CHAPTER ONE

Flight-fecundity tradeoffs in wing-monomorphic insects

Natasha Tigreros, Goggy Davidowitz

Department of Entomology, University of Arizona, Tucson, AZ, United States

Contents

١.	Introduction	2
2.	Review methods	3
3.	Empirical evidence of a flight-fecundity tradeoff	4
	Methods used to assess the association between flight and fecundity	4
	4.1 Limited available resources	5
	4.2 Forced flight	11
	4.3 Genetic correlations	11
5.	Flight-related morphology	12
6.	Components of flight performance	13
	6.1 Flight endurance	13
	6.2 Flight takeoff	15
	6.3 Other components of performance	19
7.	Behavioural types of movement	19
	7.1 Station-keeping	20
	7.2 Migration	20
8.	The colonizer-syndrome	24
9.	Shared resources between flight and fecundity	25
	9.1 Resource allocation to flight	25
	9.2 Resource allocation to fecundity	27
	9.3 Capital vs. income breeders	28
10.	Conclusions	28
Ack	nowledgement	29
App	endix	29
Refe	erences	32
Furt	her reading	41

Abstract

Winged insects often spend considerable amounts of energy in flight, searching for food, escaping predators, and dispersing. In females, flight is hypothesized to reduce resources available for egg production, thus leading to a tradeoff between flight and fecundity. Yet, the generality of a flight-fecundity tradeoff in insects may have been

overestimated, given that empirical validation of such a tradeoff has largely relied on studies in wing-polymorphic insects. In this review, we evaluate evidence of a flightfecundity tradeoff in wing-monomorphic insects by conducting a systematic literature search. We compiled information from studies on migratory and non-migratory insects, testing for an association between flight and fecundity and using a number of different methods—phenotypic and genotypic correlations, manipulation of resource availability, and manipulation of either flight or fecundity. Although most studies indicated a negative association between flight and fecundity in wing-monomorphic insects, evidence for a tradeoff between the two traits was less prevalent. In several contexts, there were species that showed none or a positive association between both traits. Importantly, flight and fecundity in wing-monomorphic insects was related in a number of ways: via physiological constraints—resource-based tradeoffs—as well as via biomechanical constraints—when egg loads affected take-off performance—, due to adaptive negative correlations—when switching from flight to egg production if appropriate conditions to reproduce were encountered—and, due to adaptive positive correlations—when optimal flight and high fecundity were favoured for colonizing new habitats.

1. Introduction

Organisms have finite amounts of resources to use for reproduction, growth, metabolism, and maintenance. Increased allocation of resources to any one of these functions necessarily reduces the amount available for the others. Such resource allocation tradeoffs directly affect fitness and underlie the evolution of life histories in all organisms (Roff, 1992; Steams, 1992).

Insects utilize a significant portion of their energy budget in building, maintaining, and operating their flight system. Their flight muscles, for instance, are known to exhibit the highest mass-specific rates of oxygen consumption of any locomotory tissue (Marden, 2000). As a consequence, the energetic and material costs required to fly are likely to divert resources away from other fitness-related processes. Especially in females, flight is expected to impact egg production, which also is energetically costly and is often limited by available resources (Papaj, 2000; Wheeler, 1996). Indeed, some of the strongest empirical evidence of resource allocation tradeoffs involves the allocation of limited resources between flight muscles and fecundity in wing-dimorphic insects (Guerra, 2011; Mole and Zera, 1993; Roff, 1986; Roff and Bradford, 1996; Tanaka and Suzuki, 1998). Overall, winged females exhibit developed flight muscles and reduced ovaries, whereas wingless morphs allocate more resources to reproduction and have reduced flight muscles and wings.

While the idea that a flight-fecundity tradeoff underlies the life history of insects has been widely accepted, a growing number of studies suggest that

the generality of such a tradeoff might have been overestimated (Guerra, 2011; Guerra and Pollack, 2007; Rankin et al., 1986; Roff, 1995; Sappington and Showers, 1992). These studies have argued that a negative correlation between flight and fecundity has not been observed in some insect species, whereas in others, flight actually appears to stimulate reproduction. A recent meta-analysis showed that although a flight-fecundity tradeoff was likely to occur across wing-dimorphic insect species, the strength and direction of it varied substantially with the insect order (Guerra, 2011). Importantly, much of the evidence of flight-fecundity tradeoffs has been drawn from studies in wing-polymorphic species. Yet, most insects are wing-monomorphic, and the extent of flight-fecundity tradeoffs among this group of insects is much less known. In this review, we explore the generality of flight-fecundity tradeoffs among wing-monomorphic species. We focus on studies that compared flight-fecundity tradeoffs between- and within-populations, rather than between species comparisons (but see Duthie et al., 2015; Stevens et al., 2012).

2. Review methods

Our search for evidence of a flight-fecundity tradeoff (or lack thereof) was based on a systematic literature search using the Web of Science database and Google Scholar, as well as review of references from those papers. The key search terms we used were: flight × fecundity, reproductive cost × flight, dispersal × fecundity, and fecundity × tradeoff. We included studies that specifically tested the existence of a tradeoff between flight and fecundity, as well as studies that provided information about an association between these traits (positive, negative, or none), even when these did not aim at assessing a tradeoff. For consistency, we use the term "association" to refer to the link between flight and fecundity, identified by different statistical methods (e.g. correlation, regression, ANOVA, etc.). Studies were considered if they used one of the following methods to examine a flight-fecundity association: (1) Manipulation of resources: when quantity or quality of available resources was manipulated (e.g. low quality diet) and the correlated response of flight and fecundity measured. (2) Manipulation of flight or fecundity: one of the life-history traits was manipulated (e.g. whether or not an individual was flown), to measure the response in the other variable (e.g. number of eggs produced). (3) Phenotypic correlation between flight and fecundity: here associations were measured as the correlation between flight and fecundity of various individuals or populations. (4) Genotypic correlation between flight and fecundity: these studies included a quantitative

genetic estimate of the correlation between flight and fecundity-related traits as well as comparison of fecundity between genetic strains that had been selected for high dispersal activity by flight. We identified a total of 68 studies (covering 51 insect species) that reported an association between flight and fecundity (Appendix). From these studies, we examined what factors—e.g., method used, traits measured, variation in life history—were likely to influence the occurrence, and/or detection, of a flight-fecundity tradeoff in wing-monomorphic insects.

3. Empirical evidence of a flight-fecundity tradeoff

We found that out of the 68 surveyed studies, including 51 different insect species, 39 studies and 35 species —which constitute 57% of studies and 69% of species—provided evidence of a negative association between flight and fecundity. Sixteen studies found no evidence (13 species), and nine detected a positive association (seven species). Note that for a number of the surveyed species, detection (either positive or negative) or not of an association between flight and fecundity depended on the specific study, population, and the context (e.g. temperature, ontogenic stage).

In general, the study of resource-allocation tradeoffs has posed many empirical challenges (Agrawal et al., 2010; Saeki et al., 2014) and evidence of a tradeoff often relies solely on the identification of a negative association between traits that are thought to compete for a limited resource (Zera and Harshman, 2001). However, a negative association between traits does not necessarily reflect a resource-related tradeoff. A tradeoff can occur as an "adaptive negative correlation"—when expressing the two traits simultaneously brings a fitness benefit—or a "one-trait tradeoff"—when one trait is under opposite selection—(definitions from Agrawal et al., 2010). Thus, in the following sections, we discuss the extent to which the observed negative association may result from allocation of limited resources between flight and fecundity, and under which circumstances a neutral or positive association may arise instead.

4. Methods used to assess the association between flight and fecundity

Empirical studies on resource allocation tradeoffs have relied on a number of different methods to detect potential tradeoffs between life history traits. These include, among others, examining phenotypic correlations, manipulations of the available resources, evaluation of genetic correlations and correlated responses to artificial selection. However, the ability to detect a potential tradeoff between flight and fecundity may be influenced by the method used to evaluate the relationship between the two traits. Reznick (1985) addressed this issue by comparing how frequent were tradeoffs (between female reproduction and lifespan) identified by different methods. Here, following a similar approach, we evaluated if the proportion of studies detecting a negative association between flight and fecundity differed among the different methods. Specifically, we compared the three most commonly used methods: manipulation of available resources, increased cost of flight by encouraging (or forcing) insects to fly, and testing for a genetic correlation between flight and fecundity. In contrast to Reznick's (1985) findings, which indicated that genetic correlation was the most likely method to detect a tradeoff, we found that studies that manipulated available resources seemed more likely to detect a negative association (Table 1).

4.1 Limited available resources

A tradeoff among traits is dependent on their sharing the same resource and the quantity of that resource is not sufficient for both traits (Zera and Harshman, 2001). Expression of resource allocation tradeoffs, therefore, depends on the amount of resources available to supply the different traits (van Noordwijk and de Jong, 1986). In theory, reduced amounts of energy or nutrient input should magnify the tradeoff between flight and fecundity, whereas increased nutrients may obviate it (Blanckenhorn et al., 1995; Zera and Brink, 2000). Thus, experimental manipulation of resource availability, including food limitation and host plant quality, has been widely used to

Table 1 Comparison of different methods commonly used to assess a flight-fecundity association.

		Flight–fecun	dity assoc	ciation
	Negative	Positive	NA	Dual effect
1. Limited resources	16		5	2
2. Forced flight	5	1		1
3. Genetic correlation	7	1	4	

Entries in the "Negative", "Positive", and "NA" columns refer to number of studies finding a negative, positive, or no association between flight and fecundity, respectively. "Dual effect" indicates that the association can be either negative or positive, depending on the context.

study resource allocation tradeoffs in insects. Overall, 76% of studies (Table 1) showed a negative association between flight and fecundity when resources were manipulated. We identified studies on 12 and 10 species, for which available resources (most frequently diet) were reduced in the larval or adult stage, respectively (Table 2). However, a negative association between flight and fecundity was not detected in a number of species (seven), and when detected, it did not always reflect a resource allocation tradeoff (e.g. *Tribolium castaneum*; Table 2). Thus suggesting that flight and fecundity were either not competing for the same limited resource, or that the resource itself was not limited, which is unlikely given that in all cases pupal size was reduced under resource limitation.

Some interesting patterns emerged when characteristics of the different taxonomic groups were taken into account, and whether flight and fecundity were affected differently when resources were limited during the larval vs. the adult stage. A number of studies, mainly in Lepidoptera (e.g. Boggs, 1997; Jervis et al., 2005; Levin et al., 2016, 2017b), have demonstrated that insects that feed as both larva (or nymph) and adult, can support flight and reproduction with a ratio of larval– and adult–derived resources.

Effects of limited resources during the larval stage carried on into the adult by reducing body size as well as by changing allometric relations among body parts (Fig. 1A). Seven out of 12 insect species exhibited a flight-fecundity tradeoff (Table 2A). Interestingly, these studies revealed that when developing under food constraints (Table 2A), most Lepidoptera females appeared to change allocation strategies to their adult bodies in a way that would improve their flight performance: by allocating more to wings and thorax, or by decreasing wing load—smaller bodies with relatively larger wings. For example, Plutella xylostella larvae that developed on low quality host plants, allocated less to fecundity and more to wing size, which resulted in females with increased flight activity (Bayoumy and Michaud, 2015; Begum et al., 1996). In theory, available resources during larval development should be preferentially allocated to the body parts or functions that have the greatest effect on fitness (Nijhout and Emlen, 1998). Indeed, flight ability in Lepidoptera is likely to impact female fitness in many ways, as flight is necessary to mate, feed (nectar), oviposit, and disperse. In contrast, reduced larval resources in Trichoptera, insects that do not feed or live long as adults and for which flight might be less important, did not favour female flight (Table 2A).

When experiencing food limitation as adults, nine out of 10 species exhibited a negative association between flight and fecundity (Table 2B). These effects, however, appeared to occur via different pathways: either by increasing the reproductive cost of flight or by triggering female flight,

Table 2 Studies examining a flight-fecundity tradeoff by limiting available resources (e.g. food quality) to females during (A) the larval stage, or (B) the adult stage.

(A) Larva-Resource limitation

	Species	Treatment	Fecundity	Thorax/ wings	Flight performance	Negative association	Effect	Citation
Hymenoptera	Trichograma	Food quality	Down	Down	Down	No	Fecundity and wing area decrease. High wing loading	Kishani Farahani et al. (2016)
Trichoptera	Agrypnia deflate	Resource quantity	Up	Down	Down	Yes	Allocation to fecundity increases at expenses of thorax size	Jannot et al. (2007)
	Asynarchus nigriculus	Resource quantity	Down	Down	Same	No	Overall reduction of all structures. An allometry is maintained	Wissinger et al. (2004)
	Odontocerum albicorne	Resource quantity	Up	Down	Down	Yes	Allocation to fecundity increases at expenses of thorax and wings	Stevens et al. (1999)
Lepidoptera	Bactra verutana	Food quality	Down	Up	Up	Yes	Allocation to wing size increases at expenses of fecundity	Frick and Wilson (1982)
	Speyeria mormonia	Food quantity	Same	Down	Up	No	Decreased wing size. Not change to fecundity. Low wing loading	Boggs and Freeman (2005)

Continued

Table 2 Studies examining a flight-fecundity tradeoff by limiting available resources (e.g. food quality) to females during (A) the larval stage, or (B) the adult stage.—cont'd **(A) Larva–Resource limitation**

Species	Treatment	Fecundity	Thorax/ wings	Flight performance	Negative association	Effect	Citation
Phthorimaea operculella	food quality	Down	Down	Up	No	Everything decreases. Low wing loading	Coll and Yuval (2004)
Bicyclus anynana	Food quality	Down	Up	Up	Yes	Allocation to thorax increases at expenses of fecundity. High thorax ratio buffers fecundity cost of flight	Saastamoinen et al. (2010)
Plutella xylostella	Food + Flight	Down	Up	Up	Yes	Smaller adults with larger wings and increased flight activity. Flight reduces fecundity	Muhamad et al. (1994) and Begum et al. (1996)
Pieris rapae	Food quality	Down	Up	Up	Yes	Allocation to wing size increases at expenses of fecundity	Tigreros et al. (2013)
Mythimna pallens	Resource +Flight	Same	Same	Same	No	No effect of larval crowding	Hill and Hirai (1986)
Mythimna separata	Resource + Flight	Down		Same	Yes	Diet does not affect flight, but low diet and forced flight reduce fecundity	Hill and Hirai (1986)

(B) Adult-Resource limitation

	Species	Treatment	Fecundity	Flight performance	Negative association	Effect	
Lepidoptera	Bicyclus anynana	Diet	Down	Up	No	While food limitation decreases fecundity. Improves flight by reducing wing load. Flight does not affect fecundity	Saastamoinen et al. (2010)
	Spodoptera exempta	Diet+ Flight	Down		Yes	Flight decreases fecundity in starved adults	Gunn et al. (1989)
	Pseudoplusia includens	Diet+ Flight	Down	Down	Yes	Flight decreases fecundity. Starvation affects fecundity more than flight	Mason et al. (1989a)
	Heliothis virescens	Diet+ Flight		Up	Yes	Flight decreases fecundity in starved adults	Willers et al. (1987)
Coleoptera	Tribolium castaneum	Diet	Down	Triggered	Yes	Food limitation triggers flight. Flight reduces fecundity independent of diet	Perez- Mendoza et al. (2011)
	Leptinotarsa decemlineata	Diet- overwinter	Down	Up	Yes	Low quality plants reduced oviposition and increased flight	Weber and Ferro (1996)
		Diet- summer	Down	Down	No	Low quality plants reduced both oviposition and flight	Weber and Ferro (1996)
Hemiptera	Neacoryphus bicrucis	Diet	Down	Triggered	Yes (threshold)	Food limitation triggers flight. Fecundity increases with diet while flight is maintained constant until threshold, when muscles are histolized	Solbreck and Pehrson (1979)

Table 2 Studies examining a flight-fecundity tradeoff by limiting available resources (e.g. food quality) to females during (A) the larval stage, or (B) the adult stage.—cont'd **(B) Adult-Resource limitation**

	Species	Treatment	Fecundity	Flight performance	Negative association	Effect	
	Riptortus clavatus	Diet	Down	Triggered	Yes (threshold)	Food limitation triggers flight. Fecundity increases with diet while flight is maintained constant until threshold, when muscles are histolized	Natuhara (1983)
	Oncopeltus fasciatus	Diet + Flight	Down		Yes	Flight decreases fecundity in starved adults	Slansky (1980)
Diptera	Bactrocera oleae	Diet + Flight	Down		Yes	Flight decreases fecundity in starved adults	Wang et al. (2009)

Treatment effects on allocation to fecundity and flight-morphology (thorax and wing size) are described as Down = decreased allocation, Up = increased allocation, Same = no change. Effects on flight performance refer to observed changes in flight activity or wing loading: Down = decreased performance, Up = improved performance, Same = no change, Triggered = resource limitation triggers flight. "Yes (threshold)" indicates when there is a threshold effect of diet underlying the negative association between flight and fecundity.

which then reduced available resources for egg production. For example, in *Bactrocera oleae*, *Oncopeltus fasciatus*, and most Lepidoptera, flight reduced fecundity but only when access to food was limited (Table 2B), which suggests that not enough nutritional resources to support both traits were assimilated during the larval stage. In contrast, food limitation in *Tribolium castaneum* triggered flight and indirectly impacted fecundity, as flown females produced fewer eggs.

4.2 Forced flight

Overall, 83% of studies (Table 1) showed evidence of a negative association between flight and fecundity under forced flight. Examples of the effects of forced flight are given below in Section 6. Components of Flight Performance.

4.3 Genetic correlations

We identified studies that provided information about the existence and direction of genetic correlations between fecundity and flight traits on 10 different species. Evidence of a negative genetic correlation between flight and fecundity was found for five species: Drosophila melanoganster (Narise, 1974), Pararge aegeria (Berwaerts et al., 2008) Epiphyas postvittana (Gu and Danthanarayana, 1992), Spodoptera exempta (Gunn and Gatehouse, 1993), and Cydia pomonella (Gu et al., 2006). In contrast, for the other five species, flight and fecundity showed either no genetic correlation or a positive correlation. No genetic correlation was found in Pieris brassicae (Legrand et al., 2016), T. castaneum (Zirkle et al., 1988), and a non-migratory population of O. fasciatus (Dingle et al., 1988), while evidence of a positive genetic correlation was found for migrant populations of O. fasciatus (Hegmann and Dingle, 1982; Palmer and Dingle, 1986) and newly established populations of *Melitaea cinxia*—although this involved clutch size rather than total fecundity (Saastamoinen and Hanski, 2008). Thus, these studies suggest that flight and fecundity are not often constrained by a negative genetic correlation, and that under some circumstances, selection may actually favour maximizing both traits simultaneously—as proposed by the colonizer syndrome (see Section 6). Further studies on the genetics of flight-fecundity tradeoffs will benefit from also addressing the environmental conditions under which genetic correlations occur. First, genetic correlations often shift depending on the environmental conditions (reviewed in Sgrò and Hoffmann, 2004) and second, negative genetic

correlations can also occur when two life history traits (such as flight and fecundity) depend on the same environmental condition, but in opposite ways (e.g. Knops et al., 2007).

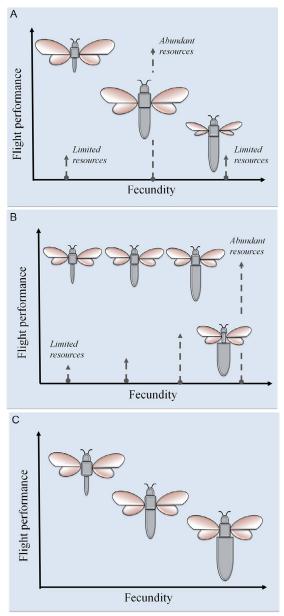
5. Flight-related morphology

Variation in flight performance can be estimated directly, based on behavioural traits or indirectly, based on flight-related morphological traits. Understanding how morphology influences performance provides important insights on the functional basis of flight-fecundity tradeoffs. Typically, flight performance is expected to improve with decreased wing loading (body mass/wing area) and increased flight muscle ratio (thorax mass/body mass) (Dudley, 1991, 2002). Both indices depend on changes in flight-related morphology as well as changes in body mass, and reflect how much work the wings and flight muscles must perform to carry the weight of the insect (Goldsworthy and Wheeler, 1989).

In this review, we identified studies on 17 different species that examined a flight-fecundity association based on flight-related morphology. Increased allocation to wing size was associated with reductions in fecundity—in Bactra verutana (Frick and Wilson, 1982) and Pieris rapae (Tigreros et al., 2013)—, as well as with increases in fecundity (e.g. O. fasciatus, Palmer and Dingle, 1986). Fecundity and thorax mass showed a negative association in six out of eight insect species, and no association in Coenagrion scitulum and Acheta domestica (Srihari et al., 1975; Therry et al., 2015). Bicyclus anynana (Saastamoinen et al., 2010) and P. aegeria (van Dyck and Wiklund, 2002) increased allocation to thorax at the expenses of fecundity while Agrypnia deflate increased allocation to fecundity by reducing allocation to thorax (Jannot et al., 2007; Stevens et al., 1999). Similarly, in Gryllus bimaculatus (Lorenz, 2007), and several hemiptera—Riptortus clavatus (Natuhara, 1983), Neacoryphus bicrucis (Solbreck and Pehrson, 1979), and three Dysdercus species (Dingle and Arora, 1973)—fecundity was increased by using resources from histolized flight muscles. In these species, however, muscles histolysis occurred when there was an abundant rather than a limited food source, indicating that degeneration of flight muscles does not reflect a resource-based tradeoff (Fig. 1B), but a response to finding the appropriate conditions to reproduce (Dingle and Arora, 1973; Natuhara, 1983; Solbreck and Pehrson, 1979). Further, a study in the wing monomorphic cricket, A. domestica (Srihari et al., 1975), showed, using ovariectomy, that histolysis of flight muscles and egg development appeared to be independent processes.

Studies on flight-related morphology also indicated that detection of a flight-fecundity tradeoff may often depend on the specific trait being measured. In *A. deflate* caddisflies and *P. aegeria* butterflies, females with limited resources maintained fecundity by reducing investment in thorax size without changing investment in wing size (Jannot et al., 2007; Stevens et al., 1999). In contrast, *P. rapae* butterflies maintained allocation to fecundity by sacrificing investment in wings but not thorax size (Tigreros et al., 2013).

Finally, insect body mass, although it does not represent an exclusive flight-related morphological trait, is known to have important impacts on flight performance by increasing the weight load that must be lifted and carried during flight. Female body mass increases substantially during reproduction, due to the weight of mature eggs (Jervis et al., 2005). When flight performance is constrained by the weight of egg loads, a negative association between flight and fecundity can arise, even without reducing allocation to flight morphology (wing size and thorax mass) (Fig. 1C). *B. anynana* females with limited access to nectar, decreased abdomen mass—what reduced wing loading—and showed increased flight activity (Saastamoinen et al., 2010). Similarly, in *Bemisia tabaci* whiteflies, weaker-flying females (those that flew closer to the ground) carried heavier egg loads compared to females that flew higher (Isaacs and Byrne, 1998).


6. Components of flight performance

Insect flight is characterized by different components of performance, including flight takeoff, endurance, and speed. Such components may differ in the underlying morphology, the energetic requirements, and the selective forces shaping them. Next, we discuss how different components of flight performance may influence the association between flight and fecundity.

6.1 Flight endurance

Flight endurance, typically estimated as the distance or duration of flight, is perhaps the most widely studied component of flight performance in insects (Dudley, 2002; Goldsworthy and Wheeler, 1989). This aspect of flight is particularly important during dispersal and migration and is thought to increase with low wing loading and high thorax ratio (Davis and Holden, 2015).

We identified 33 studies on 26 different species that tested a causal effect of flight on fecundity (Table 3). A majority, used the tethered flight technique (Minter et al., 2018) to measure duration and/or distance of flight within a determined amount of time or until exhaustion (Table 3). Overall,

Fig. 1 A negative flight-fecundity association can result from (A) resource-based tradeoffs: when available resources are differentially allocated to reproduction (lower right) or flight (upper left), (B) facultative flight muscle histolysis: fecundity does not compete with flight; but when available resources for reproduction are optimal (e.g. abundant host plants) flight is no longer needed, and resources from flight muscles are histolized and reallocated to fecundity (lower right), or (C) biomechanical constraints: when high egg loads (lower right) decrease flight performance, or low egg loads (upper left) increase flight performance. The relative size of wings and abdomen (and thorax in B) represents the relative investment of resources to the structure.

these studies provided some evidence of a fecundity cost of flight; long-flights reduced female fecundity in 15 out of 26 species, while increasing or not having an effect on four and seven species, respectively. As expected, species varied on how sensitive they were in terms of the strength of the effect that long flights had on fecundity. For example, in *P. aegeria* butterflies, 5 min of flight were sufficient to reduce female fecundity, and 10 min were lethal (Gibbs and van Dyck, 2010). In contrast, fecundity in *Oscinella frite* (Rygg, 1966), *Pseudoplusia includens* (Mason et al., 1989a) and *Rhodnius prolixus* (Oliveira et al., 2006), was only affected if females flew until exhaustion for several days. Also, in some species (e.g. *O. fasciatus*, *S. exempta*), the fecundity cost of long-flight was only observed when females had limited nutritional resources (Gunn et al., 1989; Slansky, 1980).

Interestingly, the impact of long-flight on fecundity was often age-dependent. For example, in *Cnaphalocrocis medinalis* (Zhang et al., 2015) and *Mythimna separata* (Luo et al., 1999), flying on days 1–2 after emergence increased fecundity, while flying later on (e.g. day 4) decreased it. In *S. exigua*, total fecundity was only reduced when females flew before and after an inter-oviposition period (days 2–7). Finally, independent of the effect on fecundity, long flights conveyed a reproductive benefit in several species, by accelerating the onset of egg maturation and oviposition (Table 3).

6.2 Flight takeoff

Flight initiation or takeoff is the most energetically expensive part of insect flight and yet, it has received much less attention than other components of flight performance (Bimbard et al., 2013), especially in the context of flight-fecundity tradeoffs. During takeoff, insects spend significant amounts of energy to generate the necessary force to lift up their body weight (Marden, 1987). The three studies (Almbro and Kullberg, 2012; Berrigan, 1991; Berwaerts et al., 2008) we identified that focused on takeoff flight performance, indicated that decreases in performance were associated with increases in weight loads during ovarian development. High egg loads impacted female takeoff by reducing lift production in *Neobellieria bullata* flies (Berrigan, 1991), and decreasing takeoff angle in *Pieris napi* butterflies (Almbro and Kullberg, 2012). Also, a negative genetic correlation was found between flight takeoff performance and abdomen mass in *P. aegeria* females (Berwaerts et al., 2008), suggesting the occurrence of a genetic tradeoff between flight and fecundity. Selection to improve takeoff performance

 Table 3 Effect of flight duration and distance on female fecundity.

 Flight
 Effect on

Species	Experiment	performance	fecundity	Comments	Citation
Amyelois transitella	Tethered flight (up to 2h)	Duration	0		Rovnyak et al. (2018)
Aphis glycines	Tethered flight (up to 2h)	Distance	_		Zhang et al. (2009)
Aphis phabae	Tethered flight (0–80 s)	Duration	+	Stimulates early reproduction	Johnson (1958)
Bactrocera oleae	Tethered flight (24 h)	Duration/ Distance	_	If starved	Wang et al. (2009)
Chrysoperla sinica	Tethered flight $(1-3h)$	Duration	_		Khuhro et al. (2014)
Cnaphalocrocis medinalis	Tethered flight	Duration	-/+	Age-dependent and Stimulates early reproduction	Zhang et al. (2015)
Drosophila melanogaster	Tethered flight (1 h)	Flown vs. unflown	-		Roff, (1977)
Drosophila subobscura	Tethered flight (1 h)	Flown vs. unflown	_		Inglesfield and Begon (1983)
Heliothis virescens	Tethered flight (2 h/daily)	Flown vs. unflown	_	If starved	Willers et al. (1987)
Leptinotarsa decemlineata	Tethered flight (1 h)	Duration	-/+	Summer generation: positive and Overwintered generation: negative	Weber and Ferro (1996)

Tethered flight (exhaustion)	Flown vs. unflown	_		Highnam and Haskell (1964)
Tethered flight (12h)	Distance	0	Stimulates early reproduction	Cheng et al. (2012)
Tethered flight (>2 h)	Flown vs. unflown	0	Stimulates early reproduction	McAnelly and Rankin (1986)
Tethered flight (24 h)	Flown vs. unflown	0	Stimulates early reproduction	Hill and Hirai (1986)
Tethered flight (24 h)	Flown vs. unflown	-/+	Age-dependent and Stimulates early reproduction	Hill and Hirai (1986)
Tethered flight (30h)	Flown vs. unflown	_	If starved and Stimulates early reproduction	Slansky (1980)
Tethered flight (exhaustion)	Duration	_	Increases rate of oviposition but decreases clutch size	Rygg (1966)
Tethered flight (5 min)	Flown vs. unflown	_		Gibbs and van Dyck (2010)
Tethered flight (exhaustion)	Duration	0		Legrand et al. (2016)
Tethered flight (30 min)	Flown vs. unflown	_		Muhamad et al. (1994), Shirai (1995) and Begum et al. (1996)
Tethered flight 2 h/daily	Flown vs. unflown	_		Mason et al. (1989a)
	Tethered flight (12h) Tethered flight (>2h) Tethered flight (24h) Tethered flight (24h) Tethered flight (30h) Tethered flight (exhaustion) Tethered flight (5 min) Tethered flight (exhaustion) Tethered flight (exhaustion)	(exhaustion)unflownTethered flight (12h)DistanceTethered flight (>2h)Flown vs. unflownTethered flight (24h)Flown vs. unflownTethered flight (24h)Flown vs. unflownTethered flight (30h)Flown vs. unflownTethered flight (exhaustion)DurationTethered flight (5 min)Flown vs. unflownTethered flight (exhaustion)Flown vs. unflownTethered flight (20 min)DurationTethered flight (20 min)Flown vs. unflownTethered flight (30 min)Flown vs. unflownTethered flight (30 min)Flown vs. unflown	(exhaustion) unflown Tethered flight (12h) Distance 0 Tethered flight (>2h) Flown vs. unflown 0 Tethered flight (24h) Flown vs. unflown -/+ unflown Tethered flight (30h) Flown vs. unflown - Tethered flight (exhaustion) Duration - Tethered flight (5 min) Flown vs. unflown - Tethered flight (exhaustion) Duration 0 Tethered flight (exhaustion) Flown vs. unflown - Tethered flight (30 min) Flown vs. unflown - Tethered flight (30 min) Flown vs. unflown -	(exhaustion)unflownTethered flight (12h)Distance0Stimulates early reproductionTethered flight (>2h)Flown vs. unflown0Stimulates early reproductionTethered flight (24h)Flown vs. unflown-/+Age-dependent and Stimulates early reproductionTethered flight (30h)Flown vs. unflown-If starved and Stimulates early reproductionTethered flight (exhaustion)Duration-Increases rate of oviposition but decreases clutch sizeTethered flight (5 min)Flown vs. unflownTethered flight (exhaustion)Duration0Tethered flight (exhaustion)Flown vs. unflown-Tethered flight (exhaustion)Flown vs. unflown-Tethered flight (90 min)Flown vs. unflown-

Table 3 Effect of flight duration and distance on female fecundity.—cont'd

Species	Experiment	Flight performance	Effect on fecundity	Comments	Citation
Rhodnius prolixus	Tethered flight (exhaustion)	Flown vs. unflown	_		Oliveira et al. (2006)
Riptortus clavatus	Tethered flight (exhaustion)	Duration	0		Natuhara (1983)
Schistocerca gregaria	Forced (exhaustion)	Flown vs. unflown	+		Highnam and Haskell (1964)
Spodoptera exempta	Flight balance	Duration	_	If starved	Gunn et al. (1989)
Spodoptera exigua	Tethered flight (exhaustion)	Duration/ Distance	0/+	Age-dependent	Han et al. (2008)

The "Experiment" and "Flight performance" columns, provide information about experimental methods (use of tethered flight and duration) and variables used to measure flight performance. Additional information on results is provided under "Comments"; for example, when effects are observed if females were starved or, if effect changed with female age.

No effect=0; Negative effect=+.

in these species is likely imposed by the risk of predation; most insects have to avoid predators throughout their life, and fast takeoffs can improve their survival to a predator's attack (Berrigan, 1991; Marden and Chai, 1991). Yet, frequent takeoffs may indeed lead to resource allocation tradeoffs, due to the high energy cost involved in this component of flight. *B. anynana* females that were forced to repeatedly takeoff within a period of 5 min, showed reduced fecundity (Saastamoinen et al., 2010). In nature, however, females may avoid such costs by performing longer flights with less frequent takeoffs, compared to conspecific males (Berwaerts et al., 2008).

6.3 Other components of performance

How other components of flight performance, including flight speed, acceleration, and hovering (e.g. during nectaring), affect female fecundity remains largely unexplored. Yet, resource-based tradeoffs specific to these aspects of flight are likely, given their high energetic cost. A recent study in *Manduca sexta*, for example, showed that the energetic cost of flight depends on speed, with the greatest amount of energy utilized when flying either very slow or very fast (Warfvinge et al., 2017).

7. Behavioural types of movement

Insect flight is often driven by different behavioural motivations, or "behavioural types of movement" (Kennedy, 1985). The terminology and definitions separating behavioural types of movement have been extensively discussed elsewhere (Dingle, 2014; van Dyck and Baguette, 2005) and are outside the scope of this review. In general, insect flight can be broadly categorized into two types of movement: station-keeping and migration (following Dingle, 2014). While the causes and consequences linked to station-keeping and migratory flights have been the topic of much attention, little is known about how these influence flight-fecundity tradeoffs. Resource allocation decisions are based on the relative fitness advantage obtained by favouring one trait over the other. Behavioural types of movement provide information about the function of flight or the relative advantage that flight has on fitness of a given species or population, at a given time. Below, we discuss how the different behavioural motivations may explain variations in how flight and fecundity relate.

7.1 Station-keeping

Station-keeping—also known as trivial or appetitive types of movement refers to local flights that are stimulated by the organism's "appetite" for a resource, such as food, mates, egg laying sites, and shelter (Dingle, 2014). Even though station-keeping flights are exhibited by most insects at some point in life, the triggers of this behavioural type of movement vary depending on the organism's internal and external environments. In females, flight is typically related to searching for two types of resources, food and oviposition sites. When flight is triggered by the absence of food, a flightfecundity tradeoff is likely to arise. Food limitation stimulates flight in many insect species (Perez-Mendoza et al., 2011; Weber and Ferro, 1996), which often results in reduced fecundity (e.g. Table 2B). In T. castaneum, for example, flight was triggered in the absence of food, and females that flew showed a reduced fecundity (Perez-Mendoza et al., 2011). In contrast, flight may be less likely to reduce fecundity, when it is linked to the female reproductive status. In Amyelois transitella for example, mated females, ready to lay eggs, flew longer than unmated females and did so, without diminishing fecundity (Rovnyak et al., 2018).

7.2 Migration

Migratory flight is a specialized behaviour, characterized by a directional, undistracted flight during which the organism's regular "appetites" for food, mates, etc., become suppressed (Dingle, 1996; Dingle and Drake, 2007). Insect migratory flight is typically triggered by internal clock mechanisms and environmental cues (e.g. shortening of daylight hours), and it can entail journeys of a few hundreds of meters to several thousands of kilometres (Dingle, 1996; Dingle and Drake, 2007). At a simplistic level, it would seem that there should always be a tradeoff between migratory flight and fecundity. But evidence of such a tradeoff has historically relied on Johnson's idea of an "oogenesis-flight syndrome" (Johnson, 1963); this suggests that migration and reproduction are alternate physiological states, with the onset of one state suppressing the other. Even though many migratory insects are known to perform their long journeys in a pre-reproductive stage—before females mate and fully develop oocytes—the generality of the oogenesis-flight syndrome remains controversial (Rankin et al., 1986; Sappington and Showers, 1992).

To determine the incidence of an oogenesis-flight syndrome in migratory insects, and if this actually reflected a reproductive cost of migratory

flight, we conducted a second literature search using The Web of Science database and Google Scholar, including the following terms: "oogenesis-flight syndrome" and "migration". We only included studies that identified migratory flight in the field (under natural conditions), or in the lab, when insects were subjected to conditions that simulated those occurring in the field, during migratory flights (e.g. reduced temperature and length of days). We identified 28 studies (Table 4) covering 22 insect species and four orders: Hemiptera (three species), Lepidoptera (15 species), Coleoptera (two species), and Orthoptera (two species). These studies indicated that an oogenesis-flight syndrome was indeed observed in several migratory insects —15 out of 22 species. Yet, the other migratory species (seven) showed migratory flight while being reproductively active, and six out of the 15 species that exhibited an oogenesis-flight syndrome were also able to migrate, in some generations, while carrying fully developed oocytes (Table 4).

Several arguments have been presented to explain why, in some insect species, migratory flight and reproduction do not appear to preclude each other. First, it has been suggested that the energetic cost of flying can be mitigated when abundant food and reproductive sites are found and utilized along the migratory route; as is the case for the monarch butterfly, Danaus plexippus (Vargas et al., 2018). Alternatively, the energetic cost of flying can be reduced when flight is aided by the occurrence of low-level wind streams, e.g. Agrotis ipsilon (Showers, 1997). Finally, studies in several species (e.g. C. medinalis, A. ipsilon, M. separata, D. plexippus, and Hippodamia *convergens*) suggest that delaying or shutting down reproduction in migratory females depends on whether they are heading to an overwintering vs. a breeding site (Brower, 1985; Riley et al., 1995; Sappington and Showers, 1992). When these females migrate to an overwintering site in autumn, they are typically unmated and with little ovarian development. In contrast, when females fly to re-colonize breeding sites in the spring, they are often mated and have fully developed ovaries (Rankin and Rankin, 1980a). Reproductive diapause in overwintering adults is characteristic of migratory as well as non-migratory insects (e.g. Schebeck et al., 2017; Zhu et al., 2013). Thus, rechanneling reproductive energy to produce fat reserves may be more important for successful overwintering than for the migratory flight itself.

Together, these results indicate that even in species that appear to conform to a classic oogenesis-flight syndrome, shutting down reproduction is not a precondition for performing migratory flights. Also, when examining studies that directly tested for an association between flight and fecundity in 11 different migratory species (using forced flight, genetic correlations, etc.),

 Table 4 Observed occurrence of an oogenesis-flight syndrome in migratory species.

	Species	Oogenesis- flight syndrome	Flight-fecundity association	Citations
Coleoptera	Anthonomus grandis grandis	Yes	?	Rankin et al. (1994)
	Hippodamia convergens	Yes/No	Positive: Juvenile hormones stimulate both	Rankin and Rankin (1980a, 1980b)
Hemiptera	Oncopeltus fasciatus	Yes	Negative: if flown and starved Positive: genetic correlation	Dingle (1965), Slansky (1980), and Palmer and Dingle (1986)
	Laodelphax striatellus	Yes	?	Wang et al. (2008)
	Bemisia tabaci	No	Negative: phenotypic correlation	Isaacs and Byrne (1998) and Byrne (1999)
Lepidoptera	Spodoptera exempta	Yes	Negative: genetic correlation Negative: if flown and starved	Gunn and Gatehouse (1993)
	Spodoptera exigua	No	NA/Negative: age dependent	Han et al. (2008) and Jiang et al. (2010)
	Loxostege sticticalis	Yes	NA : if flown	Cheng et al. (2012, 2016)
	Cnaphalocrocis medinalis	Yes/No	Negative/ Positive: age dependent	Riley et al. (1995), Huang et al. (2010), Sun et al. (2013), Fu et al. (2014c), and Zhang et al. (2015)
	Agrotis ipsilon	Yes/No	?	Von Kaster and Showers (1982) and Sappington and Showers (1992)

Table 4 Observed occurrence of an oogenesis-flight syndrome in migratory species.—cont'd

	Species	Oogenesis- flight syndrome	Flight-fecundity association	Citations
	Macdunnoughia crassisigna	No	3	Fu et al. (2015)
	Mamestra brassicae	No	?	Wu et al. (2015)
	Choristoneura fumiferana	No	?	Rhainds and Kettela (2013)
	Mythimna separata	Yes/No	Negative/ Positive: age dependent. Negative: if crowded	Hill and Hirai (1986), Luo et al. (1999), and Zhao et al. (2009)
	Athetis lepigone	Yes/No	?	Fu et al. (2014b)
	Apolygus lucorum	Yes	?	Fu et al. (2014a)
	Cydia pomonella	No	Negative: genetic correlation	Schumacher et al. (1997) and Gu et al. (2006)
	Pseudoplusia includens	Yes	Negative: if flown	Mason et al. (1989a, 1989b)
	Danaus plexippus	Yes/No	?	Herman and Barker (1977) and Vargas et al. (2018)
	Heliothis armigera	Yes	5	Colvin and Gatehouse (1993)
Orthoptera	Melanoplus sanguinipes	No	NA : if flown	McAnelly and Rankin (1986)
	Gryllus bimaculatus	Yes	3	Lorenz (2007)

Yes=migratory flight and oogenesis do not overlap; No=migratory flight and oogenesis occur concurrently; Yes/No=migratory flight either overlap or not, depending on the generation (e.g. Summer vs. Winter generation). Direct evidence of a flight fecundity association is described as Negative, Positive, or none (NA). "Flight-fecundity association" column reports results from studies that directly tested for a flight-fecundity association in migratory species (via genetic correlations, resource manipulation, etc.).

we found that these were equally likely to exhibit either a positive (four species) or a negative (four species) association between flight and fecundity (Table 4). Importantly, occurrence of an oogenesis-flight syndrome did not necessarily reflect a negative association between flight and fecundity. For example, even though the migratory behaviour of *O. fasciatus* and *S. exempta* both conformed to Johnson's oogenesis-flight syndrome (Dingle, 1965; Gunn et al., 1989), the genetic correlation between flight-related traits and fecundity was negative in *S. exempta* (Gunn and Gatehouse, 1993) and positive in *O. fasciatus* (Palmer and Dingle, 1986). Thus, termination of migration and the onset of oogenesis may represent independent ontogenetic events that, for some insect species, have been selected to coincide (Baker, 1978).

8. The colonizer-syndrome

Insect flight can also be directed to explore new areas outside of their home range. This type of movement often results in dispersal and colonization of suitable habitats (Dingle, 1996, 2014) and thus, includes a wide-range of consequences for population dynamics in the context of global change (e.g. van Dyck and Baguette, 2005).

Some of the most significant contributions to understand potential costs associated with dispersal flights come from studies that examine dispersal as a population trait. In insects and other taxa, females from edge populations and fragmented habitats show superior flight performance when compared with those from the core of the population and continuous habitats. Like other types of flight, dispersal is energetically costly and is thought to tradeoff with female reproductive performance (e.g. Karlsson and Johansson, 2008). Indeed, in the speckled wood butterflies, *P. aegeria*, females from populations where high dispersal is favoured, such as range-expanding populations and populations from fragmented habitats, had lower fecundity than females from well-established and contiguous populations (Gibbs et al., 2010; Hughes et al., 2003).

Alternatively, the "colonizer syndrome" proposes that there should be a selective advantage for a positive association between flight and reproduction when colonizing new habitats (Bonte and Saastamoinen, 2012; Lewontin, 1965). In *M. cinxia*, female flight and fecundity were positively correlated in new populations (Hanski et al., 2006; Saastamoinen, 2007) but were not correlated in old ones. Hanski et al. (2006) showed that females from new populations were indeed more dispersive (fly more) and emerged

with fewer eggs (potential fecundity); although their lifetime fecundity was not affected (Hanski et al., 2004). The colonizer syndrome may also explain the positive effect of flight on female reproduction often observed in migratory insect species (Table 4). Given that migratory flight may function as a means to escape unfavourable environments as well as a colonizing mechanism, migratory insect species can be expected to have evolved adaptations enabling them to optimize long flights and also reproduction (Lewontin, 1965; McAnelly and Rankin, 1986; Rankin and Burchsted, 1992).

9. Shared resources between flight and fecundity

The potential occurrence of a tradeoff between flight and fecundity rests on the assumption that both are costly in terms of energy and resources. However, a tradeoff between two traits will exist only if those resources are utilized by both traits, and both traits compete for these resources (Zera and Harshman, 2001). In the hawkmoth Manduca sexta, warm-up and flight are initiated with carbohydrates as fuel (Joos, 1987; Ziegler and Schulz, 1986b) with an almost immediate switch to lipids as fuel for sustained flight (Ziegler and Schulz, 1986a). Aside from water, the largest component of M. sexta eggs are lipids (39%, see below) (Kawooya and Law, 1988). Thus, in M. sexta, egg production and sustained flight should compete for the same larval-derived lipid resources. In contrast to larval-derived fatty acids, nectar-derived fatty acids imbibed by adults are used exclusively to maintain resting metabolism and are not allocated to either flight or reproduction (Levin et al., 2017). The adult diet in nectarivorous insects, like M. sexta, contains not only carbohydrates but also amino acids found in the nectar (Mevi-Schütz and Erhardt, 2005). Using ¹³C labelled amino acids added to nectar and fed to fertilized M. sexta females, Levin et al. (2017a) showed that both essential (leucine and phenylalanine) and nonessential amino acids (glycine) were allocated to the flight muscle of the female as well as to her eggs. This indicates that adult-derived nectar amino acids are shared and can be involved in a resource allocation tradeoff between flight and fecundity.

9.1 Resource allocation to flight

Insect flight muscle is the most energetically costly mode of locomotion known: hovering hawkmoths have 170 times higher metabolic rates than they do at rest (Bartholomew and Casey, 1978). The high metabolic costs of flight also incur high levels of oxidative damage to flight muscle membranes (Levin et al., 2017). The hawkmoth *M. sexta* mitigates this oxidative

damage by shunting nectar carbohydrates through the pentose phosphate pathway, which increases antioxidant potential through the production of NADPH and glutathione, two major antioxidants conserved across many taxa (Levin et al., 2017).

In addition to the metabolic cost of flight itself, the cost of maintaining flight muscle and biosynthesis of flight fuel can increase metabolic capacity 4-10-fold (Mole and Zera, 1994). Most flying insects use two sources of flight fuel: carbohydrates and lipids, although the amino acid proline is known to fuel flight in a small number of insects such as blood sucking flies (Bursell, 1975), some Hymenoptera (Teulier et al., 2016) and some Coleoptera (Weeda et al., 1979). Carbohydrates are typically used for short flights, and can be replenished from nectar meals. In species with shortduration flight such as bees, beetles, flies, butterflies, and moths (with the proline exceptions mentioned above), carbohydrates are the only source of flight fuel (Rothe and Nachtigall, 1989; Suarez, 2005; Suarez et al., 1996). In contrast, in species with long-distance flight such as hawkmoths (O'Brien, 1999; Ziegler and Schulz, 1986a, 1986b) monarch butterflies (Brown and Chippendale, 1974), dragonflies (Kallapur and George, 1973) and locusts (Pener et al., 1997; van der Horst et al., 1980), carbohydrates are used for the initial phase of flight ($\approx 20-30 \,\mathrm{min}$), after which lipids are used exclusively (Chino et al., 1992).

The advantage of lipid over carbohydrate flight fuels is a function of relative energy yield and storage efficiency. Over 95% of the lipids stored in the fat body are triacylglycerides (TAG) (Arrese and Soulages, 2010; Beenakkers et al., 1985; Canavoso et al., 2001), which are highly concentrated stores of metabolic energy. Complete oxidation of fatty acids yields about 9 Kcal/g. In contrast, carbohydrates and proteins yield only about 4 kCal/g. In addition, TAG is nonpolar and stored in a nearly anhydrous form, as opposed to carbohydrates, which are stored hydrated: a single gram of glycogen binds about 2g of water. Thus, a gram of anhydrous fat stores more than six times as much energy as a gram of hydrated glycogen. Furthermore, the net yield of the oxidation of glucose is 36 ATP and the thermodynamic efficiency of the generation of ATP from glucose is 38%. In contrast, the net yield of fatty acid (palmitate) oxidation is 129 ATP with a thermodynamic efficiency of 40%. Thus, with similar thermodynamic efficiencies, fatty acid oxidation yields 3.6 times more ATP than does glucose (Stryer, 1988).

Even though lipids are a much more efficient source of flight fuel, nectar-derived carbohydrates are immediately available for use, and can provide significant energy input for short-duration flight. For example, Raguso et al. (2003) calculated that nectar from one *Datura wrightii* flower provides *M. sexta* weighing 1.2g with 10–15 min of hovering capability, or all that this moth needs to fly 1 km in search of a mate or oviposition site. *M. sexta* can imbibe between 20% and –60% of their body weight in nectar: the lower the concentration the more nectar imbibed (Raguso et al., 2003).

The allocation of lipid vs. carbohydrates to flight depends in part on the nutritional status of the individual and its sex. Starved or water-fed hawkmoths use lipids as flight fuels (O'Brien, 1999; Ziegler and Schulz, 1986a, 1986b), whereas moths with a steady nectar source primarily utilize carbohydrates (O'Brien, 1999). Newly eclosed females conserve carbohydrate use during flight (O'Brien, 1999) probably due to the incorporation of nectar-derived carbohydrates into eggs (O'Brien et al., 2004) whereas males use primarily carbohydrate-based fuels (O'Brien, 1999). Male *M. sexta* allocate more nectar-derived amino acids (both essential and non-essential) to flight muscle than do females (Levin et al., 2017b).

9.2 Resource allocation to fecundity

Oogenesis in insects is a nutrient-limited process: adult insects that feed produce more eggs than adults that are not able to feed (Papaj, 2000; Wheeler, 1996). For example, sugar-fed female M. sexta produced 2–3 times more eggs per day than did water-fed females (Sasaki and Riddiford, 1984). Of the total macronutrient composition in insect eggs, proteins constitute 40-50%, lipids 30-40%, and carbohydrates (sugars and glycogen) around 10–30% (Geister et al., 2008; Giron and Casas, 2003; Němec, 2002; Sloggett and Lorenz, 2008). Thus, on the surface, egg production shares common macronutrients with flight and should be involved in flight fecundity tradeoffs. While M. sexta eggs are 70% water, the other 30% is protein (31%), lipids (39%), and carbohydrates (2%); the remaining 28% is insoluble unidentified material (Kawooya and Law, 1988). Eggs weigh on average 1.6 mg (n = 60, Davidowitz, unpublished data). Over 95% of the lipids stored in the fat body are TAGs (Beenakkers et al., 1985; Canavoso et al., 2001) and the fat body contains about 55 mg TAG at peak larval size (Davidowitz and Kiley, unpublished data). From this, we have calculated that a M. sexta female should have enough lipids to produce 267 eggs. Yet, the average moth in a laboratory colony produces only 136 eggs $(\pm 45, n=292, Davidowitz, unpublished data)$. Thus, it seems that 51% of the resources are held in reserve for either future reproduction or for other processes such as flight (Jervis and Boggs, 2005; Jervis et al., 2005).

The examples given above refer to the total amount of resources or energy allocated to either flight or fecundity. The geometric framework (Behmer, 2009; Simpson and Raubenheimer, 2012) shows that the amount of nutrients per se, is not always sufficient to understand allocation of resources to traits, rather the relative amounts of specific nutrients often determines trait performance (Clark et al., 2013, 2015; Lee et al., 2008; Wilson et al., 2019; Zera et al., 2016). The geometric framework has not yet been applied specifically to the flight-fecundity tradeoff and is an area ripe for future studies.

9.3 Capital vs. income breeders

Life history strategies of resource accumulation are extremely diverse across insect taxa. Some insects are capital breeders: all the resources used by adults for reproduction, survival and maintenance, are acquired during the juvenile and adults do not feed (e.g. Lepidoptera: Saturniidae Ephemeroptera). Most insects are, however, income breeders. Income breeders feed and grow as juveniles, but resources allocated to reproduction are accumulated during the adult stage, and reproductive success is largely determined by the amount of resources acquired as adults (Papaj, 2000; Wheeler, 1996). Still, others accumulate most of their resources during the larval stage but can partially augment them as adults (e.g., Lepidoptera). We would predict a stronger tradeoff between flight and fecundity among capital breeders that have a finite amount of resources, whereas a tradeoff may or may not exist in income breeders that can acquire more resources throughout their adult life. This review found only three studies, among three species of capital breeders (Table 2: Trichoptera), looking at the effect of resource limitation on flight-fecundity tradeoffs, which showed both negative and no associations between the traits. The dearth of studies on flightfecundity tradeoffs among capital vs. income breeders, begs the question of how this tradeoff is influenced by the different resource accumulation strategies.

10. Conclusions

Although, the majority of studies examined in this review showed a negative association between flight and fecundity in wing monomorphic insects, we found little support for the widespread occurrence of a resource allocation tradeoff between flight and fecundity. In all contexts, there were species or studies that found no association, or a positive association, between both traits.

As noted by several researchers (Baker, 1978; Guerra, 2011; Rankin et al., 1986), a negative association between flight and fecundity does not necessarily reflect a resource competition between both functions. A number of selective forces may act to separate flight and fecundity in wing-monomorphic insect species. Indeed, we conclude based on the reviewed literature, that flight and fecundity in wing-monomorphic insects are related in a number of ways, including (1) physiological constraints: resource-based tradeoff, (2) biomechanical constraints: when egg load affects take-off performance, (3) adaptive negative correlations: switching from flight to egg production when an appropriate place (e.g., with food, mates, and oviposition sites) to reproduce has been found or (4) adaptive positive correlations: the colonizer syndrome. It is clear that a great deal of more research is needed to understand the life history, ecological, and phylogenetic contexts where resources are allocated differentially to flight vs. fecundity in wing-monomorphic insects.

Acknowledgement

This review was funded by NSF (USA) grants IOS-1053318 and IOS-1656279 to GD.

Appendix

List of studies examining the association between flight and fecundity in wing-monomorphic species using different methods: "A" = Manipulation of resources, "B" = Manipulation of flight or fecundity, "C" = Phenotypic correlation between flight and fecundity, and "D" = Genotypic correlation. Flight-fecundity association is described as: negative = -; positive = +; none = 0.

Species	Method	Flight-fecundity association	Citation
Acheta domestica	В	0	Srihari et al. (1975)
Agrotis ipsilon	С	0	Sappington and Showers. (1992)
Agrypnia deflate	A	_	Jannot et al. (2007)
Amyelois transitella	С	0	Rovnyak et al. (2018)
Aphis glycines	С	_	Cheng et al. (2016)
Aphis phabae	С	+	Johnson 1958)
Asynarchus nigriculus	A	0	Wissinger et al. (2004)
Bactra verutana	A	0	Frick and Wilson (1982)

Bactrocera oleae	С	_	Wang et al. (2009)
Bemisia tabaci	Е	0	Byrne (1999)
	С	_	Isaacs and Byrne (1998)
Bicyclus anynana	A	-/0	Saastamoinen et al. (2010)
Chrysoperla sinica	В	_	Khuhro et al. (2014)
Cnaphalocrocis medinalis	С	-/+	Zhang et al. (2015)
	В	_	Sun et al. (2013)
Coenagrion scitulum	A	0	Therry et al. (2015)
Cydia pomonella	D	_	Gu et al. (2006)
Drosophila melanogaster	D	_	Narise (1974)
	В	_	Roff (1977)
Drosophila subobscura	В	_	Inglesfield and Begon (1983)
Dysdercus fasciatus	A	_	Dingle and Arora (1973)
Dysdercus nigrofasciatus	A	_	
Dysdercus superstitiosus	A	_	<u> </u>
Epiphyas postvittana	D	_	Gu and Danthanarayana (1992)
Gryllus bimaculatus	С	_	Lorenz (2007)
Heliothis virescens	A	_	Willers et al. (1987)
Laodelphax striatellus	С	_	Wang et al. (2008)
Leptinotarsa decemlineata	A	-/+	Weber and Ferro (1996)
Locusta migratoria migratorioides	В	+	Highnam and Haskell (1964)
Loxostege sticticalis	С	0	Cheng et al. (2012)
Melanoplus sanguinipes	В	+	McAnelly and Rankin (1986)

Melitaea cinxia	С	_	Hanski et al. (2004)
	С	+	Hanski et al. (2006)
	С	+	Saastamoinen (2007)
	D	0	Saastamoinen and Hanski (2008)
Mythimna pallens	A	0	Hill and Hirai (1986)
Mythimna separata	В	+	Luo et al. (1999)
	A	_	Hill and Hirai (1986)
Neacoryphus bicrucis	A	_	Solbreck and Pehrson (1979)
Neobellieria bullata	С	_	Berrigan (1991)
Oncopeltus fasciatus (Iowa)	A	_	Slansky (1980)
	В	+	Caldwell and Rankin (1972)
	D	+	Palmer and Dingle (1986)
Oncopeltus fasciatus (PuertoRico)	D	-	Dingle et al. (1988)
Oscinella frite	С	_	Rygg (1966)
Odontocerum albicorne	A	_	Stevens et al. (1999)
Pararge aegeria	D	_	Berwaerts et al. (2008)
	С	_	Gibbs and van Dyck (2010)
	С	_	Hughes et al. (2003)
	С	_	van Dyck and Wiklund (2002)
Phthorimaea operculella	A	0	Coll and Yuval (2004)
Pieris brassicae	D	0	Legrand et al. (2016)
Pieris napi	D	_	Almbro and Kullberg (2012)
	С	_	Karlsson and Johansson (2008)
Pieris rapae	A		Tigreros et al. (2013)
Plutella xylostella	Α	_	Begum et al. (1996)
	A	_	Muhamad et al. (1994)
	В	_	Shirai (1995)

Pseudoplusia includens	A	_	Mason et al. (1989b)
Rhodnius prolixus	В	_	Oliveira et al. (2006)
Riptortus clavatus	A	_	Natuhara (1983)
Schistocerca gregaria	В	+	Highnam and Haskell (1964)
Speyeria mormonia	A	_	Boggs and Freeman (2005)
Spodoptera exempta	A	-	Gunn et al. (1989)
	D	_	Gunn and Gatehouse (1993)
Spodoptera exigua	С	0	Han et al. (2008)
	С	0	Jiang et al. (2010)
Tribolium castaneum	Α	_	Perez-Mendoza et al. (2011)
	D	0	Zirkle et al. (1988)
Trichogramma brassicae	A	0	Kishani Farahani et al. (2016)

References

- Agrawal, A.A., Conner, J.K., Rasmann, S., 2010. Tradeoffs and negative correlations in evolutionary ecology. In: Bell, M.A., Futuyma, D.J., Eanes, W.F., Levinton, J.S. (Eds.), Evolution Since Darwin: The First 150. Sinauer Associates, Sunderland, MA, pp. 243–268.
- Almbro, M., Kullberg, C., 2012. Weight loading and reproductive status affect the flight performance of *Pieris napi* butterflies. J. Insect Behav. 25, 441–452.
- Arrese, E.L., Soulages, J.L., 2010. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225.
- Baker, R.R., 1978. The Evolutionary Ecology of Animal Migration. Holmes and Meier, New York.
- Bartholomew, G.A., Casey, T.M., 1978. Oxygen consumption of moths during rest, preflight warm-up, and flight in relation to body size and wing morphology. J. Exp. Biol. 76, 11–25.
- Bayoumy, M.H., Michaud, J.P., 2015. Egg cannibalism and its life history consequences vary with life stage, sex, and reproductive status in *Hippodamia convergens* (Coleoptera: Coccinellidae). J. Econ. Entomol. 108, 1665–1674.
- Beenakkers, A., Van der Horst, D.J., Van Marrewijk, W.J.A., 1985. Insect lipids and lipoproteins, and their role in physiological processes. Prog. Lipid Res. 24, 19–67.
- Begum, S., Tsukuda, R., Fujisaki, K., Nakasuji, F., 1996. The effects of wild cruciferous host plants on morphology, reproductive performance and flight activity in the diamondback moth, *Plutella xylostella* (Lepidoptera: Yponomeutidae). Res. Popul. Ecol. 38, 257–263.
- Behmer, S.T., 2009. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187.

- Berrigan, D., 1991. Lift production in the flesh fly, *Neobellieria* (= *Sarcophaga*) bullata Parker. Funct. Ecol. 5, 448–456.
- Berwaerts, K., Matthysen, E., Van Dyck, H., 2008. Take-off flight performance in the butterfly *Pararge aegeria* relative to sex and morphology: a quantitative genetic assessment. Evolution 62, 2525–2533.
- Bimbard, G., Kolomenskiy, D., Bouteleux, O., Casas, J., Godoy-Diana, R., 2013. Force balance in the take-off of a pierid butterfly: relative importance and timing of leg impulsion and aerodynamic forces. J. Exp. Biol. 216, 3551–3563.
- Blanckenhorn, W.U., Preziosi, R.F., Fairbairn, D.J., 1995. Time and energy constraints and the evolution of sexual size dimorphism—to eat or to mate? Evol. Ecol. 9, 369–381.
- Boggs, C.L., 1997. Dynamics of reproductive allocation from juvenile and adult feeding: radiotracer studies. Ecology 78, 192–202.
- Boggs, C.L., Freeman, K.D., 2005. Larval food limitation in butterflies: effects on adult resource allocation and fitness. Oecologia 144, 353–361.
- Bonte, D., Saastamoinen, M., 2012. Dispersal syndromes in butterflies and spiders. In: Clobert, J., Baguette, M., Benton, T.G., Bullock, J.M. (Eds.), Dispersal Ecology and Evolution. Oxford University Press, pp. 161–170.
- Brower, L.P., 1985. New perspectives on the migration biology of the monarch butterfly, *Danaus plexippus* L. In: Rankin, M.A. (Ed.), Migration: Mechanisms and Adaptive Significance, Contributions in Marine Science. In: Vol. 27. Marine Science Institute, pp. 748–785. supp.
- Brown, J.J., Chippendale, G.M., 1974. Migration of the monarch butterfly, *Danaus plexippus*: energy sources. J. Insect Physiol. 20, 1117–1130.
- Bursell, E., 1975. Substrates of oxidative metabolism in dipteran flight muscle. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 52, 235–238.
- Byrne, D., 1999. Migration and dispersal by the sweet potato whitefly, *Bemisia tabaci*. Agric. For. Meteorol. 97, 309–316.
- Caldwell, R.L., Rankin, M.A., 1972. Effects of a juvenile hormone mimic on flight in the milkweed bug, *Oncopeltus fasciatus*. Gen. Comp. Endocrinol. 19, 601–605.
- Canavoso, L.E., Jouni, Z.E., Karnas, K.J., Pennington, J.E., Wells, M.A., 2001. Fat metabolism in insects. Annu. Rev. Nutr. 21, 23–46.
- Cheng, Y.X., Luo, L.Z., Jiang, X.F., Sappington, T.W., 2012. Synchronized oviposition triggered by migratory flight intensifies larval outbreaks of beet webworm. PLoS One 7 (2), e31562.
- Cheng, Y., Luo, L., Sappington, T.W., Jiang, X., Zhang, L., Frolov, A.N., 2016. Onset of oviposition triggers abrupt reduction in migratory flight behavior and flight muscle in the female beet webworm, *Loxostege sticticalis*. PLoS One 11 (11), e0166859.
- Chino, H., Lum, P.Y., Nagao, E., 1992. The molecular and metabolic essentials for long-distance flight in insects. J. Comp. Physiol. B 162, 101–106.
- Clark, R.M., McConnell, A.S., Zera, A.J., 2013. Nutrient regulation strategies differ between cricket morphs that trade-off dispersal and reproduction. Funct Ecol. 27, 1126–1133.
- Clark, R.M., Zera, A.J., Behmer, S.T., 2015. Nutritional physiology of life-history trade-offs: how food protein-carbohydrate content influences life-history traits in the wing-polymorphic cricket *Gryllus firmus*. J. Exp. Biol. 218, 298–308.
- Coll, M., Yuval, B., 2004. Larval food plants affect flight and reproduction in an oligophagous insect herbivore. Environ. Entomol. 33, 1471–1476.
- Colvin, J., Gatehouse, A.G., 1993. The reproduction-flight syndrome and the inheritance of tethered-flight activity in the cotton-bollworm moth, *Heliothis armigera*. Physiol. Entomol. 18, 16–22.

- Davis, A.K., Holden, M.T., 2015. Measuring intraspecific variation in flight-related morphology of monarch butterflies (*Danaus plexippus*): which sex has the best flying gear? J. Insects 591705.
- Dingle, H., 1965. The relation between age and flight activity in the milkweed bug, *Oncopeltus*. J. Exp. Biol. 42, 269–283.
- Dingle, H., 1996. Migration: The Biology of Life on the Move. Oxford University Press, New York.
- Dingle, H., 2014. Migration: The Biology of Life on the Move, second ed. Oxford University Press, New York.
- Dingle, H., Arora, G., 1973. Experimental studies of migration in bugs of the genus *Dysdercus*. Oecologia 12, 119–140.
- Dingle, H., Drake, V.A., 2007. What is migration? BioScience 57, 113–121.
- Dingle, H., Evans, K.E., Palmer, J.O., 1988. Responses to selection among life-history traits in a nonmigratory population of milkweed bugs (*Oncopeltus fasciatus*). Evolution 42, 79–92.
- Dudley, R., 1991. Biomechanics of flight in neotropical butterflies: aerodynamics and mechanical power requirements. J. Exp. Biol. 357, 335–357.
- Dudley, R., 2002. The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press.
- Duthie, A.B., Abbott, K.C., Nason, J.D., 2015. Trade-offs and coexistence in fluctuating environments: evidence for a key dispersal-fecundity trade-off in five nonpollinating fig wasps. Am. Nat. 186, 151–158.
- van Dyck, H., Baguette, M., 2005. Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Appl. Ecol. 6, 535–545.
- van Dyck, H., Wiklund, C., 2002. Seasonal butterfly design: morphological plasticity among three developmental pathways relative to sex, flight and thermoregulation. J. Evol. Biol. 15, 216–225.
- Frick, K.E., Wilson, R.F., 1982. Some factors influencing the fecundity and flight potential of *Bactra verutana*. Environ. Entomol. 11, 181–186.
- Fu, X.-W., Li, C., Feng, H.-Q., Liu, Z.-F., 2014c. Seasonal migration of *Cnaphalocrocis medinalis* (Lepidoptera: Crambidae) over the Bohai Sea in northern China. Bull. Entomol. Res. 104, 601–609.
- Fu, X., Liu, Y., Li, Y., Lu, Y., Li, Y., Wu, K., 2014a. Seasonal migration of Apolygus luconum (Hemiptera: Miridae) over the Bohai Sea in northern China. J. Econ. Entomol. 107, 1399–1410.
- Fu, X., Liu, Y., Li, Y., Ali, A., Wu, K., 2014b. Does *Athetis lepigone* moth (Lepidoptera: Noctuidae) take a long-distance migration? J. Econ. Entomol. 107, 995–1002.
- Fu, X., Hu, C., Feng, H., Liu, Z., Wu, K., 2015. Whether *Macdunnoughia crassisigna* (Lepidoptera: Noctuidae) is a long-distance migrant? J. Insect Behav. 28, 211–225.
- Geister, T.L., Lorenz, M.W., Hoffmann, K.H., Fischer, K., 2008. Adult nutrition and butterfly fitness: effects of diet quality on reproductive output, egg composition, and egg hatching success. Front. Zool. 10 (5), 10.
- Gibbs, M., van Dyck, H., 2010. Butterfly flight activity affects reproductive performance and longevity relative to landscape structure. Oecologia 163, 341–350.
- Gibbs, M., Breuker, C.J., Van Dyck, H., 2010. Flight during oviposition reduces maternal egg provisioning and influences offspring development in *Pararge aegeria* (L.). Physiol. Entomol. 35, 29–39.
- Giron, D., Casas, J., 2003. Mothers reduce egg provisioning with age. Ecol. Lett. 6, 273–277. Goldsworthy, G.J., Wheeler, C.H., 1989. Insect Flight. CRC Press.
- Gu, H., Danthanarayana, W., 1992. Quantitative genetic analysis of dispersal in *Epiphyas postvittana*. II. Genetic covariations between flight capacity and life-history traits. Heredity 68, 61–69.

- Gu, H., Hughes, J., Dorn, S., 2006. Trade-off between mobility and fitness in Cydia pomonella L. (Lepidoptera: Tortricidae). Ecol. Entomol. 31, 68–74.
- Guerra, P.A., 2011. Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: a meta-analysis. Biol. Rev. 86, 813–835.
- Guerra, P.A., Pollack, G.S., 2007. A life history trade-off between flight ability and reproductive behavior in male field crickets (*Gryllus texensis*). J. Insect Behav. 20, 377–387.
- Gunn, A., Gatehouse, A.G., 1993. The migration syndrome in the African armyworm moth, *Spodoptera exempta*: allocation of resources to flight and reproduction. Physiol. Entomol. 18 (2), 149–159.
- Gunn, A., Gatehouse, A.G., Woodrow, K.P., 1989. Trade-off between flight and reproduction in the African armyworm moth, Spodoptera exempta. Physiol. Entomol. 14, 419–427.
- Han, L.Z., Gu, H.N., Zhai, B.P., Zhang, X.X., 2008. Reproduction-flight relationship in the beet armyworm, *Spodoptera exigua* (Lepidoptera: Noctuidae). Environ. Entomol. 37, 374–381.
- Hanski, I., Eralahti, C., Kankare, M., Ovaskainen, O., Sirén, H., 2004. Variation in migration propensity among individuals maintained by landscape structure. Ecol. Lett. 7, 958–966.
- Hanski, I., Saastamoinen, M., Ovaskainen, O., 2006. Dispersal-related life-history trade-offs in a butterfly metapopulation. J. An. Ecol. 75, 91–100.
- Hegmann, J.P., Dingle, H., 1982. Phenotypic and genetic covariance structure in milkweed bug life history traits. In: Dingle, H., Hegmann, J.P. (Eds.), Evolution and Genetics of Life Histories. Springer-Verlag, New York, pp. 177–185.
- Herman, W.S., Barker, J.F., 1977. Effect of mating on monarch butterfly oogenesis. Experientia 33, 688–689.
- Highnam, K.C., Haskell, P.T., 1964. The endocrine systems of isolated and crowded *Locusta* and *Schistocerca* in relation to oöcyte growth, and the effects of flying upon maturation. J. Insect Physiol. 10, 849–864.
- Hill, M.G., Hirai, K., 1986. Adult responses to larval rearing density in *Mythimna separata* and *Mythimna pallens* (Lepidoptera: Noctuidae). Appl. Entomol. Zool. 21, 191–202.
- van der Horst, D.J., Houben, N.M.D., Beenakkers, A.M.T., 1980. Dynamics of energy substrates in the haemolymph of *Locusta migratoria* during flight. J. Insect Physiol. 26, 441–448.
- Huang, X.-F., Zhang, X.-X., Zhai, B.-P., 2010. Effect of copulation on flight capacity and remigration capacity of *Cnaphalocrocis medinalis* (Guenée). J. Nanjing Ag. Univ. 33, 5.
- Hughes, C.L., Hill, J.K., Dytham, C., 2003. Evolutionary trade-offs between reproduction and dispersal in populations at expanding range boundaries. Proc. R. Soc. B Biol. Sci. 270, S147–S150.
- Inglesfield, C., Begon, M., 1983. The ontogeny and cost of migration in *Drosophila subobscura* Collin. Biol. J. Linn. Soc. 19, 9–15.
- Isaacs, R., Byrne, D.N., 1998. Aerial distribution, flight behaviour and eggload: their interrelationship during dispersal by the sweetpotato whitefly. J. An. Ecol. 67, 741–750.
- Jannot, J.E., Bruneau, E., Wissinger, S.A., 2007. Effects of larval energetic resources on life history and adult allocation patterns in a caddisfly (Trichoptera: Phryganeidae). Ecol. Entomol. 32, 376–383.
- Jervis, M.A., Boggs, C.L., 2005. Linking nectar amino acids to fitness in female butterflies. Trends Ecol. Evol. 20, 585–587.
- Jervis, M.A., Boggs, C.L., Ferns, P.N., 2005. Egg maturation strategy and its associated tradeoffs: a synthesis focusing on Lepidoptera. Ecol. Entomol. 30, 359–375.
- Jiang, X.F., Luo, L.Z., Sappington, T.W., 2010. Relationship of flight and reproduction in beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), a migrant lacking the oogenesis-flight syndrome. J. Insect Physiol. 56, 1631–1637.

- Johnson, B., 1958. Factors affecting the locomotor and settling responses of alate aphids. An. Behav. 6, 9–26.
- Johnson, C.G., 1963. Physiological factors in insect migration by flight. Nature 198, 423–427.
- Joos, B., 1987. Carbohydrate use in the flight muscles of *Manduca sexta* during pre-flight warm-up. J. Exp. Biol. 133, 317–327.
- Kallapur, V.L., George, C.J., 1973. Fatty acid oxidation by the flight muscles of the dragonfly, *Pantala flavescens*. J. Insect Physiol. 19, 1035–1040.
- Karlsson, B., Johansson, A., 2008. Seasonal polyphenism and developmental trade-offs between flight ability and egg laying in a pierid butterfly. Proc. Biol. Sci. 275, 2131–2136.
- Kawooya, J.K., Law, J.H., 1988. Role of lipophorin in lipid transport to the insect egg. J. Biol. Chem. 263, 8748–8753.
- Kennedy, J.S., 1985. Migration, behavioral and ecological. In: Rankin, M.A. (Ed.), Migration: Mechanisms and Adaptive Significance, Contributions in Marine Science. In: Vol. 27. Marine Science Institute, pp. 5–26. supp.
- Khuhro, N.H., Biondi, A., Desneux, N., Zhang, L., Zhang, Y., Chen, H., 2014. Trade-off between flight activity and life-history components in *Chrysoperla sinica*. BioControl 59, 219–227.
- Kishani Farahani, H., Ashouri, A., Zibaee, A., Abroon, P., Alford, L., 2016. The effect of host nutritional quality on multiple components of *Trichogramma brassicae* fitness. Bull. Entomol. Res. 106, 633–641.
- Knops, J.M.H., Koenig, W.D., Carmen, W.J., 2007. Negative correlation does not imply a tradeoff between growth and reproduction in California oaks. Proc. Natl. Acad. Sci. U. S. A. 104, 16982–16985.
- Lee, K.P., Simpson, S.J., Clissold, F.J., Brooks, R., Ballard, J.W., Taylor, P.W., Soran, N., Raubenheimer, D., 2008. Lifespan and reproduction in *Drosophila*: new insights from nutritional geometry. Proc. Natl. Acad. Sci. U. S. A. 105, 2498–2503.
- Legrand, D., Larranaga, N., Bertrand, R., Ducatez, S., Calvez, O., Stevens, V.M., Baguette, M., 2016. Evolution of a butterfly dispersal syndrome. Proc. R. Soc. B Biol. Sci. 283 (1839).
- Levin, E., Mitra, C., Davidowitz, G., 2016. Fed males increase oviposition in female hawkmoths via non-nutritive direct benefits. An. Behav. 112, 111–118.
- Levin, E., Lopez-Martinez, G., Fane, B., Davidowitz, G., 2017. Hawkmoths use nectar sugar to reduce oxidative damage from flight. Science 355, 733–735.
- Levin, E., McCue, M.D., Davidowitz, G., 2017a. More than just sugar: allocation of nectar amino acids and fatty acids in a lepidopteran. Proc. R. Soc. B Biol. Sci. 284 (1848).
- Levin, E., McCue, M.D., Davidowitz, G., 2017b. Sex differences in the utilization of essential and non-essential amino acids in Lepidoptera. J. Exp. Biol. 220, 2743–2747.
- Lewontin, R.C., 1965. Selection for colonizing ability. In: Baker, H.G., Stebbins, G.L. (Eds.), The Genetics of Colonizing Species: Proceedings of the First International Union of Biological Sciences Symposia on General Biology. Academic Press, pp. 77–94.
- Lorenz, M.W., 2007. Oogenesis-flight syndrome in crickets: age-dependent egg production, flight performance, and biochemical composition of the flight muscles in adult female *Gryllus bimaculatus*. J. Insect Physiol. 53, 819–832.
- Luo, L., Xingfu, J., Kebin, L., Hu, Y., 1999. Influences of flight on reproduction and longevity of the oriental armyworm, *Mythimna separata* (Walker). Acta Entomol. Sin. 42, 150–158.
- Marden, J.H., 1987. Maximum lift production during takeoff in flying animals. J. Exp. Biol. 130, 235–258.
- Marden, J.H., 2000. Variability in the size, composition, and function insect flight muscles. Annu. Rev. Physiol. 62, 157–178.

- Marden, J.H., Chai, P., 1991. Aerial predation and butterfly design: how palatability, mimicry, and the need for evasive flight constrain mass allocation. Am. Nat. 138, 15–36.
- Mason, L.J., Johnson, S.J., Woodring, J.P., 1989a. Influence of carbohydrate deprivation and tethered flight on stored lipid, fecundity, and survivorship of the soybean looper (Lepidoptera: Noctuidae). Environ. Entomol. 18, 1090–1094.
- Mason, L.J., Johnson, S.J., Woodring, J.P., 1989b. Seasonal and ontogenetic examination of the reproductive biology of *Pseudoplusia includens* (Lepidoptera: Noctuidae). Environ. Entomol. 18, 980–985.
- McAnelly, M.L., Rankin, M.A., 1986. Migration in the grasshopper *Melanoplus sanguinipes* (Fab.). II. Interactions between flight and reproduction. Biol. Bull. 170, 378–392.
- Mevi-Schütz, J., Erhardt, A., 2005. Amino acids in nectar enhance butterfly fecundity: a long-awaited link. Am. Nat. 165, 411–419.
- Minter, M., Pearson, A., Lim, K.S., Wilson, K., Chapman, J.W., Jones, C.M., 2018. The tethered flight technique as a tool for studying life-history strategies associated with migration in insects. Ecol. Entomol. 43, 397–411.
- Mole, S., Zera, A.J., 1993. Differential allocation of resources underlies the dispersal-reproduction trade-off in the wing-dimorphic cricket, *Gryllus rubens*. Oecologia 93, 121–127.
- Mole, S., Zera, A.J., 1994. Differential resource consumption obviates a potential flight-fecundity trade-off in the sand cricket (*Gryllus firmus*). Funct. Ecol. 8, 573–580.
- Muhamad, O., Tsukuda, R., Oki, Y., Fujisaki, K., Nakasuji, F., 1994. Influences of wild crucifers on life history traits and flight ability of the diamondback moth, *Plutella xylostella* (Lepidoptera: yponomeutidae). Res. Popul. Ecol. 36, 53–62.
- Narise, T., 1974. Relation between dispersive behavior and fitness. Jpn. J. Genet. 49, 131–138.
- Natuhara, Y., 1983. The influences of food and photoperiod on flight activity and reproduction of the bean bug, *Riptortus davatus* Thunberg (Heteroptera: Coreidae). Appl. Entomol. Zool. 18, 392–400.
- Němec, V., 2002. Quantitative changes in protein, glycogen and fat content in the eggs of the locusts, Locusta migratoria migratorioides and Schistocerca gregaria (Orthoptera), during embryogenesis. Eur. J. Entomol. 99, 557–559.
- Nijhout, H.F., Emlen, D.J., 1998. Competition among body parts in the development and evolution. Proc. Natl. Acad. Sci. U. S. A. 95, 3685–3689.
- van Noordwijk, A.J., de Jong, G., 1986. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142.
- O'Brien, D.M., 1999. Fuel use in flight and its dependence on nectar feeding in the hawkmoth *Amphion floridensis*. J. Exp. Biol. 202, 441–451.
- O'Brien, D.M., Boggs, C.L., Fogel, M.L., 2004. Making eggs from nectar: the role of life history and dietary carbon turnover in butterfly reproductive resource allocation. Oikos 105, 279–291.
- Oliveira, G.A., Baptista, D.L., Guimarães-Motta, H., Almeida, I.C., Masuda, H., Atella, G.C., 2006. Flight-oogenesis syndrome in a blood-sucking bug: biochemical aspects of lipid metabolism. Arch. Biochem. Physiol. 62, 164–175.
- Palmer, J.O., Dingle, H., 1986. Direct and correlated responses to selection among life-history traits in milkweed bugs (*Oncopeltus fasciatus*). Evolution 40, 767–777.
- Papaj, D.R., 2000. Ovarian dynamics and host use. Annu. Rev. Entomol. 45, 423–448.
- Pener, M.P., Ayali, A., Golenser, E., 1997. Adipokinetic hormone and flight fuel related characteristics of density-dependent locust phase polymorphism: a review. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 117, 513–524.
- Perez-Mendoza, J., Campbell, J.F., Throne, J.E., 2011. Influence of age, mating status, sex, quantity of food, and long-term food deprivation on red flour beetle (Coleoptera: tenebrionidae) flight initiation. J. Econ. Entomol. 104, 2078–2086.

- Raguso, R.A., Henzel, C., Buchmann, S.L., Nabhan, G.P., 2003. Trumpet flowers of the sonoran desert: floral biology of *Peniocereus* cacti and sacred *Datura*. Int. J. Plant Sci. 164, 877–892.
- Rankin, M.A., Burchsted, J.C.A., 1992. The cost of migration in insects. Annu. Rev. Entomol. 37, 533–559.
- Rankin, M.A., Rankin, S., 1980a. Some factors affecting presumed migratory flight activity of the convergent ladybeetle, *Hippodamia convergens* (Coccinellidae: Coleoptera). Biol. Bull. 158, 356–369.
- Rankin, S.M., Rankin, M.A., 1980b. The hormonal control of migrtory flight behaviour in the convergent ladybird beetle, *Hippodamia convergens*. Physiol. Entomol. 5, 175–182.
- Rankin, M.A., McAnelly, M.L., Bodenhamer, J.E., 1986. The oogenesis-flight syndrome revisited. In: Danthanarayana, W. (Ed.), Insect Flight. Springer, Berlin, Heidelberg, pp. 27–48.
- Rankin, M.A., Hampton, E.N., Summy, K.R., 1994. Investigations of the oogenesis-flight syndrome in *Anthonomus grandis* (Coleoptera: Curculionidae) using tethered flight tests. J. Insect Behav. 7, 795–810.
- Reznick, D., 1985. Costs of reproduction: an evaluation of the empirical evidence. Oikos 44, 257–267.
- Rhainds, M., Kettela, E.G., 2013. Oviposition threshold for flight in an inter-reproductive migrant moth. J. Insect Behav. 26, 850–859.
- Riley, J.R., Reynolds, D.R., Smith, A.D., Edwards, A.S., 1995. Observations of the autumn migration of the rice leaf roller *Cnaphalocrocis medinalis* (Lepidoptera: Pyralidae) and other moths in eastern China. Bull. Entomol. Res. 85, 397–414.
- Roff, D., 1977. Dispersal in dipterans: its costs and consequences. J. An. Ecol. 46, 443–456.
- Roff, D.A., 1986. The evolution of wing dimorphism in insects. Evolution 40, 1009–1020.
- Roff, D.A., 1992. The Evolution of Life Histories: Theory and Analysis. Chapman and Hall, New York.
- Roff, D.A., 1995. Antagonistic and reinforcing pleiotropy: a study of differences in development time in wing dimorphic insects. J. Evol. Biol. 8, 405–419.
- Roff, D.A., Bradford, M.J., 1996. Quantitative genetics of the trade-off between fecundity and wing dimorphism in the cricket *Allonemobius socius*. Heredity 76, 178–185.
- Rothe, U., Nachtigall, W., 1989. Flight of the honey bee—IV. Respiratory quotients and metabolic rates during sitting, walking and flying. J. Comp. Physiol. B 158, 739–749.
- Rovnyak, A.M., Burks, C.S., Gassmann, A.J., Sappington, T.W., 2018. Interrelation of mating, flight, and fecundity in navel orangeworm females. Entomol. Exp. Appl. 166, 304–315.
- Rygg, T.D., 1966. Flight of *Oscinella frit* L. (Diptera, Chloropidae) females in relation to age and ovary development. Entomol. Exp. Appl. 9, 74–84.
- Saastamoinen, M., 2007. Mobility and lifetime fecundity in new versus old populations of the Glanville fritillary butterfly. Oecologia 153, 569–578.
- Saastamoinen, M., Hanski, I., 2008. Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly. Am. Nat. 171, 701–712.
- Saastamoinen, M., van der Sterren, D., Vastenhout, N., Zwaan, B.J., Brakefield, P.M., 2010. Predictive adaptive responses: condition-dependent impact of adult nutrition and flight in the tropical butterfly *Bicyclus anynana*. Am. Nat. 176, 686–698.
- Saeki, Y., Tuda, M., Crowley, P.H., 2014. Allocation tradeoffs and life histories: a conceptual and graphical framework. Oikos 123, 786–793.
- Sappington, T.W., Showers, W.B., 1992. Reproductive maturity, mating status, and long-duration flight behavior of Agrotis ipsilon (Lepidoptera: Noctuidae) and the conceptual misuse of the oogenesis' flight syndrome by entomologists. Environ. Entomol. 21, 677–688.

- Sasaki, M., Riddiford, L.M., 1984. Regulation of reproductive behaviour and egg maturation in the tobacco hawk moth, *Manduca sexta*. Physiol. Entomol. 9, 315–327.
- Schebeck, M., Hansen, E.M., Schopf, A., Ragland, G.J., Stauffer, C., Bentz, B.J., 2017. Diapause and overwintering of two spruce bark beetle species. Physiol. Entomol. 42, 200–210.
- Schumacher, P., Weyeneth, A., Weber, D.C., Dorn, S., 1997. Long flights in *Cydia pomonella* L. (Lepidoptera: tortricidae) measured by a flight mill: influence of sex, mated status and age. Phsyiol. Entomol. 22, 149–160.
- Sgrò, C.M., Hoffmann, A.A., 2004. Genetic correlations, tradeoffs and environmental variation. Heredity 93, 241–248.
- Shirai, Y., 1995. Longevity, flight ability and reproductive performance of the diamondback moth, *Plutella xylostella* (L.) (Lepidoptera: yponomeutidae), related to adult body size. Res. Popul. Ecol. 37, 269–277.
- Showers, W.B., 1997. Migratory ecology of the black cutworm. Annu. Rev. Entomol. 42, 393–425.
- Simpson, S.J., Raubenheimer, D., 2012. The Nature of Nutrition: A Unifying Framework From Animal Adaptation to Human Obesity. Princeton University Press.
- Slansky, F., 1980. Food consumption and reproduction as affected by tethered flight in female milkweed bugs (*Oncopeltus fasciatus*). Entomol. Exp. Appl. 28, 277–286.
- Sloggett, J.J., Lorenz, M.W., 2008. Egg composition and reproductive investment in aphidophagous ladybird beetles (Coccinellidae: coccinellini): egg development and interspecific variation. Physiol. Entomol. 33, 200–208.
- Solbreck, C., Pehrson, I., 1979. Relations between environment, migration and reproduction in a seed bug, *Neacoryphus bicrucis* (say) (Heteroptera: lygaeidae). Oecologia 43, 51–62.
- Srihari, T., Gutmann, E., Novak, V.J.A., 1975. Effect of ecdysterone and juvenoid on the developmental involution of flight muscles in *Acheta domestica*. J. Insect Physiol. 21, 1–8.
- Stearns, S.C., 1992. The Evolution of Life Histories. Oxford University Press.
- Stevens, D.J., Hansell, M.H., Freel, J.A., Monaghan, P., 1999. Developmental trade-offs in caddis flies: increased investment in larval defence alters adult resource allocation. Proc. R. Soc. B Biol. Sci. 266, 1049–1054.
- Stevens, V.M., Trochet, A., van Dyck, H., Clobert, J., Baguette, M., 2012. How is dispersal integrated in life histories: a quantitative analysis using butterflies. Ecol. Lett. 14, 74–86.
- Stryer, L., 1988. Biochemistry, third ed. W.H. Freeman and Company, New York.
- Suarez, R.K., 2005. Energy metabolism in orchid bee flight muscles: carbohydrate fuels all. J. Exp. Biol. 208, 3573–3579.
- Suarez, R.K., et al., 1996. Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees. Proc. Natl. Acad. Sci. U. S. A. 93, 12616–12620.
- Sun, B.-B., Jiang, X.F., Zhang, L., Stanley, D.W., Luo, L.Z., Long, W., 2013. Methoprene influences reproduction and flight capacity in adults of the rice leaf roller, *Cnaphalocrocis medinalis* (Guenee) (Lepidoptera: pyralidae). Arch. Insect Biochem. Physiol. 82, 1–13.
- Tanaka, S., Suzuki, Y., 1998. Physiological trade-offs between reproduction, flight capability and longevity in a wing-dimorphic cricket, *Modicogryllus confirmatus*. J. Insect Physiol. 44, 121–129.
- Teulier, L., Weber, J.M., Crevier, J., Darveau, C.A., 2016. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proc. R. Soc. B Biol. Sci. 283 (1834).
- Therry, L., Bonte, D., Stoks, R., 2015. Higher investment in flight morphology does not trade off with fecundity estimates in a poleward range-expanding damselfly. Ecol. Entomol. 40, 133–142.
- Tigreros, N., Sass, E.M., Lewis, S.M., 2013. Sex-specific response to nutrient limitation and its effects on female mating success in a gift-giving butterfly. Evol. Ecol. 27, 1145–1158.

- Vargas, N.R., Rowe, L., Stevens, J., Armagost, J.E., Johnson, A.C., Malcolm, S.B., 2018. Sequential partial migration across monarch generations in Michigan. Anim. Migr. 5, 104–114.
- Von Kaster, L., Showers, W.B., 1982. Evidence of spring immigration and autumn reproductive diapause of the adult black cutworm in Iowa. Environ. Entomol. 11, 306–312.
- Wang, R., Shen, H.-M., Hu, G., Chen, X., Zhai, B.-P., 2008. The takeoff behavior of Laodelphax striatellus and its relation to the ovarian development. Chin. Bull. Entomol. 45, 42–45.
- Wang, X.-G., Johnson, M.W., Daane, K.M., Opp, S., 2009. Combined effects of heat stress and food supply on flight performance of olive fruit fly (Diptera: tephritidae). Ann. Entomol. Soc. Am. 102, 727–734.
- Warfvinge, K., KleinHeerenbrink, M., Hedenström, A., 2017. The power-speed relationship is U-shaped in two free-flying hawkmoths (*Manduca sexta*). J. R. Soc. Interface 14, 20170372.
- Weber, D.C., Ferro, D.N., 1996. Flight and fecundity of Colorado potato beetles (Coleoptera: chrysomelidae) fed on different diets. Ann. Entomol. Soc. Am. 89, 297–306.
- Weeda, E., Kort, C.A.D., Beenakkers, A.M.T., 1979. Fuels for energy metabolism in the Colorado potato beetle, *Leptinotarsa decemlineata* say. J. Insect Physiol. 25, 951–955.
- Wheeler, D., 1996. The role of nourishment in oogenesis. Annu. Rev. Entomol. 41, 407–431.
- Willers, J.L., Schneider, J.C., Ramaswamy, S.B., 1987. Fecundity, longevity and caloric patterns in female *Heliothis virescens*: changes with age due to flight and supplemental carbohydrate. J. Insect Physiol. 33, 803–808.
- Wilson, J.K., Ruiz, L., Davidowitz, G., 2019. Dietary protein and carbohydrates affect immune function and performance in a specialist herbivore insect (*Manduca sexta*). Physiol. Biochem. Zool. 92, 58–70.
- Wissinger, S., Steinmetz, J., Alexander, J.S., Brown, W., 2004. Larval cannibalism, time constraints, and adult fitness in caddisflies that inhabit temporary wetlands. Oecologia 138, 39–47.
- Wu, X., Fu, X., Guo, J., Zhao, X., Wu, K., 2015. Annual migration of cabbage moth, Mamestra brassicae L. (Lepidoptera: Noctuidae), over the sea in northern China. PLoS One 10, e0132904.
- Zera, A.J., Brink, T., 2000. Nutrient absorption and utilization by wing and flight muscle morphs of the cricket *Gryllus firmus*: implications for the trade-off between flight capability and early reproduction. J. Insect Physiol. 46, 1207–1218.
- Zera, A.J., Harshman, L.G., 2001. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126.
- Zera, A.J., Clark, R., Behmer, S., 2016. Lipogenesis in a wing-polymorphic cricket: canalization versus morph-specific plasticity as a function of nutritional heterogeneity. J. Insect Physiol. 95, 118–132.
- Zhang, Y., Wu, K., Wyckhuys, K.A.G., Heimpel, G.E., 2009. Effect of parasitism on flight behavior of the soybean aphid, *Aphis glycines*. Biol. Control 51, 475–479.
- Zhang, L., Pan, P., Sappington, T.W., Lu, W., Luo, L., Jiang, X., 2015. Accelerated and synchronized oviposition induced by flight of young females may intensify larval outbreaks of the rice leaf roller. PLoS One 10, e0121821.
- Zhao, X.C., Feng, H.Q., Wu, B., Wu, X.F., Zhong, F.L., Wu, K.M., McNeil, J.N., 2009. Does the onset of sexual maturation terminate the expression of migratory behavior in moths? A study of the oriental armyworm, *Mythimna separata*. J. Insect Physiol. 55, 1039–1043.

- Zhu, D.-H., Cui, S.S., Fan, Y.S., Liu, Z., 2013. Adaptive strategies of overwintering adults: reproductive diapause and mating behavior in a grasshopper, *Stenocatantops splendens* (Orthoptera: Catantopidae). Insect Sci. 20, 235–244.
- Ziegler, R., Schulz, M., 1986a. Regulation of carbohydrate metabolism during flight in Manduca sexta. J. Insect Physiol. 32, 997–1001.
- Ziegler, R., Schulz, M., 1986b. Regulation of lipid metabolism during flight in *Manduca sexta*. J. Insect Physiol. 32, 903–908.
- Zirkle, D.F., Dawson, P.S., Lavie, B., 1988. An experimental analysis of the genetic relationships among life-history traits and emigration behavior in *Tribolium castaneum*. Oikos 53, 391–397.

Further reading

- Zera, A.J., Larsen, A., 2001. The metabolic basis of life history variation: genetic and phenotypic differences in lipid reserves among life history morphs of the wingpolymorphic cricket, Gryllus firmus. J. Insect Physiol. 47, 1147–1160.
- Zera, A.J., Zhao, Z., 2006. Intermediary metabolism and life-history trade-offs: differential metabolism of amino acids underlies the dispersal-reproduction trade-off in a wingpolymorphic cricket. Am. Nat. 167, 889–900.
- Zhao, Z., Zera, A.J., 2002. Differential lipid biosynthesis underlies a tradeoff between reproduction and flight capability in a wing-polymorphic cricket. Proc. Natl. Acad. Sci. U. S. A. 99, 16829–16834.
- Zhao, Z., Zera, A.J., 2006. Biochemical basis of specialization for dispersal vs. reproduction in a wing-polymorphic cricket: morph-specific metabolism of amino acids. J. Insect Physiol. 52, 646–658.