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Abstract— In this paper, we propose the Bingham–Gaussian
(BG) distribution defined on the Cartesian product of the three-
sphere and the Euclidean space of an arbitrary dimension. BG
is constructed by transforming the matrix Fisher–Gaussian dis-
tribution using the homeomorphism between unit quaternions
and the three dimensional rotation group. BG can be used to
model the correlation between the attitude and the Euclidean
space in a global fashion without singularities, and it properly
deals with the cyclic nature of the space representing attitude,
which is particularly advantageous when the uncertainty is
large. An unscented attitude filter is designed based on BG
which estimates the attitude and gyroscope bias concurrently.
The proposed filter is compared against the conventional
extended Kalman filter using numerical simulations.

I. INTRODUCTION
Estimating the attitude of a rigid body is one of the

most fundamental problems in aerospace engineering and
robotics. In practice, the attitude is often coupled with other
Euclidean quantities that need to be estimated concurrently,
such as biases of the onboard gyroscope, and positions of the
rigid body, etc. The conventional method for this estimation
problem is the multiplicative extended Kalman filter (MEKF)
[1], [2]. In MEKF, the uncertainty of attitude is modeled
by assuming that the three dimensional parameterization of
attitude error follows a Gaussian distribution, so that the
estimation problem can be handled by an extended Kalman
filter. However, MEKF has two inherent limitations: (i)
The linearizations of attitude kinematics and measurement
functions introduce inaccuracies of the uncertainty, and (ii)
The Gaussian distribution fails to represent the uncertainty
faithfully when the dispersion of attitude error is large, due
to the wrapping error [3].

To address the limitations of MEKF, probability distribu-
tions defined on the manifold representing attitude have been
used to replace the Gaussian distribution in filter designs.
For example, the Bingham distribution on the three sphere
S3 for unit quaternions is used in the quaternion Binghan
filter [4], [5] for attitude estimation. As an alternative, the
matrix Fisher distribution on the three dimensional special
orthogonal group SO(3) has been shown equivalent to the
Bingham distribution on S3 [6], which is also used to
design an attitude filter [7]. However, these methods are
unable to quantify the correlation between attitude and other
Euclidean dimensions, and hence are unable to estimate them
concurrently.
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Several approaches have been presented to address this
concurrent estimation problem. In [8], [9], a new probability
distribution is proposed in the space of dual quaternions
which is able to model the correlation between attitude
and position. However, this correlation must respect the
structure of SE(3) when it is propagated, i.e., the Euclidean
part is restricted to be the three dimensional position. In
[10], a more general probability distribution is proposed on
SO(3) × Rn, and it is propagated by solving the Fokker-
Planck equation of attitude kinematics and updated using
the Bayes rule in the application of attitude estimation with
sensor biases. Similarly, in [11] the Gauss-Bingham distri-
bution is proposed on Sr × Rn which is able to model any
correlation between the attitude and Euclidean dimensions.
However, the maximum likelihood estimation (MLE) of the
Gauss-Bingham distribution must be optimized numerically,
which limits its usage in real time implementations.

In [12], [13], we proposed the matrix Fisher–Gaussian
(MFG) distribution on SO(3) × Rn. It has several appeal-
ing features compared with previous attempts: (i) It has a
geometric construction which has been successfully used to
construct the distribution on the cylinder S1 × R1 [14]; (ii)
It uses 3n parameters to quantify linear correlations only;
and (iii) It has a closed form approximate solution to the
MLE problem, so the attitude filter based on MFG has the
potential to be implemented in real time.

Considering that it is a common practice to use unit
quaternions in attitude filters, and that the matrix Fisher
distribution is equivalent to the Bingham distribution, in this
paper we introduce the Bingham–Gaussian (BG) distribution
on S3 ×Rn which is equivalent to MFG. Then, we develop
an unscented estimator for the attitude and gyroscope bias
using BG. The unscented transform of BG is partly adapted
from [15], and it is different from that of MFG adapted from
[7]. Simulations indicate that the unscented BG filter is more
accurate than the conventional MEKF, and it is very similar
to the unscented MFG filter.

II. MATHEMATICAL PRELIMINARIES

A. Unit Quaternions

Unit quaternions are vectors on the three sphere S3 ⊂ R4.
In this paper, the Hamilton convention is used [16]:

q =
[
q0 q1 q2 q3

]T
=
[
qr qTv

]T ∈ S3, (1)

where qr = q0 ∈ R is the scalar part, and qv =[
q1 q2 q3

]T ∈ R3 is the vector part. A multiplication



operation ⊗ can be defined on S3:

p⊗ q =


p0q0 − p1q1 − p2q2 − p3q3
p0q1 + p1q0 + p2q3 − p3q2
p0q2 − p1q3 + p2q0 + p3q1
p0q3 + p1q2 − p2q1 + p3q0

 , (2)

which makes S3 a Lie group isomorphic to SU(2), and hence
a double cover of SO(3). Quaternion multiplication (2) can
also be written in matrix form as

p⊗ q = [p]Lq = [q]Rp, (3)

where

[p]L =


p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0

 , (4)

and

[q]R =


q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0

 . (5)

The maps [·]L and [·]R : S3 → GL(4) define two group ho-
momorphisms. The ranges are denoted by S3L and S3R, and are
named left- and right-isoclinic rotation groups respectively.
S3L and S3R commute with each other, i.e., for any p, q ∈ S3,
we have [p]L[q]R = [q]R[p]L. It is straightforward to check
S3L, S3R ⊂ SO(4), and in fact, they are two normal subgroups
of SO(4). Furthermore, their direct product S3L × S3R is a
double cover of SO(4). Specifically, any M ∈ SO(4) can be
uniquely decomposed into

M = [p]L[q]R (6)

for some p, q ∈ S3 up to the signs of p and q.
The homomorphism between S3 and SO(3) is denoted by

ϕ : S3 → SO(3),

ϕ(q) =

1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2(q21 + q22)

 .
(7)

Note that ϕ(q) = ϕ(−q) for any q ∈ S3. The map ∧ is used
to denote the vector space isomorphism from R3 to so(3) or
Im(H), i.e., the Lie algebra of SO(3) or S3, depending on
the context. More specifically, for v =

[
v1 v2 v3

]T ∈ R3,

v̂ = (v)∧ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 ∈ so(3), (8)

or

v̂ = (v)∧ =
[
0 v1 v2 v3

]T ∈ Im(H). (9)

The inverse map of ∧ is denoted by ∨. The homomorphism
ϕ satisfies the following identity [6]: for any q, p ∈ S3,

tr
(
ϕ(p)ϕ(q)T

)
+ 1 = 4(pT q)2. (10)

B. Bingham Distribution

A random vector q ∈ Sr follows a Bingham distribution
[17] with parameter A = AT ∈ R(r+1)×(r+1) if it has the
following density function:

f(q;A) =
1

c(A)
exp

(
qTAq

)
, (11)

where c(A) = 1F1( 1
2 ,

r+1
2 , A) is the normalizing constant,

and 1F1 denotes a confluent hypergeometric function of
matrix argument [17]. This distribution is denoted by q ∼
B(A). The Bingham distribution is antipodally symmetric,
i.e., f(q) = f(−q) for any q ∈ Sr.

The properties of a Bingham distribution are determined
by the eigenvalue decomposition of the parameter A =
MZMT , where M =

[
m0 . . . mr

]
are the eigenvec-

tors of A, and Z = diag
([
z0 · · · zr

])
are the cor-

responding eigenvalues. For uniqueness, we assume the
eigenvalues are in descending order. Due to the unit length
constraint, it is straight forward to show B

(
MZMT

)
=

B
(
M(Z + zIr+1)MT

)
for any z ∈ R. Thus, in this paper

we make the following assumption:

0 = z0 ≥ · · · ≥ zr. (12)

The normalizing constant depends only on the eigenvalues,
i.e., c(A) = c(Z). Since the Bingham distribution is antipo-
dally symmetric, its first order moment E [q] = 0. Its second
order moment, or the moment of inertia is given by

E
[
qqT

]
= MDMT ,Mdiag(d0, . . . , dr)MT , (13)

where

di =
1

c(Z)

∂c(Z)

∂zi
, i = 0, . . . , r. (14)

Since qT q = 1, the matrix D satisfies
∑r

i=0 di = 1. The
mode of Bingham distribution is q = m0, which maximizes
the density (11).

A random rotation matrix R ∈ SO(3) follows the matrix
Fisher distribution [18], [19] with parameter F ∈ R3×3 if it
has the following density function:

f(R;F ) =
1

c(F )
etr
(
FRT

)
, (15)

where c(F ) is the normalizing constant, and etr (·) is an
abbreviation for exp(tr (·)). This distribution is denoted by
M(F ). When r = 3, the Bingham distribution is equivalent
to the matrix Fisher distribution using the homomorphism ϕ.

Lemma 1 ([6]): Let M ∈ SO(4), and Z =
diag

([
0 z1 z2 z3

])
with 0 ≥ z1 ≥ z2 ≥ z3.

Define S = diag
([
s1 s2 s3

])
as s1 = 1

4 (z1 − z2 − z3),
s2 = 1

4 (z2 − z1 − z3), and s3 = 1
4 (z3 − z1 − z2). Let

M = [u]L[v−1]R be its isoclinic decomposition. Define
U = ϕ(u) and V = ϕ(v). Then q ∼ B(MZMT ) if and
only if ϕ(q) ∼M(USV T ).

Proof: It suffices to check for all q ∈ S3, c ·
exp

(
qTMZMT q

)
= etr

(
USV Tϕ(q)T

)
for some con-

stant c ∈ R. Let M =
[
m0 m1 m2 m3

]
, I4×4 =



[
e0 e1 e2 e3

]
, and I3×3 =

[
ε1 ε2 ε3

]
, then

ϕ(m0) = ϕ([u]L[v−1]Re0) = UV T ,

ϕ(mi) = ϕ([u]L[v−1]Rei) = U exp(πε̂i)V
T .

Therefore, we have

USV T =
1

4

3∑
i=1

ziϕ(mi).

Then, using (10) we have

tr
(
USV Tϕ(q)T

)
=

1

4

3∑
i=1

zi ·
(
4(qTmi)

2 − 1
)

=
3∑

i=1

zi(q
Tmi)

2 − 1

4

3∑
i=1

zi = qTMZMT q + c,

which shows the equivalence.

C. Matrix Fisher–Gaussian Distribution

The matrix Fisher–Gaussian (MFG) distribution [12], [13]
is defined on SO(3) × Rn. Random elements (R, x) ∈
SO(3) × Rn follow a matrix Fisher–Gaussian distribution
with parameters U, V ∈ SO(3), S = diag

([
s1 s2 s3

])
∈

R3×3 where s1 ≥ s2 ≥ |s3| ≥ 0, µ ∈ Rn, Σ = ΣT ∈ Rn×n,
and P ∈ Rn×3, if they have the density function:

f(R, x;U, S, V, µ,Σ, P ) =
1

c(S)
√

(2π)n det(Σc)
×

exp

(
−1

2
(x− µc)

T Σ−1c (x− µc)

)
etr
(
USV TRT

)
,

(16)

where c(S) is the normalizing constant for the corresponding
matrix Fisher distribution, and Σc ∈ Rn×n satisfying Σc =
ΣT

c � 0 is given by

Σc = Σ− P (tr (S) I3×3 − S)PT . (17)

Next, there are two formulations of MFG, referred to as
MFGI and MFGB, depending on the expression of µc ∈
Rn [13]. For MFGI, it is given by

µc = µ+ P (QS − SQT )∨ , µ+ PνIR, (18)

or, for MFGB,

µc = µ+ P (SQ−QTS)∨ , µ+ PνBR , (19)

where Q = UTRV . This distribution is denoted by (R, x) ∼
MG(U, S, V, µ,Σ, P ).

The probability density function (16) is composed of three
terms: the first one is for normalization; the second term is
for x and it has the form as N (µc,Σc); the last term is
for R and it is identical to the matrix Fisher Distribution.
It is straightforward to see that the marginal distribution of
R is a matrix Fisher distribution with parameter USV T ,
and the distribution of x conditioned by R is Gaussian
with x|R ∼ N (µc(R),Σc). The correlation between R and
x is encoded in the (3n)-element matrix P . The vector
νR ∈ R3 indicates the deviation of R from the mean attitude

UV T , and it has two forms. If (18) is used, x is correlated
with rotations specified by P resolved in the inertial frame
(MFGI); if instead (19) is used, x is correlated with those
rotations resolved in the body-fixed frame (MFGB) of each
R ∈ SO(3).

III. BINGHAM–GAUSSIAN DISTRIBUTION

In this section we introduce the Bingham–Gaussian (BG)
distribution on S3 × Rn which is equivalent to the matrix
Fisher–Gaussian distribution on SO(3)× Rn.

A. Definition

Definition 1: Random elements (q, x) ∈ S3 × Rn follow
Bingham-Gaussian distribution with parameters M ∈ SO(4),
Z = diag(0, z1, z2, z3) where 0 ≥ z1 ≥ z3 ≥ z3, µ ∈ Rn,
Σ = ΣT ∈ Rn×n, and P ∈ Rn×3, if they have the following
density function:

f(q, x;M,Z, µ,Σ, P ) =
1

c(Z)
√

(2π)n det(Σc)
×

exp

(
−1

2
(x− µc)

T Σ−1c (x− µc)

)
exp

(
qTMZMT q

)
,

(20)

where c(Z) is the normalizing constant for the corresponding
Bingham distribution, and Σc ∈ Rn×n satisfying Σc =
ΣT

c � 0 is given by

Σc = Σ +
1

2
Pdiag

([
z1 z2 z3

])
PT . (21)

Depending on the choice of µc ∈ Rn, there are two
formulations of BG. For BGI, µc ∈ Rn is given by

µc = µ+ P

(z2 − z3)p2p3 − z1p0p1
(z3 − z1)p1p3 − z2p0p2
(z1 − z2)p1p2 − z3p0p3

 , µ+ PνIq , (22)

or, for BGB,

µc = µ+ P

(z3 − z2)p2p3 − z1p0p1
(z1 − z3)p1p3 − z2p0p2
(z2 − z1)p1p2 − z3p0p3

 , µ+ PνBq , (23)

with p =
[
p0 p1 p2 p3

]T
, MT q. This distribution is

denoted by BG(M,Z, µ,Σ, P ).
BG is antipodally symmetric in S3, i.e., for any (q, x) ∈

S3×Rn, f(q, x) = f(−q, x). Similar with MFG, the density
(20) has three terms: the first one is for normalization; the
second term is for x and it has the form asN (µc,Σc); the last
term is for q and it is identical to the Bingham distribution.
The marginal distribution of q is a Bingham distribution with
parameter MZMT , and the distribution of x conditioned by
q is Gaussian with x|q ∼ N (µc(q),Σc). Also, the correlation
between q and x is represented by the (3n)-element matrix
P . The vector νq ∈ R3 indicates the deviation of q from the
mode m0, i.e., if q = m0, then p =

[
1 0 0 0

]T
and

hence νq = 0. The two expressions for νq again have the
same interpretations as MFG: If (22) is used, x is correlated
with rotations specified by P resolved in the inertial frame
(BGI); if (23) is used, the rotations are resolved in the body-
fixed frame (BGB) of each q ∈ S3.



B. Construction

The Bingham-Gaussian distribution is constructed by
transforming the matrix Fisher-Gaussian distribution using
the homomorphism ϕ : S3 → SO(3).

Theorem 1: Let (M,Z, µ,Σ, P ) be the parameters
of a Bingham-Gaussian distribution. Define S =
diag

([
s1 s2 s3

])
, and U, V ∈ SO(3) in the same

way as in Lemma 1. Then (q, x) ∼ BG(M,Z, µ,Σ, P ) if
and only if (ϕ(q), x) ∼MG(U, S, V, µ,Σ, P ).

Proof: In Lemma 1, we have proven
exp(qTMZMT q) ∝ etr

(
USV Tϕ(q)T

)
. Also, it is

straightforward to show Σc,MG = Σc,BG . Therefore, it
remains to check for all q ∈ S3, µc,BG(q) = µc,MG(ϕ(q)).
Note that νIq = (ϕ(p)S − Sϕ(p)T )∨ = νIϕ(q), and νBq =

(Sϕ(p) − ϕ(p)TS)∨ = νBϕ(q). So we only need to show
ϕ(MT q) = UTϕ(q)V , which is straightforward

ϕ(MT q) = ϕ([u−1]L[v]Rq) = UTϕ(q)V.

This concludes the proof.
Because BG and MFG are equivalent, all of the properties

of MFG given in [12], [13] also apply to BG. In this paper
we list a few of them which is necessary for the subsequent
development of the unscented attitude filter based on BG.

It should be noted that in [13] we give a geometric
construction of MFG by conditioning a (9 + n)-variate
Gaussian distribution form the ambient space R9 × Rn to
SO(3) × Rn. On the other hand, S3 with antipodal points
identified (namely the real projective space RP3) does not
embed into R4. Therefore we cannot give a similar geometric
construction of BG by conditioning, which may be pursued
in future works.

C. Moments

Next, we present the first and the second order moments
of BG.

Theorem 2: Let (q, x) ∼ BG(M,Z, µ,Σ, P ). Then
E [q] = 0, and E

[
qqT

]
is given in (13) and (14). Other

moments are

E [x] = µ, (24)
E [νq] = 0, (25)

E
[
xxT

]
= Σc + µµT + PE

[
νqν

T
q

]
PT , (26)

E
[
xνTq

]
= PE

[
νqν

T
q

]
, (27)

where E
[
νqν

T
q

]
is a diagonal matrix with the i-th diagonal

element given by

zj − zk
2c(Z)

(
∂c(Z)

∂zj
− ∂c(Z)

∂zk

)
+

zi
2c(Z)

(
∂c(Z)

∂zi
− ∂c(Z)

∂z0

)
,

(28)

for {i, j, k} = {1, 2, 3}.
Proof: Equations (24) to (27) are straightforward to

show by integrating the density (20) directly and using (13).
To prove (28), first note that E [pn0

0 pn1
1 pn2

2 pn3
3 ] = 0 if any of

{n0, n1, n2, n3} is odd, because the Bingham distribution is

antipodally symmetric. Thus, E
[
νqν

T
q

]
is diagonal with the

i-th diagonal term given by

E
[
νqν

T
q

]
ii

= (zj − zk)2E
[
p2jp

2
k

]
+ z2i E

[
p20p

2
i

]
. (29)

Equation (28) is then shown by using the following two
identities [17]:

E
[
p2jp

2
k

]
=

1

c(Z)

∂2c(Z)

∂zj∂zk
, (30)

2(zj − zk)
∂2c(Z)

∂zj∂zk
=
∂c(Z)

∂zj
− ∂c(Z)

∂zk
, (31)

for j, k ∈ {0, 1, 2, 3}, and that E
[
νqν

T
q

]
is continuous in Z.

The normalizing constant c(Z) and its first order deriva-
tives can be calculated using the one dimensional integral
formula used in [7], or the saddle point approximation
used in [20]. The second order derivatives of c(Z) can be
calculated by solving a linear system involving the first order
moments, derived from (30), (31) and qT q = 1.

D. Maximum Likelihood Estimation

Suppose we have a set of weighted samples
{(xi, qi, wi)}Ns

i=1 from a BG. The log-likelihood function
for the parameters of BG, after omitting some constants, is
given by

l =− log c(Z) + Ē
[
qTMZMq

]
− log det Σc −

1

2
Ē
[
(x− µc)

T Σ−1c (z − µc)
]
, (32)

where Ē [·] represents the sample mean of a random variable.
As in the MLE for MFG, maximizing the log-likelihood si-
multaneously for all parameters requires numerical iterations.
Instead, the log-likelihood function is split into two parts:

l = lq + lx|q, (33)

where lq corresponds to the first two terms on the right
hand side of (32), which is the marginal likelihood for the
Bingham distribution; and lx|q corresponds to the last two
terms on the right hand side of (32), which is the conditional
likelihood for the Gaussian distribution.

The marginal likelihood lq is first maximized using the
MLE for the Bingham distribution.

Theorem 3 ([17]): The marginal maximum likelihood es-
timate for M is given by the eigen-decomposition Ē

[
qqT

]
=

MDMT , and that for Z is given by solving (14) from D.
After obtaining the estimates for M and Z, let pi = MT qi,

and νqi be given in (22) or (23) using pi. Also, denote
cov (a, b) = Ē

[
abT

]
− Ē [a] Ē [b]

T as the sample covariance
between a ∈ Rm, b ∈ Rn. Then the estimates for µ, Σ, and
P are addressed by maximizing the conditional likelihood.

Theorem 4: The conditional maximum likelihood esti-
mates for P , µ, and Σ are

P = cov (x, νR) cov (νR, νR)
−1
, (34)

µ = Ē [x]− P Ē [νR] , (35)

Σ = cov (x, x)− P cov (x, νq)
T − 1

2Pdiag([z1, z2, z3])PT .
(36)



Proof: The proof is the same as Theorem 5 in [13].
The estimates obtained by maximizing the marginal and

conditional likelihood separately are only approximations to
maximizing the full likelihood. However, this is a necessary
compromise for efficient implementations of attitude filters
using BG, where the MLE must be solved typically at more
than 100 Hz in the case of a gyroscope. The accuracy of
this approximation is analyzed from an information theoretic
point of view in [13].

IV. UNSCENTED ATTITUDE FILTER

In this section, we apply the proposed BG in the classical
problem of estimating the attitude from a gyroscope with
time-varying biases, and other attitude or direction sensors.

The discrete time gyroscope kinematics is assumed to be

qk+1 = qk ⊗ exp
{
h(Ω̂k + x̂k) + (Hu∆Wu)∧

}
, (37)

xk+1 = xk +Hv∆Wv, (38)

where the subscripts denote discrete time steps. The vector
Ω ∈ R3 is the measured angular velocity, and x ∈ R3 is the
gyroscope bias. Next, ∆Wu,∆Wv ∈ R3 are independent
white noises, and Hu, Hv ∈ R3×3 describe the strengths of
noises. Finally, h = tk+1−tk is the constant sampling period.

The attitude q is also measured by Na attitude sensors as
q̃i, i = 1, . . . , Na, with the noises distributed by q−1 ⊗ q̃i ∼
B(Ai). Also, Nv reference directions vri ∈ S2 fixed in
the inertial frame are measured in the gyroscope body-fixed
frame as ṽi ∈ S2, i = 1, . . . , Nv , with the noise distributed
by ṽi ∼ VM(ϕ(q−1)vri , κi), where VM(µ, κ) denotes
the von Mises Fisher distribution on S2 [3]. The set of
all measurements at time tk is denoted by Zk. Next, we
introduce an unscented attitude filter using BG.

A. Unscented Transform of BG

To perform sigma point selection, we first introduce the
canonical form of BG.

Theorem 5: Let (q, x) ∼ BG(M,Z, µ,Σ, P ). Define p =

MT q ∈ S3, and y = Σ
−1/2
c (x−µ−νq) ∈ Rn. Then (p, y) ∼

BG(0, I, 0, I, Z).
Proof: Substitute q = Mp, and x = Σ

1/2
c y + µ + νq

into (20), then the desired result is proven.
The unscented transform of BG is split into selecting

sigma points for the decoupled Bingham [15] and Gaussian
parts of the canonical BG, which are then transformed back
to the original BG according to Theorem 5.

Definition 2: Let (q, x) ∼ BG(M,Z, µ,Σ, P ). Choose
wB , wG, wI > 0 as the weights for sigma points of the
Bingham, Gaussian, and identity parts respectively, such that
wB + wG + wI = 1. Select (7 + 2n) sigma points for the
canonical BG as

(p, y)1,2 = ([cos θ1,± sin θ1, 0, 0]T , [0, . . . , 0]T ),

(p, y)3,4 = ([cos θ2, 0,± sin θ2, 0]T , [0, . . . , 0]T ),

(p, y)5,6 = ([cos θ3, 0, 0,± sin θ3]T , [0, . . . , 0]T ),

(p, y)7,8 =

(
[1, 0, 0, 0]T ,

[
±
√

n
wG
, 0, . . . , 0

]T)
,

...

(p, y)5+2n,6+2n =

(
[1, 0, 0, 0]T ,

[
0, . . . , 0,±

√
n
wG

]T)
,

(p, y)7+2n = ([1, 0, 0, 0]T , [0, . . . , 0]T ), (39)

where θi, i = 1, 2, 3 are given by

θi = arcsin

(√
di

2wi

)
, di =

1

c(Z)

∂c(Z)

∂zi
, (40)

and wi are the weights for the first three pairs of sigma
points, given by

2wi = di + (1− α)d0

3 , (41)

where α is chosen such that 2(w1 +w2 +w3) = wB . Also,
the weights for the next n pairs sigma points are wG

2n , and
the weight for the last sigma point is wI . Let qi = Mpi,
and xi = Σ

1/2
c yi + µ + Pνqi for i = 1, . . . , 2n + 7,

then the sigma points for BG(µ,Σ, P,M,Z) are defined as
{(q, x, w)i}2n+7

i=1 .
After obtaining these sigma points, they can be propagated

through the gyroscope kinematics equations (37)-(38), and a
new BG can be constructed from these propagated sigma
points using the MLE introduced in Section III-D. The next
theorem validates the proposed unscented transform of BG.

Theorem 6: The marginal-conditional MLE for the sigma
points in Definition 2 is exactly BG(M,Z, µ,Σ, P ).

Proof: The marginal MLE is proven in [15]. The
conditional MLE can be proven trivially by Theorem 4.

While BG is equivalent to MFG, the presented unscented
transform of BG is not equivalent to that of MFG presented
in [12]. More specifically, the sigma points from the Bingham
part of BG on S3 [15] do not necessarily correspond to
the sigma points from the matrix Fisher part of MFG on
SO(3) [7] under ϕ. The comparison of these two sigma point
selection schemes will be pursued in future works.

B. Measurement Update

The likelihood functions of the attitude q are

f(q̃i|q) ∝ exp
(
(q−1 ⊗ q̃i)TAi(q

−1 ⊗ q̃i)
)
, (42)

f(ṽi|q) ∝ exp
(
κiṽ

T
i ϕ(q−1)vri

)
, (43)

for the attitude and direction measurements respectively.
Suppose before update, (q, x) ∼ BG(M,Z, µ,Σ, P ). Ac-
cording to the Bayes’ formula, the posterior density for (q, x)
is the density (20) multiplied by the likelihood functions (42),
(43), which is calculated as follows.

Theorem 7: Let D = diag
([

1 −1 −1 −1
])

. Then
the posterior density is

p(q, x|Z) = exp
(
− 1

2 (x− µc)
T Σ−1c (x− µc)

)
exp

(
qTA+q

)
(44)

where µc is defined with respect to M,Z, and

A+ = MZMT +

Na∑
i=1

[q̃i]LDAiD[q̃i]
T
L +

Nv∑
i=1

κi[ˆ̃vi]
T
R[v̂ri ]L.

(45)



TABLE I
UNSCENTED ATTITUDE FILTER BASED ON BG

1: procedure ESTIMATION(BG(t0),Ω(t),Z(t))
2: Let k = 0.
3: repeat
4: Select sigma points {qi, xi, wi}13i=1 from BG(tk).
5: Select sigma points {Wj , wj}7j=1 from N (0, hHuHT

u ).
6: Propagate the sigma points according to

qi,j = qi ⊗ exp(h(Ω̂(tk) + x̂i) + Ŵj),

xi,j = xi, wi,j = wiwj .

7: Estimate {M,Z, µ,Σ, P}k+1 from {q, x, w}i,j using MLE.
8: Let Σk+1 = Σk+1 + hHvHT

v .
9: Set BG(tk+1) = BG({M,Z, µ,Σ, P}k+1)

10: k = k + 1.
11: until Z(tk+1) ia available
12: Calculate A+ using (45) from BG(tk+1) and Z(tk+1).
13: Let M+Z+(M+)T = A+ be the eigen-decomposition of A+.
14: Calculate the moments in (48)-(50).
15: Obtain {µ,Σ, P}+ using Theorem 4.
16: Let BG(tk+1) = BG({M,Z, µ,Σ, P}+).
17: Obtain the estimates of attitude and bias: q = m+

0 , and x = µ+.
18: go to step 3.
19: end procedure

Proof: We only need to rearrange (42) and (43) into
the form of Bingham densities.

f(q̃i|q) ∝ exp
(
(q̃−1i ⊗ q)

TDAiD(q̃−1i ⊗ q)
)

= exp
(
qT
(
[q̃i]LDAiD[q̃i]

T
L

)
q
)
. (46)

Also, we have

f(ṽi|q) ∝ exp
(
κi ˆ̃v

T
i (q−1 ⊗ v̂ri ⊗ q)

)
= exp

(
κi ˆ̃v

T
i [q]TL[q]Rv̂ri

)
= exp

(
qT (κi[ˆ̃vi]

T
R[v̂ri ]L)q

)
. (47)

And the desired result is proven.
The posterior density (44) is no longer a BG density,

since µc is defined with respect to MZMT = A, not
A+. Therefore, it needs to be matched to a BG using the
MLE. The marginal MLE is given trivially by the eigen-
decomposition A+ = M+Z+(M+)T . And the conditional
MLE are calculated using the following expectations.

E [x] = µ+ PE [νq] , (48)

E
[
xxT

]
= µµT + µE [νq]

T
PT

+ PE [νq]µT + PE
[
νqν

T
q

]
PT + Σc, (49)

E
[
x(ν+q )T

]
= PE

[
νq(ν+q )T

]
, (50)

where ν+q is defined with respect to M+ and Z+. Let M̃ =

MTM+, then E [νq] = M̃D+M̃T , where D+ is the moment
of inertia for B(Z+). Also, E

[
νqν

+
q

]
, and E [νqνq] can be

expressed as linear combinations of E
[
(p+i )2(p+j )2

]
, i, j ∈

{0, 1, 2, 3}, which can be calculated using (30) and (31).
The unscented propagation and measurement update of

BG constitute an unscented attitude filter which estimates
the attitude and gyroscope bias concurrently. The pseudo-
code is summarized in Table I.

V. SIMULATIONS

The proposed unscented attitude filter based on BG is com-
pared against the conventional MEKF through simulations.
The gyroscope noise parameters are chosen as Hu = σuI3×3
where σu = 10 deg /

√
s, and Hv = σvI3×3 where σv =

500 deg /h/
√

s. Two reference vectors vr1 =
[
0 1 0

]T
and vr2 =

[
1 0 0

]T
fixed in the inertial frame are as-

sumed to be measured in the body-fixed frame. The direction
sensor noises are assumed to be isotropic zero-mean Gaus-
sian and addictive, with the variances given by σ2

1 = 0.01,
and σ2

2 ∈ {0.01, 0.1, 1, 10} respectively. The measurement
noises are then matched to von Mises Fisher distributions
as required in Section IV through moment matching for the
unscented BG filter. The sampling frequency for gyroscope is
150 Hz, and for the direction sensors is 30 Hz. The simulation
lasts 5 min. One hundred Monte Carlo simulations with
respect to random noises are performed for each filter under
each noise level σ2

2 .
The initial attitude is set as the true attitude rotated about

its first body-fixed axis by 180°, and the initial bias is
chosen as

[
0.2 0.2 0.2

]T
rad s−1. The inertial attitude

uncertainty is δq ∼ N (0, 1010I3×3) for MEKF, and then it
is matched to a Bingham distribution through moment match-
ing for the unscented BG filter. The initial bias uncertainty
is 0.12I3×3, and the correlation between attitude and bias is
zero. Five filters are compared: MEKF, the unscented BG
filters using the BGI/BGB definitions (BGIU/BGBU), and
the unscented MFG filters using the MFGI/MFGB definitions
(MFGIU/MFGBU) [13].

Three types of error are calculated: (i) the full attitude error
(FAE) is the angle between the true and estimated attitude;
(ii) the partial attitude error (PAE) is the angle between the
first reference vector resolved in the true and estimated body-
fixed frames; and (iii) the bias error (BE). PAE neglects the
error of rotation about the first reference vector, so it remains
low when the second direction measurement becomes very
inaccurate. The errors are averaged across all time steps
in one simulation, and then averaged across one hundred
simulations.

The simulation results are summarized in Table II, and
the error trajectory of a single simulation with σ2

2 = 10
is presented in Fig. 1. It can be seen that when σ2

2 = 10,
i.e., when the second direction sensor is very inaccurate,
the unscented BG and MFG filters are much more accurate
than MEKF in full attitude estimation. This is because the
uncertainty of the rotation about the first reference vector
is very large when σ2

2 is large, so the wrapping error of the
Gaussian distribution assumed in MEKF becomes significant.
Also, the unscented BG and MFG filters have lower partial
attitude and bias errors, which is mainly contributed by
their faster convergence rate. Because the attitude estimate is
initialized completely incorrectly, the linearization of MEKF
induces large errors, which makes it converge very slowly.
Comparing the unscented BG filters with the MFG filters,
they exhibit very similar estimation errors, with the minor
exception that the bias error for the BG filters is slightly



TABLE II
ATTITUDE (deg) AND BIAS (deg /s) ERRORS (±S.D.) FOR DIFFERENT FILTERS

σ2
2 MEKF BGIU BGBU MFGIU MFGBU

0.01
FAE 5.05±0.08 4.82±0.04 4.82±0.04 4.82±0.04 4.82±0.04
PAE 3.91±0.08 3.68±0.03 3.68±0.03 3.68±0.03 3.68±0.03
BE 3.6±0.8 2.6±0.5 2.6±0.6 2.6±0.5 2.6±0.6

0.1
FAE 7.06±0.25 6.67±0.11 6.67±0.11 6.67±0.11 6.67±0.11
PAE 4.15±0.06 3.96±0.04 3.96±0.04 3.96±0.04 3.96±0.04
BE 4.0±0.9 2.8±0.5 2.8±0.5 2.8±0.5 2.8±0.5

1
FAE 13.8±1.4 10.1±0.4 10.1±0.4 10.1±0.4 10.1±0.4
PAE 4.17±0.06 4.00±0.04 4.00±0.04 4.00±0.04 4.00±0.04
BE 4.1±0.9 3.0±0.6 3.0±0.6 2.9±0.5 2.9±0.5

10
FAE 74.9±17.0 17.1±1.3 17.1±1.3 17.0±1.3 17.0±1.3
PAE 4.18±0.06 4.00±0.04 4.00±0.04 4.00±0.04 4.00±0.04
BE 6.4±2.7 3.1±0.6 3.1±0.6 3.0±0.5 3.0±0.5
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Fig. 1. Full attitude, partial attitude, and bias errors for MEKF, BGIU, and
BGBU in a single simulation with σ2

2 = 10. For partial attitude errors, only
the first five seconds are shown to emphasize the initial transient responses
of the filters. The MFGIU, MFGBU filters have similar error trajectories as
the BG filters, and is thus omitted for better readability.

greater than MFG when σ2
2 is relatively large.

VI. CONCLUSIONS

In this paper, we introduced the Bingham–Gaussian dis-
tribution defined on S3 × Rn, which is able to model the
correlation between three dimensional attitude and Euclidean
random variables of an arbitrary dimension. BG is equivalent
to the matrix Fisher–Gaussian distribution on SO(3) × Rn,
and thus they share the same properties. An unscented atti-
tude filter is proposed using BG, and simulations demonstrate
that it exhibits improved accuracy over the conventional
MEKF especially when the uncertainties are large.
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