

Relativistic Electron Precipitation Near Midnight: Drivers, Distribution, and Properties

L. Capannolo¹, W. Li¹, R. Millan², D. Smith³, N. Sivadas^{4,5}, J. Sample⁶, and S. Shekhar⁷

¹ Center for Space Physics, Boston University, Boston, MA, USA.

² Department of Physics and Astronomy, Dartmouth College, Hanover, NH, USA.

³ Physics Department and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, CA, USA.

⁴ NASA's Goddard Space Flight Center, Greenbelt, MD, USA.

⁵ Department of Physics, The Catholic University of America, Washington, DC, USA.

⁶ Department of Physics, Montana State University, Bozeman, MT, USA.

⁷ Department of Physics, Auburn University, Auburn, AL, USA.

Corresponding author: Luisa Capannolo (luisacap@bu.edu), Wen Li (wenli77@bu.edu)

Key Points:

- We use POES data to analyze the relativistic electron precipitation (REP) near midnight (22–02 MLT), which is found to occur over $L \sim 4\text{--}7$
- We study REP events due to a single driver: either caused by waves (isolated REP) or current sheet scattering (energy-dependent REP)
- Both mechanisms drive precipitation during field line stretching and most wave-driven events occur in association with EMIC waves

22 **Abstract**

23 We analyze the drivers, distribution, and properties of the relativistic electron precipitation
 24 (REP) detected near midnight by the Polar Orbiting Environmental Satellites (POES) and
 25 Meteorological Operational (MetOp) satellites, critical for understanding radiation belt losses
 26 and nightside atmospheric energy input. REP is either driven by wave-particle interactions
 27 (isolated precipitation within the outer radiation belt), or current sheet scattering (CSS;
 28 precipitation with energy dispersion), or a combination of the two. We evaluate the L-MLT
 29 distribution for the identified REP events in which only one process evidently drove the
 30 precipitation (~10% of the REP near midnight). We show that the two mechanisms coexist and
 31 drive precipitation in a broad L -shell range (4–7). However, wave-driven REP was also observed
 32 at $L < 4$, whereas CSS-driven REP was also detected at $L > 7$. Both processes drive REP in
 33 association with a stretched magnetotail, although CSS-driven REP potentially shows more
 34 pronounced stretching. ~73% wave-driven REP events are associated with electromagnetic ion
 35 cyclotron (EMIC) waves and occur on spatial scales of $<0.3 L$.

36 **Plain Language Summary**

37 Relativistic electrons are typically stably trapped in the outer radiation belt that surrounds the
 38 Earth at distances from ~3–4 Earth radii (R_E) up to 7–8 R_E . However, magnetospheric plasma
 39 waves can potentially interact with electrons, causing them to precipitate into the Earth's
 40 atmosphere. Electron precipitation also occurs when the magnetic field lines are stretched away
 41 from the Earth such that their curvature radius is comparable to the gyroradius of the electrons.
 42 Here, we specifically focus on precipitation events that occur near midnight. We categorize
 43 events by the driver (waves or field line stretching) depending on the shape of precipitation
 44 observed at low Earth orbit. We find that the two mechanisms overall overlap. We also show that
 45 REP is associated with field line stretching for both mechanisms and that most of the wave-
 46 driven precipitation is caused by a specific type of plasma waves, called electromagnetic ion
 47 cyclotron waves. Our findings are critical for understanding the driver of REP events near the
 48 midnight sector, which is important to account for radiation belt losses, as well as for quantifying
 49 the source of the energy input into the Earth's atmosphere that subsequently affects the
 50 atmospheric chemistry and conductivity.

51 **1 Introduction**

52 Relativistic electron precipitation (REP) is an important loss mechanism of the Earth's
 53 outer radiation belt electrons (Li & Hudson, 2019 and references therein), as well as a source of
 54 energy input into the Earth's atmosphere. It is widely accepted that electron precipitation is
 55 caused by wave-particle interactions that occur in the Earth's magnetosphere (e.g., Millan and
 56 Thorne, 2007; Thorne, 2010); however, sufficient stretching of magnetic field lines is another
 57 potential driver of electron and proton precipitation (e.g., Buchner & Zelenyi, 1989; Dubyagin et
 58 al., 2020; Sergeev et al., 1983, 1993; Sivadas et al., 2019), sometimes even more efficient than
 59 wave-driven precipitation (Artemyev et al., 2013). If the field line curvature radius becomes
 60 comparable to the particle gyroradius, pitch-angle scattering occurs and particles are lost. This
 61 process demarcates the so-called isotropic boundary (IB) for each species (e.g., Dubyagin et al.,
 62 2018; Ganushkina et al., 2005; Gilson et al., 2012; Liang et al., 2014): at latitudes poleward of
 63 this boundary, the pitch-angle distribution is isotropic, resulting in particle precipitation. Since
 64 this mechanism typically occurs in the nightside magnetosphere (where field lines stretch as the
 65 current sheet becomes thinner), it is also referred to as current sheet scattering (CSS).

66 Precipitating electrons are likely to cause ozone depletion reactions (e.g., Fytterer et al.,
 67 2015; Meraner & Shmidt, 2018; Mironova et al., 2015) and enhance ionospheric conductance
 68 (Robinson et al., 1987; Khazanov et al., 2018; Yu et al., 2018), thus understanding the drivers of
 69 the precipitation, as well as its location and intensity, is fundamental to improve current
 70 atmospheric models for space weather and climate predictions. Previous statistical studies based
 71 on either Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX; Comess et al.,
 72 2013; Smith et al., 2016) or the Polar Orbiting Environmental Satellites (POES) and
 73 Meteorological Operational (MetOp) satellite constellation (e.g., Gasque et al., 2021; Shekhar et
 74 al 2017; 2018) at low-Earth-orbit (LEO) found that REP occurs at almost all magnetic local
 75 times (MLTs), although it is predominant from the pre-dusk to the early morning sectors,
 76 peaking at pre-midnight. Relativistic microburst precipitation is also observed on the dawnside
 77 (e.g., Blum et al., 2015a; Greeley et al., 2019). Overall, REP occurs on localized spatial scales of
 78 an order of a few tenths of L -shells, independently of MLT. A recent study using high-resolution
 79 POES data by Gasque et al. (2021) indeed clarifies that the midnight REP events with wider
 80 spatial extent ($\Delta L \sim 1\text{--}2.5$) reported by Shekhar et al. (2017) based on 16s-resolution POES data
 81 also exhibit localized scales. Additionally, some works studied the association of REP with
 82 proton precipitation as a proxy for EMIC wave activity, or with in-situ or ground-based EMIC
 83 waves (e.g., Capannolo et al., 2021; Carson et al, 2012; Hendry et al., 2016). EMIC-driven
 84 precipitation seems to occur predominantly near dusk, although Carson et al. (2012) showed that
 85 it could also extend until ~ 3 MLT, with a peak in occurrence at midnight. Smith et al. (2016)
 86 suggested that the midnight REP associated with proton precipitation could be an indicator of
 87 CSS-driven precipitation rather than EMIC waves, since CSS-driven electron precipitation
 88 occurs poleward of the proton IB, thus the proton population is precipitating simultaneously with
 89 electrons in this region. Studies have also shown that electron precipitation with harder spectra or
 90 e -folding energy (e.g., as defined in Smith et al. (2016)) predominantly occurs over dusk-to-
 91 midnight, peaking at $L \sim 5$, while spectra become softer towards midnight and into the dayside,
 92 which have been speculated to be driven by the CSS mechanism (Comess et al., 2013; Shekhar et
 93 al., 2018; Smith et al., 2016). By conducting a detailed analysis of REP events identified over a
 94 limited POES dataset (38 days in Yahnin et al. (2016) and 6 months in Yahnin et al. (2017)),
 95 Yahnin et al. (2016, 2017) attributed those occurring at midnight to CSS, while those over $\sim 12\text{--}23$
 96 MLT potentially to EMIC waves.

97 Overall, it remains unclear which is the main driver of the REP observed across midnight,
 98 since studies like Carson et al. (2012) identified EMIC-driven precipitation in that region, while
 99 others (e.g., Yahnin et al., 2017; Smith et al., 2016) only found potentially CSS-driven REP
 100 there. In the present study, we focus specifically on the REP events observed near midnight (22–
 101 02 MLT) over 8 years of POES data, aiming to associate each REP event with either a wave
 102 driver or CSS, depending on its distinct spatial characteristic (in a similar manner to Yahnin et al.
 103 (2016; 2017)). While wave-driven REP shows a rather spatially isolated precipitation feature
 104 (typically corresponding to the region where pitch-angle scattering due to wave-particle
 105 interactions is efficient), CSS-driven REP exhibits a well-known energy dispersion with higher
 106 energy electrons precipitating at lower L -shells than lower energy electrons (e.g., Yahnin et al.,
 107 2016; 2017) due to the radially decreasing curvature radius of magnetic field lines. After
 108 categorizing events by driver, we analyze the precipitation distribution and intensity, in order to
 109 highlight similarities or differences between wave-driven and CSS-driven REP. Finally, we
 110 estimate the field line stretching using Geostationary Operational Environmental Satellite
 111 (GOES) and associate precipitation events with EMIC wave activity.

112 2 Selection and Classification of REP Events

113 For this study, we used 2 s data (01/2012–12/2020) from the POES/MetOp satellite
 114 constellation at LEO (~ 800 –850 km). These satellites cover a broad range of L -shells and MLTs
 115 and allow to observe both precipitating (0° telescope, pointed at zenith) and trapped (90°
 116 telescope, perpendicular to zenith) populations (Evans & Greer, 2004; Rodger et al., 2010). A
 117 strong indication of precipitation is evident when the particle flux measured by the 0° telescope
 118 approaches that observed in the 90° telescope. The newest data release includes relativistic
 119 electron flux measurements (channel E4, >700 keV) obtained from the comparison between the
 120 proton channels P5 (2.5–6.9 MeV) and P6 (>6.9 MeV, heavily contaminated by >700 keV
 121 electrons; Yando et al., 2011), as described in Green (2013). We developed an algorithm to
 122 identify REP events from the E4 channel (details are provided in the Supporting Information,
 123 SI).

124 Then, we performed a visual inspection of the $\sim 4,500$ REP events identified by the
 125 algorithm over the midnight sector (22–02 MLT). As expected, we noticed that REP was either
 126 occurring within the outer radiation belt, or right at the outer boundary (identified by the decay
 127 with L -shell of the 90° E4 flux) and accompanied by lower energy electron precipitation as well
 128 (observed in the E1 (>30 keV), E2 (>100 keV), and E3 (>300 keV) POES electron channels).
 129 The spatial characteristic of the REP along the LEO satellite trajectory as well as its location
 130 with respect to the outer radiation belt boundary allows us to associate it with either waves (1) or
 131 CSS (2). We found 235 wave-driven and 156 CSS-driven REP events. Note that this dataset
 132 corresponds to $<\sim 10\%$ of the total number of REP events found near midnight because we have
 133 been very conservative in the classification (described below) such that the catalogued events are
 134 truly driven by one mechanism alone.

135 For wave-driven REP (1), we required a well-isolated REP, showing a transition from
 136 strong precipitation within the event boundaries to no/low precipitation outside of it. Figure 1a
 137 shows an example: clear isolated REP (peak of precipitating electrons, solid red line) was
 138 observed within the outer radiation belt (high flux of trapped relativistic electrons, dotted red
 139 line), showing no precipitation before/after the main event (vertical dashed lines). We
 140 additionally required that POES observed at least one data point with precipitating-to-trapped
 141 ratio <0.4 outside of the event identified by the algorithm, thus excluding all events that are close
 142 to other unclear nearby precipitation or truncated because of missing data.

143 CSS-driven REP (2) is identified by the energy dispersion in the L -shell precipitation
 144 profile: lower-energy electrons precipitate at higher L -shells than relativistic electrons because
 145 magnetic field lines are more stretched with increasing L -shells, thus the L -shell at which the
 146 gyroradius of lower-energy electrons is comparable to the curvature radius of the associated field
 147 line is larger than that for higher-energy electrons. For this category, we required that the energy
 148 dispersion is clearly visible for at least one data point between electron channels (*i.e.*, shift of one
 149 data point from the IB of E4) and occurring poleward of the proton IB, and that electron fluxes at
 150 all energies reach a full loss cone distribution (*i.e.*, IB is identifiable for all energies). Figure 1b
 151 shows a CSS-driven example event. We further discarded events with energy dispersion due to
 152 proton contamination, events where additional low-energy electron precipitation is observed
 153 during the energy dispersion, and events where isolated REP occurs contiguously to the energy
 154 dispersion (indicating potential overlap between CSS and wave-driven mechanisms in that
 155 region). One additional important distinction between the two categories is that wave-driven
 156 events must not show the energy dispersion which instead characterizes all CSS-driven events.

157 These criteria result in discarding probably more CSS-driven events than wave-driven
 158 ones. Therefore, it is important to note that the higher number of identified wave-driven REP
 159 events is not necessarily indicating that waves dominate the REP near the midnight sector, rather
 160 that CSS-driven events often show a complex energy dispersion (*i.e.*, overlapping peaks of
 161 precipitation during the energy dispersion, energy dispersion not captured by the POES/MetOp
 162 2s resolution data, etc.) and that REP is often the superposition of both mechanisms.

163 **3 Distribution and Intensity of REP near Midnight**

164 In order to highlight potential similarities or differences of the midnight REP due to
 165 waves or CSS, Figures 2a-2c show an overview of the distribution in L and MLT (from the T05
 166 model, Tsyganenko and Sitnov, 2005) for the 391 events, separated by their driver. Points in the
 167 scatter plot (Figure 2a) are located at the average L and MLT values (calculated within the event
 168 boundaries, vertical lines in Figure 1a) during the wave-driven REP (blue) and at the minimum L
 169 (vertical line in Figure 1b) and corresponding MLT during the CSS-driven REP (gray). Figures
 170 2b-2c display the REP distribution in MLT and L , for wave-driven (blue) and CSS-driven (gray)
 171 events, with both the number of events in each bin and the occurrence rate (event number
 172 normalized to the total number of events, 391) indicated on the plots. These panels highlight that
 173 REP overall occurs over L -shells of ~ 4 –7, in the heart of the outer radiation belt, as expected.
 174 Although some wave-driven REP can extend to $L < 4$ and CSS-driven REP is also observed at L
 175 > 7 , there is no evident preferential L -MLT region where one driving mechanism dominates over
 176 the other, similarly to what Yahnin et al. (2016, 2017) found on a shorter time span in the POES
 177 data. This strongly suggests that wave-driven and CSS-driven precipitation coexist near
 178 midnight, contrary to common expectations of electron CSS occurring only at high L -shells. This
 179 is not entirely surprising because the magnetotail is highly dynamic, thus current sheet thinning
 180 can occur frequently and at a wide variety of distances from the Earth. Nevertheless, it is
 181 certainly interesting that field lines can stretch enough to cause CSS at relatively low L -shells
 182 ($<\sim 6$).

183 Figures 2d-2e are relative to the wave-driven REP events only, for which we can estimate
 184 an L -shell extent (ΔL), as defined in Figure 1a. From the scatter plot of ΔL versus MLT (Figure
 185 2d), events identified in the pre-midnight sector tend to be wider than those identified in the post-
 186 midnight sector, though the majority of the events have extents of $<0.3 L$. This could be the
 187 result of different wave or plasma background properties across midnight which in turn
 188 determine spatial differences where conditions for pitch-angle scattering are more favorable (as
 189 suggested in Capannolo et al. (2021)). Although the choice of the ΔL definition is not unique and
 190 could affect the minimum/maximum extent (as also mentioned in the SI and Gasque et al.
 191 (2021)), the wave-driven REP events overall occur on localized scales (average $\sim 0.25 L$,
 192 standard deviation ~ 0.14), consistent with previous results (Capannolo et al., 2021; Gasque et al.,
 193 2021).

194 Furthermore, we estimated the average intensity of REP driven by each mechanism near
 195 midnight (details in Table S1). The averaged precipitating relativistic (>700 keV) electron flux
 196 (0° telescope) driven by waves ($\sim 4.4 \times 10^3 \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$, standard deviation $\sim 5.2 \times 10^3 \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$) is
 197 at least twice of that driven by CSS ($\sim 2.1 \times 10^3 \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$, standard deviation $\sim 1.4 \times 10^3 \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$),
 198 reaching average peaks of $\sim 1.4 \times 10^4 \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$, as opposed to average peaks from CSS-driven
 199 precipitation of $\sim 0.4 \times 10^4 \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$. It is noteworthy that such high levels of precipitation fluxes
 200 are also possible because there is a significantly high amount of relativistic electron population

201 trapped (90° telescope) in the outer radiation belt during the wave-driven REP events (on
 202 average, $\sim 1.2 \times 10^4 \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$) compared to that during CCS-driven events ($\sim 0.3 \times 10^4 \text{ s}^{-1} \text{cm}^{-2} \text{sr}^{-1}$).
 203 Such result is not surprising since CSS-driven events are typically expected to occur at the outer
 204 boundary of the outer radiation belt, where the trapped population flux is lower than that in the
 205 heart of the belt. On the other hand, wave-driven events occur in the core of the outer belt and
 206 thus are associated with higher levels of trapped relativistic electron flux. The average
 207 precipitating-to-trapped ratios are ~ 0.35 for wave-driven REP and ~ 0.77 for CSS-driven REP,
 208 indicating that although waves scatter higher fluxes of relativistic electrons into the atmosphere,
 209 they efficiently precipitate a smaller percentage of trapped relativistic electron flux, whereas CSS
 210 ultimately leads to an almost isotropic pitch angle distribution, as expected.

211 4 Association with Field-Line Stretching

212 To quantify the magnetic field stretching associated with the REP events in each
 213 category, we calculated the elevation angle from the magnetic field components measured by
 214 GOES. Similarly to previous works (Green et al., 2004; Shekhar et al., 2017, 2018), we define
 215 the elevation angle as that between the poleward (H_p) and earthward (H_e) magnetic field
 216 components, calculated as $\theta = \arctan(H_p/H_e)$. This value provides an estimate of the approximate
 217 stretching of the field line: the smaller the angle, the more stretched the magnetic field line. To
 218 calculate the angle as accurately as possible, we searched for magnetic conjunctions between
 219 POES and GOES during the identified REP events, with conjunction criteria of $\Delta L \leq 2$ and
 220 $\Delta \text{MLT} \leq 2$. Although these criteria do not always allow a one-to-one comparison, finding conjunctions with
 221 equatorial spacecraft still provides insightful information near the conjugate location of the REP
 222 events observed at LEO. We found 76 and 69 conjunctions for wave-driven and CSS-driven
 223 events, respectively. An example of a POES & GOES conjunction during a CSS-driven event is
 224 shown in Figure 3 (left). Figure 3a shows the typical energy dispersion of a CSS-driven event.
 225 Figures 3b-3c show the GOES elevation angle (b) and the magnetic field components (c) around
 226 the REP UT (identified by the vertical line). θ decreased towards the REP UT, similarly to H_p .
 227 Together with the increasing trend of H_e , this event shows a clear field line stretching, reaching a
 228 low value of $\theta \sim 30^\circ$ at the REP UT.

229 Figures 3d and 3e indicate the histogram (gray) of the θ values for each magnetic
 230 conjunction during wave-driven and CSS-driven events, respectively. We also overplotted the
 231 monthly average angle distribution (orange, peak $\sim 53^\circ$) observed by GOES, which provides the
 232 typical elevation angle values observed by GOES near midnight (details in the SI). The
 233 distribution of the angles calculated at POES & GOES conjunctions (gray) is shifted towards
 234 lower values for both wave-driven and CSS-driven REP, indicating that for both mechanisms
 235 there is some field line stretching compared to the monthly averages. The CSS-driven REP
 236 distribution is peaked at lower angles ($\sim 35^\circ$, more stretched magnetotail) than the wave-driven
 237 one ($\sim 47^\circ$); however, given the small data sample, this difference is not statistically significant
 238 (from the Kolmogorov-Smirnov and Anderson-Darling tests).

239 5 Association with EMIC Waves for Wave-Driven Precipitation Events

240 Previous studies (Carson et al., 2012; Shekhar et al., 2017; Smith et al., 2016) have
 241 associated some REP near midnight with EMIC waves. In this section, we used typical EMIC-
 242 driven precipitation signatures and in-situ EMIC wave observations to quantify how many of the
 243 wave-driven REP events are indeed associated with EMIC waves. Several literature studies show

244 that EMIC waves drive simultaneous precipitation of protons and electrons (e.g., Capannolo et
 245 al., 2019a; Hendry et al., 2016; Miyoshi et al., 2008). In order to use proton precipitation as a
 246 proxy of EMIC waves, proton precipitation must occur equatorward of the proton IB and be
 247 isolated with clear peaks coinciding with REP (as shown in Figure S1). Using POES 10s–100s
 248 keV proton flux measurements, we were able to identify 161 wave-driven events (out of the total
 249 235 wave-driven events) that coincided with proton precipitation. The rest of the events either
 250 did not show clear proton precipitation (20 events), or occurred at/within the proton IB (54
 251 events), where it was not possible to clearly identify EMIC-driven proton precipitation
 252 simultaneously occurring with the REP. For 9 of these 74 events, it was possible to identify
 253 EMIC wave activity from the POES & GOES conjunctions, within \sim 1h from the REP UT (one
 254 example is shown in Figure S2 in the SI). Similarly, we used POES & RBSP (Radiation Belt
 255 Storm Probes or Van Allen Probes; Mauk et al., 2013; ΔL & $\Delta MLT \leq 2$) to associate 2 other
 256 wave-driven events with EMIC waves observed by RBSP. As a result, 172 out of 235 wave-
 257 driven events (\sim 73%) are associated with typical EMIC-driven precipitation or in-situ EMIC
 258 waves. Their distribution is similar to that in Figure 2 (blue; not shown). For CSS-driven REP,
 259 instead, only $<\sim$ 14% events (from 69 POES & GOES and 38 POES & RBSP conjunctions) are
 260 associated with in-situ EMIC waves.

261 Previous studies also indicated that EMIC waves are typically more efficient in scattering
 262 relativistic electrons in weak magnetic field and high-density regions (e.g., Jordanova et al.,
 263 2008; Meredith et al., 2003; Summers & Thorne, 2003; Woodger et al., 2018), thus EMIC-driven
 264 REP events are often observed from post-noon to pre-midnight (e.g., Blum et al., 2015b;
 265 Capannolo et al., 2021; Clilverd et al., 2015; Qin et al., 2018). Our study shows that EMIC-
 266 driven REP is indeed occurring near pre-midnight, but is also observed near post-midnight,
 267 similar to the results of Carson et al. (2012). To understand if the REP events occur within or
 268 outside the plasmasphere, we used the plasma density estimated from the upper hybrid resonance
 269 frequency (from Electric and Magnetic Field Instrument Suite and Integrated Science, EMFISIS,
 270 Kurth et al., 2015) measured at the POES & RBSP conjunctions. Out of 35 conjunctions with
 271 density data available at the REP UT, 60% of them show \geq 40 cm $^{-3}$ density. Although we were
 272 able to obtain in-situ plasma density for only a small subset of the wave-driven events, the
 273 qualitative results suggest that, for most conjunctions, wave-driven events occur in high-density
 274 regions, where EMIC waves are efficient in driving pitch-angle scattering. In contrast, the
 275 majority (70%) of the POES & RBSP conjunctions during CSS-driven events are associated with
 276 low density (< 40 cm $^{-3}$), suggesting that CSS likely drives precipitation outside the
 277 plasmasphere. These results are consistent with the findings by Yahnin et al. (2016) indicating
 278 that the majority of CSS-driven events (their second group) are associated with low density
 279 regions, while those associated with proton spikes (their third group) occur in regions with
 280 density enhancements. Smith et al. (2016) also found that for EMIC-driven events the
 281 plasmasphere is more extended than when CSS-driven precipitation occurs.

282 6 Summary & Conclusions

283 We conducted an in-depth analysis of relativistic electron precipitation (REP) occurring
 284 near midnight (22–02 MLT) as observed by the POES/MetOp satellites, which appears to be
 285 caused by wave-particle interactions and CSS. \sim 10% of the REP was associated with one
 286 mechanism alone, showing either an isolated >700 keV precipitation feature (within the outer
 287 belt), or a precipitation pattern with energy dispersion covering energies from >30 keV up to
 288 >700 keV (at the outer boundary of the belt). In this study, we leveraged such a distinct spatial

289 precipitation characteristic and associated the isolated 235 REP events with wave-driven
 290 scattering (e.g., Capannolo et al., 2019a; 2021) and the 156 REP events with energy dispersion
 291 with CSS (e.g., Yahnin et al., 2016). We have investigated the *L*-MLT distribution of REP, as
 292 well as the precipitation intensity for each category and the spatial extent of the wave-driven
 293 REP. Using POES & GOES conjunctions, we also provided an estimate of magnetic field
 294 stretching during wave-driven and CSS-driven precipitation. GOES and RBSP wave data have
 295 been used to find signatures of in-situ EMIC wave observations during the observed REP.
 296 Finally, the in-situ plasma density measured by RBSP allowed us to further understand if the
 297 REP was occurring within or outside the plasmasphere. Note that the analyzed dataset is
 298 dependent on the selection thresholds of REP described in the SI by limiting to the events with
 299 sufficient relativistic electron precipitation, which is required to unambiguously identify REP
 300 events driven by either waves or CSS. Nevertheless, the findings are expected to be robust for
 301 the not-too-weak REP events near midnight.

302 The key results are summarized as follows:

- 303 1. Both wave-driven and CSS-driven REP events predominantly occur over *L*-shells of \sim 4–7,
 304 showing that these two mechanisms coexist and drive precipitation in a similar region,
 305 without a clear difference in *L*-MLT dependence. Nevertheless, a few wave-driven events
 306 were observed at $L < 4$, while some CSS-driven events were also detected at $L > 7$.
- 307 2. For both driving mechanisms, the magnetotail is more stretched than average, although CSS-
 308 driven REP is likely associated with more field line stretching compared to wave-driven
 309 REP.
- 310 3. Most wave-driven REP events are associated with typical EMIC-driven proton precipitation
 311 or in-situ EMIC wave activity.
- 312 4. For a subset of events, wave-driven REP is observed within the plasmasphere, while CSS-
 313 driven REP is preferentially detected outside of it.

314 It is not surprising that both types of REP are associated with a stretched (thus active)
 315 magnetotail. While this is key to drive REP via CSS, waves are typically generated during
 316 injections from the tail (e.g., Li et al., 2008; Remya et al., 2018), which also occur during
 317 substorms and storms (intrinsically associated with magnetotail stretching). Shekhar et al. (2017)
 318 had already shown that midnight REP is preferentially associated with a more stretched
 319 magnetotail; however, since we distinguished the wave-driven REP from the CSS-driven one, we
 320 evaluated if the CSS mechanism is operating during more significant stretching. Our data sample
 321 is too small to draw a solid conclusion; however, it is noteworthy that CSS-driven REP is peaked
 322 at lower elevation angles than wave-driven REP, potentially suggesting that indeed CSS-driven
 323 REP is associated with more stretched field lines. Future studies could shed further light on this
 324 result by associating each event to a geomagnetic storm/substorm, to reveal if one type of REP
 325 preferentially occurs during a specific active phase.

326 Similar to previous studies (e.g., Gasque et al., 2021), the observed wave-driven REP
 327 occurs on small radial scales, typically $<0.3 L$, likely because the regions where wave-particle
 328 interactions drive efficient pitch angle scattering are just as localized. Additionally, we also
 329 showed that pre-midnight wave-driven REP events tend to exhibit a maximum radial spatial
 330 scale of $\sim 0.7 L$, while the ones detected in the post-midnight sector are typically $<\sim 0.5 L$. This is
 331 an interesting result that requires further understanding of the wave properties and wave-electron

332 interactions that could justify why the precipitation extent seems to be asymmetric with respect
333 to midnight.

334 Although the precipitating >700 keV electron flux during wave-driven events is twice of
335 that during CSS-driven events, they are of the same order of magnitude, thus they both provide
336 important energy inputs into the atmosphere. On average, CSS is able to precipitate a larger
337 percentage of trapped relativistic electrons into the Earth's atmosphere. Our work additionally
338 showed CSS could occur at L -shells as low as 4, indicating that the magnetotail can undergo
339 significant stretching also close to Earth. Furthermore, since CSS-driven precipitation is a direct
340 result of the stretching of the magnetotail, improved understanding of the CSS-driven
341 precipitation is important to potentially infer the configuration of the magnetic field using remote
342 sensing techniques (e.g., Sergeev et al., 2018).

343 In conclusion, midnight REP appears to be driven by both waves and CSS, without an
344 evident difference in L -MLT occurrence. These results indicate that the two mechanisms coexist
345 and compete near midnight, thus should be both considered to understand the relativistic electron
346 loss in the outer radiation belt (Artemyev et al., 2013), as well as the source of precipitation from
347 the magnetosphere into the nightside upper atmosphere of the Earth.

348 **Acknowledgments, Samples, and Data**

349 This research is supported by the NSF grants AGS-1723588 and AGS-2019950, the NASA
350 grants 80NSSC20K0698 and 80NSSC20K1270, and the Alfred P. Sloan Research Fellowship
351 FG-2018-10936. The POES 2s data are available at
352 <https://satdat.ngdc.noaa.gov/sem/poes/data/processed/ngdc/uncorrected/full/>. GOES data is
353 accessible at <https://satdat.ngdc.noaa.gov/sem/goes/data/full/>. RBSP EMFISIS data are
354 accessible at <http://emfisis.physics.uiowa.edu/Flight/>.

355 **References**

356 Artemyev, A. V., Orlova, K. G., Mourenas, D., Agapitov, O. V., and Krasnoselskikh, V. V.:
 357 Electron pitch-angle diffusion: resonant scattering by waves vs. nonadiabatic effects,
 358 *Ann. Geophys.*, 31, 1485–1490, <https://doi.org/10.5194/angeo-31-1485-2013>, 2013.

359 Blum, L. W., et al. (2015), Observations of coincident EMIC wave activity and duskside
 360 energetic electron precipitation on 18-19 January 2013, *Geophysical Research Letters*,
 361 42, 5727–5735, doi:10.1002/2015GL065245.

362 Blum, L., Li, X., and Denton, M. (2015), Rapid MeV electron precipitation as observed by
 363 SAMPEX/HILT during high-speed stream-driven storms. *J. Geophys. Res. Space*
 364 Physics, 120, 3783– 3794. doi: 10.1002/2014JA020633.

365 Büchner, J., and Zelenyi, L. M. (1989), Regular and chaotic charged particle motion in
 366 magnetotaillike field reversals: 1. Basic theory of trapped motion, *J. Geophys. Res.*,
 367 94(A9), 11821– 11842, doi:10.1029/JA094iA09p11821.

368 Capannolo, L., Li, W., Ma, Q., Chen, L., Shen, X.-C., Spence, H. E., et al. (2019b). Direct
 369 observation of subrelativistic electron precipitation potentially driven by EMIC waves.
 370 *Geophysical Research Letters*, 46, 12711– 12721. <https://doi.org/10.1029/2019GL084202>

371 Capannolo, L., Li, W., Ma, Q., Shen, X.-C., Zhang, X.-J., Redmon, R. J., et al. (2019a).
 372 Energetic electron precipitation: Multievent analysis of its spatial extent during EMIC
 373 wave activity. *Journal of Geophysical Research: Space Physics*,
 374 124. <https://doi.org/10.1029/2018JA026291>

375 Capannolo, L., Li, W., Spence, H., Johnson, A. T., Shumko, M., Sample, J., & Klumpar, D.
 376 (2021). Energetic electron precipitation observed by FIREBIRD-II potentially driven by
 377 EMIC waves: Location, extent, and energy range from a multievent analysis.
 378 *Geophysical Research Letters*, 48, e2020GL091564.
 379 <https://doi.org/10.1029/2020GL091564>

380 Carson, B. R., Rodger, C. J., and Clilverd, M. A. (2012), POES satellite observations of EMIC-
 381 wave driven relativistic electron precipitation during 1998–2010, *J. Geophys. Res. Space*
 382 Physics, 118, 232– 243, doi:10.1029/2012JA017998.

383 Clilverd, M. A., Duthie, R., Hardman, R., Hendry, A. T., Rodger, C. J., Raita, T., Engebretson,
 384 M., Lessard, M. R., Danskin, D., and Milling, D. K. (2015), Electron precipitation from
 385 EMIC waves: A case study from 31 May 2013. *J. Geophys. Res. Space Physics*, 120,
 386 3618– 3631. doi: 10.1002/2015JA021090.

387 Comess, M. D., Smith, D. M., Selesnick, R. S., Millan, R. M., and Sample, J. G. (2013),
 388 Duskside relativistic electron precipitation as measured by SAMPEX: A statistical
 389 survey, *J. Geophys. Res. Space Physics*, 118, 5050– 5058, doi:10.1002/jgra.50481.

390 Dubyagin, S., Apatenkov, S., Gordeev, E., Ganushkina, N., & Zheng, Y. (2021). Conditions of
 391 loss cone filling by scattering on the curved field lines for 30 keV protons during
 392 geomagnetic storm as inferred from numerical trajectory tracing. *Journal of Geophysical*
 393 *Research: Space Physics*, 126, e2020JA028490. <https://doi.org/10.1029/2020JA028490>

394 Dubyagin, S., Ganushkina, N., Apatenkov, S., Kubyshkina, M., Singer, H., and Liemohn, M.:
 395 Geometry of duskside equatorial current during magnetic storm main phase as deduced

396 from magnetospheric and low-altitude observations, *Ann. Geophys.*, 31, 395–408,
397 <https://doi.org/10.5194/angeo-31-395-2013>, 2013.

398 Evans, D. S., and M. S. Greer (2004), Polar Orbiting Environmental Satellite Space Environment
399 Monitor-2: Instrument Descriptions and Archive Data Documentation, NOAA Tech.
400 Mem. 93, version 1.4, Space Weather Predict. Cent., Boulder, Colo.

401 Fytterer, T., Mlynczak, M. G., Nieder, H., Pérot, K., Sinnhuber, M., Stiller, G., and Urban, J.:
402 Energetic particle induced intra-seasonal variability of ozone inside the Antarctic polar
403 vortex observed in satellite data, *Atmos. Chem. Phys.*, 15, 3327–3338,
404 <https://doi.org/10.5194/acp-15-3327-2015>, 2015.

405 Ganushkina, N. Yu., Pulkkinen, T. I., Kubyshkina, M. V., Sergeev, V. A., Lvova, E. A.,
406 Yahnina, T. A., Yahnin, A. G., and Fritz, T.: Proton isotropy boundaries as measured on
407 mid- and low-altitude satellites, *Ann. Geophys.*, 23, 1839–1847,
408 <https://doi.org/10.5194/angeo-23-1839-2005>, 2005.

409 Gasque, L. C., Millan, R. M., & Shekhar, S. (2021). Statistically determining the spatial extent of
410 relativistic electron precipitation events using 2-s polar-orbiting satellite data. *Journal of*
411 *Geophysical Research: Space Physics*, 126, e2020JA028675.
412 <https://doi.org/10.1029/2020JA028675>

413 Gilson, M. L., Raeder, J., Donovan, E., Ge, Y. S., and Kepko, L. (2012), Global simulation of
414 proton precipitation due to field line curvature during substorms, *J. Geophys. Res.*, 117,
415 A05216, doi:10.1029/2012JA017562.

416 Greeley, A. D., Kanekal, S. G., Baker, D. N., Klecker, B., & Schiller, Q. (2019). Quantifying the
417 contribution of microbursts to global electron loss in the radiation belts. *Journal of*
418 *Geophysical Research: Space Physics*, 124, 1111– 1124.
419 <https://doi.org/10.1029/2018JA026368>

420 Green, J. C. (2013), MEPED Telescope Data Processing Algorithm Theoretical Basis Document,
421 Natl. Oceanic and Atmos. Admin. National Geophysical Data Center, Boulder, Colorado

422 Green, J. C., Onsager, T. G., O'Brien, T. P., and Baker, D. N. (2004), Testing loss mechanisms
423 capable of rapidly depleting relativistic electron flux in the Earth's outer radiation belt, *J.*
424 *Geophys. Res.*, 109, A12211, doi:10.1029/2004JA010579.

425 Hendry, A. T., Rodger, C. J., Clilverd, M. A., Engebretson, M. J., Mann, I. R., Lessard, M.
426 Raita, T., and Milling, D. K. (2016), Confirmation of EMIC wave-driven relativistic
427 electron precipitation, *J. Geophys. Res. Space Physics*, 121, 5366– 5383,
428 doi:10.1002/2015JA022224.

429 Jordanova, V. K., Albert, J., & Miyoshi, Y. (2008). Relativistic electron precipitation by EMIC
430 waves from self-consistent global simulations. *Journal of Geophysical Research*, 113,
431 A00A10. <https://doi.org/10.1029/2008JA013239>

432 Khazanov, G. V., Robinson, R. M., Zesta, E., Sibeck, D. G., Chu, M., & Grubbs, G. A. (2018). Impact of precipitating
433 electrons and magnetosphere-ionosphere coupling processes on ionospheric conductance.
434 *Space Weather*, 16, 829– 837. <https://doi.org/10.1029/2018SW001837>

435 Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., &
436 Wygant, J. R. (2015). Electron densities inferred from plasma wave spectra obtained by

437 the waves instrument on Van Allen Probes. *Journal of Geophysical Research: Space*
438 *Physics*, 120, 904–914. <https://doi.org/10.1002/2014JA020857>

439 Li, W., & Hudson, M. K. (2019). Earth's Van Allen Radiation Belts: From Discovery to the Van
440 Allen Probes Era. *Journal of Geophysical Research: Space Physics*, 124, 8319–8351.
441 <https://doi.org/10.1029/2018JA025940>

442 Li, W., Thorne, R. M., Meredith, N. P., Horne, R. B., Bortnik, J., Shprits, Y. Y., and Ni,
443 B. (2008), Evaluation of whistler mode chorus amplification during an injection event
444 observed on CRRES, *J. Geophys. Res.*, 113, A09210, doi:10.1029/2008JA013129.

445 Liang, J., Donovan, E., Ni, B., Yue, C., Jiang, F., and Angelopoulos, V. (2014), On an energy-
446 latitude dispersion pattern of ion precipitation potentially associated with magnetospheric
447 EMIC waves, *J. Geophys. Res. Space Physics*, 119, 8137–8160,
448 doi:10.1002/2014JA020226.

449 Mauk, B.H., Fox, N.J., Kanekal, S.G. et al. (2013), Science Objectives and Rationale for the
450 Radiation Belt Storm Probes Mission, *Space Science Reviews*, 179: 3.
451 <https://doi.org/10.1007/s11214-012-9908-y>.

452 Meraner, K. and Schmidt, H. (2018): Climate impact of idealized winter polar mesospheric and
453 stratospheric ozone losses as caused by energetic particle precipitation, *Atmospheric
454 Chemistry and Physics*, 18, 1079-1089, <https://doi.org/10.5194/acp-18-1079-2018>.

455 Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003). Favored regions for
456 chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation
457 belt. *Geophysical Research Letters*, 30(16), 1871. <https://doi.org/10.1029/2003GL017698>

458 Millan, R. M., & Thorne, R. M. (2007). Review of radiation belt relativistic electron losses.
459 *Journal of Atmospheric and Solar-Terrestrial Physics*, 69(3), 362–377.
460 <https://doi.org/10.1016/j.jastp.2006.06.019>

461 Mironova, Irina A.; Aplin, Karen L.; Arnold, Frank; Bazilevskaya, Galina A.; Harrison, R. Giles;
462 Krivolutsky, Alexei A.; Nicoll, Keri A.; Rozanov, Eugene V.; Turunen, Esa; Usoskin,
463 Ilya G. (2015) Energetic Particle Influence on the Earth's Atmosphere, *Space Science
464 Reviews*, Volume 194, Issue 1-4, pp. 1-96, doi 10.1007/s11214-015-0185-4

465 Miyoshi, Y., Sakaguchi, K., Shiokawa, K., Evans, D., Albert, J., Connors, M., and Jordanova, V.
466 (2008), Precipitation of radiation belt electrons by EMIC waves, observed from ground
467 and space, *Geophys. Res. Lett.*, 35, L23101, doi:10.1029/2008GL035727.

468 Qin, M., Hudson, M., Millan, R., Woodger, L., & Shekhar, S. (2018). Statistical investigation of
469 the efficiency of EMIC waves in precipitating relativistic electrons. *Journal of
470 Geophysical Research: Space Physics*, 123. <https://doi.org/10.1029/2018JA025419>

471 Remya, B., Sibeck, D. G., Halford, A. J., Murphy, K. R., Reeves, G. D., Singer, H. J., et al.
472 (2018). Ion injection triggered EMIC waves in the Earth's magnetosphere. *Journal of
473 Geophysical Research: Space Physics*, 123, 4921–
474 4938. <https://doi.org/10.1029/2018JA025354>

475 Robinson, R. M., Vondrak, R. R., Miller, K., Dabbs, T., and Hardy, D. (1987), On calculating
476 ionospheric conductances from the flux and energy of precipitating electrons, *J. Geophys.
477 Res.*, 92(A3), 2565–2569, doi:10.1029/JA092iA03p02565.

478 Rodger, C. J., M. A. Clilverd, J. C. Green, and M. M. Lam (2010), Use of POES SEM-2
479 observations to examine radiation belt dynamics and energetic electron precipitation into
480 the atmosphere, *Journal of Geophysics Research Space Physics*, 115, A04202,
481 doi:10.1029/2008JA014023.

482 Selesnick, R. S., Tu, W., Yando, K. B., Millan, R. M., & Redmon, R. J. (2020). POES/MEPED
483 angular response functions and the precipitating radiation belt electron flux. *Journal of*
484 *Geophysical Research: Space Physics*, 125, e2020JA028240.
485 <https://doi.org/10.1029/2020JA028240>

486 Sergeev, V. A., Gordeev, E. I., Merkin, V. G., & Sitnov, M. I. (2018). Does a local B-minimum
487 appear in the tail current sheet during a substorm growth phase?. *Geophysical Research*
488 *Letters*, 45, 2566– 2573. <https://doi.org/10.1002/2018GL077183>

489 Sergeev, V. A., Malkov, M., and Mursula, K. (1993), Testing the isotropic boundary algorithm
490 method to evaluate the magnetic field configuration in the tail, *J. Geophys. Res.*, 98(A5),
491 7609– 7620, doi:10.1029/92JA02587.

492 Shekhar, S., Millan, R. M., & Hudson, M. K. (2018). A statistical study of spatial variation of
493 relativistic electron precipitation energy spectra with Polar Operational Environmental
494 Satellites. *Journal of Geophysical Research: Space Physics*, 123, 3349–
495 3359. <https://doi.org/10.1002/2017JA025041>

496 Shekhar, S., Millan, R., & Smith, D. (2017), A statistical study of the spatial extent of relativistic
497 electron precipitation with polar orbiting environmental satellites. *Journal of Geophysical*
498 *Research: Space Physics*, 122, 11,274–11,284. <https://doi.org/10.1002/2017JA024716>

499 Sivadas, N., Semeter, J., Nishimura, Y. T., & Mrak, S. (2019). Optical signatures of the outer
500 radiation belt boundary. *Geophysical Research Letters*, 46, 8588– 8596.
501 <https://doi.org/10.1029/2019GL083908>

502 Smith, D. M., Casavant, E. P., Comess, M. D., Liang, X., Bowers, G. S., Selesnick, R. S.,
503 Clausen, L. B. N., Millan, R. M., and Sample, J. G. (2016), The causes of the hardest
504 electron precipitation events seen with SAMPEX, *J. Geophys. Res. Space Physics*, 121,
505 8600– 8613, doi:10.1002/2016JA022346.

506 Summers, D., & Thorne, R. M. (2003). Relativistic electron pitch-angle scattering by
507 electromagnetic ion cyclotron waves during geomagnetic storms. *Journal of Geophysical*
508 *Research*, 108(A4), 1–12. <https://doi.org/10.1029/2002JA009489>

509 Thorne, R. M. (2010), Radiation belt dynamics: The importance of wave-particle interactions,
510 *Geophysical Research Letters*, 37, L22107, doi:10.1029/2010GL044990.

511 Tsyganenko, N. A., and M. I. Sitnov (2005), Modeling the dynamics of the inner magnetosphere
512 during strong geomagnetic storms, *Journal of Geophysics Research*, 110, A03208,
513 doi:10.1029/2004JA010798.

514 Sergeev, V.A., E.M. Sazhina, N.A. Tsyganenko, J.Å. Lundblad, F. Søraas, Pitch-angle scattering
515 of energetic protons in the magnetotail current sheet as the dominant source of their
516 isotropic precipitation into the nightside ionosphere, *Planetary and Space Science*,
517 Volume 31, Issue 10, 1983, Pages 1147-1155, ISSN 0032-0633,
518 [https://doi.org/10.1016/0032-0633\(83\)90103-4](https://doi.org/10.1016/0032-0633(83)90103-4).

519 Woodger, L. A., Millan, R. M., Li, Z., & Sample, J. G. (2018), Impact of background magnetic
520 field for EMIC wave-driven electron precipitation. *Journal of Geophysical Research: Space Physics*, 123, 8518– 8532. <https://doi.org/10.1029/2018JA025315>

522 Yahnin, A. G., T. A. Yahnina, N. V. Semenova, B. B. Gvozdevsky, and A. B. Pashin (2016),
523 Relativistic electron precipitation as seen by NOAA POES, *Journal of Geophysics Research Space Physics*, 121, doi:10.1002/2016JA022765.

525 Yahnin, A. G., T. A. Yahnina, T. Raita, and J. Manninen (2017), Ground pulsation
526 magnetometer observations conjugated with relativistic electron precipitation, *Journal of Geophysics Research Space Physics*, 122, 9169-9182, doi:10.1002/2017JA024249.

528 Yando, K., Millan, R. M., Green, J. C., & Evans, D. S. (2011). A Monte Carlo simulation of the
529 NOAA POES medium energy proton and Electron detector instrument. *Journal of Geophysics Research*, 116, A10231. <https://doi.org/10.1029/2011JA016671>

531 Yu, Y., Jordanova, V. K., McGranaghan, R. M., & Solomon, S. C. (2018). Self-consistent
532 modeling of electron precipitation and responses in the ionosphere: Application to low-
533 altitude energization during substorms. *Geophysical Research Letters*, 45, 6371– 6381.
534 <https://doi.org/10.1029/2018GL078828>

535 **Figure 1.** Example of a wave-driven (a) and a CSS-driven (b) REP event, observed by NOAA-
536 19 and NOAA-16, respectively. Dotted (solid) lines indicate the trapped (precipitating) electrons
537 measured by the 90° (0°) telescope. Different colors specify different electron energy channels.
538 Horizontal dashed lines indicate the flux thresholds used in the algorithm (details in SI). The
539 vertical lines in a) identify the radial extent of the wave-driven event. The vertical line in b)
540 shows the L -shell where the energy dispersion is starting.

541 **Figure 2.** a) Scatter plot of the location of the wave-driven (blue) and CSS-driven (gray) REP.
542 Blue points are located at the average L and MLT calculated within the event boundaries
543 (vertical lines in Figure 1a). Gray points are located at the L -shell (and relative MLT) that marks
544 the energy dispersion (vertical line in Figure 1b). Histograms in MLT (b) and L (c) of wave-
545 driven (blue) and CSS-driven (gray) REP. Occurrence (number of events in each bin normalized
546 to the total 391 REP events) is shown in red (right axis). d) Scatter plot and e) histogram of radial
547 extent (defined as in Figure 1a) for the wave-driven REP.

548 **Figure 3.** Left: example of a POES & GOES conjunction during a CSS-driven event; a) POES
549 observation in a similar format to that in Figure 1b, b) elevation angle and c) magnetic field
550 components from GOES. d) Distribution (gray) of the elevation angles for wave-driven and e)
551 CSS-driven events during POES & GOES conjunctions. Distributions in orange are relative to
552 the monthly average elevation angles (details in the SI).