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Abstract

We show an application of supervised deep learning in space sciences. We focus on the relativistic
electron precipitation into Earth’s atmosphere that occurs when magnetospheric processes (wave-
particle interactions or current sheet scattering, CSS) violate adiabatic invariants of trapped radiation
belt electrons leading to electron loss. Electron precipitation is a key mechanism of radiation belt loss
and can lead to several space weather effects due to its interaction with the Earth’s atmosphere.
However, the detailed properties and drivers of electron precipitation are currently not fully
understood yet. Here, we aim to build a deep learning model that identifies relativistic precipitation
events and their associated driver (waves or CSS). We use a list of precipitation events visually
categorized into wave-driven events (REPs, showing spatially isolated precipitation) and CSS-driven
events (CSSs, showing an energy-dependent precipitation pattern). We elaborate the ensemble of
events to obtain a dataset of randomly stacked events made of a fixed window of data points that
includes the precipitation interval. We assign a label to each data point: 0 is for no-events, 1 is for
REPs and 2 is for CSSs. Only the data points during the precipitation are labeled as 1 or 2. By
adopting a long short-term memory (LSTM) deep learning architecture, we developed a model that
acceptably identifies the events and appropriately categorizes them into REPs or CSSs. The
advantage of using deep learning for this task is meaningful given that classifying precipitation
events by its drivers is rather time-expensive and typically must involve a human. After post-
processing, this model is helpful to obtain statistically large datasets of REP and CSS events that will
reveal the location and properties of the precipitation driven by these two processes at all L shells and
MLT sectors as well as their relative role, thus is useful to improve radiation belt models.
Additionally, the datasets of REPs and CSSs can provide a quantification of the energy input into the
atmosphere due to relativistic electron precipitation, thus providing valuable information to space
weather and atmospheric communities.

1 Introduction

The radiation belt environment is highly dynamic and it is governed by acceleration, transport and
loss processes (e.g., Li and Hudson, 2019; Reeves et al., 2003). One of the loss mechanisms is
electron precipitation (EP), which occurs when the conservation of the first adiabatic invariant is
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violated (e.g., Horne and Thorne, 1998; Shulz and Lanzerotti, 1974): electrons are no longer trapped
by the Earth’s magnetic field and fall into the upper atmosphere. Not only electron depletion is
important in the radiation belt evolution in time and flux, but electron precipitation is also known to
drive many atmospheric effects related to space weather. Multiple studies have indeed associated
conductivity variations and atmospheric chemistry changes (potentially leading to ozone reduction)
with electron precipitation (Duderstadt et al., 2021; Fytterer et al., 2015; Khazanov et al., 2018;
Meraner & Shmidt, 2018; Mironova et al., 2015; Robinson et al., 1987; Sinnhuber et al., 2021;
Tyssey et al., 2021; Yu et al., 2018).

It is well understood that electron precipitation can occur as a result of interactions between plasma
waves existing in the magnetosphere and the trapped electron population in the radiation belts (e.g.,
Millan and Thorne, 2007; Thorne, 2010). Electrons can also be lost if the magnetic field line around
which they gyrate is stretched away from Earth or undergoes a significant geometry variation such
that the curvature radius of the field line is comparable to the gyroradius of the electrons (e.g.,
Buchner & Zelenyi, 1989; Dubyagin et al., 2021; Sergeev et al., 1983, 1993). This process is called
field line curvature scattering or current sheet scattering (CSS). Under these conditions, the field line
no longer traps the electrons, and these electrons can precipitate into the atmosphere. The location
where precipitation occurs (called isotropic boundary, IB) depends on electron energy (Capannolo et
al., 2022; Yahnin et al., 2016; 2017). This phenomenon has also been widely studied for protons
(Dubyagin et al., 2018; Ganushkina et al., 2005; Gilson et al., 2012; Liang et al., 2014).

A comprehensive understanding of which mechanism (waves or CSS) dominates the electron
precipitation and thus the energy input into the Earth’s atmosphere is still under active research.
Given the Earth’s magnetic field geometry, one would expect that on the dayside and at low L shells
CSS does not contribute much, but more quantitative studies are still needed. Overall, while wave-
driven precipitation can occur at all MLT (magnetic local time) sectors, CSS-driven precipitation is
indeed primarily observed over 2004 MLT (Yahnin et al., 2016; 2017), and overlaps with
precipitation driven by waves (for the most part, electromagnetic ion cyclotron waves, EMIC) in the
midnight sector (Capannolo et al., 2022).

These studies use data from the constellation of satellites called POES (Polar Orbiting Environmental
Satellites) and MetOp (Meteorological Operational), described in Section 2. An example of a wave-
driven (REP, relativistic electron precipitation) event is shown in Figure 1a, together with an example
of a CSS-driven (CSS) event (Figure 1b). REP events show enhancements in the relativistic (>700
keV) precipitating electron flux (solid red line) and the precipitation is rather isolated (gray region) in
space (L shell) with little/no precipitation around the main event. This region generally matches the
location where the wave-particle interaction is efficient to violate an adiabatic invariant. CSS events,
instead, show an energy-dependent precipitation with higher energy electrons precipitating at lower L
shells than lower energy electrons (Figure 1b; green, black, and blue solid lines). This is a direct
result from the fact that the electron gyroradius depends on electron energy: higher energy electrons
have a larger gyroradius, thus are lost by a stretched magnetic field line at distances closer to Earth
(smaller L shells) than lower energy electrons. Given such a distinct pattern of precipitation, we can
distinguish the precipitation drivers.

So far, existing analyses aiming to distinguish the precipitation drivers have either focused on a
limited time span (Yahnin et al., 2016; 2017) or on a limited MLT sector (Capannolo et al., 2022).
Identifying precipitation events and visually inspecting their precipitation patterns to categorize their
driver (waves or CSS) is a rather time-expensive task. Algorithms that find relativistic electron
precipitation events (based on count rate or flux thresholds) exist in literature (e.g., Capannolo et al.,
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2022; Gasque et al., 2021; Shekhar et al, 2017), but they do not include the distinction between
wave-driven precipitation and CSS-driven precipitation, which is a much more complex task to
perform using algorithms. The goal of this work is to take advantage of deep learning techniques not
only to find precipitation events, but also to categorize them into wave-driven (REP) and CSS-driven
(CSS) events. We use the dataset of precipitation events analyzed in Capannolo et al. (2022), which
were visually classified between wave-driven (REPs) and CSS-driven (CSSs) precipitation events
(details in Capannolo et al., 2022). This work is an example of an application of supervised deep
learning classification in space sciences that is able to provide a large dataset of precipitation events
classified by driver (waves or CSS) after an initial manual classification of events.

2 Satellite Data Description

We use data from the POES and MetOp network of sun-synchronous satellites in polar orbits at
~800—-850 km of altitude (Evans and Greer, 2004). The Medium Energy Proton and Electron
Detector (MEPED) provides electron (and proton) flux in 3 integral channels with cutoff energies of
>30 keV (El), >100 keV (E2), and >300 keV (E3) (Rodger et al., 2010). The P6 proton channel is
designed to measure >6.9 MeV protons, however, it is also sensitive to electrons at >700 keV (Yando
et al., 2011) in absence of high energy protons. Thus, we use the P6 channel as a fourth virtual
electron channel, E4 (Green, 2013). Additionally, each satellite is equipped with two telescopes: one
oriented along zenith (0° telescope) and one perpendicular to it (90° telescope), both with full field-
of-view angle of 30°. At mid-to-high latitudes, the 0° telescope provides measurements of electrons
precipitating deep into the loss cone and the 90° telescope provides observations of trapped electrons.
Strong precipitation typically occurs when the flux observed by the 0° telescope approaches the flux
observed by the 90° telescope, indicating that a large percentage of trapped electrons are
precipitating. Precipitation events are marked in gray in Figure 1, 2 and 3, and highlighted in brown
(REP) and blue (CSS) in Figure 4. The resolution of the electron flux is 2 seconds, and the
constellation of satellite covers a rather broad L-shell range and MLT sectors. Typical observations of
POES/MetOp are shown in the Supplementary Figure 1. Each panel shows Y4 orbit of a POES/MetOp
satellites (one pass through the radiation belts) and highlights the significant variability of flux during
the satellite trajectory.

3 Methods

In this section, we describe how we prepared the dataset of precipitation events in order to obtain a
well-performing model. We also describe the model architecture and how it was decided, as well as
how we trained the deep learning model.

3.1 Dataset Preparation

Capannolo et al. (2022) analyzed relativistic electron precipitation events observed by POES/MetOp
from 2012 to 2020 over 22—02 MLT and classified these events between those driven by waves
(called REP events in this work) from those driven by CSS (CSSs hereafter) using their characteristic
precipitation profile (Figure 1). Note that this dataset was obtained after careful event classification:
only events that clearly belonged to either category (REP or CSS) were considered, while ambiguous
precipitation events were carefully discarded. More details on the classification are provided in
Capannolo et al. (2022). In this work, we use this dataset of precipitation events classified over 22—
02 MLT with additional preprocessing to improve the model performance as explained below.

Our goal is to build a dataset of precipitation events randomly stacked one after the other. We
consider all four POES/MetOp electron channels and the two look directions (0° and 90°) for a total

3
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of 8 inputs at a given time. The model output (or target) is the data point class (or label, used
interchangeably hereafter): 0 is for no-event, 1 is for REP, and 2 is for CSS. Given one event, the
data points are labeled as 1 or 2 during the precipitation (gray regions of Figure 1) and the adjacent
data points (to the left and right of the event) are labeled with 0. Fluxes < 0 for all channels are set to
0.01 (100) s''em2sr! for the 0° (90°) telescope measurements (negative values in POES/MetOp data
indicate unreliable flux measurements). We apply the natural logarithm to the fluxes and normalize
the train dataset.

As shown in Supplementary Figure 1, each pass through the radiation belts highlights a significant
flux variability observed by POES/MetOp, while the precipitation events are rather short-lived (< 30—
60 seconds). As a result, if we use the full day of data when a given REP/CSS event occurs, we will
obtain a label of mostly zeroes (no-event) and only a few data points at 1 or 2 (indicating the
REP/CSS). This would make the full dataset of stacked events extremely imbalanced, where only a
few percent of the labels are non-zero. With such dataset, the deep learning model is unable to
perform well and identify only the no-events correctly. In order to overcome this obstacle, we
consider a much shorter window of data for each event: given one event, we label the data points
during precipitation with 1 or 2, but label with 0 only the data points adjacent to the left and right of
the event such that the total number of data points is 50. In this way, we have windows of 50-point-
long for each event which we stack one after the other in a random order. Additionally, we ensure
that no other nearby events were occurring within the 50-point-long window such that in this window
there is only one type of non-zero label (either 1 or 2). Note that if two events of different classes are
adjacent to each other, we rule out both. Instead, if two REP events are adjacent to each other within
the 50-point-long window, we widen the label of 1 to include both to ensure that in each 50-point-
long window, there is only one continuous non-zero label. For the CSS events, we also manually
extended the boundary of the precipitation events to include the full energy dispersion observed by
POES/MetOp because we do not limit ourselves to the E4 precipitation alone (as done in Capannolo
et al., 2022). This ensures that the full precipitation pattern (from low to high electron energy) is
identified as a CSS event and used to train the model. Using the boundaries as in Capannolo et al.
(2022) worsens the model performance because the full extent of the energy-dependent pattern is not
correctly learned by the model. We show a portion of the dataset in Figure 2: panel a) indicates the
label and panel b) shows the electron flux for all energy channels and look directions, where the
precipitation events are highlighted in gray.

In order to augment our dataset and provide the model with a wider variety of precipitation patterns,
we also mirror each precipitation event about its main axis. This does not introduce data redundancy
since each precipitation event (either mirrored or not) carries a meaningful information. In other
words, a REP/CSS event can be directly observed by a POES/MetOp satellite following its actual
trajectory (e.g., from low to high L shells), but the precipitation pattern would still be observed
(though symmetrically) if the same POES/MetOp satellite was travelling along its opposite orbit
(e.g., from high to low L shells) through the precipitation region at the same time. Note that this is
possible since we are only interested in the profile of the precipitation (i.e., flux evolution as a
function of dataset index) and not its temporal evolution. By using this methodology, we obtain a
dataset of 460 REPs and 348 CSSs for a total dataset length of 40,400 data points. Although only
~20% of the data points are labeled with 1 or 2 (making this dataset still imbalanced with respect to
the O class), the REP and CSS classes are approximately balanced (~10% data points are REPs and
~8% data points are CSSs) and the model is able to identify correctly no-events, REPs and CSSs as
we show in the following sub-sections.

3.2 Model Structure and Training

This is a provisional file, not the final typeset article
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We adapt a long short-term memory (LSTM; Hochreiter and Schmidhuber, 1997) architecture (a type
of artificial recurrent neural network, RNN; Rumelhart et al., 1986a) for the deep learning model
because it retains input information at much earlier time steps, making it more efficiently than RNNs
for problems that treat time series. As a matter of fact, the problem of our work is a time series
classification. Although the time variable is not explicitly used, it is instead intrinsically represented
by the shape of the precipitation. It is indeed the evolution of the precipitation pattern (isolated vs.
energy-dependent) that differentiates between the two drivers of precipitation, as mentioned in
Section 1.

The input format required by LSTM is a tensor, which is composed of a stack of snapshots of the
dataset identified by a sliding window with stride 1 and length 7. The label in each snapshot is
assigned as the most probable one (i.e., if the majority of data points have label of 0, the label
assigned to that snapshot is also 0) and is one-hot encoded. The length of 7 is set after trying different
sliding window lengths and choosing the one that provided the best model performance.

The metrics we use are those of a standard classification problem and we focus on the F1 score
(calculated as the weighted average of the precision and recall; it expresses how many events the
classifier identifies correctly quantifying also how many are missed or mislabeled), the AUC (area
under the ROC (Receiver Operating Characteristic) recall vs. false-positive-rate curve) and the
AUPRC (area under the precision vs recall curve). We perform a k-fold cross validation with k=10:
the whole dataset is split into 10 portions of which one is used as a test set and the remaining 9 are
used as training set. We also consider a validation set that is 15% of the training set in each k-fold.
The k-fold cross validation consists in training the model on k different datasets (described above)
and estimating the model performance for each of the k iterations. The final model performance is the
average of the k performances and the final model weights are obtained by training the model on the
whole dataset (with the exception of 15% of the dataset used for testing purposes). During training,
we use early stopping (with patience of 10 epochs) on the AUC calculated for the validation dataset.

4 Model Performance

We tried different model configurations, all made of a LSTM layer followed by a fully connected
(i.e., dense) layer, ending with a dense layer of 3 neurons that outputs one predicted class. There are
two dropout layers (with 0.5 dropout rate) after the LSTM layer and after the first dense layer. We
validated each model configuration using the k-fold cross-validation (mentioned above) and we
selected the model configuration with the highest F1 score, AUC and AUPRC. Out of all the
configurations we tried (64 LSTM cells + 256 dense cells; 128 LSTM cells + 128 dense cells; 128
LSTM cells + 256 dense cells; 64 bidirectional LSTM cells + 256 dense cells; 64 bidirectional LSTM
cells + 64 bidirectional LSTM cells + 128 dense cells) the model with the best performance is the one
with a layer of 64 bidirectional LSTM cells followed by a fully connected layer of 256 cells (total
number of free parameters is 71,171). The metrics resulting from the k-fold cross-validation for this
model are: F1 ~ 0.948, AUC ~ 0.995, and AUPRC ~ 0.990. Note that the performance among the
different model configurations is similar and differs only on the second or third decimal figure. Table
1 in the Supplementary Material shows the performance scores (F1, AUC, AUPRC) resulting from
the k-fold cross-validation for each architecture tested. As an example, Supplementary Figure 2
(panels a—e) shows the metrics as a function of epoch for the k=3 fold. Panel f) shows the confusion
matrix averaged from all the confusion matrices of each k-fold: the highest values are focused along
the diagonal, indicating that the model performs well in assigning the correct class to each snapshot.
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To highlight that the model appropriately identifies and classifies precipitation events, we show in
Figure 3 three examples of how the model performs on three portions of the test dataset. Panels a, c,
and e present the model (solid) and original (dashed) labels and panels b, d, f show the electron
fluxes in a similar format as Figure 2. The precipitation events (originally assigned) are highlighted
in gray and their associated class is reported in the panels a, c, e. Not only the model identifies all
precipitation events, but each event is categorized in the class originally assigned. Note that the
indices where the labels are non-zero only indicate that nearby that region the probability of finding
an event is higher than the probability of a no-event, but these indices do not necessarily represent the
exact precipitation event boundaries (as the original class does). Nevertheless, the labels predicted by
the model are in good agreement with the original location and class of the events highlighted in
gray. The model labels seem to be shifted to the left by a few data points compared to the original
classes, due to the fact that we assign a class to each snapshot of length 7 (described in Section 3.1).
In other words, the very first snapshot is classified with the most probable label in the first 7 data
points. As the sliding window progresses with stride 1, each label is associated with the following 7
data points resulting in anticipating the snapshot classification.

4.1 Model Application on Several Days of POES/MetOp data: Preliminary Results

As we showed in Section 3.1, the dataset used for training has been significantly shrunk to only 50
data points for each precipitation event observed by POES/MetOp. In this section, we explore the
model performance on longer time periods (full day of POES/MetOp data, the significant flux
variability of which is shown in Supplementary Figure 1) to test its generalization ability.

We apply the model to several POES/MetOp days and show the results in Figure 4 and
Supplementary Figure 3. Each panel in these figures is from a different date and none of the events
shown belong to the dataset prepared in Section 3.1 (they are all out-of-sample). Here, we are only
considering events occurring in the outer radiation belt, thus we filter out any events occurring at L <
2.5 or L > 8.5 (L is expressed using the International Geomagnetic Reference Field, IGRF, model in
POES/MetOp data). The panels on the left column of Figure 4 show REP events (highlighted in
brown), whereas the events on the right column are CSSs (highlighted in blue). This classification is
accurate because the classified REPs indeed show isolated E4 precipitation, while the classified CSSs
display an energy-dependent precipitation. During REP events (Figures 2, 3, 4), although the low-
energy electrons (E1, E2 and E3 channels) appear to precipitate as well, their flux is likely the result
of proton contamination, which is known to affect the electron measurements onboard POES/MetOp
satellites (e.g., Capannolo et al. 2019, 2021; Evans and Greer, 2000; Yando et al., 2011). Note again
that the location where these events are identified by the model differs from the exact event location
by a few data points. This is not a major concern as this shift appears to be systematic and can be
corrected in the post-processing by shifting the predicted model class by a few data points.

On the contrary, Supplementary Figure 3 shows examples when the model does not perform very
well and identifies two adjacent precipitation events belonging to different classes (panels a and b),
mislabeled events (panel c) or false positive events (panel d). The cases in panel a) only last one data
point and could be potentially disregarded since the model does not identify a long enough non-zero
label. The event in panel d) shows a precipitating E4 flux that is higher than the others, which could
indicate a potential issue in the recorded POES/MetOp data. Events in panels b) and c¢) instead must
be appropriately ruled out or inspected further (e.g., what is the probability of each class? Is the
probability of the CSS class comparable to that of the REP?). Handling false positives is beyond the
scope of this work and we are aware that post-processing on the model output is needed before using
these results for scientific research. The post-processing should rule out events lasting only one data
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point, adjacent events belonging to different non-zero classes, and events in the South Atlantic
Anomaly, as well as improving the L shell calculation for each event (using Tsyganenko models such
as the T89 (Tsyganenko, 1989) or T05 (Tsyganenko and Sitnov, 2005)) used to consider events
occurring only in the outer radiation belt.

5 Conclusions and Discussion

In this work, we showed an example of an application of supervised deep learning to space sciences.
Understanding when, where and why relativistic electrons precipitate into the Earth’s atmosphere has
a longstanding relevance for a variety of reasons (from improving our knowledge on plasma
dynamics to study the space weather impacts of electron precipitation). In this work, we focused
specifically on relativistic electron precipitation. Our goal was to classify the relativistic electron
precipitation events depending on their spatial precipitation pattern, which in turn corresponds to
their magnetospheric driver (waves or current sheet scattering). We used data from the POES/MetOp
constellation of low-Earth-orbit satellites. Our task was supervised because we used the list of events
studied by Capannolo et al. (2022), which were visually classified. Note that these events were
classified only in a limited MLT sector (22-02); however, their MLT value was not used as input in
the model, and in fact, our model is able to identify precipitation events at any MLT.

The dataset preparation was key to obtain a satisfying model performance. By considering only a
short time window around each event instead of the full day of POES/MetOp data, using non-zero
labels to indicate REPs (class of 1) or CSSs (class of 2) and labels at 0 to indicate the no-event, and
including electron fluxes observed at different energies and look directions, we were able to obtain an
appropriate dataset to use for training. We found that the LSTM architecture is suitable for
identifying precipitation events and classifying them by precipitation pattern given its ability to
consider the data history (in our case the precipitation pattern profile evolution along the satellite
trajectory).

Our model is composed of one layer of 64 bidirectional LSTM cells, one layer of 256 fully connected
neurons, and one layer of 3 dense cells. The inputs are the electron fluxes at different energies and
look directions, and the output is the class of each data point. We obtained the model metrics (F1 ~
0.948, AUC ~ 0.995, and AUPRC ~ 0.990) by conducting a k-fold cross-validation (k=10). Our
model is able to learn the dataset properties correctly. The model is not only able to identify the
electron precipitation events, but it also appropriately classifies them by their drivers.

Since the dataset used for training and testing purposes has been specifically designed to obtain a
good model performance, it shows less variability than that typically observed by POES/MetOp over
an entire orbit. Nevertheless, our model is still able to identify and classify the precipitation events
when applied to a full day of data (Figure 4), though some false positives might still be identified
(Supplementary Figure 3). Post-processing of these results is needed before being able to use the
model outputs for scientific research; however, this is beyond the scope of this paper and left for
future investigation. Once the post-processing routine is developed, this model could be easily used
as a tool to produce lists of relativistic electron precipitation events in a very short amount of time,
overcoming the complex task of developing deterministic algorithms based on flux thresholds to
delineate the precipitation patterns and the time-expensive task of visually classifying these events by
driver. In this way, we would be able to extend the study conducted in Capannolo et al. (2022) to the
whole MLT range and statistically investigate on where the CSS effects should be considered for
radiation belt and precipitation modeling, as well as compare them with the precipitation driven by
waves. Such event dataset would also potentially open additional avenues of machine learning
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applications to space sciences; for example, from a space weather point of view, we could investigate
if the electron precipitation events can be predicted by using solar images, solar wind data and/or
geomagnetic indices.
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(https://xarray.pydata.org/en/stable/), Joblib (https://joblib.readthedocs.io/en/latest/), Seaborn
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in the GitHub repository here: https://github.com/luisacap/REPs_classifier codes_for paper.git.

11



450
451
452
453
454
455

456
457
458
459
460

461
462
463
464

465
466
467
468
469

Classification of Electron Precipitation

Figure 1. Examples of a) a wave-driven (REP) precipitation event and b) a CSS-driven (CSS)
precipitation event. Electron flux observed by POES n19 (a) and MetOp m02 (b) satellites is color-
coded by energy channel (as indicated in panel b), and shown as a function of time and satellite
trajectory expressed in L and MLT. Dashed (solid) lines are relative to the 90° (0°) telescope,
indicating the trapped (precipitating) electrons. The precipitation events are highlighted by the gray
rectangles.

Figure 2. Portion of the training dataset: a) class of each data point and b) electron flux for different
energies. Dashed and solid lines in panel b) indicate the 90° and 0° telescope observations,
respectively, as in Figure 1. Precipitation events are highlighted in gray in panel b) and their relative
class is shown in panel a), where class 0 indicates “no event”, class 1 indicates “REP event” and class
2 indicates “CSS event”.

Figure 3. Three different portions of the test dataset in a similar format as Figure 2. Panels a), ¢) and
e) show the original class of each event in the dashed gray line and the class of each event predicted
by the model in solid black. Panels b), d) and f) show the electron flux as Figure 2b, where each
event (originally identified) is highlighted in gray.

Figure 4. Identification and classification of precipitation events on 6 days of POES/MetOp data.
Each panel shows the electron flux color-coded in energy (legend in panel a) as a function of L,
MLT, and time. Dashed (solid) lines indicate observations of trapped (precipitating) electrons from
the 90° (0°) telescope. REP events identified by the model are highlighted in brown, while CSS
events identified by the model are marked in blue.
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