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Matrix Fisher–Gaussian Distribution on SO(3)× Rn

and Bayesian Attitude Estimation
Weixin Wang, and Taeyoung Lee

Abstract—In this paper, a new probability distribution, re-
ferred to as the matrix Fisher–Gaussian distribution, is proposed
on the product manifold of three-dimensional special orthogonal
group and Euclidean space. It is constructed by conditioning a
multivariate Gaussian distribution from the ambient Euclidean
space into the manifold, while imposing a certain geometric con-
straint on the correlation term to avoid over-parameterization.
The unique feature is that it may represent large uncertainties
in attitudes, linear variables of an arbitrary dimension, and
angular–linear correlations between them in a global fashion
without singularities. Various stochastic properties and an ap-
proximate maximum likelihood estimator are developed. Fur-
thermore, two methods are developed to propagate uncertainties
through a stochastic differential equation representing attitude
kinematics. Based on these, a Bayesian estimator is proposed to
estimate the attitude and time-varying gyro bias concurrently.
Numerical studies indicate that the proposed estimator provides
more accurate estimates against the multiplicative extended
Kalman filter and unscented Kalman filter for challenging cases.

Index Terms—Matrix Fisher–Gaussian distribution, Matrix
Fisher distribution, attitude estimation, special orthogonal group,
correlation

I. INTRODUCTION

Attitude estimation using a gyroscope with time varying
biases has been studied since 1960s [1]. The unique chal-
lenge in attitude estimation is that the attitude evolves on
the nonlinear manifold, referred to as the three-dimensional
special orthogonal group SO(3), which cannot be globally
identified with the Euclidean space of the same dimension.
Any three-dimensional parameterization of SO(3) leads to
singularities [2].

One of the key milestones in attitude estimation is the devel-
opment of multiplicative extended Kalman filter (MEKF) [3]–
[5], where the mean attitude is represented by a quaternion,
and the uncertainty distribution about the mean attitude is
described by a three-dimensional attitude parameter following
a Gaussian distribution. MEKF typically relies on the assump-
tion that the uncertainty distribution is highly concentrated
about the mean attitude, and it adopts the framework of
extended Kalman filter to estimate the attitude and bias simul-
taneously through the linearized attitude kinematics equation.
MEKF has been a de facto algorithm for attitude estimation
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in various disciplines, including aerospace engineering [1],
robotics [6], [7], etc. Besides MEKF, deterministic attitude
observers on SO(3) have been presented in [8], [9].

The approach of formulating uncertainties around the mean
has also been utilized in estimation problems on other man-
ifolds. For example, in [10], [11] uncertainty propagation
and measurement update have been developed on the special
Euclidean group by formulating a covariance in the tangent
space at the mean to quantify uncertainties. The same approach
has also been generalized to matrix Lie groups in [12], [13],
and to Riemannian manifolds in [14], [15].

Despite its success, MEKF is limited by the fundamental
issues inherited from local parameterizations and linearization.
First, only the first order term of the attitude error is considered
in the linearized kinematics equation. Therefore the error
attitude has to be small enough for the linearization to be valid.
Second, the Gaussian distribution of local coordinates does not
properly represent attitude uncertainties on the compact man-
ifold. For example, suppose that the exponential coordinate
is employed. In this case, the same attitude corresponds to
infinitely many different rotation vectors with the difference
in length by multiples of 2π. Thus the probability density func-
tion describing the uncertainty of the rotation vector should be
wrapped, i.e., the densities at rotation vectors representing the
same attitude need to be added up. This is ignored in MEKF,
which is problematic especially when the attitude uncertainty
is widely dispersed. In short, MEKF is not suitable for attitude
estimation with large uncertainties.

In order to overcome the shortcomings of MEKF, there have
been efforts to construct attitude estimators with probability
distributions defined directly on SO(3). In [16], a probability
density function on SO(3)×Rn is inspired by harmonic anal-
ysis, and the Fokker-Planck equation describing the evolution
of the density is solved in the ambient Euclidean space to
construct an attitude filter on SO(3).

On the other hand, rotational random variables and matrices
in compact manifolds have been studied in directional statis-
tics [17], which has provided various models for probability
distributions. In fact, the attitude part of the density function in
[16] is exactly the matrix Fisher distribution on SO(3) [18],
[19]. And the matrix Fisher distribution has been shown to
be equivalent to the Bingham distribution defined on the unit-
sphere for quaternions with antipodal points identified [20],
[21]. Utilizing these, attitude estimators have been developed
by using the Bingham distribution in [22], [23], and by using
the matrix Fisher distribution in [24]. However, these are based
on probability distributions on SO(3), so the gyro bias cannot
be estimated concurrently with the attitude.
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To address this, a probability density function on the prod-
uct space of SO(3) × Rn should be utilized such that the
angular-linear correlation between attitudes and gyro biases
can be modeled. There have been several efforts to formulate
angular-linear correlations. For example, the distribution on
S1 × R1, where a circular variable is coupled with a linear
variable, has been studied in [25]–[28]. In [29], the Bingham
distribution on the unit-sphere Sr is extended to the Gauss-
Bingham distribution on Sr × Rn, which can be interpreted
as a distribution on SO(3) × Rn. Nevertheless, the angular-
linear correlation is introduced by making the orientation
parameter of the Bingham distribution dependent on the linear
variable, which lacks a geometric interpretation. One potential
issue of this approach is that the orientation parameter lies
in SO(r + 1) which needs to be parameterized again, and
this brings back the issue of local parameterizations. More
importantly, it does not have a closed form solution for
maximum likelihood estimation (MLE), which is essential in
Bayesian estimators assuming that uncertainties are modeled
by the Gauss-Bingham distribution always. This may cause
difficulties for real-time implementations in practice.

In [30], we have introduced a new distribution on SO(3)×
Rn, referred to as the matrix Fisher–Gaussian (MFG) distribu-
tion. It is constructed by conditioning a (9+n)-variate Gaussian
distribution from R9+n into SO(3) × Rn, which leads to the
matrix Fisher distribution for the attitude. The correlation term
between the three-dimensional attitude and n-dimensional
linear variable is inherited from the correlation between R9

and Rn before conditioning, which is constrained to be non-
zero only in the tangent space of the mean attitude. The
desirable feature is that MFG provides an intuitive geometric
interpretation for the angular-linear correlation, which is rep-
resented by 3n parameters, thereby avoiding a potential over-
parameterization in [16] relying on 9n parameters. Moreover,
although the MLE of MFG cannot be solved analytically, there
is a closed form approximation by first solving the marginal
MLE for the attitude part. This reduces the computational
load significantly compared with [29] that requires numerical
optimizations. Furthermore, MFG can be approximated by a
(3+n)-variate Gaussian distribution if its attitude part is con-
centrated. Therefore, it can be interpreted as a generalization
of the common approach relying on the Gaussian distribution
of three-dimensional attitude parameters.

Based on the preliminary result in [30], in this paper we
propose a new form of MFG that is more suitable for attitude
and gyro bias estimation. The difference stems from how the
angular-linear correlation is formulated: in [30], the correlation
is interpreted with the axis of rotation resolved in the inertial
frame as the linear variable is varied; and in this paper, the axis
of rotation is resolved in the body-fixed frame. Therefore the
distribution presented in [30] is denoted by MFGI, and the new
distribution proposed in this paper is denoted by MFGB. It is
shown that uncertainties characterized by MFGI are distinct
from MFGB when the attitude distribution is non-isotropic. In
particular, it is illustrated that MFGB is more appropriate for
attitude and gyro bias estimation, as the gyro bias is resolved
in the body-fixed frame.

Based on the proposed MFG distributions, we design an

intrinsic Bayesian estimator to estimate attitude and gyro
bias concurrently. The Bayesian estimator is composed of
two parts, namely uncertainty propagation and measurement
update. In [30], we proposed an unscented transform of MFG
to propagate uncertainties with selected sigma points. In this
paper, we improve the corresponding computational efficiency
by eliminating the need to sample sigma points from the bias
random walk noise. More importantly, we propose another
method for uncertainty propagation, where selected moments
of MFG required for MLE are calculated with analytical
expressions. Next, the measurement update is accomplished by
matching the posterior distribution obtained using Bayes’ rule
to a posterior MFG using MLE. Finally, numerical simulations
demonstrate the advantage of the proposed estimator over the
conventional MEKF and unscented Kalman filter (UKF) in
convergence and accuracy.

II. MATRIX FISHER DISTRIBUTION

A. Notations and Facts

The three-dimensional special orthogonal group SO(3) is

SO(3) = {R ∈ R3×3
∣∣ RRT = I3×3, det(R) = 1},

which is commonly used to represent the attitude of a rigid
body in the right-handed frame. Its Lie algebra, denoted by
so(3), is the tangent space of SO(3) at I3×3, given by

so(3) = {A ∈ R3×3
∣∣ A = −AT }.

The Lie algebra so(3) can be identified with R3 by the hat ∧
map and the vee ∨ map defined as follows.

so(3) 3

 0 −Ωz Ωy
Ωz 0 −Ωx
−Ωy Ωx 0

 vee ∨−−−→
hat ∧←−−−

Ωx
Ωy
Ωz

 ∈ R3.

In this paper, ei is used to represent the i-th standard
basis vector of Rn, i.e., the i-th column of In×n. Any 3-
by-3 diagonal matrix with the diagonal entries of 1 or −1 is
denoted by D ∈ R3×3. In particular, when it is augmented with
subscripts, the subscripts correspond to the diagonal indices
for 1. For example, D1 = diag(1,−1,−1). Let the set of
circular shifts of {1, 2, 3} be I = {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.
The n-dimensional unit sphere is denoted by Sn = {x ∈
Rn+1

∣∣ xTx = 1}. The trace of a matrix is denoted by tr(·),
and the function exp(tr(·)) is abbreviated as etr(·). Also, the
operator vec(·) is used to concatenate the columns of a matrix
into a vector, and the Kronecker product is denoted by ⊗.

Throughout this paper, the following identities regarding the
trace of a matrix and the hat map will be repeatedly used. For
any A,B ∈ R3×3,

tr(AB) = tr(BA) = tr
(
BTAT

)
. (1)

For any R ∈ SO(3), A ∈ R3×3 and x ∈ R3,

R̂x = Rx̂RT , (2)

x̂2 = xxT − xTxI3×3, (3)

(x̂A+AT x̂)∨ = (tr(A) I3×3 −A)x, (4)

tr(x̂A) = xT (AT −A)∨. (5)
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B. Matrix Fisher Distribution on SO(3)

The matrix Fisher distribution of a random matrix R ∈
SO(3) is defined by the following density function

p(R;F ) =
1

c(F )
etr
(
FTR

)
, (6)

with respect to the uniform distribution on SO(3). The matrix
F ∈ R3×3 is the parameter describing the shape of the
distribution, and c(F ) ∈ R is the normalizing constant. This
is denoted by R ∼ M(F ). From (6), it is straightforward to
show the matrix Fisher distribution is closed under rotations:
if R ∼ M(F ) then RA ∼ M(FA) and AR ∼ M(AF ) for
any fixed A ∈ SO(3).

Various properties of a matrix Fisher distribution can be
accessed through the proper singular value decomposition
(SVD) of F [19], [24].

Definition 1. Let the singular value decomposition of F be
given by F = U ′S′V ′T , where S′ ∈ R3×3 is a diagonal matrix
composed of the singular values s′1 ≥ s′2 ≥ s′3 ≥ 0 of F , and
U ′, V ′ ∈ O(3) are orthogonal matrices. The proper singular
value decomposition of F is

F = USV T , (7)

where the rotation matrices U, V ∈ SO(3), and the diagonal
matrix S ∈ R3×3 are defined as

U = U ′diag(1, 1, det[U ′]),

S = diag(s1, s2, s3) = diag(s′1, s
′
2, det[U ′V ′]s′3),

V = V ′diag(1, 1, det[V ′]). (8)

The motivation of the above proper SVD is to ensure
U, V ∈ SO(3), while allowing s3 to be negative. It should be
noted that the usual convention F = U ′S′V ′ with a positive
semidefinite S′ and U ′, V ′ ∈ O(3) can also be used to define
MFG [31].

The normalizing constant c(F ) depends only on the proper
singular values of F , i.e.,

c(F ) = c(S) =

∫
Q∈SO(3)

etr
(
SQT

)
dQ, (9)

where dQ is the bi-invariant Haar measure for SO(3), nor-
malized such that

∫
Q∈SO(3)

dQ = 1. The first order moment
of R is given by

E[R] = UDV T = Udiag(d1, d2, d3)V T , (10)

where di ∈ R for i ∈ {1, 2, 3} is

di =
1

c(S)

∂c(S)

∂si
. (11)

However, E[R] ∈ R3×3 does not belong to SO(3) in general.
Instead, the mean attitude of R is usually interpreted as
UV T , M ∈ SO(3), which maximizes the density (6), and
also minimizes the Frobenius mean squared error.

Similar to the Gaussian distribution, the matrix Fisher
distribution has three principal axes, given by the columns of
U resolved in the standard coordinates of R3, or equivalently
the columns of V when resolved in the coordinates specified

by the columns of M . The attitude rotated from the mean
attitude M about the i-th principal axis for an angle θ, i.e.,
R(θ) = exp(θÛei)M = M exp(θV̂ ei), has the density

p(R(θ);F ) =
esi

c(S)
exp((sj + sk) cos θ), (12)

where (i, j, k) ∈ I . This corresponds to the von Mises
distribution [17] for θ defined on the unit circle S1, and its
concentration around the mean angle θ = 0 is specified by
sj + sk. An interesting property is that when sj + sk is
sufficiently large, it is approximated by the Gaussian density
with the zero mean and variance 1/(sj + sk). This implies
that the distribution of R can be approximated by a three-
dimensional Gaussian distribution when R is concentrated
around its mean attitude M [32].

III. MATRIX FISHER–GAUSSIAN DISTRIBUTION

In this section, we first present a new form of matrix Fisher–
Gaussian distribution (MFGB) on SO(3)×Rn. In contrast to
the matrix Fisher–Gaussian distribution (MFGI) in [30], [31],
the angular–linear correlation is formulated such that varying
the linear random variable causes the attitude distribution to
be rotated by an axis resolved in the body-fixed frame. As
such, it is more suitable for attitude estimation where the
angular velocity is measured by a gyroscope fixed to the body.
Several stochastic properties of MFGB are presented, and the
difference between MFGB and MFGI is discussed.

Definition 2 (MFGB). The random variables (R, x) ∈
SO(3) × Rn follow the matrix Fisher–Gaussian distribution
with parameters µ ∈ Rn, Σ = ΣT ∈ Rn×n, U, V ∈ SO(3),
S = diag(s1, s2, s3) ∈ R3×3 with s1 ≥ s2 ≥ |s3| ≥ 0 and
P ∈ Rn×3, if it has the following density function:

p(R,x;µ,Σ, V, S, U, P ) =
1

c(S)
√

(2π)ndet(Σc)
×

exp
{
− 1

2 (x− µc)TΣ−1
c (x− µc)

}
etr
{
FRT

}
, (13)

where µc ∈ Rn is given by

µc = µ+ PνR, (14)

with
νR = (SQ−QTS)∨, (15)

for Q = UTRV , and 0 ≺ Σc ∈ Rn×n is defined as

Σc = Σ− P (tr(S) I3×3 − S)PT , (16)

Also, F = USV T ∈ R3×3, and c(S) ∈ R is the normalizing
constant of the corresponding matrix Fisher distribution. This
distribution is denoted by MG(µ,Σ, P, U, S, V ).

The probability density function of MFG given by (13) is
composed of three terms: the first one is for normalization;
the second term is for x and it has the form as N (µc,Σc); the
last term is for R and it is identical to the matrix Fisher Dis-
tribution. From its definition, it is straightforward to see that
the marginal distribution of R is a matrix Fisher distribution
with parameter F , and the distribution of x conditioned by R
is Gaussian with x|R ∼ N (µc(R),Σc).
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Fig. 1. The illustration of the cylindrical distribution with the mean angle
π/4 [25]. In the left figure, the correlation between the linear variable x ∈ R1

and the angular variable q = (q1, q2) ∈ S1 is only nonzero along the tangent
direction of S1 at π/4, and the distribution of q conditioned by x varies as
x is altered, and vice versa. However in the right figure, the correlation is
specified along the radial direction of S1, and there is no clear correlation
between x and q. These illustrate the correlation along the tangent direction
captures what we expect as a linear correlation between two random variables.

When P = 0, x and R are independent, and they further
satisfy x ∼ N (µ,Σ) and R ∼ M(F ). As such, the attitude-
linear correlation is specified by the 3n elements of P . More
specifically, the correlation between x and R is caused by the
fact that the conditional mean µc(R) of x is dependent on R.
When conditioned by R, it is shifted by PνR in (14), where
νR in (15) indicates how R deviates from the mean attitude
UV T . For example, when R = UV T , or equivalently when
Q = I3×3, we have νR = 0 and µc = µ.

Remark 1. Definition 2 (MFGB) is the same as Definition 1
(MFGI) in [30] except the expression of νR in (15). In [30], it
is defined as νR = (QS−SQT )∨. As discussed later in Section
III-F, this difference leads to distinct interpretations for the
angular–linear correlation. Due to the similarity of MFGB and
MFGI, they share several stochastic properties. Throughout
this paper, theorems and propositions exclusively applied to
MFGB are labeled with ‘(MFGB)’, and those shared by both
MFGB and MFGI with respect to their own definition of νR
are labeled with ‘(MFG)’. The counterpart of this section that
is devoted to MFGI is available in [31].

A. Geometric Construction and Interpretation

The construction of MFG is motivated by [25], where a
distribution on the cylinder is constructed by conditioning a
three-dimensional Gaussian distribution from R3 into S1 ×
R1. However, in [25] two parameters are used to quantify the
angular-linear correlation, despite both of the angular part S1

and the linear part R1 are one-dimensional. This is because
the correlation is formulated between the ambient space of S1,
namely R2, and R1.

In general, the correlation between two random variables
describes how one random variable is linearly varied from its
mean, when the other random variable is perturbed from its
own mean. As such, we wish that the correlation between S1

and R1 is described by a single parameter. The key observation
is that the unit-vector in S1 cannot be varied from the mean
exclusively along the radial direction due to the unit-length
constraint. Further, when it is rotated, the variation along

the radial direction is constrained by the variation along the
tangential direction. Thus, the correlation between S1 and R1

can be described by the correlation between the linear variable
and the tangential direction of the angular variable at the mean
angle. This is illustrated in Fig. 1.

Similarly, if the correlation between R ∈ SO(3) and x ∈ Rn
is defined as in [25], we would need 9n parameters. Instead,
the ambient space of SO(3), namely R3×3, is decomposed
into two parts, namely the tangent space at the mean attitude
and its orthogonal complement. The correlation with linear
variables along the orthogonal complement is set to zero,
thereby reducing the number of free parameters into 3n. More
specifically, a Gaussian distribution is formulated on R9×Rn
such that the correlation along the orthogonal complement to
the tangent space at the mean attitude is annihilated before
conditioning onto SO(3)× Rn.

Depending on how SO(3) is embedded in R9, two forms
of MFG can be constructed. In [30], SO(3) is embedded by
concatenating row vectors of the rotation matrix, whereas in
this paper, it is completed by concatenating column vectors.
The geometric construction of MFGB is summarized below.

Theorem 1 (MFGB). Consider the parameters (µ,Σ, V, S, U,
P ) defining MFGB as introduced in Definition 2. Let M =
UV T ∈ SO(3), K = USUT ∈ R3×3, µR = vec(M) ∈ R9,
and Σ−1

R = I3×3 ⊗K ∈ R9×9.
Also let ti = vec[MV̂ ei] for i ∈ {1, 2, 3} be the basis

for the tangent space of SO(3) at M embedded in R9. And
let {t4, . . . , t9} be the orthogonal complement of {t1, t2, t3}
in R9. Define T = [t1, . . . , t9]T ∈ R9×9, and PR =
[P, 0n×6]T ∈ Rn×9.

Suppose (xR, x) ∈ R9+n follows the Gaussian distribution[
xR
x

]
∼ N

([
µR
µ

]
,

[
ΣR PTR
PR Σ

])
. (17)

Then for R = vec−1(xR) ∈ R3×3, the distribution of
(R, x) conditioned on RTR = I3×3 and det(R) = 1 is
MG(µ,Σ, P, U, S, V ).

Proof. The joint density of (xR, x) can be written in the form
of a conditional-marginal density as

p(xR, x) = 1
c exp

{
− 1

2 (x− µc)TΣ−1
c (x− µc)

}
×exp

{
− 1

2 (xR − µR)TΣ−1
R (xR − µR)

}
, (18)

where c is the normalizing constant, µc = µ+ PRΣ−1
R (xR −

µR) ∈ Rn, and Σc = Σ− PRΣ−1
R PTR ∈ Rn×n.

The exponent of the last term of (18) can be written as

− 1
2 (xR − µR)TΣ−1

R (xR − µR)

=− 1
2 tr
(
K(vec−1(xR)−M)(vec−1(xR)−M)T

)
= tr

(
KMvec−1(xR)T

)
+ C = tr

(
FRT

)
+ C,

where C is a constant independent of xR or x, because
vec−1(xR)vec−1(xR)T = I3×3 when conditioned on RTR =
I3×3. So the second term on the right hand side of (18) reduces
to the matrix Fisher density after conditioning.

Next, for the first term on the right hand side of (18), the
second part of Σc is

PRΣ−1
R PTR = P [t1, t2, t3]TΣ−1

R [t1, t2, t3]PT , P Σ̃−1
R PT ,
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for some Σ̃−1
R ∈ R3×3. Let ti ∈ R9 be equally split into

three vectors {ti1, ti2, ti3}, then the i, j-th entry of Σ̃−1
R can

be written as

(Σ̃−1
R )ij =

3∑
k=1

tTikKtjk = tr
(
[ti1, ti2, ti3]TK[tj1, tj2, tj3]

)
= tr(V̂ ei

T
MTKMV̂ ej) = tr(Sêj ê

T
i ),

which implies Σ̃−1
R = tr(S) I3×3 − S. Thus Σc has the same

expression as in (16). Besides, the second part of µc is

PRΣ−1
R (xR − µR) = P [t1, t2, t3]TΣ−1

R vec(R−M),

and

tTi Σ−1
R vec(R−M) = tr(V̂ ei

T
MTK(R−M))

= tr(Sêi − SQêi) = eTi (SQ−QTS)∨,

where Q = UTRV . This shows µc also has the same
expression as in (14). In conclusion, the density function (18)
is the same as (13) after conditioning on RRT = I3×3 and
det(R) = 1.

In (17), the covariance between xR = vec(R) and x is
PR = [P, 0n×6]T , i.e., it is non-zero only along {t1, t2, t3},
which is a basis for the tangent space of SO(3) at UV T . The
basis is chosen as the principal axes of the matrix Fisher part,
so that the correlation P is expressed with respect to the prin-
cipal axes, which simplifies the corresponding mathematical
analysis and provides geometric interpretations. Also, there are
only 3n parameters required to quantify the linear correlation
between the three-dimensional attitude and the n-dimensional
linear variable, instead of 9n.

This construction of MFG leads to a clear geometric in-
terpretation of the correlation parameter P : if Pij > 0, as
xi becomes increased, the distribution of R conditioned on x
rotates about the j-th principal axis of the matrix Fisher part,
and vice versa. See Fig. 2 for a simple example.

B. Equivalent Distributions

As presented in Theorem 1 and (15), the definition of MFG
relies on the proper SVD of F , since the correlation is defined
along the principal axes given by U and V . There are two
uniqueness issues associated with the definition of SVD. The
trivial one is that when U and V undergo simultaneous sign
changes of two columns, they are still the left and right proper
singular vectors of F . The other issue is more interesting:
when F has repeated singular values, the corresponding proper
singular vectors in U and V are only unique up to a rotation.
This means the same MFG can be potentially parameterized
with different proper SVDs. However, as the next proposition
shows, MFG can be uniquely parameterized by the interme-
diate parameters F , µc and Σc.

Proposition 1 (MFG). Two matrix Fisher–Gaussian distribu-
tions, namely MG(µ,Σ, P, U, S, V ) and MG(µ̃, Σ̃, P̃ , Ũ , S̃,
Ṽ ) are equivalent if and only if F = F̃ , µc = µ̃c for all
R ∈ SO(3), and Σc = Σ̃c.

Fig. 2. Visualization of the attitude-linear correlation for (R, x) ∈ SO(3)×
R1: the density for R conditioned on x is illustrated on the unit-sphere
for three correlation matrices P . More specifically, the marginal distribution
for each column of R is shown on the unit sphere as red, green and blue
shades. The parameters are n = 1, µ = 0, Σ = 1, U = V = I3×3,
S = 10I3×3. For each P , three conditioning values of x are considered.
The first column is for P = [0.14, 0, 0]. When x is increased from −1.5 to
1.5, the conditional distribution for R is rotated about the e1 axis. Similarly,
in the second column for P = [0, 0.14, 0], the variation of x is correlated
with rotating the distribution of R along the e2 axis. The third column shows
rotations about e3 due to the correlation.

The proof of this proposition requires the following lemma,
which states that a matrix Fisher distribution is uniquely
parameterized by its parameter F .

Lemma 1. Two matrix Fisher distributions, namely M(F )
and M(F̃ ) are equivalent if and only if F = F̃ .

Proof. It is trivial to show F = F̃ implies M(F ) = M(F̃ ).

Next, supposeM(F ) =M(F̃ ), i.e.,
etr(FRT )
c(F ) =

etr(F̃RT )
c(F̃ )

for

all R ∈ SO(3). Let ∆F = F − F̃ and ∆c = log(c(F )/c(F̃ )),
the above equation is equivalent to

tr
(
∆FRT

)
−∆c = 0. (19)

Substitute R = I3×3, D1, D2 and D3 into (19) to obtain

∆F11 + ∆F22 + ∆F33 −∆c = 0,

∆F11 −∆F22 −∆F33 −∆c = 0,

−∆F11 + ∆F22 −∆F33 −∆c = 0,

−∆F11 −∆F22 + ∆F33 −∆c = 0,

which shows ∆F11 = ∆F22 = ∆F33 = ∆c = 0. Next,

substituting R =

0 1 0
1 0 0
0 0 −1

 and

0 −1 0
1 0 0
0 0 1

 into (19)

yields ∆F12 = 0. Similarly, other entries of ∆F can be shown
to be zeros. Therefore, F = F̃ .
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Next, we present the proof for Proposition 1.

Proof for Proposition 1. The sufficiency directly follows from
(13) since the density function is determined by F , µc and
Σc. Next we show the necessity. Let p and p̃ be the density
functions for the two sets of parameters respectively. Suppose
p(x,R) = p̃(x,R) for all x ∈ Rn and R ∈ SO(3). Since
SO(3) is compact, and µc is continuous in R as seen from
(14), ‖µc‖ has an upper bound. Therefore,

lim
‖x‖→∞

p(x,R) =
etr
(
FRT

)
c(F )

√
(2π)ndet(Σc)

.

Because p(x,R) = p̃(x,R) for all x ∈ Rn, the above

equation implies
etr(FRT )

c(F )
√

(2π)n det(Σc)
=

etr(F̃RT )
c(F̃ )
√

(2π)n det(Σ̃c)
, and

by following the same argument in Lemma 1, F = F̃ .
Next, since F = F̃ and p(x,R) = p̃(x,R), we have (x −

µc)
TΣ−1

c (x−µc) = (x−µ̃c)T Σ̃−1
c (x−µ̃c) for all x ∈ Rn and

R ∈ SO(3). Substituting x = µc yields µc = µ̃c for all R ∈
SO(3), since Σ̃c is positive-definite. Also, substituting x =
µc + ei shows (Σ−1

c )ii = (Σ̃−1
c )ii, and similarly, substituting

x = µc + ei + ej for i 6= j yields (Σ−1
c )ij = (Σ̃−1

c )ij since
Σ−1
c and Σ̃−1

c are symmetric. Therefore Σc = Σ̃c.

To further break down the equivalent conditions for MFG
into the parameters U , S and V , a detailed analysis on the
multiplicity of singular values S is required. In Appendix A,
we provide a complete characterization of the equivalent pa-
rameters of MFGB. It shows that MFGB can be parameterized
differently by rotating U , V , and P in a consistent way, if S
has repeated values.

C. Gaussian Approximation

It has been shown that a matrix Fisher distribution can
be approximated by a three-dimensional Gaussian distribution
when it is highly concentrated, i.e., when s3 � 0 [32].
The same property holds for MFG as stated in the following
theorem.

Theorem 2 (MFG). Suppose (x,R) ∼MG(µ,Σ, P, U, S, V ).
Let R = U exp(η̂)V T . If s3 � 0, then (x, η) approximately
follows a (3 + n)-dimensional Gaussian distribution with[

x
η

]
∼ N

([
µ
0

]
,

[
Σ P
PT (tr(S) I3×3 − S)−1

])
. (20)

Proof. For the matrix Fisher density part in (13), we have
etr
(
FTR

)
= etr(S exp(η̂)). Let Σ′ = (tr(S) I3×3 − S)−1 =

diag
(

1
s2+s3

, 1
s1+s3

, 1
s1+s2

)
∈ R3×3, and let ξ ∈ R3 be defined

as
√

Σ′ξ = η. Then,

etr
(
FTR

)
= etr

(
S exp

(
(
√

Σ′ξ)∧
))

= etr
(
S
(
I3×3 + (

√
Σ′ξ)∧ + 1

2

(
(
√

Σ′ξ)∧
)2

+ o(Σ′)
))

∝ etr
(

1
2S
(
(
√

Σ′ξ)∧
)2

+ o(Σ′)
)

≈ exp
(
− 1

2η
T (Σ′)−1η

)
.

Also, for the νR term in the conditional mean (14), we have

ν̂R =S exp
(
(
√

Σ′ξ)∧
)
− exp

(
(
√

Σ′ξ)∧
)T
S

=S
(
I3×3 + (

√
Σ′ξ)∧

)
−
(
I3×3 + (

√
Σ′ξ)∧

)T
S + o(

√
Σ′)

≈
(
(Σ′)−1η

)∧
,

which yields µc ≈ µ + P (Σ′)−1η. Furthermore Σc =
Σ − P (Σ′)−1PT . Therefore, (13) is approximated by a (3 +
n)-dimensional Gaussian density written in the conditional-
marginal form, which is identical to (20).

D. Moments

Next, we present selected moments of MFG, which are used
in the approximate MLE of the next subsection.

Theorem 3 (MFG). Suppose (R, x) ∼MG(µ,Σ, P, U, S, V ).
Then,

E[R] = UDV T , (21)

where D = diag(d1, d2, d3) is given in (11). Also,

E[x] = µ, (22)
E[νR] = 0, (23)

E[xxT ] = Σc + µµT + PE[νRν
T
R ]PT , (24)

E[xνTR ] = PE[νRν
T
R ], (25)

where E[νRν
T
R ] ∈ R3×3 is a diagonal matrix with the i-th

diagonal element given by

(E[νRν
T
R ])ii = (s2

j + s2
k)E[Q2

jk]− 2sjskE[QjkQkj ], (26)

for (i, j, k) ∈ I. The explicit expressions for E[Q2
jk] and

E[QjkQkj ] can be found in [33].

Proof. Equation (21) follows immediately from the fact that
the marginal distribution of R is a matrix Fisher distribution
with parameter F . Next, for (23), we have:

E[νR] = E[SQ−QTS]∨ = (SD −DTS)∨ = 0. (27)

Also, for (24), we can integrate xxT directly and get

E[xxT ] =

∫
SO(3)

∫
Rn

xxT p(R, x)dxdR

=
1

c(F )

∫
SO(3)

[Σc + (µ+ PνR)(µ+ PνR)T ]etr(FRT )dR

= Σc + µµT + PE[νRν
T
R ]PT . (28)

The remaining (22), (25) and (26) can be derived similarly.

E. Maximum Likelihood Estimation

Here we consider the maximum likelihood estimation
(MLE) problem to construct an MFG from its samples. Given
a set of samples (Ri, xi)

Ns
i=1, the log-likelihood function of the

parameters, after omitting some constants, is given by

l =− log(c(S)) + tr(F Ē[R]T )− 1
2 log(det(Σc))

− 1
2 Ē[(x− µ− PνR)TΣ−1

c (x− µ− PνR)], (29)

where Ē[·] represents the sample mean of a random variable.
For example, Ē[R] = 1

Ns

∑Ns

i=1Ri.
As the log-likelihood function should be maximized jointly

for the matrix Fisher part and the Gaussian part, it is chal-
lenging to obtain a closed form solution for (µ,Σ, V, S, U, P ).
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From the construction of MFG, this is comparable to the MLE
of a (9+n)-variate Gaussian distribution with prescribed linear
constraints on the covariance matrix, which is known as a
challenging problem [34].

Instead of jointly maximizing the likelihood, we exploit the
fact that the marginal distribution for R is a matrix Fisher
distribution, and the conditional distribution for x|R is Gaus-
sian. More specifically, the log-likelihood for the marginal
distribution corresponds to the first two terms on the right hand
side of (29), and the marginal MLE for parameters U, S, V is
solved by the MLE of the matrix Fisher distribution.

Theorem 4 (MFG [19], [24]). The marginal maximum likeli-
hood estimates for U, V are given by the proper singular value
decomposition Ē [R] = UDV T , and the marginal MLE for S
is given by solving (11) for S using D.

After obtaining U, S, V , they are used in the conditional
log-likelihood for x|R corresponding to the last two terms on
the right hand side of (29), and the resulting conditional MLE
is addressed as follows.

Theorem 5 (MFG). Let U, V ∈ SO(3) and S ∈ R3×3 be the
solution of the marginal MLE for R. Define Qi = UTRiV ,
and νRi

= (SQi −QTi S)∨ for i = 1, . . . , Ns. Also define the
following sample covariance matrices:

cov(x, x) = Ē(xxT )− Ē[x]Ē[x]T , (30)

cov(x, νR) = Ē[xνTR ]− Ē[x]Ē[νR]T , (31)

cov(νR, νR) = Ē[νRν
T
R ]− Ē[νR]Ē[νR]T . (32)

Then the solution of the conditional MLE for P , µ, and Σ is
given by

P = cov(x, νR)cov(νR, νR)−1, (33)
µ = Ē[x]− P Ē[νR], (34)

Σ = cov(x, x)− P cov(x, νR)T + P (tr(S) I3×3 − S)PT .
(35)

Proof. Take the derivatives of (29) with respect to µ and P
to obtain

∂l

∂µ
= Σ−1

c Ē [x− µ− PνR] ,

∂l

∂P
= Σ−1

c Ē
[
(x− µ)νTR − PνRνTR

]
.

By setting the derivatives zero, the MLE of µ and P can be
obtained as in (34) and (33). Next, take the derivative of (29)
with respect to Σ−1

c to have

∂l

∂Σ−1
c

=
1

2
Σc −

1

2
Ē
[
(x− µ− PνR)(x− µ− PνR)T

]
.

Setting the derivative to zero and substituting (33) and (34),
we obtain (35).

The given marginal-conditional MLE is an approximation
to the joint MLE, because the information of U , S and V
encoded in {xi} is discarded over marginalization. Intuitively,
the correlation between x and vec(R) indicated by the samples
is not necessarily constrained in the tangent space at UV T

calculated from Ē[R], as required by MFG in Theorem 1.

To understand how well the marginal-conditional MLE ap-
proximates the joint MLE, we perform the following analysis
to compare the information that R carries about the unknown
parameter S, with that of x|R. We focus on the specific case
when the dimension of the linear part is one, i.e., n = 1.
Define a metric λsi ∈ R1 as

λsi =
gsisi(R)

gsisi(x|R)
, (36)

where gsisi(R) is the diagonal element of the Fisher infor-
mation matrix for the marginal distribution p(R) with respect
to si. Similarly, gsisi(x|R) is for the conditional distribution
p(x|R) [35, Chapter 9.8]. The quantity λsi indicates the
ratio of the information of the concentration parameter si
contained in R, to that in x, due to the fact that gsisi(R, x) =
gsisi(R) + gsisi(x|R). The higher λsi is, the less information
is discarded in the marginal MLE for parameter si.

Proposition 2 (MFG). Suppose (R, x) ∈ SO(3)×R1 follows
MG(µ, σ2, P, U, sI3×3, V ), where P = ρσ√

2s

[
1 1 1

]
for

ρ ∈ R1. Then,

λsi =
1− 3ρ2

ρ2

2s
(
c(S)∂11c(S)− (∂1c(S))2

)
c(s) (c(S)− ∂11c(S))

, (37)

where ∂ic(S) = ∂c(S)
∂si

∣∣
S=sI

and ∂ijc(S) = ∂2c(S)
∂si∂sj

∣∣
S=sI

.

Proof. By Chapter 2.6 in [35], we have

gsisi(R, x) = −E

[
∂2 log p(R, x)

∂s2
i

]
=
∂iic(S)

c(S)
− (∂ic(s))

2

c(S)2
+ E

[
∂νTR
∂si

PTΣ−1
c P

∂νR
∂si

]
,

where the first two terms are the marginal information
gsisi(R), and the last expectation is the conditional informa-
tion gsisi(x|R). Substitute n = 1, Σ = σ2, S = sI3×3, and
P = ρσ√

2s

[
1 1 1

]
into the conditional information to obtain

gsisi(x|R) =
ρ2

1− 3ρ2

E
[
Q2
ij

]
+ E

[
Q2
ik

]
2s

=
ρ2

1− 3ρ2

1− E
[
Q2
ii

]
2s

=
ρ2

1− 3ρ2

c(S)− ∂iic(S)

2sc(S)
.

And (37) follows from the above two equations.

In Proposition 2, ρ can be interpreted as the correlation
coefficient between R and x. It is clearly seen from (37) when
ρ is close to zero, i.e., when the correlation between R and
x is weak, the information of si is mainly contained in R.
Therefore, the marginal-conditional MLE is close to the joint
MLE. Next, we examine the effect of concentration level of the
attitude. Let r(s) be the second fraction term on the right hand
side of (37), whose value is illustrated in Fig. 3 for varying s.
This indicates when the marginal attitude distribution is close
to uniform, i.e., s → 0, relatively more information of si is
carried by x. On the other hand, when the attitude is more
concentrated, say s > 6, the fraction r(s) does not vary much,
and λsi is mainly determined by the level of correlation at the
first part on the right hand side of (37).
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Fig. 3. The graph of r(s) =
2s(c(S)∂11c(S)−(∂1c(S))2)

c(s)(c(S)−∂11c(S))
against s.

The proposed closed form solution of MLE is essential
for designing and implementing an attitude estimator based
on MFG, as it is inevitably used in each step of uncertainty
propagation and measurement update, which typically run at
more than 100 Hz. It is not feasible to solve the joint MLE
numerically at every step for real-time implementations.

F. Distinction Between MFGB and MFGI

At first glance, it appears that the new definition of MFGB
presented in this paper is very close to MFGI in [30], as the
difference is caused by the single term νR. Here, we discuss
the implication of the two definitions of νR and its role in
formulating the angular–linear correlation.

More specifically, we highlight the difference by examining
R|x, the attitude distribution of R conditioned by the linear
random variable x, when (R, x) is close to the mean (M =
UV T , µ). For simplicity, assume the dimension of x is n = 1,
and let (R, x) ∼MG(µ, σ2, P, U, S, V ). For both definitions,
we have

p(R|x) ∝ etr
(
SQT

)
exp

{
x− µ
σ2
c

PνR −
(PνR)2

2σ2
c

}
,

where Q = UTRV , and σ2
c = σ2−P (tr(S) I3×3−S)PT ∈ R.

As R → M , Q → I3×3 and νR → 0. Therefore, when the
attitude is close to the mean attitude, the second order term
(PνR)2 may be omitted.

For MFGB, PνR = tr(P̂TQTS) from (5) and (15). Thus,

p(R|x) ∝ etr
(
SQT

)
etr

(
x− µ
σ2
c

P̂TQTS

)
= etr

(
(I3×3 + υ̂(x))QTS

)
,

where υ(x) , (x − µ)/σ2
cP

T ∈ R3×1. Also, we have
exp(υ̂(x)) = I3×3 + υ̂(x) + O(‖υ(x)‖2). Therefore, when
x is also close to µ, it can be rewritten as

p(R|x) ≈ etr
(
USV T exp(V̂ υ(x))RT

)
.

In short, when (R, x) follows MFGB, the conditional distri-
bution R|x follows the matrix Fisher distribution with

(R|x)
∣∣
MFGB ≈M(USV T exp(V̂ υ(x))) (38)

near the mean value (M,µ). Similarly, R|x of MFGI can be
approximated by

(R|x)
∣∣
MFGI ≈M(exp(Ûυ(x))USV T ). (39)

Now we compare (38) and (39). When x = µ, they are
identical, and R|x ∼ M(USV T ). Further when x 6= µ,
they have the same mean attitude given by U exp(υ̂(x))V T .

Fig. 4. Difference between MFGB in this paper (top row) and MFGI in
[30] (bottom row). The conditional density of R|x is illustrated on the unit
sphere for varying x, with the red, green, and blue arrows representing the
first, second, and third columns of the mean attitude, respectively. Parameters
are chosen as n = 1, µ = 0, Σ = 1, P = [0, 0, 0.069], U = V = I3×3,
S = diag(100, 3, 3). For both of MFGB and MFBI, the mean attitude of
R|x rotates identically about the third inertial axis. For MFGI (bottom row),
the attitude distribution rotates in the same way as the mean attitude. But for
MFGB (top row), it is as if each sample attitude rotates about its own third
body-fixed axis. As a result, the distribution of the third axis (blue shade)
remains unchanged in the inertial frame.

The difference between (38) and (39) is caused by how the
principal axes of rotations are changed as x is varied. For (38),
as U is fixed, the principal axes remain unchanged with respect
to x when perceived from the inertial frame. However, they
rotate about V υ(x) when observed in the body-fixed frame,
as V is changed into exp(−V̂ υ(x))V . Also, (38) indicates
R|x has the same density as R exp(V̂ υ(x)), i.e., the rotation
is applied on the right. Therefore, the correlation term υ(x)
causes the attitude distribution to be rotated about the axis
V υ(x) resolved in the body-fixed frame. For example, suppose
that the distribution is represented by a set of sample attitudes
{Ri}Ni=1. Then, each sample attitude Ri has a distinct axis of
rotation given by RiV υ(x) in the inertial frame.

On the other hand, in (39), the principal axes represented
in the inertial frame are rotated, as U is changed into
exp(Ûυ(x))U . But, when observed from the body-fixed frame,
they remain unchanged. Also, (39) implies R|x has the same
density as exp(Ûυ(x))R, i.e., the rotation is applied on the
left. This means the correlation term υ(x) causes the attitude
distribution to be rotated about the axis Uυ(x) resolved in the
inertial frame, which is identical for all sample attitudes.

This distinction motivates the naming convention for the
two definitions: for MFGB, the correlation causes the attitude
distribution to be rotated about the body-fixed frame; for
MFGI, it causes the distribution to be rotated about the inertial
frame. These are illustrated in Fig. 4. For estimation of attitude
and gyro bias, MFGB presented in this paper is more suitable
as the gyro bias is resolved in the body-fixed frame.

Finally, when the attitude uncertainty is isotropic, i.e., when
S = sI3×3 for s ≥ 0, MFGB is identical to MFGI. As
such, the difference between MFGB and MFGI becomes more
significant as the attitude distribution is more non-isotropic.
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IV. BAYESIAN ESTIMATION FOR ATTITUDE AND
GYROSCOPE BIAS

In this section, we apply the proposed MFG to the at-
titude estimation with a time-varying gyro bias. We design
a Bayesian estimator composed of uncertainty propagation
and measurement update. The uncertainty propagation step
is to propagate MFG describing the attitude and gyroscope
bias along the stochastic differential equation of the attitude
kinematics. This is accomplished by calculating the moments
required for MLE in Theorem 4 and Theorem 5 using two
methods: (i) by approximated analytical expressions and (ii) by
the sampling based unscented transform. In the measurement
update step, we consider two types of measurements, namely
attitude and vector measurements. It is shown that both types
lead to the same form of posterior density, which is then
matched to a new MFG.

When propagating uncertainties of attitude and bias, the
following kinematics model [16], [24] is considered

RTdR = (x̂+ Ω̂)dt+ (HudWu)∧, (40)
dx = HvdWv, (41)

where R ∈ SO(3) is the attitude of a rigid body and x ∈ R3

is the bias of the onboard gyroscope. The vector Ω ∈ R3

is the angular velocity measured by the gyroscope that is
resolved in the body-fixed frame. Next, Wu and Wv ∈ R3

are two independent three-dimensional Wiener processes, and
Hu, Hv ∈ R3×3 are two matrices describing the strengths of
noises. The angular velocity measurement has two sources
of noises: the bias term x and the Gaussian white noise
contributed by HudWu. The bias is slowly varying while being
driven by another white noise HvdWv .

The stochastic differential equation (40) is interpreted in
the Stratonovich sense to guarantee the process does not leave
SO(3) [16], [36]. Let the time be discretized by a sequence
{t0, t1, . . .}. For convenience, it is assumed that the time step
h ∈ R1 is fixed, i.e., h = tk+1 − tk for any k. According to
[36, Eqn. 14], the kinematics model can be discretized into

Rk+1 = Rk exp
{
h(Ω̂k + x̂k) + (Hu∆Wu)∧

}
, (42)

xk+1 = xk +Hv∆Wv, (43)

where ∆Wu,∆Wv ∈ R3 are the stochastic increments of the
Wiener processes over a time step, which are Gaussian with

Hu∆Wu ∼ N (0, hGu), Hv∆Wv ∼ N (0, hGv), (44)

where Gu = HuH
T
u and Gv = HvH

T
v ∈ R3×3.

The initial attitude and bias (R(t0), x(t0)) at t0 are assumed
to follow MFG with n = 3 and (µ0,Σ0, P0, U0, S0, V0) of
appropriate dimensions. We wish to propagate it through the
discretized equations (42) and (43) to construct the propagated
MFG. The evolution of the probability density over a stochas-
tic differential equation is governed by the Fokker-Planck
equation, and in general, the propagated density is not nec-
essarily MFG. This is addressed by calculating the moments
of the propagated density, and constructing the corresponding
MFG from the solution of MLE presented in Section III-E.
Depending on how the moments of the propagated density are

calculated, we present two methods: an analytical method and
an unscented method.

A. Analytical Uncertainty Propagation

Suppose (Rk, xk) ∼ MG(µk,Σk, Pk, Uk, Sk, Vk). In this
subsection, we present an approach to construct a new MFG
corresponding to the propagated density of (Rk+1, xk+1) by
calculating its moments analytically.

First, the exponent in (42) can be decomposed into

{h(Ωk + µk)}+ {h(xk − µk) +Hu∆Wu},

after taking the hat map off. The first part is deterministic, and
the second part is a random vector with zero mean. This leads
to the following approximation to (42).

Lemma 2. Equation (42) is almost surely equivalent to

Rk+1 =Rke
h(x̂k−µ̂k)+(Hu∆Wu)∧+o(h)eh(Ω̂k+µ̂k). (45)

Proof. Equation (42) is rewritten into

Rk+1 = Rk

[
eh(Ω̂k+x̂k)+(Hu∆Wu)∧e−h(Ω̂k+µ̂k)

]
eh(Ω̂k+µ̂k).

The Baker-Campbell-Hausdorff (BCH) formula [37] provides
the solution of Z to the equation eXeY = eZ for given X,Y .
Applying this to the expression in the square brackets,

Rk+1 = Rke
h(x̂k−µ̂k)+(Hu∆Wu)∧+Aeh(Ω̂k+µ̂k), (46)

where the additional term A ∈ so(3) is composed of at least
twice iterated Lie brackets, and it is of the order of h2 and
h∆Wu. Since lim

h→0
∆Wu = 0 almost surely, A ∼ o(h).

This lemma is helpful in making use of the closed form
expression of the exponential map exp : so(3)→ SO(3) (the
Rodrigues rotation formula) for the deterministic components
of (42). The uncertainty of Rk+1 contributed by the noises is
quantified by the centered stochastic component h(xk−µk)+
Hu∆Wu with zero mean. Next, we present an expression for
E[Rk+1] to solve the marginal MLE.

Theorem 6 (MFG). The expectation of the propagated attitude
Rk+1 is given by

E[Rk+1] =
{

E[Rk]
(
I3×3 + h

2 (Gu − tr(Gu) I3×3)
)

+hUkE
[
QkV

T
k P̂kνRk

]}
eh(Ω̂k+µ̂k) +O(h2), (47)

where Qk = UTk RkVk, νRk
= (SkQk −QTk Sk)∨.

Proof. First, expand the first exponential term in (45) into an
infinite sum as

eh(x̂k−µ̂k)+(Hu∆Wu)∧+o(h)

=
∑∞
i=0

1
i! {h(x̂k − µ̂k) + (Hu∆Wu)∧ + o(h)}i . (48)

Note that (i) ∆Wu is a zero mean Gaussian vector with
covariance matrix hI3×3, so its odd order moments are zero,
and E

[
((Hu∆Wu)∧)

2n
]
∼ O(hn); (ii) o(h) in the above

equation only has terms of order at least h2 or h∆Wu as
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shown in (46). Combining these two observations, we have
the first order approximation of E[Rk+1] as

E[Rk+1] =
{

E[Rk] + hE[Rk(x̂k − µ̂k)]

+ 1
2E
[
Rk((Hu∆Wu)∧)2

] }
eh(Ω̂k+µ̂k) +O(h2). (49)

Then, since (Rk, xk) follows MFG,

E[Rk(x̂k − µ̂k)] = E
[
RkP̂ νRk

]
= UkE

[
QkV

T
k P̂kνRk

]
.

In addition, due to the independence of Rk and ∆Wu,

E
[
Rk((Hu∆Wu)∧)2

]
= hE[Rk] (Gu − tr(Gu) I3×3).

Substituting the above two equations into (49) yields (47).

With the given E[Rk+1], the marginal MLE for the attitude
part of MFG can be solved as discussed in Theorem 4, which
yields the estimates of Uk+1, Sk+1 and Vk+1. Define Qk+1 =
UTk+1Rk+1Vk+1 and νRk+1

= (Sk+1Qk+1 −QTk+1Sk+1)∨ as
the intermediate parameters for the MFG at time tk+1. Then
the conditional MLE for the rest of parameters is solved as in
Theorem 5 with the moments given as follows.

Theorem 7 (MFGB). Let Ũ , Ṽ ∈ SO(3) and S̃, ˜̃V,ΓQ ∈
R3×3 be

Ũ = UTk+1Uk, Ṽ = V Tk+1e
−h(Ω̂k+µ̂k)Vk, S̃ = ŨTSk+1Ṽ ,

˜̃V = V Tk+1e
−h(Ω̂k+µ̂)GTuVk, ΓQ = tr

(
QTk S̃

)
I3×3 −QTk S̃.

Also, let ν̃R, ˜̃νR ∈ R3 be

ν̃R = (S̃TQk −QTk S̃)∨, (50)

˜̃νR = (Sk+1ŨQk
˜̃V T − ˜̃V QTk Ũ

TSk+1)∨. (51)

Then, the moments of xk+1 and νRk+1
required for the

conditional MLE are given by

E[xk+1] = µk, (52)

E
[
νRk+1

]
= 0, (53)

E
[
xk+1x

T
k+1

]
= E

[
xkx

T
k

]
+ hGv, (54)

E
[
xk+1ν

T
Rk+1

]
=
[
Pk

(
E
[
νRk

ν̃TR
]
− htr(Gu)

2 E
[
νRk

ν̃TR
]

+ hE
[
νRk

νTRk
PTk VkΓTQ

] )
+ µk

(
E
[
ν̃TR
]
− htr(Gu)

2 E
[
ν̃TR
]

+ hE
[
νTRk

PTk VkΓTQ
] )

+ hΣckVkE
[
ΓTQ
] ]
Ṽ T

+ h
2

(
µkE

[
˜̃νTR
]

+ PkE
[
νRk

˜̃νTR
] )

+O(h2), (55)

E
[
νRk+1

νTRk+1

]
= Ṽ

(
E
[
ν̃Rν̃

T
R

]
+ hE

[
ΓQV

T
k PkνRk

ν̃TR
]

+ hE
[
ν̃Rν

T
Rk
PTk VkΓTQ

]
+ hE

[
ΓQV

T
k GuVkΓTQ

]
− htr(Gu) E

[
ν̃Rν̃

T
R

] )
Ṽ T + h

2

(
Ṽ E
[
ν̃R ˜̃νTR

]
+ E

[
˜̃νRν̃

T
R

]
Ṽ T
)

+O(h2). (56)

Proof. The proof of this theorem is a straightforward but
tedious extension of Theorem 6, and it is omitted. The counter-
part of this theorem for MFGI is available in [31] along with
the detailed proof, which is readily adapted to this theorem by
replacing the expression for νR.

TABLE I
ANALYTICAL UNCERTAINTY PROPAGATION

1: procedure MG(tk+1) = ANALYTICAL PROPAGATION(MG(tk),Ωk)
2: Calculate E[Rk+1] using (47).
3: Obtain Uk+1, Sk+1, Vk+1 according to Theorem 4 using E[Rk+1].
4: Calculate the moments in Theorem 7.
5: Obtain µk+1,Σk+1, Pk+1 according to Theorem 5 using the mo-

ments calculated in Step 4.
6: Set MG(tk+1) =MG(µk+1,Σk+1, Pk+1, Uk+1, Sk+1, Vk+1).
7: end procedure

Remark 2. Note that νRk
, ν̃R, ˜̃νR, and ΓQ are linear in Qk.

Therefore, the expectations on the right hand side of (47), (55)
and (56) can be calculated using the moments of Q ∼M(Sk)
up to the third order. More specifically, these expectations can
be expressed as linear combinations of E[Qij ], E[QijQkl],
E[QijQklQmn] for i, j, k, l,m, n ∈ {1, 2, 3}. The moments of
Q can be calculated using (11) and the method in [33].

With these moments, the estimates for (µk+1,Σk+1, Pk+1)
can be constructed through the conditional MLE given in
Theorem 5.

In summary, Theorem 6 and Theorem 7 provide an analyt-
ical approach to propagate (Rk, xk) ∼ MG(µk,Σk, Pk, Uk,
Sk, Vk) into (Rk+1, xk+1) ∼ MG(µk+1,Σk+1, Pk+1, Uk+1,
Sk+1, Vk+1), up to O(h2) in moments. This is a typical proce-
dure in assumed density filters, and its validity is guaranteed by
the fact that the maximum likelihood estimator minimizes the
Kullback–Leibler divergence from the MFG family to the true
density [38]. The pseudocode for this analytical uncertainty
propagation scheme is shown in Table I.

B. Unscented Uncertainty Propagation

In this subsection, we present an alternative, sampling-
based method to propagate the uncertainty. In contrast to the
preceding analytical approach, the unscented transform selects
so called sigma points from the distribution of (Rk, xk),
which are propagated through (42) and (43), and then they
are matched to a new MFG using MLE. The sigma points are
selected in a deterministic fashion to characterize the mean
and dispersion of the distribution.

In [30, Definition 2], we have introduced an unscented
transform to select sigma points from MFGI. For MFGB of
this paper, the unscented transform remains the same, except
that the new definition of νR in (15) is used. Given (Rk, xk) ∼
MG(µk,Σk, Pk, Uk, Sk, Vk), we select 7 + 2n = 13 sigma
points from MFG, together with 7 sigma points from the
noise Hu∆Wu in (44) according to the common unscented
transform for a Gaussian distribution in R3 (for example, see
[39, Chapter 9]). These sigma points are propagated to tk+1

through the discrete kinematics model (42) and (43) without
the noise term Hv∆Wv . Then a new MFG at tk+1 is recovered
from these propagated sigma points using MLE. The effect
of the noise term Hv∆Wv driving the gyro bias in (43) is
accounted by adding hGv to the new covariance matrix Σk+1

for xk+1, according to the following Proposition 3. Compared
with [30], this eliminates the need to take the unscented
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TABLE II
UNSCENTED UNCERTAINTY PROPAGATION

1: procedure MG(tk+1) = UNSCENTED PROPAGATION(MG(tk),Ωk)

2: Select sigma points and weights {(R, x,w)i}13i=1 from MG(tk).
3: Select sigma points and weights {(Hu∆Wu, w)j}7j=1 from
N (0, hGu) according to the common unscented transform of a Gaussian
distribution [39].

4: Propagate the sigma points through (42) and (43) without the noise
Hv∆Wv , i.e.,

Ri,j = Ri exp(h(Ω̂k + x̂i) + (Hu∆Wu)∧j ), xi,j = xi,

and calculate the weights as wi,j = wiwj .
5: Obtain (µk+1,Σk+1, Pk+1, Uk+1, Sk+1, Vk+1) from these 13 ×

7 = 91 sigma points (R, x,w)i,j using Theorem 4 and Theorem 5.
6: Let Σk+1 = Σk+1 + hGv

7: Set MG(tk+1) =MG(µk+1,Σk+1, Pk+1, Uk+1, Sk+1, Vk+1).
8: end procedure

transform of Hv∆Wv . The pseudocode for this uncertainty
propagation scheme is summarized in Table II.

Proposition 3 (MFG). Suppose (R, x) ∼ MG(µ,Σ, P, U, S,
V ) and x′ ∼ N (µ′,Σ′), and they are mutually independent.
Then (R, x+ x′) ∼MG(µ+ µ′,Σ + Σ′, P, U, S, V ).

Proof. Let y = x+ x′, then the density function for (R, y) is

fR,y(R, y) =

∫
x∈Rn

fR,x(R, x)fx′(y − x)dx

=
1

c

∫
x∈Rn

etr
(
FRT

)
exp

(
− 1

2 (x− µc)TΣ−1
c (x− µc)

)
× exp

(
− 1

2 (y − x− µ′)T (Σ′)−1(y − x− µ′)
)

dx

=
1

c′
etr
(
FRT

)
exp

{
− 1

2 (y − µc − µ′)T (Σc + Σ′)−1

× (y − µc − µ′)
}
,

where c, c′ are some normalizing constants, and the last
equality is from the addition of two independent Gaussian
random vectors. Comparing the above equation with (13)
yields the proposition.

C. Measurement Update

Finally, we present how to update the propagated MFG
when measurements are available. Here we consider two
cases when the attitude is directly measured, or when vectors
associated with attitude, such as the direction of magnetic
field or gravity, are measured. As the measurement update
is assumed to be completed instantaneously, the subscript k
denoting the time step is omitted throughout this subsection.
The variables relevant to the posterior distribution conditioned
by measurements are denoted by the superscript +.

First, suppose the attitude is measured by Na attitude sen-
sors as Zi ∈ SO(3), whose error is distributed by the matrix
Fisher distribution. More specifically, given the true attitude
Rt ∈ SO(3), the measurement error RTt Zi ∈ SO(3) follows
the matrix Fisher distribution with the parameter FZi

∈ R3×3

for i = 1, . . . , Na, which characterizes the accuracy and bias
of the i-th attitude sensor.

Next, suppose there are also Nv fixed reference vectors
aj ∈ S2 in the inertial reference frame, which are measured

by direction sensors in the body-fixed frame as zj ∈ S2 for
j = 1, . . . , Nv . Furthermore, given the true attitude Rt, the
noisy measurement zj is assumed to follow the von Mises
Fisher distribution [17] with mean direction RTt Bjaj ∈ S2 and
concentration parameter κj > 0. The parameter Bj ∈ SO(3)
specifies the constant bias of the direction sensor, and κj
specifies the concentration of its random noise.

Suppose the prior distribution of (R, x) before measurement
update follows MFG with parameters (µ,Σ, P, U, S, V ). By
Bayes’ rule and Theorem 3.2 in [24], the posterior den-
sity conditioned on all of the available measurements Z =
{Z1, . . . , ZNa , z1, . . . , zNv} is

p(R, x|Z) ∝ etr

((
F +

Na∑
i=1

ZiF
T
i +

Nv∑
j=1

κjBjajz
T
j

)
RT
)

× exp
(
− 1

2 (x− µc)TΣ−1
c (x− µc)

)
, (57)

where F , µc and Σc are defined as in Definition 2 with respect
to (µ,Σ, P, U, S, V ). The above posterior density of (R, x)|Z
is no longer MFG, as the tangent space at the mean attitude of
the updated matrix Fisher part is altered, i.e., the correlation
does not satisfy the constraint described in Theorem 1. Similar
to the previous two subsections, we match a new MFG with
parameters (µ+,Σ+, P+, U+, S+, V +) to this density through
MLE after calculating the required moments.

Theorem 8 (MFGB). Define F+ ∈ R3×3 as

F+ = F +

Na∑
i=1

ZiF
T
i +

Nv∑
j=1

κjBjajz
T
j , (58)

and let its proper singular value decomposition be F+ =
U+S+(V +)T . Also, let

ν+
R = (S+Q+ − (Q+)TS+)∨, (59)

for Q+ = (U+)TRV + ∈ SO(3). Then the moments of
the posterior density (57), namely E[R|Z], E

[
ν+
R |Z

]
and

E
[
ν+
R (ν+

R )T |Z
]

are identical to their counterparts in Theorem
3 after replacing U, S, V with U+, S+, V +, and

E[x|Z] = µ+ PE[νR|Z] , (60)

E
[
xxT |Z

]
= µµT + µE[νR|Z]

T
PT + PE[νR|Z]µT

+ PE
[
νRν

T
R |Z

]
PT + Σc, (61)

E
[
x(ν+

R )T |Z
]

= PE
[
νR(ν+

R )T |Z
]
, (62)

where

E[νR|Z] = Ṽ (S̃TE
[
Q+|Z

]
− E

[
Q+|Z

]T
S̃)∨, (63)

E
[
νRν

T
R |Z

]
= Ṽ E

[
ν̃+
R (ν̃+

R )T |Z
]
Ṽ T , (64)

E
[
νR(ν+

R )T |Z
]

= Ṽ E
[
ν̃+
R (ν+

R )T |Z
]
, (65)

with Ũ = UTU+, Ṽ = V TV + ∈ SO(3), S̃ = ŨTSṼ ∈
R3×3, and ν̃+

R ∈ R3 is

ν̃+
R = (S̃TQ+ − (Q+)T S̃)∨.

Proof. The expressions for E[R|Z], E
[
ν+
R |Z

]
,

E
[
ν+
R (ν+

R )T |Z
]
, and (60)-(62) can be obtained by integrating
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TABLE III
BAYESIAN ESTIMATION FOR ATTITUDE AND GYROSCOPE BIAS

1: procedure ESTIMATION(MG(t0),Ω(t))
2: Let k = 0.
3: repeat
4: Either MG(tk+1) = Analytical Propagation(MG(tk),Ω(tk)) or
MG(tk+1) = Unscented Propagation(MG(tk),Ω(tk)).

5: k = k + 1.
6: until Z(tk+1) or z(tk+1) ia available
7: MG(tk+1) = Measurement Update(MG(tk+1),Z(tk+1),z(tk+1)).
8: Obtain the estimates as R(tk+1) = Uk+1V

T
k+1, x(tk+1) = µk+1

for MG(tk+1).
9: go to step 3.

10: end procedure
11: procedure MG+ = MEASUREMENT UPDATE(MG−,Z,z)
12: Compute F+ from (58), and calculate its proper SVD as

U+S+(V +)T = F+.
13: Calculate the moments of the posterior density in Theorem 8.
14: Obtain µ+,Σ+, P+ according to Theorem 5.
15: Set MG+ =MG(µ+,Σ+, P+, U+, S+, V +)
16: end procedure

these variables with respect to the density (57). Since
Q = UTRV = ŨQ+Ṽ T , we have

νR = (SŨQ+Ṽ T−Ṽ (Q+)T ŨTS)∨ = Ṽ (S̃TQ+−(Q+)T S̃)∨,

from which (63)-(65) follow.

Remark 3. E
[
ν̃+
R (ν̃+

R )T |Z
]

and E
[
ν̃+
R (ν+

R )T |Z
]

can be ex-
pressed as linear combinations of E

[
Q+
ijQ

+
kl|Z

]
for i, j, k, l ∈

{1, 2, 3}, therefore they can be calculated using the second
order moments of the matrix Fisher distribution Q+|Z ∼
M(S+).

Since the attitude part of (57) is already a matrix Fisher
density, U+S+(V +)T = F+ is the solution to the marginal
MLE for the matrix Fisher part. The conditional MLE is
solved by Theorem 5 with the moments calculated above,
which yields µ+, Σ+ and P+. These provide the measurement
update to represent the posterior distribution conditioned by
the measurement as MFG.

The proposed uncertainty propagation and measurement
update steps constitute a Bayesian attitude and gyro bias
estimator. The current belief represented by MFG can be
propagated until an additional measurement is available, based
on which the propagated belief is updated. The estimates for
the attitude and gyro bias are given by UV T and µ, respec-
tively. The pseudocode for the proposed Bayesian estimator
is presented in Table III. A set of MATLAB codes for the
proposed MFG and estimators are available at [40].

V. NUMERICAL SIMULATIONS

In this section, we compare the proposed Bayesian esti-
mators based on MFG with the well-established MEKF and
UKF [41] through numerical studies. We consider a rotational
motion of a rigid body where three Euler angles (body-
fixed 3-2-1) follow sinusoidal waves with the frequency at
0.35 Hz, and the amplitudes of π, π/2, and π, respectively.
The corresponding average angular speed is 6.17 rad/s. The
measured angular velocity is obtained from its true value
by adding a bias and a white noise. The gyroscope bias is

modeled as a Wiener process (bias-instability noise) starting
at zero with the isotropic strength σv = 500 deg/h/

√
s,

i.e., Hv = σvI3×3 in (41). The white noise of angular
velocity (angle random walk) has the isotropic strength σu =
10 deg/

√
s, i.e., Hu = σuI3×3 in (40). These two values are

greater than those of typical gyroscopes, but they are selected
to generate large uncertainties.

We consider two vector measurements, given by

zi = RTt ai + vi (66)

for i ∈ {1, 2}, and they are normalized to have unit lengths. In
the above equation, the reference directions fixed in the inertial
frame are chosen as a1 = e2 and a2 = e1. The true attitude is
denoted by Rt, and v1, v2 are Gaussian noises distributed by
v1 ∼ N (0, 0.01I3×3), v2 ∼ N (0, σ2

2I3×3). These follow the
common MEKF and UKF frameworks in attitude estimation.
To simulate the proposed MFG filters, ai + vi for i = 1, 2
are matched to von Mises Fisher distributions by Monte Carlo
sampling to obtain κ1, κ2 in (58) with B1 = B2 = I3×3.

The initial attitude R0 is set as the true attitude rotated about
its first body-fixed axis by 180°, and the initial bias is set as
x0 = [0.2, 0.2, 0.2]T rad/s. The initial attitude uncertainty is
set as δR ∼ N (0, 1010I3×3) for MEKF and UKF, which is
very close to the uniform distribution, and it is matched to a
matrix Fisher distribution through Monte Carlo sampling for
MFG filters. The initial bias uncertainty is 0.12I3×3, and the
correlation between attitude and bias is zero. The gyroscope
measurement frequency fgyro varies from 150 Hz to 10 Hz,
and vector measurements are sampled at every five gyroscope
samples. The simulation period is 300 s.

Six estimation schemes are compared, namely MEKF, UKF,
two estimators with MFGB (one with the analytical propaga-
tion and the other with the unscented propagation, denoted
respectively by MFGBA and MFGBU), and their counterparts
with MFGI (denoted by MFGIA and MFGIU respectively).
We perform simulations with respect to the varying second
vector measurement accuracy represented by σ2, and the
varying gyroscope measurement frequency fgyro. For each
case, one hundred Monte Carlo simulations (with respect to
the random noise) are carried out. Then, the attitude and bias
errors are averaged across all time steps in one simulation,
and further averaged across all simulations. Paired t-tests
(N = 100, α = 0.001) are performed between MEKF, UKF
and MFG filters, and between MFGB and MFGI to indicate
any statistically significant difference.

A. Effects of the Second Vector Measurement

In this subsection, the effect of the accuracy of the second
vector measurement on estimation errors is investigated. More
specifically, its error variance is varied as σ2

2 ∈ {0.01, 0.1,
1, 5, 10, 50, 200, ∞}, with the fixed fgyro =150 Hz. The
first case of σ2

2 = 0.01 corresponds to when the second vector
measurement is as accurate as the first one. As σ2 is increased,
the measurement becomes gradually less accurate, until it is
no longer used when σ2

2 =∞.
The full attitude error is defined as the angle between

the true attitude and the estimated attitude. As the second
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TABLE IV
ATTITUDE (deg) AND BIAS (deg/s) ERRORS (S.D.) FOR DIFFERENT SECOND VECTOR MEASUREMENT ACCURACIES

σ2
2 MEKF UKF MFGIA MFGIU MFGBA MFGBU

0.01 attitude error (full) 5.05(0.08) 5.02(0.08) 4.82(0.04)a,b 4.82(0.04)a,b 4.82(0.04)a,b 4.82(0.04)a,b

bias error 3.6(0.8) 2.5(0.5) 2.6(0.5)a 2.6(0.5)a 2.6(0.5)a 2.6(0.5)a

0.1 attitude error (full) 7.06(0.25) 6.95(0.16) 6.67(0.11)a,b 6.67(0.11)a,b 6.67(0.11)a,b 6.67(0.11)a,b

bias error 4.0(0.9) 2.6(0.5) 2.8(0.5)a 2.8(0.5)a 2.8(0.5)a 2.8(0.5)a

1 attitude error (full) 13.8(1.4) 13.3(1.3) 10.1(0.4)a,b 10.1(0.4)a,b 10.1(0.4)a,b 10.1(0.4)a,b

bias error 4.1(0.9) 2.6(0.5) 2.9(0.5)a,d 2.9(0.5)a,d 2.9(0.5)a,d 2.9(0.5)a,d

5 attitude error (full) 51.0(17.4) 44.4(11.7) 14.4(0.9)a,b 14.4(0.9)a,b 14.4(0.9)a,b 14.4(0.9)a,b

bias error 5.6(2.3) 3.1(0.8) 3.0(0.5)a 3.0(0.5)a 2.9(0.5)a 2.9(0.5)a

10
attitude error (full) 75.0(17.1) 72.2(16.9) 17.0(1.3)a,b 17.0(1.3)a,b 17.0(1.3)a,b 17.0(1.3)a,b

attitude error (partial) 4.19(0.12) 4.11(0.05) 4.00(0.04)a,b 4.00(0.04)a,b 4.00(0.04)a,b,e 4.00(0.04)a,b,e

bias error 6.7(4.1) 3.4(0.9) 3.0(0.5)a,b 3.0(0.5)a,b 3.0(0.5)a,b,e 3.0(0.5)a,b,e

50
attitude error (full) 85.0(17.1) 86.9(16.0) 25.6(4.3)a,b 25.5(4.4)a,b 25.3(4.4)a,b,e 25.4(4.5)a,b

attitude error (partial) 4.19(0.06) 4.11(0.05) 4.01(0.04)a,b 4.01(0.04)a,b 4.00(0.04)a,b,e 4.00(0.04)a,b,e

bias error 6.5(2.7) 3.5(1.0) 3.3(0.6)a 3.3(0.6)a 3.1(0.6)a,b,e 3.1(0.6)a,b,e

200 attitude error (partial) 4.19(0.06) 4.11(0.05) 4.02(0.04)a,b 4.01(0.04)a,b 4.00(0.04)a,b,e 4.00(0.04)a,b,e

bias error 6.5(2.6) 3.5(1.0) 5.0(1.0)a,d 4.3(1.0)a,d 3.4(0.7)a,e 3.4(0.8)a,e

∞ attitude error (partial) 4.24(0.11) 4.10(0.06) 4.20(0.05)a,d 4.16(0.05)a,d 3.99(0.04)a,b,e 3.99(0.04)a,b,e

bias error 6.5(2.4) 3.7(1.1) 20.1(1.4)c,d 18.7(1.6)c,d 3.6(0.8)a,e 3.7(0.8)a,e

a(c) MFG filter is significantly better (worse) than MEKF; b(d) MFG filter is significantly better (worse) than UKF;
e MFGB filter presented in this paper is significantly better than MFGI filter of [30].
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Fig. 5. Estimation errors for varying accuracies of the second vector
measurement: (a) full attitude error; (b) partial attitude error; (c) bias error
for MEKF, UKF, MFGIA and MFGBA with varying σ2

2 . The errors of the
unscented MFG filters are similar with the analytical MFG filters, and they
are omitted for readability.
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Fig. 6. (a) Full attitude error of MEKF, UKF, MFGIA and MFGBA for a
sample simulation (σ2

2 = 0.1, fgyro = 150Hz) during the first three seconds.
(b) Full attitude error (0 s to 300 s) for a sample simulation (σ2

2 = 10, fgyro =
150Hz). The error of the unscented MFG filters is similar to the analytical
MFG filters. .

measurement becomes more inaccurate, the full attitude cannot
be completely estimated because the rotation around the first
reference vector becomes unobservable [42]. Thus, the partial
attitude error is defined as the angle between RTt a1 and
RTa1, where Rt and R are the true attitude and the estimated
attitude, respectively. The partial attitude error only captures
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Fig. 7. Bias error (0 s to 300 s) in an example simulation (σ2
2 = ∞,

fgyro =150 Hz).
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0
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Wrapped vs. unwrapped Gaussian density
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Fig. 8. Gaussian density vs. wrapped Gaussian density with µ = 0 and
σ2 = 10. The wrapped Gaussian distribution is defined in the circular space
R/2π by identifying θ with θ + 2kπ for k ∈ Z, so the densities beyond
[−π, π] are wrapped into [−π, π].

the accuracy along the first reference vector. The simulation
results are summarized in Table IV and Fig. 5.

When σ2
2 ∈ {0.01, 0.1, 1}, the attitude error of the MFG

filters is slightly lower than MEKF and UKF, and this advan-
tage is mainly contributed by the faster initial convergence
of MFG filters as illustrated in Fig. 6(a). This is because
for MEKF, the linearization of the measurement function is
accurate only if the attitude error is small; and for UKF, the
sigma points from a very large variance (1010 in the initial
step) suffer from the wrapping error, so they are unable to
capture the large initial uncertainty. The bias error of the MFG
filters is also lower then MEKF, and is comparable to UKF
(except when σ2

2 = 1, UKF is statistically lower).
When σ2

2 ∈ {5, 10, 50}, the full attitude error of the MFG
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TABLE V
ATTITUDE (deg) AND BIAS (deg/s) ERRORS (S.D.) FOR DIFFERENT GYROSCOPE MEASUREMENT FREQUENCIES

fgyro (Hz) MEKF UKF MFGIA MFGIU MFGBA MFGBU

150
attitude error (full) 75.0(17.1) 72.2(16.9) 17.0(1.3)a,b 17.0(1.3)a,b 17.0(1.3)a,b 17.0(1.3)a,b

attitude error (partial) 4.19(0.12) 4.11(0.05) 4.00(0.04)a,b 4.00(0.04)a,b 4.00(0.04)a,b,e 4.00(0.04)a,b,e

bias error 6.7(4.1) 3.4(0.9) 3.0(0.5)a,b 3.0(0.5)a,b 3.0(0.5)a,b,e 3.0(0.5)a,b,e

100
attitude error (full) 80.9(16.5) 77.3(17.8) 19.0(1.6)a,b 19.0(1.6)a,b 19.0(1.7)a,b 19.0(1.7)a,b

attitude error (partial) 4.66(0.08) 4.54(0.07) 4.41(0.05)a,b 4.41(0.05)a,b 4.41(0.05)a,b,e 4.41(0.05)a,b,e

bias error 6.9(2.5) 3.7(1.1) 3.3(0.6)a,b 3.2(0.6)a,b 3.2(0.6)a,b,e 3.1(0.6)a,b,e

50
attitude error (full) 85.7(16.0) 84.2(15.3) 23.2(2.2)a,b 23.2(2.3)a,b 23.2(2.2)a,b 23.2(2.3)a,b

attitude error (partial) 5.61(0.12) 5.41(0.08) 5.23(0.07)a,b 5.23(0.07)a,b 5.22(0.07)a,b,e 5.22(0.07)a,b,e

bias error 6.9(2.2) 4.2(1.4) 3.6(0.6)a,b 3.6(0.6)a,b 3.4(0.7)a,b,e 3.4(0.7)a,b,e

25
attitude error (full) 89.6(11.9) 90.2(10.6) 29.2(3.6)a,b 29.0(3.6)a,b 29.1(3.6)a,b 29.0(3.7)a,b

attitude error (partial) 6.82(0.23) 6.55(0.14) 6.23(0.10)a,b 6.22(0.09)a,b 6.21(0.09)a,b,e 6.21(0.09)a,b,e

bias error 8.5(3.0) 5.8(2.1) 4.1(0.8)a,b 4.0(0.8)a,b 3.7(0.8)a,b,e 3.7(0.8)a,b,e

10
attitude error (full) 90.1(10.0) 91.2(2.9) 44.0(7.4)a,b 43.6(9.5)a,b 43.7(8.5)a,b 43.1(9.2)a,b

attitude error (partial) 10.5(0.4) 10.4(0.3) 9.4(0.15)a,b 9.3(0.15)a,b 9.3(0.15)a,b,e 9.3(0.15)a,b,e

bias error 14.0(5.5) 17.8(6.6) 6.3(1.4)a,b 5.7(2.0)a,b 5.1(1.6)a,b,e 5.0(1.7)a,b,e

a(c) MFG filter is significantly better (worse) than MEKF; b(d) MFG filter is significantly better (worse) than UKF;
e MFGB filter presented in this paper is significantly better than MFGI filter of [30].

filters is much lower than MEKF and UKF (Fig 6(b)). This
is because when the second vector measurement is inaccurate,
the attitude uncertainty becomes highly dispersed along the
rotation about the first reference vector, and the Gaussian
distribution used by MEKF and UKF is incapable of modeling
such large dispersion due to the wrapping error. This is
illustrated in Fig. 8 on the circular space, where the Gaussian
densities beyond [−π, π] are wrapped into [−π, π] since they
represent the same angle, and the resulting wrapped Gaussian
distribution is much more dispersed if the original Gaussian
has large variance. Also, the partial attitude error and bias
error of the MFG filters are slightly lower than MEKF and
UKF. Next, comparing MFGB with MFGI, MFGB begins to
exhibit some statistical advantages in partial attitude and bias
errors, although their relative difference is still very small.
This advantage can be attributed to that the attitude uncertainty
becomes more non-isotropic as the second vector measurement
becomes less accurate, so the distinction between the two
definitions discussed in Section III-F begins to emerge.

When σ2
2 ∈ {200, ∞}, MFGBA and MFGBU are still

slightly more accurate than MEKF and UKF in partial attitude
estimates, and more accurate than MEKF in bias estimation.
On the other hand, the performance of MFGIA and MFGIU
in bias estimation degrades greatly, which affects the attitude
error especially when σ2

2 = ∞. In Fig. 7, the bias error of
a sample simulation (σ2

2 = ∞) is shown, where MFGIA and
MFGIU make little corrections to the bias. It turns out that
there is little correlation built between the bias and attitude
for MFGI during the uncertainty propagation, indicating that
the attitude-bias correlation with non-isotropic attitude mea-
surements cannot be modeled properly with MFGI.

B. Effects of the Measurement Frequency
Next, the effect of the gyroscope measurement frequency

is investigated with fgyro ∈ {150, 100, 50, 25, 10} Hz.
The variance for the second direction measurement is fixed
with σ2

2 = 10. The corresponding simulation results are
summarized in Table V and Fig. 9.

0 50 100
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25

50

100

150

att full err (deg)

MEKF UKF MFGIA MFGBA

3 7 11
att partial err (deg)

0 10 20
bias err (deg/s)

(a) (b) (c)

Fig. 9. Estimation errors for different fgyro: (a) full attitude error; (b) partial
attitude error; (c) bias error for MEKF, UKF, MFGIA and MFGBA. The error
of the unscented MFG filters is similar to the analytical MFG filters.

In contrast to MFG filters, MEKF and UKF are unable
to estimate the full attitude for all measurement frequencies
(the estimation errors are greater than 72°), although the full
attitude error for MFG filters gradually becomes large as fgyro
is decreased. The partial attitude error of MFG filters is slightly
lower than MEKF and UKF for all fgyro, due to their faster
initial convergence. The bias estimation accuracy of MFG
filters is also better than MEKF and UKF, and this advantage
becomes larger as fgyro is decreased. At fgyro = 10 Hz, the bias
error of MEKF and UKF is unable to converge, whereas it still
remains relatively low for MFG filters. Comparing MFGB with
MFGI, the advantage of MFGB in the bias estimation becomes
greater as fgyro is decreased. This is because the advantage of
MFGB in the uncertainty propagation step gets intensified by
lowering the measurement frequency.

C. Computation Efficiency

Although the proposed MFG filters exhibit better accu-
racy and faster convergence rate, they require substantially
more computation time than MEKF and UKF. Table VI
lists the computation time for one discrete time step (σ2

2 =
10, fgyro =150 Hz) of all filters measured in MATLAB R2020b
with an AMD Ryzen 3900X CPU. It shows the MFG filters
take more than 100 times of computation time than MEKF,
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TABLE VI
COMPUTATION TIME (S.D.) FOR ONE DISCRETE TIME STEP

MEKF UKF MFGIA MFGIU MFGBA MFGBU

step time (ms) 0.075(0.009) 1.6(0.2) 14.3(1.6) 20.6(2.4) 14.4(1.6) 20.5(2.2)

and they take about 10 times more than UKF. For analytical
MFG filters, solving (11) takes 14.1% of the computation
time, and calculating the moments in Theorem 6, Theorem
7 and Theorem 8 takes 85.5%. For unscented MFG filters,
solving (11) takes 56.0% of the computation time, selecting
and propagating sigma points take 37.6%, and calculating the
moments in Theorem 5 and Theorem 8 takes 6.0%.

VI. CONCLUSIONS

In this paper, a new definition of the matrix Fisher–
Gaussian distribution is proposed to describe the angular-
linear correlation between SO(3) and Rn in a global fashion.
It is constructed by conditioning a (9 + n)-variate Gaussian
distribution from R9+n into SO(3) × Rn, while constraining
the correlation between R9 and Rn to be non-zero only
along the tangent space of the mean attitude, thereby avoiding
over-parameterization. Compared with the prior definition of
the matrix Fisher–Gaussian distribution in [30], the proposed
distribution formulates the correlation with the axis of rotation
resolved in the body-fixed frame. This is more suitable in
attitude estimation as the bias of the gyroscope is resolved
in the body-fixed frame, and it is particularly advantageous
when the attitude uncertainty is non-isotropic.

Next, based on the proposed MFG, two Bayesian estimators
are formulated depending on how the uncertainty is propa-
gated. Numerical simulations demonstrate the advantage of
the proposed MFG filters over the well-established multiplica-
tive extended Kalman filter and unscented Kalman filter in
accuracy and convergence, particularly when the measurement
noise is large and the measurement frequency is low.

While this paper focuses on the attitude and gyro bias
estimation, the proposed MFG can characterize the angular-
linear correlation between the attitude of a rigid body and any
linear random variable of an arbitrary dimension in a global
fashion, which is the fundamental contribution of this paper.
There is a great potential that the proposed MFG becomes
utilized in any statistical analysis involving the rotation motion
coupled with linear dynamics in the board area of science and
engineering.

APPENDIX A
EQUIVALENT CONDITIONS FOR MFGB

In this appendix, we present the equivalent conditions for
MFGB. The characterization for MFGI is given in [31]. First,
to deal with the uniqueness problem for repeated singular
values of F , we augment Definition 1 by the following
uniqueness condition: the first nonzero element of each column
of U ′ is positive [19]. This condition ensures that the columns
of U and V cannot undergo simultaneous sign changes.

Theorem 9 (MFGB). Suppose F = USV , F̃ = Ũ S̃Ṽ T are
the proper SVD of F and F̃ with the augmented uniqueness
condition. Then MG(µ,Σ, P, U, S, V ) and MG(µ̃, Σ̃, P̃ , Ũ ,
S̃, Ṽ ) are equivalent if and only if µ = µ̃, S = S̃, and one of
the following conditions is satisfied:

1) if s1 = s2 = s3 = 0, then Σ = Σ̃.
2) if s1 6= s2 = s3 = 0, then ∃θ1, θ2 ∈ R such that

Ũ = UT1, Ṽ = V T2 where T1 = exp(θ1ê1) and T2 =

exp(θ2ê1), [P̃:,2, P̃:,3] = [P:,2, P:,3]

[
cos θ2 − sin θ2

sin θ2 cos θ2

]
where P:,i is the i-th column of P , and Σ = Σ̃.

3) if s1 = s2 = s3 6= 0, then ∃T ∈ SO(3) such that
Ũ = UT , Ṽ = V T , P̃ = PT and Σ = Σ̃.

4) if s1 6= s2 = s3 6= 0, then ∃θ ∈ R such that Ũ = UT ,
Ṽ = V T , P̃ = PT , where T = exp(θê1), and Σ = Σ̃.

5) if s1 = s2 6= |s3|, then ∃θ ∈ R such that Ũ = UT ,
Ṽ = V T , P̃ = PT , where T = exp(θê3), and Σ = Σ̃.

6) if s1 6= s2 6= |s3|, then U = Ũ , V = Ṽ , P = P̃ , and
Σ = Σ̃.

7) if s1 = s2 = −s3 6= 0, then ∃T ∈ SO(3) such that
Ũ = UD12TD12, Ṽ = V T , P̃ = PT , and Σ̃ = Σ +
P
[
T (tr(S) I3×3 − S)TT − (tr(S) I3×3 − S)

]
PT .

8) if s1 6= s2 = −s3 6= 0, then ∃θ ∈ R such
that Ũ = UTT , Ṽ = V T , P̃ = PT , and Σ̃ =
Σ + P

[
T (tr(S) I3×3 − S)TT − (tr(S) I3×3 − S)

]
PT ,

where T = exp(θê1).

Proof. The proof is very similar to Theorem 12 for MFGI in
[31], which can be adapted to this theorem by replacing the
expression for νR without difficulties. The detailed proof is
therefore omitted.

In other words, Theorem 9 states that if F has repeated
singular values and s3 ≥ 0, then MFG can be parameterized
differently by rotating U , V , and P in a consistent way. When
s3 < 0, it is noticeable that Σ and Σ̃ are also different as
indicated in case 7) and 8). The reason for this is when s2 =
−s3, T (tr(S) I3×3 − S)TT 6= tr(S) I3×3 − S.

The uniqueness problem caused by simultaneous sign
changes of any two columns of U and V is addressed in the
following proposition.

Proposition 4 (MFG). Let i ∈ {1, 2, 3}, thenMG(µ,Σ, P, U,
S, V ) and MG(µ,Σ, PDi, UDi, S, VDi) are equivalent.

Proof. Let F , µc, Σc and F̃ , µ̃c, Σ̃c be the intermediate param-
eters of the two MFGs respectively, as stated in Proposition
1. Then it is clear that

F̃ = UDiSDTi V T = USV T = F,

Σ̃c = Σ− PDi(tr(S) I3×3 − S)DTi PT = Σc,
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and for all R ∈ SO(3),

µ̃c = µ+ PDi(SDTi UTRVDi −DTi V TRTUDiS)∨

= µ+ P (DiSDTi UTRV − V TRTUDiSDTi )∨ = µc.

Therefore by Proposition 1, the two MFGs are equivalent.
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