process noise and the covariance is propagated by its
linearized form. The propagated distribution is corrected by
the linearized measurement equation. As such, it is composed
of the propagation step and the correction step. Two main
challenges are integrating the delayed GPS measurements with
the synchronous IMU measurements through the corrections
steps, and dealing with the fact that the rotation matrix rep-
resenting the attitude evolves on the compact Lie group. The
former is tackled by formulating it as an optimal prediction,
and the latter is addressed by representing the distribution in
the tangent space of the special orthogonal group.

A. Uncertainty Distribution

Throughout this paper, the uncertainties in (x, v,R, ba)
are represented as follows. The mean values are denoted by
(x̄, v̄, R̄, b̄a). Next, for the distribution about the mean, let

x = x̄+ δx,

v = v̄ + δv,

ba = b̄a + δba,

for perturbations (x̄, v̄, b̄a) ∈ R3+3+1. For the attitude,

R = R̄ exp(η̂),

for η ∈ R3, which is uniquely determined when the angle
between R and R̄ is less than 180°. We consider cases when
the distribution of R is sufficiently concentrated that the
probability that ‖η‖ > π is not significant throughout this
paper, which is common in attitude estimation. In particular,
for highly concentrated cases, or ‖η‖ � 1, the above is
approximated by

R = R̄(I3×3 + η̂) +O(‖η‖2),
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which yields the following perturbation of the attitude

δR = Rη̂. (10)

Define x ∈ R10 be the concatenation of the perturbations:

x = (δx, δv, η, δba).

And let P ∈ R10×10 be the covariance of x given by

P = E[xxT ].

In short, the uncertainty distribution of the state and the bias
is defined by the mean (x̄, v̄, R̄, b̄a), and the covariance P .

B. Prediction

Suppose that we have the distribution at t = tk, given by
(x̄k, v̄k, R̄k, b̄ak

) and Pk. The objective of prediction is to
propagate those to the next time step tk+1 over (1)–(4).

The mean values (x̄, v̄, R̄) are easily propagated by dis-
cretizing (1)–(3) in the absence of the process noise via the
following second order explicit method:

x̄k+1 = x̄k + hkv̄k +
h2
k

2
āk, (11)

v̄k+1 = v̄k +
hk
2

(āk + āk+1), (12)

R̄k+1 = R̄k exp

{
hk
2

(Ω̄k + Ω̄k+1)∧
}
, (13)

b̄ak+1
= b̄ak

, (14)

where hk = tk+1 − tk is the discrete time step, and

Ω̄k = RbiΩIMUk
, (15)

āk = R̄kRbiaIMUk
+ e3b̄ak

+ ge3. (16)

Next, to propagate the covariance Pk, we first study how
the perturbation vector x evolves. This is achieved according
to the extended Kalman filter, i.e., we linearize the equations
of motion. Equation (1) and (4) are already linear. Substituting
the perturbations into (2) and (5),

δv̇ = Rη̂RbiaIMU +RRbiwa

= −R(RbiaIMU)∧η + e3δba +RRbiwa, (17)

as x̂y = −ŷx for any x, y ∈ R3. Next, we find two equivalent
expressions for δṘ, by taking the time-derivative of (10) and
by substituting (10) into (3) as

R ˆ̇η +RΩ̂η̂ = Rη̂Ω̂.

Left-multiplying RT , and using the identity x̂ŷ− ŷx̂ = (x̂y)∧

for any x, y ∈ R3, we obtain η̇ = −Ω̂η. Substituting (6),

η̇ = −(RbiΩIMU)∧η +RbiwΩ, . (18)

Together with (1) and (4), these can be rearranged into a matrix
form as

dx = (A(t)x + F1(t)w1)dt+ F2dWba , (19)

where w1 = [wa;wΩ] ∈ R6, and the matrices A(t) ∈ R10×10,
F1(t) ∈ R10×6, F2 ∈ R10×1 are given by

A(t) =


03×3 I3×3 03×3 03×1

03×3 03×3 −R(RbiaIMU)∧ e3

03×3 03×3 −(RbiΩIMU)∧ 03×1

01×3 01×3 01×3 0

 ,

F1(t) =


03×3 03×3

RRbi 03×3

03×3 Rbi

01×3 01×3

 ,
F2 =

[
09×1

Ba

]
.

The last term of (19) implies that an additive noise of F2wbk

is added over the period [tk, tk+1], where wbk ∈ R follows
wbk ∼ N (0, hk). Define wk = [wak

;wΩk
;wbk ] ∈ R7. It is

straightforward to show wk ∼ N (0, Qk), where its covariance
Qk ∈ R7×7 is

Qk = diag[Qa, QΩ, hk]. (20)

According to [17, p 330], the discrete-time linearized equa-
tion is given by

xk+1 = Akxk + Fkwk, (21)

where Ak ∈ R10×10 and Fk ∈ R10×7 are

Ak = I10×10 + hkA(tk)Ψ, (22)
Fk = hkΨ[F1(tk), F2], (23)

with a matrix Ψ ∈ R10×10

Ψ = I10×10 +
hk
2
A(tk)×(

I +
hk
3
A(tk)

(
I + · · ·

(
I +

hk
N
A(tk)

)))
,

for an integer N ≥ 1. Finally, from (21), the covariance is
propagated as

Pk+1 = AkPkA
T
k + FkQkF

T
k . (24)

In summary, the prediction step is completed by propagating
the means with (11)–(14), and by propagating the covariance
with (24). Note that the prediction step requires the IMU
measurements (ΩIMU, aIMU) at (15) and (16).

C. Correction with IMU Attitude Measurements

Next, we develop a correction step for the IMU attitude
measurements presented in Section II-B. As the correction step
is assumed to be executed instantaneously and there is no delay
in the attitude measurement, we drop the subscript k indicating
the time step throughout this subsection.

From (7), the expected attitude measurement is given by

R̄IMU = R̄Rbi (25)

where Rbi ∈ SO(3) was a fixed rotation matrix describing
how IMU is attached to the body-fixed frame. The discrepancy
between above and the actual measurement (7) is referred to as
a residual error, which is contributed by two errors: the attitude
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estimation error represented as R = R̄ exp(η̂) for η ∈ R3, and
the sensor measurement error given by (7) for ζR ∈ R3. More
explicitly,

RIMU = R̄ exp η̂Rbi exp ζ̂R. (26)

As the attitude evolves on SO(3), the residual error does not
appear in an additive form. Instead, we wish to represent it at
the tangent space of SO(3) at R̄ as

RIMU = R̄ exp(δẑ)Rbi, (27)

for a vector δz ∈ R3 considered as the residual error for the
attitude measurement. As exp(δẑ) = I3×3 + δẑ +O(‖δz‖2),
we have

δz = (R̄TRIMUR
T
bi − I3×3)∨,

up to the first order. In practice, the expression in the above
parentheses may not be skew-symmetric. To avoid such cases,
we project it to the space of skew-symmetric matrices as

δz =
1

2
(R̄TRIMUR

T
bi −RbiR

T
IMUR̄)∨. (28)

Next, we find the relation between δz and η, ζR as follows.
Using exp(R̂ζ) = R exp ζ̂RT for any R ∈ SO(3) and ζ ∈ R3,
(26) is rewritten as

RIMU = R̄ exp η̂ exp(R̂biζR)Rbi,

which is compared with (27) to obtain

exp(δẑ) = exp η̂ exp(R̂biζR).

According to the BCH formula [18], after ignoring higher-
order terms,

δz = η +RbiζR,

which is rewritten as

δz = Hx +Gv, (29)

where v = ζR ∈ R3×3, and H ∈ R3×10 and G ∈ R3×3 are
defined as

H = [03×3, 03×3, I3×3, 03×1], G = Rbi. (30)

Now, the attitude measurement equation (29) is written in
the usual form of the extended Kalman filter in R3. Therefore,
the posterior mean of the perturbation and the posterior
covariance are given by

x̄+ = Kδz, (31)
P+ = (I10×10 −KH)P. (32)

where K ∈ R10×3 and S ∈ R3×3 are

K = PHTS−1, S = HPHT +GVRG
T .

Finally, we have to update the mean of the state, as the above
correction is completed for the perturbation. The posterior
mean of each state is

x̄+ = x̄+ δx̄+, v̄+ = v̄ + δv̄+, (33)
R̄+ = R̄ exp(ˆ̄η+), b̄+a = b̄a + δb̄+a . (34)

In summary, once RIMU becomes available, the residual δz
is computed by (28), and the mean and the covariance are
updated as (31)–(34).

D. Correction with Delayed GPS Measurements

As presented in Section II-C, the RTK GPS sensor consid-
ered in this paper provides measurements for the position and
velocity with a known time delay tD. Let the positive integer
D be chosen such that tk−D = tk − tD. The measurement
equations (8)–(9) are rewritten as

zk−D = Hxk−D + ζ, (35)

where z = [x; v] ∈ R6, and ξ = [ζx; ζv] ∈ R6 with ξ ∼
N (06×1, V ) for V = diag(Vx, Vv) ∈ R6×6. The matrix H ∈
R6×10 is

H =

[
I3×3 03×3 03×4

03×3 I3×3 03×4

]
, (36)

which should be distinguished from (30). Due to the time
delay, zk−D becomes available at tk.

For instance, the particular RTK GPS unit considered in
Section V provides the measurement at 5 Hz delayed by tD =
0.4 s, corresponding to two measurement cycles. When the
time is discretized by the IMU frequency of 200 Hz, we have
D = 80.

The objective of the GPS correction step is to construct
(xk, vk, Rk, bak

)|zk−D, i.e., the current state conditioned by
the position and velocity measurements in the past. More
precisely, let Zk−D,k be the set of measurements available
until tk measured for the states up to tk−D, excluding
the GPS measurement zk−D. It includes the IMU measure-
ments up to tk−D, and all of the GPS measurements ex-
cept zk−D. Then, (xk−D, vk−D, Rk−D, bak−D

)|Zk−D,k rep-
resents the given prior knowledge of the state at tk−D.
The additional measurements became available between tk−D
and tk is denoted by Wk−D,k, which includes the IMU
measurements between tk−D and tk, and the new GPS
measurement zk−D. The correction step is to construct
(xk, vk, Rk, bak

)|Zk−D,k,Wk−D,k, i.e., the current state con-
ditioned by the additional measurement Wk−D,k. It is sum-
marized into

Given (xk−D, vk−D, Rk−D, bak−D
)|Zk−D,k, and Wk−D,k,

Find (xk, vk, Rk, bak
)|Zk−D,k,Wk−D,k.

This is essentially estimating the current state utilizing a past
prior state estimate and a past measurement. This is referred to
as optimal prediction [19], which is addressed by a sequence
of correction at tk−D and prediction to tk. More explicitly,
it can be solved by (i) correcting the prior state at tk−D
using the new coincidental GPS measurement zk−D, and (ii)
propagating it to tk by repeating the IMU attitude correction
step and the prediction step presented in the last two sub-
sections.

As the procedure for the second step (ii) of the
IMU correction and the prediction is identical to
the preceding developments, here we present the
coincidental GPS corrections for the step (i). Let the
prior distribution (xk−D, vk−D, Rk−D, bak−D

)|Zk−D,k

be defined by the mean (x̄k−D, v̄k−D, R̄k−D, b̄ak−D
)

and the covariance Pk−D of the perturbation xk−D. Let
the posterior distribution conditioned by zk−D, namely
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(xk−D, vk−D, Rk−D, bak−D
)|Zk−D,k, zk−D, be denoted by

the superscript +.
From the measurement equation (35),

x̄+
k−D = K(zk−D − [x̄k−D; v̄k−D]), (37)

P+
k−D = (I10×10 −KH)Pk−D. (38)

where K ∈ R10×6 is given by

K = Pk−DH
TS−1, S = HPk−DH

T + V.

Given the corrected perturbed state x̄+, the posterior mean of
each state is updated by (33)–(34). After completing this, the
posterior state at tk−D is propagated to tk using the saved
IMU measurements.

In summary, the correction with the delayed GPS measure-
ment is completed by correcting the state at tk−D with (37)–
(38), and propagating the posterior state up to tk by repeating
the prediction and the IMU correction. The proposed approach
does not sacrifice the optimality in estimation. However, there
are the memory requirements to save the IMU measurements
over [tk−D, tk] and the computation required for state prop-
agation over the same period, which are intensified as the
delay amount is increased relative to the IMU measurement
frequency. This can be easily mitigated by sub-sampling IMU
measurements over the prediction. The effects of the sub-
sampling on the trade-off between the computational load
and the accuracy will be discussed later. It turns out that a
compact, mobile computing module available in these days
can implement the proposed approach in real-time without
affecting the accuracy noticeably.

IV. NUMERICAL EXAMPLES

A. Simulation of the Proposed Method
The proposed extended Kalman filter with time delayed

position measurements has been implemented and verified
through numerical simulations. For the particular RTK GPS
unit used in the experimental results presented in the section,
the relative position and the velocity are provided at 5 Hz
with a delay of 0.4 s. Further, based on the actual sensor
specifications, the IMU measurement frequency was chosen to
be 200 Hz. These values are adopted for numerical simulation.
For the delayed GPS corrections, there are 0.4 × 200 = 80
time steps for IMU correction and propagation, which are sub-
sampled into 10 steps.

The measurement noise and the process noise are sampled
according to

wa ∼ N (0, 0.022I3×3), wΩ ∼ N (0, 0.052I3×3),

ζR ∼ N (0, 0.012I3×3), ζx, ζv ∼ N (0, 0.012I3×3).

The simulated trajectory is a Lissajous curve with a contin-
uously increasing altitude as shown in Figure 2-(a). Further,
the body continuously rotates around its all three body-fixed
axes with a time-varying angular velocity. More specifically,
the simulated true position, velocity and body acceleration are
given by

x(t) = [1.2 sin(0.2πt), 4.2 cos(0.1πt), −0.5t]T ,

v(t) = [1.2(0.2π) cos(0.2πt), −4.2(0.2π) sin(0.1πt), −0.5]T ,

a(t) = [−1.2(0.2π)2 sin(0.2πt), −4.2(0.1π)2 cos(0.1πt), 0]T ,
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Fig. 2. Simulation results for the estimator: blue dashed lines show the
simulated true data, the red solid lines show the estimation from the proposed
method, and solid black lines show the measurements. On plots (f) and (g),
the error between the actual values and the estimates for the position and the
velocity are shown. The light blue areas represent the estimated covariance
each state.
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and the simulated true attitude and the angular velocity are
given by

R(t) =

[
cos t − cos t sin t sin t2

cos t sin t cos t3 − sin t2 − cos t sin t− cos t2 sin t
sin t2 cos t sin t + cos t2 sin t cos t2 − cos t sin t2

]
,

Ω(t) =

 cos t+ 1
sin t− sin(2t)/2
cos t− cos t2 + 1

 .
Further, a bias of 1.5 m s−2 was added to the acceleration
measurement along the direction of gravity.

Figure 2 shows the results of the proposed estimator. For
the numerical simulation, it is considered that the quadrotor
follows the above trajectories exactly. Based on the true
data, noisy measurements were generated and the proposed
estimator was executed with those measurements. The blue,
dashed lines represent the simulated true data, while black
solid lines show sensor measurements where available. The
red, solid lines show estimated states by the proposed filter
with the forward propagation step.

As RTK GPS measurements are received at 5 Hz, the black
lines appear to be piece-wise constant, and they are shifted
toward right compared to the actual states (see Figure 2-(b)-
(c)) due to this delay. When new RTK GPS data are available,
the delayed GPS correction and the forward propagation are
executed as described in Section III-D. Further, for compar-
ison, the estimated position and velocity are plotted with
the GPS measurements corrected for the delay in Figure 2-
(d),(e). These illustrate that the state estimated by the proposed
method converge to actual state at the presence of non-zero
time delay in the measurements.

Next, the error between the actual state and the estimated
state for the position and the velocity are presented in Figure 2-
(f),(g). The light blue areas represent the 3-sigma line of
each state, extracted from the covariance matrix, P . It can
be observed that the errors in the estimated position and the
velocity stay lower than 0.03 m and 0.05 m s−1, respectively.
Further, as shown in Figure 2-(h), the accelerometer bias
estimated by the delayed position correction converges to the
actual value after the initial delay period.

In addition to the position estimation, the attitude correction
(31)–(34) was performed when new IMU data are available.
This estimated attitude is shown in Figure 2-(i). It should
be noted that the estimator was executed with the attitude
defined in the configuration space SO(3), as in (3), and the
attitude matrix was converted into yaw-pitch-roll angles when
generating the figure. It can be observed that the estimated
attitude converges to the actual attitude within the first few
milliseconds.

B. Effects of Sub-Sampling

Next, we study the effects of sub-sampling in the delayed
GPS correction. Two additional cases are considered: the
ideal case when there is no delay in the GPS measurements,
and another implementation of the proposed method for the
delayed GPS measurements where IMU is not sub-sampled.
These are implemented using Matlab R2019b on a computer
with an AMD Ryzen 5 1600 3.2 GHz CPU. Each method is

executed 1000 times to compute the average values of the error
and the computation time.

Table I presents a comparison of error and computational
time of the proposed method against these non-delayed case
and the delayed case without sub-sampling. In the table, the
column of average IMU loop time includes the computational
time for the non-delayed measurements related calculations,
namely the prediction and the IMU correction. The compu-
tational time for the delayed GPS correction and propagation
(if any) is included in the average GPS loop time column.
The total loop time column includes the total computation
time of all the loops, divided by the number of loops. All the
percentage values in this table are relative to the delayed case
without sub-sampling.

The process of sub-sampling simply reduces the number
of sequential computations required when the delayed mea-
surement arrives, thereby reducing the computational time
for GPS correction. Comparing the proposed method with
sub-sampling and one without sub-sampling, it is shown that
sub-sampling decreased the GPS loop time into 32%, while
increasing the position error by only 1%, thereby justifying
sub-sampling. Compared with the ideal case without delay,
the proposed method with sub-sampling increases the error
by 3% and the computation time by 5%, and as such, the
adverse effects of time-delay are well mitigated.

C. Benchmark Study

In addition, the performances of the proposed method are
compared against three existing methods ([13], [14], [15]) that
deal with delayed measurements.

First, [14] and [15] are applied to the above case, and the
corresponding results are presented at the last row of Table I. It
is shown that the computation time of [14] is comparable to the
proposed method with sub-sampling, but the position estima-
tion error is greater than the proposed method by about 35%.
The results of the method proposed in [15] has a 5% lower
error compared to the results with sub-sampling. However,
this improvement comes with the substantial computational
load increased by 423%. This is mainly caused by the time
required to compute the square-root of the covariance matrix
for calculating sigma points. Computing the matrix square
roots alone takes a time comparable to the total loop time
of any the other technique compared in this benchmark study.
1

Next, as the technique presented in [13] does not deal with
the case where only parts of measurements are delayed, it
cannot be directly applied to the presented case to integrate
IMU with delayed GPS measurements. For a fair comparison
with [13], we consider an additional case where the position
dynamics are decoupled from the attitude dynamics. More
explicitly, for the position estimation, the state is reduced to
xp = [xk; vk; bak

] ∈ R7 with the corresponding covariance
matrix P p ∈ R7×7, for which [13], [14], and the proposed
method are applied. The corresponding results are summarized

1The codes used for these comparisons can be found at
https://github.com/fdcl-gwu/dkf-comparison.git

https://github.com/fdcl-gwu/dkf-comparison.git
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TABLE I
COMPARISON OF ESTIMATION ERROR AND COMPUTATIONAL TIME FOR THE PROPOSED METHOD

Method
Average Average loop time

position error Prediction + IMU Correction GPS Correction Total
m % ms % ms % ms %

Non-delayed 0.0875 98 0.0403 102 0.0875 11 0.1044 76
Proposed without sub-sampling 0.0892 100 0.0395 100 0.7699 100 0.1366 100
Proposed with sub-sampling 0.0897 101 0.0398 101 0.2453 32 0.1112 81
Larsen’s method [14] 0.1214 136 0.0402 102 0.1327 17 0.1108 81
Sigma-Point KF [15] 0.0844 95 0.5622 1424 0.2398 31 0.5771 423

TABLE II
BENCHMARK STUDY WITH OTHER TECHNIQUES

Method
Average Average loop time

position error Prediction + IMU Correction GPS Correction Total
m % ms % ms % ms %

Non-delayed 0.0959 100 0.0619 100 0.0461 9 0.0644 75
Proposed without sub-sampling 0.0961 100 0.0616 100 0.4899 100 0.0860 100
Proposed with sub-sampling 0.0975 101 0.0617 100 0.1463 30 0.0691 80
Alexander’s method [13] 0.1441 150 0.0622 101 0.0783 16 0.0663 77
Larsen’s method [14] 0.1442 150 0.0621 101 0.0512 10 0.0648 75

GPS

IMU
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GPS

IMU

Base
computer

G
PS

te
le

m
et

ry

Wi-Fi

Rover module

Base module

Fig. 3. Schematic of the hardware setup: GPS telemetry sends corrections to
the rover RTK GPS module, sending commands and receiving data to/from
the the computing module onboard the rover module performed through a
Wi-Fi connection

in Table II. All the percentage values presented are compared
with the proposed method without sub-sampling.

It can be observed that the position error resulting from
[13] or [14] is about 50% greater than either of the proposed
approaches. The proposed approach without sub-sampling
requires the greatest computation time, but the proposed
approach with sub-sampling has a similar level of computation
time with [13] and [14]. In short, the proposed approach with
sub-sampling exhibits the best trade-off between the accuracy
of estimation and the computational load.

V. FLIGHT EXPERIMENTS

The proposed estimator has been validated through several
flight experiments. This section summarizes the hardware
configuration and the software implementation of a quadrotor
aerial vehicle and present the corresponding results.

A. Hardware Configuration

The experimental setup consists of two modules, namely,
a base module and a rover module as shown in Figure 3.
The rover module consists of a 9-axis VectorNav VN100
IMU sensor, a SwiftNav Piksi Multi RTK GPS sensor, and a
FreeWave telemetry unit. An NVIDIA Jetson TX2 is chosen as

the onboard computing module and it is attached on a Connect
Tech Orbitty Carrier board. All the sensors are mounted
on a custom designed printed circuit board which performs
voltage regulation for each sensor, and provides an interface
to communicate sensor data to the carrier board. Further, the
Jetson TX2 is configured as a Wi-Fi hotspot so that it can
directly communicate with a notebook connected to the base
module. The rover module is powered by a 14.8 V Li-Po
battery, and all the components are enclosed in a water-proof
container for safe recovery in ocean environments.

The base module consists of the same sensors as the rover
module, excluding the Jetson TX2 computing module. The
base GPS sensor sends corrections to the rover RTK GPS
module through the telemetry unit, while providing high ac-
curacy (error standard deviation in the range of 1 cm) relative
position data with a latency of 0.4 s at a low frequency.
The measurements from the sensors in the base module are
transmitted to a notebook connected through USB. Further,
the base computer is connected to the Wi-Fi hotspot on the
rover for data log. The estimator is executed real-time on the
Jetson TX2 on the rover module, and the states estimated by
the proposed estimator and rover sensor data are transmitted
to the base computer over Wi-Fi for real-time data monitoring.

B. Software Implementation

All of estimation, communication, and data log are im-
plemented using a multi-threaded C++ program. A separate
thread is developed for each of the following tasks: reading
from each sensor (IMU and GPS), communicating with the
base computer for receiving commands and sending data
for real-time data monitoring, and generating control inputs
for the UAV. When new measurements are available, the
corresponding thread runs the required prediction and the
correction steps.

The prediction and the attitude correction using IMU mea-
surements were run in real-time. However, the proposed for-
ward propagation for the delayed GPS correction requires the
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Fig. 4. Schematic of the data saving structure: Each block represents the data
saved between the delayed GPS measurements. The time period between each
GPS measurement is 0.2 s. The measurement delay of 0.4 s is spread over
two measurement cycles.

IMU data, the estimated attitude, and the covariance over the
delayed time period. Since IMU runs at 200 Hz, saving all
the corresponding IMU data for the delay of 0.4 s, and using
them to perform the forward propagation are not feasible for
real-time implementation. Instead, every eighth IMU data is
saved so that approximately five IMU data points are available
between each GPS measurements update. In other words,
the IMU measurements are sub-sampled to 25 Hz over the
propagation required for GPS corrections.

Further, the GPS sensor runs at 5 Hz, which means that the
time period between two measurements is 0.2 s. The sensor
has approximately a 0.4 s delay, which is translated into a
delay spread over two GPS measurement cycles as illustrated
in Figure 4.

Here, each block in the IMU correction line represents the
five data points saved during the IMU corrections between two
GPS measurements. Let the start of the estimator denoted by
the block 1. The first GPS measurement is acquired at the fifth
step. But, this measurement is disregarded as it corresponds
to a state before the estimator started running.

The second GPS measurement is acquired at the 10-th
instance, and this corresponds to the actual state 0.4 s prior
at the first block. This measurement is used to correct the
state at the block 1, the corrected state is propagated to the
current time using the data saved in blocks 1 to 10.

Then, the third GPS measurement is acquired at 15-th
instance, and the same calculations performed for the second
GPS measurement must be repeated using the data saved at
blocks 6 to 15. However, the states in blocks 6 to 10 are
already updated using the second GPS measurement, and those
corrected states must be used for correction with the third
GPS measurement. In other words, when the delayed GPS
correction was run with the second GPS measurement, the
updates to the states at blocks 6 to 10 must be saved and re-
used for the GPS correction with the third GPS measurement.

Taking this into consideration, the proposed estimator is
implemented in C++ utilizing standard vectors that can dy-
namically allocate its size, which is helpful when there are
unexpected additional delays or drops in the GPS measurement
so that the corrected state should be propagated more than
0.4 s. The pseudocode for the implementation is presented
in Algorithm 1. The procedure “IMU Callback” includes
running the attitude prediction and correction, and position

Algorithm 1 Delayed GPS Correction
1: procedure IMUCALLBACK(RIMU, aIMU,ΩIMU)
2: x, v, ba, R, P ← prediction(aIMU,ΩIMU)
3: R, P ← attitude correction(RIMU)
4: counter ← counter + 1
5: r ← counter mod 8
6: if r == 0 then
7: q ← x, v,R, ba, P, aIMU,ΩIMU

8: Q.enqueue(q)
9: nIMU ← nIMU + 1

10: counter ← 0
11: return
1: procedure GPSCALLBACK(xGPS, vGPS)
2: xD, vD, RD, baD

, PD ← Q.dequeue()
3: xD, vD, baD

, PD ← position correction(xGPS, vGPS)
4: n← length(Q)
5: for i← 1, n do
6: aIMUD

← Q.dequeue()
7: xD, vD, baD

, PD ← forward propagation(aIMUD
)

8: if i > n− nIMU then
9: q ← xD, vD, baD

, RD, PD, aIMUD
,ΩIMUD

10: Q.enqueue(q)
11: x, v, ba, P ← xD, vD, baD

, PD

12: nIMU ← 0
13: return

(a) Ship (b) Octocopter

Fig. 5. Experimental setup in ocean environment: (a) USNA YP700 as seen
from a camera attached to the UAV during a flight test in Chesapeake Bay
(b) octocopter attached with the rover module hovering over the ship deck of
YP700

prediction, while saving data required for the delayed position
correction. The procedure “GPS Callback” implements the
delayed correction and forward propagation. Further, lines 8-
10 in this procedure are used for saving data of the latest
measurement cycle for the next position correction.

C. Flight Experiments in Ocean Environments

The proposed estimator was tested in outdoor flight ex-
periments in an ocean environment. The base module was
fixed on a United States Naval Academy (USNA) research
vessel YP700, and the rover module was attached to a custom
made research UAV (see Figure 5). The UAV was controlled
manually behind the ship by a human RC pilot, while the ship
was sailing at a constant velocity in the Chesapeake Bay. The
pilot utilized the attitude hold mode of another on-board flight
control system that does not require any position measurement.
This system is independent of the NVIDIA Jetson TX2 that
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executed the proposed estimation scheme. The objective of
the experiment is to observe how the proposed estimator
performs under strong wind conditions that has an adverse
effect on the acceleration measurements. The data collected in
this experiment are presented in Figure 6, where black lines
show the sensor measurements, and the red lines represent the
states estimated by the proposed estimator.

The trajectory of the UAV with respect to the ship is shown
in Figure 6-(a). In this plot, (0, 0) corresponds to the position
where the base GPS antenna was mounted. The negative x1

direction is toward the bow of the ship from the GPS antenna,
and the positive x2 direction is the port side of the ship. The
UAV took off from the ship deck in the aft of the ship, and
it was flying back and forth along positive x1 direction until
450 s such that the trajectory remains inside of the turbulent
ship air wake. After that, the UAV flew back and forth while
also moving towards the port side.

The 3-axis acceleration and 3-axis angular velocity mea-
sured by IMU are plotted in Figure 6-(b), (c). Due to the
vibration from the motors and the effects of the turbulence
from the ship air wake, these measurements are corrupted by
high frequency noise. To avoid that, both the measurements
are first filtered through low-pass Butterworth filters. These
filtered measurements (shown as red lines) are then used in
the proposed estimator.

It should be noted that filtering IMU measurements with
Butterworth filters causes a delay. However, with the vibrations
incurred by the motors/propellers, it is difficult to operate the
UAV with unfiltered IMU measurements without performance
degradation even with high accurate position measurements
provided by motion capture systems. Therefore, we tuned
filter parameters to achieve the best compromise between the
maximum vibration rejection and minimal lag, determined
with extensive hardware experiments [20]. The corresponding
delay caused by filtering is in the level of 20 milliseconds, and
it does not have any significant effect on the state estimation.

The estimated position and the velocity using the proposed
filter are illustrated in Figure 6-(d),(e). Since it is difficult to
visualize the estimated states given the axis scales, Figure 6-
(f) shows a zoomed in view of the position plot along x1-axis
between 485 s and 500 s. The selected region also includes
two instances where GPS measurements were dropped due to
transmission losses at approximately 494 s and 497 s. Even at
the presence of these additional delays in the GPS measure-
ments, the proposed estimator performed well.

Additionally, a cropped in view of the position plot along
x2-axis between 618 s and 632 s is shown in Figure 6-(g). This
also includes two instances where the GPS measurements had
additional delays approximately at 624 s and 629 s. Here, the
position estimated by the proposed method is plotted with the
GPS measurements corrected for the time delay, which moves
both of them to the same time horizon. It can be observed
that the estimated position follows the measurement as if there
were no delay.

Further, the estimated accelerometer bias is shown in Fig-
ure 6-(h), and the attitude estimated by the proposed method is
shown in Figure 6-(i). The yaw-pitch-roll angles were calcu-
lated during the post processing, from the estimated attitudes
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Fig. 6. Results for flight experiments in ocean environment: red solid
lines show the estimation from the proposed method, black lines show the
measurements.
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(a) (b)

Fig. 7. Outdoor autonomous flight hardware: (a) the custom built quadrotor
at the Flight Dynamics and Control Lab at GWU (b) components of the base
module

Fig. 8. The quadrotor UAV during an autonomous flight, using the states
estimated by the proposed estimator, inside the GWU outdoor UAV testing
area.

represented by rotation matrices. It shows the convergence of
the attitude within few milliseconds.

D. Autonomous Flight

Next, outdoor autonomous flight tests were performed uti-
lizing the proposed estimator. 2 Another quadrotor UAV built
at the Flight Dynamics and Control Lab at GWU (see Figure 7-
(a)) was used as the testing platform. The rover module with
the Jetson TX2 computing module was attached to the UAV.
In addition to the IMU and the RTK GPS sensors, the Jetson
TX2 at the rover module is connected to MikroKopter BL-
Ctrl v2 ESC units over I2C, to control four 700 kV T-Motor
brushless DC motors with 10× 4.7 propellers.

The states estimated by the proposed method were used
to control the UAV using the geometric controller proposed
in [21]. The measurement error covariance estimated by the
sensors are used as the sensor noise values in the estimator.
Both the estimation and the control were performed onboard in
real-time through the Jetson TX2 computing module running
Ubuntu 16.04 with JetPack 3.3.

The data saved during a flight test are presented in Figure 9.
The red solid lines represent the estimated data, black lines
show the sensor measurements, and the blue lines show the
desired commands used for the autonomous navigation. The

2A video of one of the flight experiments can be found at
https://youtu.be/PfuGb5yhlLQ.
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Fig. 9. Results for autonomous flight: red solid lines show the estimation
from the proposed method, black lines show the measurements, blue lines
show the desired commands

https://youtu.be/PfuGb5yhlLQ
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desired position commands are generated by key strokes at
the base computer, which represent a shift of the hovering
position by 0.1 m along each axis of the inertial frame. These
are transmitted to the UAV over Wi-Fi. The trajectory of the
flight from the takeoff to the landing is shown in Figure 9-(a).
The UAV was first set to take-off to a given height, then it
was moved making an approximate rectangle, followed by the
command to land.

Similar with the previous test, both the acceleration and the
angular velocity measurements are filtered through separate
low-pass Butterworth filters. The black lines in Figure 9-(b),(c)
show the actual sensor measurement, and the red lines show
the filtered measurements, which were used in the estimator.

The position and the velocity estimated are shown in Fig-
ure 9-(d), (e). The estimated states closely follow the measured
states. Further, the UAV follows the position command sent to
the UAV through the base computer shown as the blue solid
line.

For better visualization, the position along x1 axis is plotted
separately in Figure 9-(f). The black solid line is the delay-
compensated RTK GPS measurement, where the red line is
the estimated position. It can be observed that the estimated
position closely follows the GPS measurement.

Further, Figure 9-(g) shows the same plot as in Figure 9-
(f), but cropped in between 33 s and 44 s and the GPS
measurements corrected for the delay. This section is chosen
since it includes an instance where the GPS measurements has
an additional delay at approximately 40 s. Even in the presence
of this additional delay, the estimation did not diverge, and did
not adversely affect the performance of the autonomous flight.

The estimated accelerometer bias is shown in Figure 9-(h),
and attitude during the flight is presented in Figure 9-(i). The
IMU attitude measurements are high frequency non-delayed
measurements, and it can be observed that the estimates con-
verge to the measured values during the first few milliseconds.

Quadrotor is not inherently stable, and as such, the avail-
ability of precise real-time position estimation at a higher
rate is critical for autonomous flight. The proposed estimation
scheme achieves it successfully with a low-cost RTK GPS
unit that has a nontrivial latency, even in the presence of
occasional GPS measurement drops. Through multiple flight
tests, we experienced that the quadrotor could not fly in
a stable manner or it even crashed without the proposed
estimator compensating the delay.

VI. CONCLUSIONS

This paper presents an estimation scheme to integrate IMU
measurements and delayed RTK GPS measurements. Assum-
ing that the delay period is given, the prior state coinciden-
tal to the delayed GPS measurements is corrected, before
being propagated to the current time with the saved IMU
measurements. In particular, the proposed method with sub-
sampling IMU measurements yields an excellent performance
comparable to the ideal case without delay, without requiring
excessive computational load. The efficacy of the proposed
scheme has been verified with benchmark numerical studies
and successful outdoor flight experiments. Future directions

include considering unknown time-delay via adaptive filtering
approaches.
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