
  

Identification and Classification of Relativistic Electron Precipitation 
Events at Earth Using Supervised Deep Learning 

Luisa Capannolo1, Wen Li1†, and Sheng Huang1† 1 

1 Center for Space Physics, Boston University, Boston, MA, USA 2 

† These authors have contributed equally to this work and share last authorship 3 

* Correspondence:  4 
Luisa Capannolo 5 
luisacap@bu.edu  6 

Keywords: electron precipitation, wave-particle interactions, current sheet scattering, space 7 
sciences, supervised classification, LSTM, deep learning, supervised deep learning 8 

Abstract 9 

We show an application of supervised deep learning in space sciences. We focus on the relativistic 10 
electron precipitation into Earth’s atmosphere that occurs when magnetospheric processes (wave-11 
particle interactions or current sheet scattering, CSS) violate adiabatic invariants of trapped radiation 12 
belt electrons leading to electron loss. Electron precipitation is a key mechanism of radiation belt loss 13 
and can lead to several space weather effects due to its interaction with the Earth’s atmosphere. 14 
However, the detailed properties and drivers of electron precipitation are currently not fully 15 
understood yet. Here, we aim to build a deep learning model that identifies relativistic precipitation 16 
events and their associated driver (waves or CSS). We use a list of precipitation events visually 17 
categorized into wave-driven events (REPs, showing spatially isolated precipitation) and CSS-driven 18 
events (CSSs, showing an energy-dependent precipitation pattern). We elaborate the ensemble of 19 
events to obtain a dataset of randomly stacked events made of a fixed window of data points that 20 
includes the precipitation interval. We assign a label to each data point: 0 is for no-events, 1 is for 21 
REPs and 2 is for CSSs. Only the data points during the precipitation are labeled as 1 or 2. By 22 
adopting a long short-term memory (LSTM) deep learning architecture, we developed a model that 23 
acceptably identifies the events and appropriately categorizes them into REPs or CSSs. The 24 
advantage of using deep learning for this task is meaningful given that classifying precipitation 25 
events by its drivers is rather time-expensive and typically must involve a human. After post-26 
processing, this model is helpful to obtain statistically large datasets of REP and CSS events that will 27 
reveal the location and properties of the precipitation driven by these two processes at all L shells and 28 
MLT sectors as well as their relative role, thus is useful to improve radiation belt models. 29 
Additionally, the datasets of REPs and CSSs can provide a quantification of the energy input into the 30 
atmosphere due to relativistic electron precipitation, thus providing valuable information to space 31 
weather and atmospheric communities. 32 

1 Introduction 33 

The radiation belt environment is highly dynamic and it is governed by acceleration, transport and 34 
loss processes (e.g., Li and Hudson, 2019; Reeves et al., 2003). One of the loss mechanisms is 35 
electron precipitation (EP), which occurs when the conservation of the first adiabatic invariant is 36 
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violated (e.g., Horne and Thorne, 1998; Shulz and Lanzerotti, 1974): electrons are no longer trapped 37 
by the Earth’s magnetic field and fall into the upper atmosphere. Not only electron depletion is 38 
important in the radiation belt evolution in time and flux, but electron precipitation is also known to 39 
drive many atmospheric effects related to space weather. Multiple studies have indeed associated 40 
conductivity variations and atmospheric chemistry changes (potentially leading to ozone reduction) 41 
with electron precipitation (Duderstadt et al., 2021; Fytterer et al., 2015; Khazanov et al., 2018; 42 
Meraner & Shmidt, 2018; Mironova et al., 2015; Robinson et al., 1987; Sinnhuber et al., 2021; 43 
Tyssøy et al., 2021; Yu et al., 2018). 44 

It is well understood that electron precipitation can occur as a result of interactions between plasma 45 
waves existing in the magnetosphere and the trapped electron population in the radiation belts (e.g., 46 
Millan and Thorne, 2007; Thorne, 2010). Electrons can also be lost if the magnetic field line around 47 
which they gyrate is stretched away from Earth or undergoes a significant geometry variation such 48 
that the curvature radius of the field line is comparable to the gyroradius of the electrons (e.g., 49 
Buchner & Zelenyi, 1989; Dubyagin et al., 2021; Sergeev et al., 1983, 1993). This process is called 50 
field line curvature scattering or current sheet scattering (CSS). Under these conditions, the field line 51 
no longer traps the electrons, and these electrons can precipitate into the atmosphere. The location 52 
where precipitation occurs (called isotropic boundary, IB) depends on electron energy (Capannolo et 53 
al., 2022; Yahnin et al., 2016; 2017). This phenomenon has also been widely studied for protons 54 
(Dubyagin et al., 2018; Ganushkina et al., 2005; Gilson et al., 2012; Liang et al., 2014).  55 

A comprehensive understanding of which mechanism (waves or CSS) dominates the electron 56 
precipitation and thus the energy input into the Earth’s atmosphere is still under active research. 57 
Given the Earth’s magnetic field geometry, one would expect that on the dayside and at low L shells 58 
CSS does not contribute much, but more quantitative studies are still needed. Overall, while wave-59 
driven precipitation can occur at all MLT (magnetic local time) sectors, CSS-driven precipitation is 60 
indeed primarily observed over 20–04 MLT (Yahnin et al., 2016; 2017), and overlaps with 61 
precipitation driven by waves (for the most part, electromagnetic ion cyclotron waves, EMIC) in the 62 
midnight sector (Capannolo et al., 2022).  63 

These studies use data from the constellation of satellites called POES (Polar Orbiting Environmental 64 
Satellites) and MetOp (Meteorological Operational), described in Section 2. An example of a wave-65 
driven (REP, relativistic electron precipitation) event is shown in Figure 1a, together with an example 66 
of a CSS-driven (CSS) event (Figure 1b). REP events show enhancements in the relativistic (>700 67 
keV) precipitating electron flux (solid red line) and the precipitation is rather isolated (gray region) in 68 
space (L shell) with little/no precipitation around the main event. This region generally matches the 69 
location where the wave-particle interaction is efficient to violate an adiabatic invariant. CSS events, 70 
instead, show an energy-dependent precipitation with higher energy electrons precipitating at lower L 71 
shells than lower energy electrons (Figure 1b; green, black, and blue solid lines). This is a direct 72 
result from the fact that the electron gyroradius depends on electron energy: higher energy electrons 73 
have a larger gyroradius, thus are lost by a stretched magnetic field line at distances closer to Earth 74 
(smaller L shells) than lower energy electrons. Given such a distinct pattern of precipitation, we can 75 
distinguish the precipitation drivers. 76 

So far, existing analyses aiming to distinguish the precipitation drivers have either focused on a 77 
limited time span (Yahnin et al., 2016; 2017) or on a limited MLT sector (Capannolo et al., 2022). 78 
Identifying precipitation events and visually inspecting their precipitation patterns to categorize their 79 
driver (waves or CSS) is a rather time-expensive task. Algorithms that find relativistic electron 80 
precipitation events (based on count rate or flux thresholds) exist in literature (e.g., Capannolo et al., 81 
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2022; Gasque et al., 2021; Shekhar et al, 2017), but they do not include the distinction between 82 
wave-driven precipitation and CSS-driven precipitation, which is a much more complex task to 83 
perform using algorithms. The goal of this work is to take advantage of deep learning techniques not 84 
only to find precipitation events, but also to categorize them into wave-driven (REP) and CSS-driven 85 
(CSS) events. We use the dataset of precipitation events analyzed in Capannolo et al. (2022), which 86 
were visually classified between wave-driven (REPs) and CSS-driven (CSSs) precipitation events 87 
(details in Capannolo et al., 2022). This work is an example of an application of supervised deep 88 
learning classification in space sciences that is able to provide a large dataset of precipitation events 89 
classified by driver (waves or CSS) after an initial manual classification of events.  90 

2 Satellite Data Description 91 

We use data from the POES and MetOp network of sun-synchronous satellites in polar orbits at 92 
~800–850 km of altitude (Evans and Greer, 2004). The Medium Energy Proton and Electron 93 
Detector (MEPED) provides electron (and proton) flux in 3 integral channels with cutoff energies of 94 
>30 keV (E1), >100 keV (E2), and >300 keV (E3) (Rodger et al., 2010). The P6 proton channel is 95 
designed to measure >6.9 MeV protons, however, it is also sensitive to electrons at >700 keV (Yando 96 
et al., 2011) in absence of high energy protons. Thus, we use the P6 channel as a fourth virtual 97 
electron channel, E4 (Green, 2013). Additionally, each satellite is equipped with two telescopes: one 98 
oriented along zenith (0° telescope) and one perpendicular to it (90° telescope), both with full field-99 
of-view angle of 30°. At mid-to-high latitudes, the 0° telescope provides measurements of electrons 100 
precipitating deep into the loss cone and the 90° telescope provides observations of trapped electrons. 101 
Strong precipitation typically occurs when the flux observed by the 0° telescope approaches the flux 102 
observed by the 90° telescope, indicating that a large percentage of trapped electrons are 103 
precipitating. Precipitation events are marked in gray in Figure 1, 2 and 3, and highlighted in brown 104 
(REP) and blue (CSS) in Figure 4. The resolution of the electron flux is 2 seconds, and the 105 
constellation of satellite covers a rather broad L-shell range and MLT sectors. Typical observations of 106 
POES/MetOp are shown in the Supplementary Figure 1. Each panel shows ¼ orbit of a POES/MetOp 107 
satellites (one pass through the radiation belts) and highlights the significant variability of flux during 108 
the satellite trajectory. 109 

3 Methods 110 

In this section, we describe how we prepared the dataset of precipitation events in order to obtain a 111 
well-performing model. We also describe the model architecture and how it was decided, as well as 112 
how we trained the deep learning model. 113 

3.1 Dataset Preparation 114 

Capannolo et al. (2022) analyzed relativistic electron precipitation events observed by POES/MetOp 115 
from 2012 to 2020 over 22–02 MLT and classified these events between those driven by waves 116 
(called REP events in this work) from those driven by CSS (CSSs hereafter) using their characteristic 117 
precipitation profile (Figure 1). Note that this dataset was obtained after careful event classification: 118 
only events that clearly belonged to either category (REP or CSS) were considered, while ambiguous 119 
precipitation events were carefully discarded. More details on the classification are provided in 120 
Capannolo et al. (2022). In this work, we use this dataset of precipitation events classified over 22–121 
02 MLT with additional preprocessing to improve the model performance as explained below. 122 

Our goal is to build a dataset of precipitation events randomly stacked one after the other. We 123 
consider all four POES/MetOp electron channels and the two look directions (0° and 90°) for a total 124 
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of 8 inputs at a given time. The model output (or target) is the data point class (or label, used 125 
interchangeably hereafter): 0 is for no-event, 1 is for REP, and 2 is for CSS. Given one event, the 126 
data points are labeled as 1 or 2 during the precipitation (gray regions of Figure 1) and the adjacent 127 
data points (to the left and right of the event) are labeled with 0. Fluxes £ 0 for all channels are set to 128 
0.01 (100) s-1cm-2sr-1 for the 0° (90°) telescope measurements (negative values in POES/MetOp data 129 
indicate unreliable flux measurements). We apply the natural logarithm to the fluxes and normalize 130 
the train dataset. 131 

As shown in Supplementary Figure 1, each pass through the radiation belts highlights a significant 132 
flux variability observed by POES/MetOp, while the precipitation events are rather short-lived (< 30–133 
60 seconds). As a result, if we use the full day of data when a given REP/CSS event occurs, we will 134 
obtain a label of mostly zeroes (no-event) and only a few data points at 1 or 2 (indicating the 135 
REP/CSS). This would make the full dataset of stacked events extremely imbalanced, where only a 136 
few percent of the labels are non-zero. With such dataset, the deep learning model is unable to 137 
perform well and identify only the no-events correctly. In order to overcome this obstacle, we 138 
consider a much shorter window of data for each event: given one event, we label the data points 139 
during precipitation with 1 or 2, but label with 0 only the data points adjacent to the left and right of 140 
the event such that the total number of data points is 50. In this way, we have windows of 50-point-141 
long for each event which we stack one after the other in a random order. Additionally, we ensure 142 
that no other nearby events were occurring within the 50-point-long window such that in this window 143 
there is only one type of non-zero label (either 1 or 2). Note that if two events of different classes are 144 
adjacent to each other, we rule out both. Instead, if two REP events are adjacent to each other within 145 
the 50-point-long window, we widen the label of 1 to include both to ensure that in each 50-point-146 
long window, there is only one continuous non-zero label. For the CSS events, we also manually 147 
extended the boundary of the precipitation events to include the full energy dispersion observed by 148 
POES/MetOp because we do not limit ourselves to the E4 precipitation alone (as done in Capannolo 149 
et al., 2022). This ensures that the full precipitation pattern (from low to high electron energy) is 150 
identified as a CSS event and used to train the model. Using the boundaries as in Capannolo et al. 151 
(2022) worsens the model performance because the full extent of the energy-dependent pattern is not 152 
correctly learned by the model. We show a portion of the dataset in Figure 2: panel a) indicates the 153 
label and panel b) shows the electron flux for all energy channels and look directions, where the 154 
precipitation events are highlighted in gray.  155 

In order to augment our dataset and provide the model with a wider variety of precipitation patterns, 156 
we also mirror each precipitation event about its main axis. This does not introduce data redundancy 157 
since each precipitation event (either mirrored or not) carries a meaningful information. In other 158 
words, a REP/CSS event can be directly observed by a POES/MetOp satellite following its actual 159 
trajectory (e.g., from low to high L shells), but the precipitation pattern would still be observed 160 
(though symmetrically) if the same POES/MetOp satellite was travelling along its opposite orbit 161 
(e.g., from high to low L shells) through the precipitation region at the same time. Note that this is 162 
possible since we are only interested in the profile of the precipitation (i.e., flux evolution as a 163 
function of dataset index) and not its temporal evolution. By using this methodology, we obtain a 164 
dataset of 460 REPs and 348 CSSs for a total dataset length of 40,400 data points. Although only 165 
~20% of the data points are labeled with 1 or 2 (making this dataset still imbalanced with respect to 166 
the 0 class), the REP and CSS classes are approximately balanced (~10% data points are REPs and 167 
~8% data points are CSSs) and the model is able to identify correctly no-events, REPs and CSSs as 168 
we show in the following sub-sections.  169 

3.2 Model Structure and Training 170 
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We adapt a long short-term memory (LSTM; Hochreiter and Schmidhuber, 1997) architecture (a type 171 
of artificial recurrent neural network, RNN; Rumelhart et al., 1986a) for the deep learning model 172 
because it retains input information at much earlier time steps, making it more efficiently than RNNs 173 
for problems that treat time series. As a matter of fact, the problem of our work is a time series 174 
classification. Although the time variable is not explicitly used, it is instead intrinsically represented 175 
by the shape of the precipitation. It is indeed the evolution of the precipitation pattern (isolated vs. 176 
energy-dependent) that differentiates between the two drivers of precipitation, as mentioned in 177 
Section 1. 178 

The input format required by LSTM is a tensor, which is composed of a stack of snapshots of the 179 
dataset identified by a sliding window with stride 1 and length 7. The label in each snapshot is 180 
assigned as the most probable one (i.e., if the majority of data points have label of 0, the label 181 
assigned to that snapshot is also 0) and is one-hot encoded. The length of 7 is set after trying different 182 
sliding window lengths and choosing the one that provided the best model performance.  183 

The metrics we use are those of a standard classification problem and we focus on the F1 score 184 
(calculated as the weighted average of the precision and recall; it expresses how many events the 185 
classifier identifies correctly quantifying also how many are missed or mislabeled), the AUC (area 186 
under the ROC (Receiver Operating Characteristic) recall vs. false-positive-rate curve) and the 187 
AUPRC (area under the precision vs recall curve). We perform a k-fold cross validation with k=10: 188 
the whole dataset is split into 10 portions of which one is used as a test set and the remaining 9 are 189 
used as training set. We also consider a validation set that is 15% of the training set in each k-fold. 190 
The k-fold cross validation consists in training the model on k different datasets (described above) 191 
and estimating the model performance for each of the k iterations. The final model performance is the 192 
average of the k performances and the final model weights are obtained by training the model on the 193 
whole dataset (with the exception of 15% of the dataset used for testing purposes). During training, 194 
we use early stopping (with patience of 10 epochs) on the AUC calculated for the validation dataset. 195 

4 Model Performance 196 

We tried different model configurations, all made of a LSTM layer followed by a fully connected 197 
(i.e., dense) layer, ending with a dense layer of 3 neurons that outputs one predicted class. There are 198 
two dropout layers (with 0.5 dropout rate) after the LSTM layer and after the first dense layer. We 199 
validated each model configuration using the k-fold cross-validation (mentioned above) and we 200 
selected the model configuration with the highest F1 score, AUC and AUPRC. Out of all the 201 
configurations we tried (64 LSTM cells + 256 dense cells; 128 LSTM cells + 128 dense cells; 128 202 
LSTM cells + 256 dense cells; 64 bidirectional LSTM cells + 256 dense cells; 64 bidirectional LSTM 203 
cells + 64 bidirectional LSTM cells + 128 dense cells) the model with the best performance is the one 204 
with a layer of 64 bidirectional LSTM cells followed by a fully connected layer of 256 cells (total 205 
number of free parameters is 71,171). The metrics resulting from the k-fold cross-validation for this 206 
model are: F1 ~ 0.948, AUC ~ 0.995, and AUPRC ~ 0.990. Note that the performance among the 207 
different model configurations is similar and differs only on the second or third decimal figure. Table 208 
1 in the Supplementary Material shows the performance scores (F1, AUC, AUPRC) resulting from 209 
the k-fold cross-validation for each architecture tested. As an example, Supplementary Figure 2 210 
(panels a–e) shows the metrics as a function of epoch for the k=3 fold. Panel f) shows the confusion 211 
matrix averaged from all the confusion matrices of each k-fold: the highest values are focused along 212 
the diagonal, indicating that the model performs well in assigning the correct class to each snapshot.   213 
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To highlight that the model appropriately identifies and classifies precipitation events, we show in 214 
Figure 3 three examples of how the model performs on three portions of the test dataset. Panels a, c, 215 
and e present the model (solid) and original (dashed) labels and panels b, d, f show the electron 216 
fluxes in a similar format as Figure 2. The precipitation events (originally assigned) are highlighted 217 
in gray and their associated class is reported in the panels a, c, e. Not only the model identifies all 218 
precipitation events, but each event is categorized in the class originally assigned. Note that the 219 
indices where the labels are non-zero only indicate that nearby that region the probability of finding 220 
an event is higher than the probability of a no-event, but these indices do not necessarily represent the 221 
exact precipitation event boundaries (as the original class does). Nevertheless, the labels predicted by 222 
the model are in good agreement with the original location and class of the events highlighted in 223 
gray. The model labels seem to be shifted to the left by a few data points compared to the original 224 
classes, due to the fact that we assign a class to each snapshot of length 7 (described in Section 3.1). 225 
In other words, the very first snapshot is classified with the most probable label in the first 7 data 226 
points. As the sliding window progresses with stride 1, each label is associated with the following 7 227 
data points resulting in anticipating the snapshot classification. 228 

4.1 Model Application on Several Days of POES/MetOp data: Preliminary Results 229 

As we showed in Section 3.1, the dataset used for training has been significantly shrunk to only 50 230 
data points for each precipitation event observed by POES/MetOp. In this section, we explore the 231 
model performance on longer time periods (full day of POES/MetOp data, the significant flux 232 
variability of which is shown in Supplementary Figure 1) to test its generalization ability.  233 

We apply the model to several POES/MetOp days and show the results in Figure 4 and 234 
Supplementary Figure 3. Each panel in these figures is from a different date and none of the events 235 
shown belong to the dataset prepared in Section 3.1 (they are all out-of-sample). Here, we are only 236 
considering events occurring in the outer radiation belt, thus we filter out any events occurring at L < 237 
2.5 or L > 8.5 (L is expressed using the International Geomagnetic Reference Field, IGRF, model in 238 
POES/MetOp data). The panels on the left column of Figure 4 show REP events (highlighted in 239 
brown), whereas the events on the right column are CSSs (highlighted in blue). This classification is 240 
accurate because the classified REPs indeed show isolated E4 precipitation, while the classified CSSs 241 
display an energy-dependent precipitation. During REP events (Figures 2, 3, 4), although the low-242 
energy electrons (E1, E2 and E3 channels) appear to precipitate as well, their flux is likely the result 243 
of proton contamination, which is known to affect the electron measurements onboard POES/MetOp 244 
satellites (e.g., Capannolo et al. 2019, 2021; Evans and Greer, 2000; Yando et al., 2011). Note again 245 
that the location where these events are identified by the model differs from the exact event location 246 
by a few data points. This is not a major concern as this shift appears to be systematic and can be 247 
corrected in the post-processing by shifting the predicted model class by a few data points.  248 

On the contrary, Supplementary Figure 3 shows examples when the model does not perform very 249 
well and identifies two adjacent precipitation events belonging to different classes (panels a and b), 250 
mislabeled events (panel c) or false positive events (panel d). The cases in panel a) only last one data 251 
point and could be potentially disregarded since the model does not identify a long enough non-zero 252 
label. The event in panel d) shows a precipitating E4 flux that is higher than the others, which could 253 
indicate a potential issue in the recorded POES/MetOp data. Events in panels b) and c) instead must 254 
be appropriately ruled out or inspected further (e.g., what is the probability of each class? Is the 255 
probability of the CSS class comparable to that of the REP?). Handling false positives is beyond the 256 
scope of this work and we are aware that post-processing on the model output is needed before using 257 
these results for scientific research. The post-processing should rule out events lasting only one data 258 
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point, adjacent events belonging to different non-zero classes, and events in the South Atlantic 259 
Anomaly, as well as improving the L shell calculation for each event (using Tsyganenko models such 260 
as the T89 (Tsyganenko, 1989) or T05 (Tsyganenko and Sitnov, 2005)) used to consider events 261 
occurring only in the outer radiation belt. 262 

5 Conclusions and Discussion 263 

In this work, we showed an example of an application of supervised deep learning to space sciences. 264 
Understanding when, where and why relativistic electrons precipitate into the Earth’s atmosphere has 265 
a longstanding relevance for a variety of reasons (from improving our knowledge on plasma 266 
dynamics to study the space weather impacts of electron precipitation). In this work, we focused 267 
specifically on relativistic electron precipitation. Our goal was to classify the relativistic electron 268 
precipitation events depending on their spatial precipitation pattern, which in turn corresponds to 269 
their magnetospheric driver (waves or current sheet scattering). We used data from the POES/MetOp 270 
constellation of low-Earth-orbit satellites. Our task was supervised because we used the list of events 271 
studied by Capannolo et al. (2022), which were visually classified. Note that these events were 272 
classified only in a limited MLT sector (22–02); however, their MLT value was not used as input in 273 
the model, and in fact, our model is able to identify precipitation events at any MLT. 274 

The dataset preparation was key to obtain a satisfying model performance. By considering only a 275 
short time window around each event instead of the full day of POES/MetOp data, using non-zero 276 
labels to indicate REPs (class of 1) or CSSs (class of 2) and labels at 0 to indicate the no-event, and 277 
including electron fluxes observed at different energies and look directions, we were able to obtain an 278 
appropriate dataset to use for training. We found that the LSTM architecture is suitable for 279 
identifying precipitation events and classifying them by precipitation pattern given its ability to 280 
consider the data history (in our case the precipitation pattern profile evolution along the satellite 281 
trajectory). 282 

Our model is composed of one layer of 64 bidirectional LSTM cells, one layer of 256 fully connected 283 
neurons, and one layer of 3 dense cells. The inputs are the electron fluxes at different energies and 284 
look directions, and the output is the class of each data point. We obtained the model metrics (F1 ~ 285 
0.948, AUC ~ 0.995, and AUPRC ~ 0.990) by conducting a k-fold cross-validation (k=10). Our 286 
model is able to learn the dataset properties correctly. The model is not only able to identify the 287 
electron precipitation events, but it also appropriately classifies them by their drivers.  288 

Since the dataset used for training and testing purposes has been specifically designed to obtain a 289 
good model performance, it shows less variability than that typically observed by POES/MetOp over 290 
an entire orbit. Nevertheless, our model is still able to identify and classify the precipitation events 291 
when applied to a full day of data (Figure 4), though some false positives might still be identified 292 
(Supplementary Figure 3). Post-processing of these results is needed before being able to use the 293 
model outputs for scientific research; however, this is beyond the scope of this paper and left for 294 
future investigation. Once the post-processing routine is developed, this model could be easily used 295 
as a tool to produce lists of relativistic electron precipitation events in a very short amount of time, 296 
overcoming the complex task of developing deterministic algorithms based on flux thresholds to 297 
delineate the precipitation patterns and the time-expensive task of visually classifying these events by 298 
driver. In this way, we would be able to extend the study conducted in Capannolo et al. (2022) to the 299 
whole MLT range and statistically investigate on where the CSS effects should be considered for 300 
radiation belt and precipitation modeling, as well as compare them with the precipitation driven by 301 
waves. Such event dataset would also potentially open additional avenues of machine learning 302 
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applications to space sciences; for example, from a space weather point of view, we could investigate 303 
if the electron precipitation events can be predicted by using solar images, solar wind data and/or 304 
geomagnetic indices. 305 
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Figure 1. Examples of a) a wave-driven (REP) precipitation event and b) a CSS-driven (CSS) 450 
precipitation event. Electron flux observed by POES n19 (a) and MetOp m02 (b) satellites is color-451 
coded by energy channel (as indicated in panel b), and shown as a function of time and satellite 452 
trajectory expressed in L and MLT. Dashed (solid) lines are relative to the 90° (0°) telescope, 453 
indicating the trapped (precipitating) electrons. The precipitation events are highlighted by the gray 454 
rectangles. 455 

Figure 2. Portion of the training dataset: a) class of each data point and b) electron flux for different 456 
energies. Dashed and solid lines in panel b) indicate the 90° and 0° telescope observations, 457 
respectively, as in Figure 1. Precipitation events are highlighted in gray in panel b) and their relative 458 
class is shown in panel a), where class 0 indicates “no event”, class 1 indicates “REP event” and class 459 
2 indicates “CSS event”. 460 

Figure 3. Three different portions of the test dataset in a similar format as Figure 2. Panels a), c) and 461 
e) show the original class of each event in the dashed gray line and the class of each event predicted 462 
by the model in solid black. Panels b), d) and f) show the electron flux as Figure 2b, where each 463 
event (originally identified) is highlighted in gray. 464 

Figure 4. Identification and classification of precipitation events on 6 days of POES/MetOp data. 465 
Each panel shows the electron flux color-coded in energy (legend in panel a) as a function of L, 466 
MLT, and time. Dashed (solid) lines indicate observations of trapped (precipitating) electrons from 467 
the 90° (0°) telescope. REP events identified by the model are highlighted in brown, while CSS 468 
events identified by the model are marked in blue. 469 


