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Exceptional points (EPs) are critical points in the parameter space of non-Hermitian systems, where two or
more eigenvalues and eigenvectors simultaneously coalesce. The remarkable physics and behavior of waves at
these EPs have raised considerable attention. Previous research has accessed EPs in parity-time (PT) symmetric
systems through spatially modulated parameters. Using acoustics, this Letter demonstrates a different family of
EPs in classical wave systems that emerge from coordinated modulation of mass density and loss/gain in time.
This condition can create nonreciprocal coupling between arbitrary modes at the EPs, leading to exotic behaviors
such as unilateral frequency conversion and linear amplification of waves that are unattainable at conventional
time-invariant systems. Moreover, these phenomena can be attained with only loss, and acoustic gain via modal
energy transfer is demonstrated in a loss-only system at such EPs. Our work marries time-varying systems with
EPs, which could open new avenues for wave manipulation.
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Exceptional points (EPs) are branch-point singularities in
the parameter space of a system. First introduced in the realm
of quantum mechanics [1], the rich physics of exceptional
points has sparked a wide interest in both optics [2–8] and
acoustics [9–17]. By harnessing the parity-time (PT) sym-
metric systems, i.e., a particular family of non-Hermitian
Hamiltonians, the existence of EPs has been demonstrated in
various non-Hermitian systems, allowing for unprecedented
applications [18–22].

To date, the vast majority of the EPs have been realized
through static non-Hermitian systems, where the material
parameters including loss/gain follow symmetric and an-
tisymmetric distribution in space and do not change over
time. In those PT-symmetric systems, the coupling strengths
between the two modes are almost always identical. The
emergence of time as a new degree of freedom has recently
opened new and intriguing avenues for wave control. The
modulation of system parameters in time and, more generally,
space-time has enabled flourishing new physics, including
mode transitions [23–28], unidirectional parametric amplifi-
cation [27,29,30], nonreciprocal devices [31–38], magnetic-
free circulators [39,40], topological insulators [41,42], and
multifunctional nonreciprocal metasurfaces [23]. However,
whether EPs exist in time modulated systems and what new
physics EPs can bring to the time modulated systems remain
largely unexplored.

In this Letter, by marrying time modulation with the
concept of EP, we demonstrate a different class of EPs in
space-time modulated systems. We illustrate such EPs in a
time modulated and, more generally, space-time modulated
acoustic system, in which carefully coordinated modulation of
the density and loss/gain in time gives rise to the singularity
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of the system’s Hamiltonian. At such EPs, mode coupling
becomes unilateral, leading to exotic wave behavior such as
nonreciprocal mode coupling and linear amplification of the
participating mode, as opposed to the exponential growth in
traditional gain media. Moreover, when a loss offset is intro-
duced, we show that acoustic gain can be achieved in a purely
lossy system through modal energy transfer. The theoretical
findings are verified with independent finite-difference time-
domain (FDTD) simulations. This physics at the space-time
EPs could also be applied to other wave systems such as
photonics and elastodynamics.

Accessing EP in space-time modulated systems. Let us con-
sider a general space-time modulated system shown in Fig. 1.
The system can be readily reduced to time-only modulation
by enforcing a uniform modulation in space. The density
and loss/gain in a one-dimensional dispersive waveguide are
modulated in the traveling-wave manner:

ρ = ρ0[1 + m cos(�t − βx)],

η = η0 + nη1 sin(�t − βx),
(1)

where ρ0 is the static density of air, η0 is the loss offset, and
η1 represents the modulation over the loss factor. m and n
are unitless numbers, denoting the modulation depth of the
density and loss factor, respectively. � and β represent the
frequency and momentum of the traveling-wave-like modula-
tion. In such modulated systems, modes that are orthogonal in
static systems can be coupled when the modulation satisfies
the frequency-matching and phase-matching conditions. The
pressure field p and velocity field v satisfy Newton’s second
law and Hooke’s law,

−∂ p

∂x
= ρ(t )

∂v

∂t
+ η(t )v,

−∂ p

∂t
= κ

∂v

∂x
. (2)
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(a)
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FIG. 1. Schematics of the space-time exceptional point (EP).
(a) Two modes are coupled in a system where the density and
loss/gain are modulated in space and time. (b) In the dispersive
media, only the two target modes are participating in the coupling.
At the EPs, the coupling between the two modes becomes nonrecip-
rocal.

Considering only two modes involved in the coupling, the
velocity field in the waveguide can be written as v =
A1(x)e j(ω1t−k1x) + A2(x)e j(ω2t−k2x), where ω1,2 and k1,2 denote
the angular frequency and wave number of the two modes.
Defining ψ (x) = [A1(x), A2(x)]T , the evolution of the two
modes in such a space-time modulated waveguide can be
derived (see Supplemental Material for full derivation [43]):

∂xψ (x) = − jHψ (x),

H =
[− jγ1 μ12

μ21 − jγ2

]

=
[ − j η0

2ρ0c1

mρ0ω2−nη1

4ρ0c2
mρ0ω1+nη1

4ρ0c1
− j η0

2ρ0c2

]
. (3)

Here, c1,2 = ω1,2/k1,2 denotes the sound speed of the two
coupled modes. By tuning the modulation depth of the density
and loss, the coupling coefficient can be radically different.
The eigenvalues of the Hamiltonian in Eq. (3) are

λ± = − j
γ1 + γ2

2
±

√
μ12μ21 −

(γ1 − γ2

2

)2

. (4)

When 4μ12μ21 = (γ1 − γ2)2, the eigenvalues change from
real to complex conjugate pairs and, at this transition point,
the two eigenvalues coalesce to give an EP. Such an EP can
be achieved by keeping the modulation depth of density fixed
at m = m0, while varying the modulation depth of loss n.
For simplicity, let us first consider the case where the loss
offset is 0, i.e., η0 = 0. The eigenvalues can be simplified as
λ± = ±√

μ12μ21. We can immediately tell that the system

(a)

(b)

FIG. 2. Real and imaginary parts of the eigenvalues in the m-n
parameter space. The two eigenvalues coalesce along the two lines
of the EPs. The EPs can be achieved by fixing m and varying n, or by
fixing n and varying m.

reaches its EP when either μ12 or μ21 vanishes. Varying n
renders the eigenvalues to transit between purely real and
purely imaginary around two EPs n1 = m0ρ0ω2/η1 and n2 =
−m0ρ0ω1/η1. Likewise, the EP can also be achieved by fixing
n and varying m. The real and imaginary parts of the eigenval-
ues in the full m-n parameter space are shown in Fig. 2.

What happens at the space-time EP? When the parameters
m, n are tuned to reach the EP, the two eigenvalues coalesce
and the Hamiltonian cannot be diagonalized. As a result,
the evolution operator cannot be calculated. In this case, the
behavior of the two participating modes can be solved by
examining Eq. (3). If we pick the EP at n1 = m0ρ0ω2/η1, the
two modes satisfy

A1(x) = A1(0),

A2(x) = − j
m0(ω1 + ω2)

4c1
A1(0)x + A2(0). (5)
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FIG. 3. Simulation of wave propagation at the exceptional point of the system. (a) Real and (b) imaginary part of the eigenvalues when
fixing m = 0.05 and varying n. The two EPs correspond to μ12 = 0 and μ21 = 0, respectively. (c) Spectrum variation as the wave propagates
in the system at the EP when η0 = 0. (d) Good agreement can be found between theory and simulation. The nonreciprocal coupling at the EP
gives rise to linear amplification. (e),(f) Spectrum and target mode variation at the EP when η0 = mη1. Within a short range, gain is achieved
in a loss-only system. All the mode amplitudes are normalized by the input amplitude |A1(0)|.

Although the two participating modes are coupled through
space-time modulation at such an EP, the mode A1 remains un-
changed while propagating in the system independent of A2.
On the other hand, |A2| experiences a linear growth, with the
growth rate depending on A1. Such an exotic behavior happens
because the mode coupling is nonreciprocal. Different from
the conventional gain media that is typically exponential, the
system provides a linear gain. Such a different property at EPs
paves the way for designing robust linear wave amplifiers. It
is noted here that these different and nonreciprocal behaviors
are the results of time modulation, which cannot be achieved
through conventional EP systems where parameters are mod-
ulated in space.

In most practical systems, it is easier to control loss instead
of gain. In our system, we approach the EP in the loss-only
system by imposing a nonzero loss offset η0 so that η always
remains positive during the modulation. In this case, nonzero
γ1 implies that the mode A1 experiences an exponential decay
while propagating in the system. For mode A2, it will be gener-
ated and amplified in a short range. However, the growth rate
decays with mode A1 and is eventually dominated by loss. An
interesting phenomenon in such a system is that within a short
range, acoustic amplification can be achieved with loss only.

To verify the above findings, we numerically simulated
the space-time modulated system using the finite-difference
time-domain (FDTD) method implemented in MATLAB. We
designed a dispersive waveguide so that only the two target
modes are allowed by the space-time coupling. In the nondis-
persive case, more modes can be coupled through space-time
modulation, and the corresponding results are summarized in
the Supplemental Material [43]. In the FDTD simulation, the

dispersion is introduced by imposing an ordinary differential
equation to each grid point, while updating the velocity field.
The system resembles a metamaterial composed of an air
waveguide sideloaded with Helmholtz resonators with a reso-
nance frequency of 3980 Hz. The density of air is 1.21 kg/m3.
The effective compressibility, and hence the sound speed,
can be theoretically calculated [44]. The calculated dispersion
relation of the one-dimensional waveguide follows Fig. 1(b).
The modulated waveguide has a length of 1 m, connected
to two nonmodulated regions with a length of 0.1 m on the
input side and 10 m on the output side to eliminate reflection.
Perfect matched layers are applied on both ends to reduce the
unwanted reflection. To study the steady-state response of the
system, the first 20 ms duration of the signals is discarded and
Fourier transform is applied to analyze their spectra.

We pick the two arbitrary modes (ω1, k1) = (2π ×
2500 Hz, 65.04 rad/m) for mode A1, (ω2, k2) = (2π ×
3500 Hz, 123.63 rad/m) for mode A2. In the simulation,
we approach the EP by fixing the density modulation depth
m = 0.1 and varying the loss modulation depth n. For the case
of η0 = 0, the real part and imaginary part of the eigenvalue
with varying n are plotted in Figs. 3(a) and 3(b). At two values
n1 = 0.1 and n2 = −0.0714, the eigenvalues coalesce and the
systems arrives at the EPs, corresponding to μ12 = 0 and
μ21 = 0, respectively. We take the μ12 = 0 case as an example
and set [A1(0), A2(0)] = [1, 0] as the input. The spectrum
variation during the propagation is shown in Fig. 3(c). We can
see that mode 1 does not change during propagation, while
mode 2 is amplified linearly, as predicted by the theory. In the
simulation, all the other modes are negligible thanks to the
frequency dispersion. A comparison between the theoretical
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model and FDTD simulation is provided in Fig. 3(d), showing
excellent agreement The results also validate the assumption
that the envelopes of both waves are changing slowly.

Figures 3(c) and 3(d) showed nonreciprocal phonon transi-
tion at space-time EPs in a system containing no loss offset.
However, acoustic gain in the media can be difficult to control
in practice. Therefore, the study of space-time EP in loss-only
systems becomes critical. In Figs. 3(e) and 3(f), we show the
spectrum variation and the comparison between theory and
simulation in a case where η0 = mη1 so the system contains
only loss. In this case, we set η1 = ρ0ω2 = 26 609 Pa s m−2

and m = 0.1. We can see that mode 1 decays exponentially,
while mode 2 grows in a short range through modal energy
transfer, until eventually the gain provided by mode 1 cannot
support the growth of mode 2. Note here that in this case,
mode 1 is only excited through one end of the media. When
mode 1 is pumped across the whole modulated area, which
is analogous to optical pumping in lasers, a constant growth
of mode 2 can be observed. Nevertheless, it is interesting to
show that at EP, the acoustic gain can be achieved even in a
loss-only system.

In summary, we have unveiled the exceptional points in a
time modulated system. We have shown that by modulating
the density and loss factor in a coordinated manner, the system
experiences a transition between the exact phase and broken
phase. At the EP, the coupling between two modes at dif-
ferent frequencies becomes nonreciprocal, a property which
is not found in conventional time-invariant PT symmetric
systems. This nonreciprocal coupling gives rise to different
phenomena such as nonreciprocal, linear amplification of the
modes, paving the way for designing robust, linear, and con-
trollable wave amplifiers. We have also shown that gain can be
achieved in a loss-only system at the EPs. In many scenarios
where space-time modulation is difficult to implement prac-
tically, a uniform modulation is preferred. Such requirement

can be met by designing cavities supporting discrete energy
levels or by picking modes with identical wave numbers. In
the Supplemental Material [43], the case of a nonreciprocal
interband phonon transition with only time modulation is
demonstrated. In this case, time-reversal symmetry is broken
and nonreciprocal wave behavior could be achieved without
introducing any spatial bias.

The EPs in a time-varying system are not constrained to
acoustics, but equally work for optics, and may open new
routes for wave manipulation and communication with new
functionalities. For practical realization, it is expected that
the space-time EP can be verified with distributed transis-
tors in active circuits, acoustic components with feedback
[22], or acousto-optic devices [45]. One possible realization
of a discrete resonator system is coupling two electroacous-
tic resonators through active circuits. The coupling strength
and loss factor can be modulated by varactors and transis-
tors, and, therefore, nonreciprocal mode transition can be
experimentally observed. Elastic wave is also a promising
platform since we can readily apply time modulation of stiff-
ness through shunted piezoelectric patches with active circuits
[34,38]. Due to the similarity between the Hamiltonian of a
space-time modulated media and electron hopping described
in the Jaynes-Cummings model, nonreciprocal coupling in the
Hamiltonian is also expected to help control electron hopping
between energy levels, which can potentially benefit quantum
computing, quantum dot display, and lasers by suppressing
spontaneous emission.
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