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Abstract

Winged insects often spend considerable amounts of energy in flight, searching for
food, escaping predators, and dispersing. In females, flight is hypothesized to reduce
resources available for egg production, thus leading to a tradeoff between flight and
fecundity. Yet, the generality of a flight-fecundity tradeoff in insects may have been
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overestimated, given that empirical validation of such a tradeoff has largely relied on
studies in wing-polymorphic insects. In this review, we evaluate evidence of a flight-
fecundity tradeoff in wing-monomorphic insects by conducting a systematic literature
search. We compiled information from studies on migratory and non-migratory
insects, testing for an association between flight and fecundity and using a number of
different methods—phenotypic and genotypic correlations, manipulation of resource
availability, andmanipulation of either flight or fecundity. Althoughmost studies indicated
a negative association between flight and fecundity in wing-monomorphic insects, evi-
dence for a tradeoff between the two traits was less prevalent. In several contexts, there
were species that showed none or a positive association between both traits. Importantly,
flight and fecundity in wing-monomorphic insects was related in a number of ways: via
physiological constraints—resource-based tradeoffs—as well as via biomechanical
constraints—when egg loads affected take-off performance—, due to adaptive negative
correlations—when switching from flight to egg production if appropriate conditions
to reproduce were encountered—and, due to adaptive positive correlations—when
optimal flight and high fecundity were favoured for colonizing new habitats.

1. Introduction

Organisms have finite amounts of resources to use for reproduction,

growth, metabolism, and maintenance. Increased allocation of resources to

any one of these functions necessarily reduces the amount available for the

others. Such resource allocation tradeoffs directly affect fitness and underlie

the evolution of life histories in all organisms (Roff, 1992; Stearns, 1992).

Insects utilize a significant portion of their energy budget in building,

maintaining, and operating their flight system. Their flight muscles, for

instance, are known to exhibit the highest mass-specific rates of oxygen con-

sumption of any locomotory tissue (Marden, 2000). As a consequence, the

energetic and material costs required to fly are likely to divert resources away

from other fitness-related processes. Especially in females, flight is expected

to impact egg production, which also is energetically costly and is often lim-

ited by available resources (Papaj, 2000; Wheeler, 1996). Indeed, some of

the strongest empirical evidence of resource allocation tradeoffs involves

the allocation of limited resources between flight muscles and fecundity

in wing-dimorphic insects (Guerra, 2011; Mole and Zera, 1993; Roff,

1986; Roff and Bradford, 1996; Tanaka and Suzuki, 1998). Overall, winged

females exhibit developed flight muscles and reduced ovaries, whereas

wingless morphs allocate more resources to reproduction and have reduced

flight muscles and wings.

While the idea that a flight-fecundity tradeoff underlies the life history of

insects has been widely accepted, a growing number of studies suggest that
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the generality of such a tradeoff might have been overestimated (Guerra,

2011; Guerra and Pollack, 2007; Rankin et al., 1986; Roff, 1995;

Sappington and Showers, 1992). These studies have argued that a negative

correlation between flight and fecundity has not been observed in some

insect species, whereas in others, flight actually appears to stimulate repro-

duction. A recent meta-analysis showed that although a flight-fecundity tra-

deoff was likely to occur across wing-dimorphic insect species, the strength

and direction of it varied substantially with the insect order (Guerra, 2011).

Importantly, much of the evidence of flight-fecundity tradeoffs has been

drawn from studies in wing-polymorphic species. Yet, most insects are

wing-monomorphic, and the extent of flight-fecundity tradeoffs among this

group of insects is much less known. In this review, we explore the gener-

ality of flight-fecundity tradeoffs among wing-monomorphic species. We

focus on studies that compared flight-fecundity tradeoffs between- and

within-populations, rather than between species comparisons (but see

Duthie et al., 2015; Stevens et al., 2012).

2. Review methods

Our search for evidence of a flight-fecundity tradeoff (or lack thereof )

was based on a systematic literature search using theWeb of Science database

and Google Scholar, as well as review of references from those papers. The

key search terms we used were: flight � fecundity, reproductive

cost � flight, dispersal � fecundity, and fecundity � tradeoff. We included

studies that specifically tested the existence of a tradeoff between flight and

fecundity, as well as studies that provided information about an association

between these traits (positive, negative, or none), even when these did not

aim at assessing a tradeoff. For consistency, we use the term “association” to

refer to the link between flight and fecundity, identified by different statis-

tical methods (e.g. correlation, regression, ANOVA, etc.). Studies were

considered if they used one of the following methods to examine a

flight-fecundity association: (1) Manipulation of resources: when quantity or

quality of available resources was manipulated (e.g. low quality diet) and

the correlated response of flight and fecundity measured. (2) Manipulation

of flight or fecundity: one of the life-history traits was manipulated (e.g.

whether or not an individual was flown), to measure the response in the

other variable (e.g. number of eggs produced). (3) Phenotypic correlation

between flight and fecundity: here associations were measured as the correlation

between flight and fecundity of various individuals or populations. (4)Geno-

typic correlation between flight and fecundity: these studies included a quantitative
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genetic estimate of the correlation between flight and fecundity-related traits

as well as comparison of fecundity between genetic strains that had been

selected for high dispersal activity by flight.We identified a total of 68 studies

(covering 51 insect species) that reported an association between flight and

fecundity (Appendix). From these studies, we examined what factors—e.g.,

method used, traits measured, variation in life history—were likely to influ-

ence the occurrence, and/or detection, of a flight-fecundity tradeoff in

wing-monomorphic insects.

3. Empirical evidence of a flight-fecundity tradeoff

We found that out of the 68 surveyed studies, including 51 different

insect species, 39 studies and 35 species —which constitute 57% of studies

and 69% of species—provided evidence of a negative association between

flight and fecundity. Sixteen studies found no evidence (13 species), and

nine detected a positive association (seven species). Note that for a number

of the surveyed species, detection (either positive or negative) or not of an

association between flight and fecundity depended on the specific study,

population, and the context (e.g. temperature, ontogenic stage).

In general, the study of resource-allocation tradeoffs has posed many

empirical challenges (Agrawal et al., 2010; Saeki et al., 2014) and evidence

of a tradeoff often relies solely on the identification of a negative association

between traits that are thought to compete for a limited resource (Zera and

Harshman, 2001). However, a negative association between traits does not

necessarily reflect a resource-related tradeoff. A tradeoff can occur as an

“adaptive negative correlation”—when expressing the two traits simulta-

neously brings a fitness benefit—or a “one-trait tradeoff”—when one trait

is under opposite selection—(definitions from Agrawal et al., 2010). Thus,

in the following sections, we discuss the extent to which the observed neg-

ative association may result from allocation of limited resources between

flight and fecundity, and under which circumstances a neutral or positive

association may arise instead.

4. Methods used to assess the association between
flight and fecundity

Empirical studies on resource allocation tradeoffs have relied on a

number of different methods to detect potential tradeoffs between life history

traits. These include, among others, examining phenotypic correlations,
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manipulations of the available resources, evaluation of genetic correlations

and correlated responses to artificial selection. However, the ability to

detect a potential tradeoff between flight and fecundity may be influenced

by the method used to evaluate the relationship between the two traits.

Reznick (1985) addressed this issue by comparing how frequent were

tradeoffs (between female reproduction and lifespan) identified by different

methods. Here, following a similar approach, we evaluated if the propor-

tion of studies detecting a negative association between flight and fecundity

differed among the different methods. Specifically, we compared the three

most commonly used methods: manipulation of available resources,

increased cost of flight by encouraging (or forcing) insects to fly, and

testing for a genetic correlation between flight and fecundity. In contrast

to Reznick’s (1985) findings, which indicated that genetic correlation was

the most likely method to detect a tradeoff, we found that studies that

manipulated available resources seemed more likely to detect a negative

association (Table 1).

4.1 Limited available resources
A tradeoff among traits is dependent on their sharing the same resource and

the quantity of that resource is not sufficient for both traits (Zera and

Harshman, 2001). Expression of resource allocation tradeoffs, therefore,

depends on the amount of resources available to supply the different traits

(van Noordwijk and de Jong, 1986). In theory, reduced amounts of energy

or nutrient input should magnify the tradeoff between flight and fecundity,

whereas increased nutrients may obviate it (Blanckenhorn et al., 1995; Zera

and Brink, 2000). Thus, experimental manipulation of resource availability,

including food limitation and host plant quality, has been widely used to

Table 1 Comparison of different methods commonly used to assess a flight-fecundity
association.

Flight–fecundity association

Negative Positive NA Dual effect

1. Limited resources 16 5 2

2. Forced flight 5 1 1

3. Genetic correlation 7 1 4

Entries in the “Negative”, “Positive”, and “NA” columns refer to number of studies finding a negative,
positive, or no association between flight and fecundity, respectively. “Dual effect” indicates that the
association can be either negative or positive, depending on the context.
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study resource allocation tradeoffs in insects. Overall, 76% of studies

(Table 1) showed a negative association between flight and fecundity when

resources were manipulated. We identified studies on 12 and 10 species,

for which available resources (most frequently diet) were reduced in the

larval or adult stage, respectively (Table 2). However, a negative associa-

tion between flight and fecundity was not detected in a number of species

(seven), and when detected, it did not always reflect a resource allocation

tradeoff (e.g. Tribolium castaneum; Table 2). Thus suggesting that flight and

fecundity were either not competing for the same limited resource, or that

the resource itself was not limited, which is unlikely given that in all cases

pupal size was reduced under resource limitation.

Some interesting patterns emerged when characteristics of the different

taxonomic groups were taken into account, and whether flight and fecun-

dity were affected differently when resources were limited during the larval

vs. the adult stage. A number of studies, mainly in Lepidoptera (e.g. Boggs,

1997; Jervis et al., 2005; Levin et al., 2016, 2017b), have demonstrated that

insects that feed as both larva (or nymph) and adult, can support flight and

reproduction with a ratio of larval- and adult-derived resources.

Effects of limited resources during the larval stage carried on into the adult

by reducing body size as well as by changing allometric relations among body

parts (Fig. 1A). Seven out of 12 insect species exhibited a flight-fecundity

tradeoff (Table 2A). Interestingly, these studies revealed that when developing

under food constraints (Table 2A), most Lepidoptera females appeared to

change allocation strategies to their adult bodies in a way that would improve

their flight performance: by allocating more to wings and thorax, or

by decreasing wing load—smaller bodies with relatively larger wings. For

example, Plutella xylostella larvae that developed on low quality host plants,

allocated less to fecundity and more to wing size, which resulted in females

with increased flight activity (Bayoumy and Michaud, 2015; Begum et al.,

1996). In theory, available resources during larval development should be

preferentially allocated to the body parts or functions that have the greatest

effect on fitness (Nijhout and Emlen, 1998). Indeed, flight ability in

Lepidoptera is likely to impact female fitness in many ways, as flight is neces-

sary to mate, feed (nectar), oviposit, and disperse. In contrast, reduced larval

resources in Trichoptera, insects that do not feed or live long as adults and for

which flight might be less important, did not favour female flight (Table 2A).

When experiencing food limitation as adults, nine out of 10 species

exhibited a negative association between flight and fecundity (Table 2B).

These effects, however, appeared to occur via different pathways: either

by increasing the reproductive cost of flight or by triggering female flight,
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Table 2 Studies examining a flight-fecundity tradeoff by limiting available resources (e.g. food quality) to females during (A) the larval stage,
or (B) the adult stage.
(A) Larva–Resource limitation

Species Treatment Fecundity
Thorax/
wings

Flight
performance

Negative
association Effect Citation

Hymenoptera Trichograma Food

quality

Down Down Down No Fecundity and wing area

decrease. High wing

loading

Kishani

Farahani et al.

(2016)

Trichoptera Agrypnia

deflate

Resource

quantity

Up Down Down Yes Allocation to fecundity

increases at expenses of

thorax size

Jannot et al.

(2007)

Asynarchus

nigriculus

Resource

quantity

Down Down Same No Overall reduction of all

structures. An allometry is

maintained

Wissinger

et al. (2004)

Odontocerum

albicorne

Resource

quantity

Up Down Down Yes Allocation to fecundity

increases at expenses of

thorax and wings

Stevens et al.

(1999)

Lepidoptera Bactra

verutana

Food

quality

Down Up Up Yes Allocation to wing size

increases at expenses of

fecundity

Frick and

Wilson (1982)

Speyeria

mormonia

Food

quantity

Same Down Up No Decreased wing size. Not

change to fecundity. Low

wing loading

Boggs and

Freeman

(2005)

Continued



Table 2 Studies examining a flight-fecundity tradeoff by limiting available resources (e.g. food quality) to females during (A) the larval stage,
or (B) the adult stage.—cont’d
(A) Larva–Resource limitation

Species Treatment Fecundity
Thorax/
wings

Flight
performance

Negative
association Effect Citation

Phthorimaea

operculella

food

quality

Down Down Up No Everything decreases. Low

wing loading

Coll and

Yuval (2004)

Bicyclus

anynana

Food

quality

Down Up Up Yes Allocation to thorax

increases at expenses of

fecundity. High thorax

ratio buffers fecundity cost

of flight

Saastamoinen

et al. (2010)

Plutella

xylostella

Food

+Flight

Down Up Up Yes Smaller adults with larger

wings and increased flight

activity. Flight reduces

fecundity

Muhamad

et al. (1994)

and Begum

et al. (1996)

Pieris rapae Food

quality

Down Up Up Yes Allocation to wing size

increases at expenses of

fecundity

Tigreros et al.

(2013)

Mythimna

pallens

Resource

+Flight

Same Same Same No No effect of larval

crowding

Hill and Hirai

(1986)

Mythimna

separata

Resource

+Flight

Down Same Yes Diet does not affect flight,

but low diet and forced

flight reduce fecundity

Hill and Hirai

(1986)



(B) Adult–Resource limitation

Species Treatment Fecundity
Flight
performance

Negative
association Effect

Lepidoptera Bicyclus

anynana

Diet Down Up No While food limitation decreases

fecundity. Improves flight by reducing

wing load. Flight does not affect

fecundity

Saastamoinen

et al. (2010)

Spodoptera

exempta

Diet+

Flight

Down Yes Flight decreases fecundity in starved

adults

Gunn et al.

(1989)

Pseudoplusia

includens

Diet+

Flight

Down Down Yes Flight decreases fecundity. Starvation

affects fecundity more than flight

Mason et al.

(1989a)

Heliothis

virescens

Diet+

Flight

Up Yes Flight decreases fecundity in starved

adults

Willers et al.

(1987)

Coleoptera Tribolium

castaneum

Diet Down Triggered Yes Food limitation triggers flight. Flight

reduces fecundity independent of diet

Perez-

Mendoza

et al. (2011)

Leptinotarsa

decemlineata

Diet-

overwinter

Down Up Yes Low quality plants reduced oviposition

and increased flight

Weber and

Ferro (1996)

Diet-

summer

Down Down No Low quality plants reduced both

oviposition and flight

Weber and

Ferro (1996)

Hemiptera Neacoryphus

bicrucis

Diet Down Triggered Yes

(threshold)

Food limitation triggers flight.

Fecundity increases with diet while

flight is maintained constant until

threshold, when muscles are histolized

Solbreck and

Pehrson

(1979)

Continued



Table 2 Studies examining a flight-fecundity tradeoff by limiting available resources (e.g. food quality) to females during (A) the larval stage,
or (B) the adult stage.—cont’d
(B) Adult–Resource limitation

Species Treatment Fecundity
Flight
performance

Negative
association Effect

Riptortus

clavatus

Diet Down Triggered Yes

(threshold)

Food limitation triggers flight.

Fecundity increases with diet while

flight is maintained constant until

threshold, when muscles are histolized

Natuhara

(1983)

Oncopeltus

fasciatus

Diet

+Flight

Down Yes Flight decreases fecundity in starved

adults

Slansky

(1980)

Diptera Bactrocera

oleae

Diet

+Flight

Down Yes Flight decreases fecundity in starved

adults

Wang et al.

(2009)

Treatment effects on allocation to fecundity and flight-morphology (thorax and wing size) are described as Down¼decreased allocation, Up¼ increased allocation,
Same¼no change. Effects on flight performance refer to observed changes in flight activity or wing loading: Down ¼ decreased performance, Up ¼ improved per-
formance, Same¼ no change, Triggered¼ resource limitation triggers flight. “Yes (threshold)” indicates when there is a threshold effect of diet underlying the negative
association between flight and fecundity.



which then reduced available resources for egg production. For example, in

Bactrocera oleae, Oncopeltus fasciatus, and most Lepidoptera, flight reduced

fecundity but only when access to food was limited (Table 2B), which

suggests that not enough nutritional resources to support both traits were

assimilated during the larval stage. In contrast, food limitation in Tribolium

castaneum triggered flight and indirectly impacted fecundity, as flown females

produced fewer eggs.

4.2 Forced flight
Overall, 83% of studies (Table 1) showed evidence of a negative association

between flight and fecundity under forced flight. Examples of the effects of

forced flight are given below in Section 6. Components of Flight

Performance.

4.3 Genetic correlations
We identified studies that provided information about the existence and

direction of genetic correlations between fecundity and flight traits on

10 different species. Evidence of a negative genetic correlation between

flight and fecundity was found for five species: Drosophila melanoganster

(Narise, 1974), Pararge aegeria (Berwaerts et al., 2008) Epiphyas postvittana

(Gu and Danthanarayana, 1992), Spodoptera exempta (Gunn and

Gatehouse, 1993), and Cydia pomonella (Gu et al., 2006). In contrast, for

the other five species, flight and fecundity showed either no genetic corre-

lation or a positive correlation. No genetic correlation was found in Pieris

brassicae (Legrand et al., 2016), T. castaneum (Zirkle et al., 1988), and a

non-migratory population of O. fasciatus (Dingle et al., 1988), while evi-

dence of a positive genetic correlation was found for migrant populations

of O. fasciatus (Hegmann and Dingle, 1982; Palmer and Dingle, 1986)

and newly established populations ofMelitaea cinxia—although this involved

clutch size rather than total fecundity (Saastamoinen and Hanski, 2008).

Thus, these studies suggest that flight and fecundity are not often constrained

by a negative genetic correlation, and that under some circumstances, selec-

tion may actually favour maximizing both traits simultaneously—as pro-

posed by the colonizer syndrome (see Section 6). Further studies on the

genetics of flight-fecundity tradeoffs will benefit from also addressing the

environmental conditions under which genetic correlations occur. First,

genetic correlations often shift depending on the environmental conditions

(reviewed in Sgrò and Hoffmann, 2004) and second, negative genetic

11Flight-fecundity tradeoff



correlations can also occur when two life history traits (such as flight and

fecundity) depend on the same environmental condition, but in opposite

ways (e.g. Knops et al., 2007).

5. Flight-related morphology

Variation in flight performance can be estimated directly, based on

behavioural traits or indirectly, based on flight-related morphological traits.

Understanding how morphology influences performance provides impor-

tant insights on the functional basis of flight-fecundity tradeoffs. Typically,

flight performance is expected to improve with decreased wing loading

(body mass/wing area) and increased flight muscle ratio (thorax mass/body

mass) (Dudley, 1991, 2002). Both indices depend on changes in flight-

related morphology as well as changes in body mass, and reflect how much

work the wings and flight muscles must perform to carry the weight of the

insect (Goldsworthy and Wheeler, 1989).

In this review, we identified studies on 17 different species that examined

a flight-fecundity association based on flight-related morphology. Increased

allocation to wing size was associated with reductions in fecundity—in

Bactra verutana (Frick and Wilson, 1982) and Pieris rapae (Tigreros et al.,

2013)—, as well as with increases in fecundity (e.g. O. fasciatus, Palmer

and Dingle, 1986). Fecundity and thorax mass showed a negative association

in six out of eight insect species, and no association inCoenagrion scitulum and

Acheta domestica (Srihari et al., 1975; Therry et al., 2015). Bicyclus anynana

(Saastamoinen et al., 2010) and P. aegeria (van Dyck and Wiklund, 2002)

increased allocation to thorax at the expenses of fecundity while Agrypnia

deflate increased allocation to fecundity by reducing allocation to thorax

( Jannot et al., 2007; Stevens et al., 1999). Similarly, in Gryllus bimaculatus

(Lorenz, 2007), and several hemiptera—Riptortus clavatus (Natuhara,

1983),Neacoryphus bicrucis (Solbreck and Pehrson, 1979), and threeDysdercus

species (Dingle and Arora, 1973)—fecundity was increased by using

resources from histolized flight muscles. In these species, however, muscles

histolysis occurred when there was an abundant rather than a limited food

source, indicating that degeneration of flight muscles does not reflect a

resource-based tradeoff (Fig. 1B), but a response to finding the appropriate

conditions to reproduce (Dingle and Arora, 1973; Natuhara, 1983; Solbreck

and Pehrson, 1979). Further, a study in the wing monomorphic cricket,

A. domestica (Srihari et al., 1975), showed, using ovariectomy, that histolysis

of flight muscles and egg development appeared to be independent

processes.
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Studies on flight-related morphology also indicated that detection of a

flight-fecundity tradeoff may often depend on the specific trait being mea-

sured. In A. deflate caddisflies and P. aegeria butterflies, females with limited

resources maintained fecundity by reducing investment in thorax size with-

out changing investment in wing size ( Jannot et al., 2007; Stevens et al.,

1999). In contrast, P. rapae butterflies maintained allocation to fecundity

by sacrificing investment in wings but not thorax size (Tigreros et al., 2013).

Finally, insect body mass, although it does not represent an exclusive

flight-related morphological trait, is known to have important impacts on

flight performance by increasing the weight load that must be lifted and car-

ried during flight. Female bodymass increases substantially during reproduc-

tion, due to the weight of mature eggs ( Jervis et al., 2005). When flight

performance is constrained by the weight of egg loads, a negative association

between flight and fecundity can arise, even without reducing allocation to

flight morphology (wing size and thorax mass) (Fig. 1C). B. anynana females

with limited access to nectar, decreased abdomen mass—what reduced wing

loading—and showed increased flight activity (Saastamoinen et al., 2010).

Similarly, in Bemisia tabaci whiteflies, weaker-flying females (those that flew

closer to the ground) carried heavier egg loads compared to females that flew

higher (Isaacs and Byrne, 1998).

6. Components of flight performance

Insect flight is characterized by different components of performance,

including flight takeoff, endurance, and speed. Such components may differ

in the underlying morphology, the energetic requirements, and the selective

forces shaping them. Next, we discuss how different components of flight

performance may influence the association between flight and fecundity.

6.1 Flight endurance
Flight endurance, typically estimated as the distance or duration of flight, is

perhaps the most widely studied component of flight performance in insects

(Dudley, 2002; Goldsworthy and Wheeler, 1989). This aspect of flight is

particularly important during dispersal and migration and is thought to

increase with low wing loading and high thorax ratio (Davis and

Holden, 2015).

We identified 33 studies on 26 different species that tested a causal

effect of flight on fecundity (Table 3). A majority, used the tethered flight

technique (Minter et al., 2018) to measure duration and/or distance of flight

within a determined amount of time or until exhaustion (Table 3). Overall,
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Fig. 1 A negative flight-fecundity association can result from (A) resource-based
tradeoffs: when available resources are differentially allocated to reproduction (lower
right) or flight (upper left), (B) facultative flight muscle histolysis: fecundity does not
compete with flight; but when available resources for reproduction are optimal (e.g.
abundant host plants) flight is no longer needed, and resources from flight muscles
are histolized and reallocated to fecundity (lower right), or (C) biomechanical con-
straints: when high egg loads (lower right) decrease flight performance, or low egg
loads (upper left) increase flight performance. The relative size of wings and abdomen
(and thorax in B) represents the relative investment of resources to the structure.
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these studies provided some evidence of a fecundity cost of flight; long-

flights reduced female fecundity in 15 out of 26 species, while increasing

or not having an effect on four and seven species, respectively. As expected,

species varied on how sensitive they were in terms of the strength of the

effect that long flights had on fecundity. For example, in P. aegeria butterflies,

5min of flight were sufficient to reduce female fecundity, and 10min were

lethal (Gibbs and van Dyck, 2010). In contrast, fecundity in Oscinella frite

(Rygg, 1966), Pseudoplusia includens (Mason et al., 1989a) and Rhodnius

prolixus (Oliveira et al., 2006), was only affected if females flew until exhaus-

tion for several days. Also, in some species (e.g. O. fasciatus, S. exempta), the

fecundity cost of long-flight was only observed when females had limited

nutritional resources (Gunn et al., 1989; Slansky, 1980).

Interestingly, the impact of long-flight on fecundity was often age-

dependent. For example, in Cnaphalocrocis medinalis (Zhang et al., 2015)

andMythimna separata (Luo et al., 1999), flying on days 1–2 after emergence

increased fecundity, while flying later on (e.g. day 4) decreased it. In

S. exigua, total fecundity was only reduced when females flew before and

after an inter-oviposition period (days 2–7). Finally, independent of the
effect on fecundity, long flights conveyed a reproductive benefit in several

species, by accelerating the onset of egg maturation and oviposition

(Table 3).

6.2 Flight takeoff
Flight initiation or takeoff is the most energetically expensive part of insect

flight and yet, it has received much less attention than other components of

flight performance (Bimbard et al., 2013), especially in the context of flight-

fecundity tradeoffs. During takeoff, insects spend significant amounts of

energy to generate the necessary force to lift up their body weight

(Marden, 1987). The three studies (Almbro and Kullberg, 2012;

Berrigan, 1991; Berwaerts et al., 2008) we identified that focused on takeoff

flight performance, indicated that decreases in performance were associated

with increases in weight loads during ovarian development. High egg loads

impacted female takeoff by reducing lift production inNeobellieria bullata flies

(Berrigan, 1991), and decreasing takeoff angle in Pieris napi butterflies

(Almbro and Kullberg, 2012). Also, a negative genetic correlation was found

between flight takeoff performance and abdomen mass in P. aegeria females

(Berwaerts et al., 2008), suggesting the occurrence of a genetic tradeoff

between flight and fecundity. Selection to improve takeoff performance
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Table 3 Effect of flight duration and distance on female fecundity.

Species Experiment
Flight
performance

Effect on
fecundity Comments Citation

Amyelois

transitella

Tethered flight

(up to 2h)

Duration 0 Rovnyak et al. (2018)

Aphis glycines Tethered flight

(up to 2h)

Distance � Zhang et al. (2009)

Aphis phabae Tethered flight

(0–80 s)
Duration + Stimulates early reproduction Johnson (1958)

Bactrocera oleae Tethered flight

(24h)

Duration/

Distance

� If starved Wang et al. (2009)

Chrysoperla

sinica

Tethered flight

(1�3h)

Duration � Khuhro et al. (2014)

Cnaphalocrocis

medinalis

Tethered flight Duration �/+ Age-dependent and Stimulates early

reproduction

Zhang et al. (2015)

Drosophila

melanogaster

Tethered flight

(1h)

Flown vs.

unflown

� Roff, (1977)

Drosophila

subobscura

Tethered flight

(1h)

Flown vs.

unflown

� Inglesfield and Begon (1983)

Heliothis

virescens

Tethered flight

(2h/daily)

Flown vs.

unflown

� If starved Willers et al. (1987)

Leptinotarsa

decemlineata

Tethered flight

(1h)

Duration �/+ Summer generation: positive and

Overwintered generation: negative

Weber and Ferro (1996)



Locusta

migratoria

Tethered flight

(exhaustion)

Flown vs.

unflown

� Highnam and Haskell (1964)

Loxostege

sticticalis

Tethered flight

(12h)

Distance 0 Stimulates early reproduction Cheng et al. (2012)

Melanoplus

sanguinipes

Tethered flight

(>2h)

Flown vs.

unflown

0 Stimulates early reproduction McAnelly and Rankin (1986)

Mythimna

pallens

Tethered flight

(24h)

Flown vs.

unflown

0 Stimulates early reproduction Hill and Hirai (1986)

Mythimna

separata

Tethered flight

(24h)

Flown vs.

unflown

�/+ Age-dependent and Stimulates early

reproduction

Hill and Hirai (1986)

Oncopeltus

fasciatus

Tethered flight

(30h)

Flown vs.

unflown

� If starved and Stimulates early

reproduction

Slansky (1980)

Oscinella frite Tethered flight

(exhaustion)

Duration � Increases rate of oviposition but

decreases clutch size

Rygg (1966)

Pararge aegeria Tethered flight

(5min)

Flown vs.

unflown

� Gibbs and van Dyck (2010)

Pieris brassicae Tethered flight

(exhaustion)

Duration 0 Legrand et al. (2016)

Plutella

xylostella

Tethered flight

(30min)

Flown vs.

unflown

� Muhamad et al. (1994), Shirai

(1995) and Begum et al. (1996)

Pseudoplusia

includens

Tethered flight

2h/daily

Flown vs.

unflown

� Mason et al. (1989a)

Continued



Table 3 Effect of flight duration and distance on female fecundity.—cont’d

Species Experiment
Flight
performance

Effect on
fecundity Comments Citation

Rhodnius

prolixus

Tethered flight

(exhaustion)

Flown vs.

unflown

� Oliveira et al. (2006)

Riptortus

clavatus

Tethered flight

(exhaustion)

Duration 0 Natuhara (1983)

Schistocerca

gregaria

Forced

(exhaustion)

Flown vs.

unflown

+ Highnam and Haskell (1964)

Spodoptera

exempta

Flight balance Duration � If starved Gunn et al. (1989)

Spodoptera

exigua

Tethered flight

(exhaustion)

Duration/

Distance

0/+ Age-dependent Han et al. (2008)

The “Experiment” and “Flight performance” columns, provide information about experimental methods (use of tethered flight and duration) and variables used to
measure flight performance. Additional information on results is provided under “Comments”; for example, when effects are observed if females were starved or, if
effect changed with female age.
No effect¼0; Negative effect¼�; Positive effect¼+.



in these species is likely imposed by the risk of predation; most insects have

to avoid predators throughout their life, and fast takeoffs can improve their

survival to a predator’s attack (Berrigan, 1991;Marden and Chai, 1991). Yet,

frequent takeoffs may indeed lead to resource allocation tradeoffs, due to the

high energy cost involved in this component of flight. B. anynana females

that were forced to repeatedly takeoff within a period of 5min, showed

reduced fecundity (Saastamoinen et al., 2010). In nature, however, females

may avoid such costs by performing longer flights with less frequent takeoffs,

compared to conspecific males (Berwaerts et al., 2008).

6.3 Other components of performance
How other components of flight performance, including flight speed, accel-

eration, and hovering (e.g. during nectaring), affect female fecundity

remains largely unexplored. Yet, resource-based tradeoffs specific to these

aspects of flight are likely, given their high energetic cost. A recent study

in Manduca sexta, for example, showed that the energetic cost of flight

depends on speed, with the greatest amount of energy utilized when flying

either very slow or very fast (Warfvinge et al., 2017).

7. Behavioural types of movement

Insect flight is often driven by different behavioural motivations, or

“behavioural types of movement” (Kennedy, 1985). The terminology

and definitions separating behavioural types of movement have been exten-

sively discussed elsewhere (Dingle, 2014; van Dyck and Baguette, 2005) and

are outside the scope of this review. In general, insect flight can be broadly

categorized into two types of movement: station-keeping and migration

(following Dingle, 2014). While the causes and consequences linked to

station-keeping and migratory flights have been the topic of much attention,

little is known about how these influence flight-fecundity tradeoffs.

Resource allocation decisions are based on the relative fitness advantage

obtained by favouring one trait over the other. Behavioural types of

movement provide information about the function of flight or the relative

advantage that flight has on fitness of a given species or population, at a given

time. Below, we discuss how the different behavioural motivations may

explain variations in how flight and fecundity relate.
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7.1 Station-keeping
Station-keeping—also known as trivial or appetitive types of movement—

refers to local flights that are stimulated by the organism’s “appetite” for a

resource, such as food, mates, egg laying sites, and shelter (Dingle, 2014).

Even though station-keeping flights are exhibited by most insects at some

point in life, the triggers of this behavioural type of movement vary

depending on the organism’s internal and external environments. In females,

flight is typically related to searching for two types of resources, food and

oviposition sites. When flight is triggered by the absence of food, a flight-

fecundity tradeoff is likely to arise. Food limitation stimulates flight in many

insect species (Perez-Mendoza et al., 2011; Weber and Ferro, 1996), which

often results in reduced fecundity (e.g. Table 2B). In T. castaneum, for exam-

ple, flight was triggered in the absence of food, and females that flew showed

a reduced fecundity (Perez-Mendoza et al., 2011). In contrast, flight may be

less likely to reduce fecundity, when it is linked to the female reproductive

status. In Amyelois transitella for example, mated females, ready to lay eggs,

flew longer than unmated females and did so, without diminishing fecundity

(Rovnyak et al., 2018).

7.2 Migration
Migratory flight is a specialized behaviour, characterized by a directional,

undistracted flight during which the organism’s regular “appetites” for food,

mates, etc., become suppressed (Dingle, 1996; Dingle and Drake, 2007).

Insect migratory flight is typically triggered by internal clock mechanisms

and environmental cues (e.g. shortening of daylight hours), and it can entail

journeys of a few hundreds of meters to several thousands of kilometres

(Dingle, 1996; Dingle and Drake, 2007). At a simplistic level, it would seem

that there should always be a tradeoff between migratory flight and fecun-

dity. But evidence of such a tradeoff has historically relied on Johnson’s idea

of an “oogenesis-flight syndrome” ( Johnson, 1963); this suggests that migra-

tion and reproduction are alternate physiological states, with the onset of one

state suppressing the other. Even though many migratory insects are known

to perform their long journeys in a pre-reproductive stage—before females

mate and fully develop oocytes—the generality of the oogenesis-flight

syndrome remains controversial (Rankin et al., 1986; Sappington and

Showers, 1992).

To determine the incidence of an oogenesis-flight syndrome in migra-

tory insects, and if this actually reflected a reproductive cost of migratory
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flight, we conducted a second literature search using The Web of Science

database and Google Scholar, including the following terms: “oogenesis-

flight syndrome” and “migration”. We only included studies that identified

migratory flight in the field (under natural conditions), or in the lab, when

insects were subjected to conditions that simulated those occurring in

the field, during migratory flights (e.g. reduced temperature and length of

days). We identified 28 studies (Table 4) covering 22 insect species and four

orders: Hemiptera (three species), Lepidoptera (15 species), Coleoptera (two

species), and Orthoptera (two species). These studies indicated that an

oogenesis-flight syndrome was indeed observed in several migratory insects

—15 out of 22 species. Yet, the other migratory species (seven) showed

migratory flight while being reproductively active, and six out of the 15

species that exhibited an oogenesis-flight syndrome were also able to migrate,

in some generations, while carrying fully developed oocytes (Table 4).

Several arguments have been presented to explain why, in some insect

species, migratory flight and reproduction do not appear to preclude each

other. First, it has been suggested that the energetic cost of flying can be

mitigated when abundant food and reproductive sites are found and utilized

along the migratory route; as is the case for the monarch butterfly, Danaus

plexippus (Vargas et al., 2018). Alternatively, the energetic cost of flying can

be reduced when flight is aided by the occurrence of low-level wind

streams, e.g. Agrotis ipsilon (Showers, 1997). Finally, studies in several species

(e.g. C. medinalis, A. ipsilon, M. separata, D. plexippus, and Hippodamia

convergens) suggest that delaying or shutting down reproduction in migratory

females depends on whether they are heading to an overwintering vs. a

breeding site (Brower, 1985; Riley et al., 1995; Sappington and Showers,

1992). When these females migrate to an overwintering site in autumn, they

are typically unmated and with little ovarian development. In contrast, when

females fly to re-colonize breeding sites in the spring, they are often mated

and have fully developed ovaries (Rankin and Rankin, 1980a). Reproduc-

tive diapause in overwintering adults is characteristic of migratory as well as

non-migratory insects (e.g. Schebeck et al., 2017; Zhu et al., 2013). Thus,

rechanneling reproductive energy to produce fat reserves may be more

important for successful overwintering than for the migratory flight itself.

Together, these results indicate that even in species that appear to con-

form to a classic oogenesis-flight syndrome, shutting down reproduction is

not a precondition for performing migratory flights. Also, when examining

studies that directly tested for an association between flight and fecundity in

11 different migratory species (using forced flight, genetic correlations, etc.),

21Flight-fecundity tradeoff



Table 4 Observed occurrence of an oogenesis-flight syndrome in migratory species.

Species

Oogenesis-
flight
syndrome

Flight-fecundity
association Citations

Coleoptera Anthonomus

grandis grandis

Yes ? Rankin et al. (1994)

Hippodamia

convergens

Yes/No Positive:

Juvenile

hormones

stimulate both

Rankin and Rankin

(1980a, 1980b)

Hemiptera Oncopeltus

fasciatus

Yes Negative: if

flown and

starved

Positive:

genetic

correlation

Dingle (1965),

Slansky (1980), and

Palmer and Dingle

(1986)

Laodelphax

striatellus

Yes ? Wang et al. (2008)

Bemisia tabaci No Negative:

phenotypic

correlation

Isaacs and Byrne

(1998) and Byrne

(1999)

Lepidoptera Spodoptera

exempta

Yes Negative:

genetic

correlation

Negative: if

flown and

starved

Gunn and Gatehouse

(1993)

Spodoptera

exigua

No NA/Negative:

age dependent

Han et al. (2008) and

Jiang et al. (2010)

Loxostege

sticticalis

Yes NA: if flown Cheng et al. (2012,

2016)

Cnaphalocrocis

medinalis

Yes/No Negative/

Positive: age

dependent

Riley et al. (1995),

Huang et al. (2010),

Sun et al. (2013), Fu

et al. (2014c), and

Zhang et al. (2015)

Agrotis ipsilon Yes/No ? Von Kaster and

Showers (1982) and

Sappington and

Showers (1992)

22 Natasha Tigreros and Goggy Davidowitz



Table 4 Observed occurrence of an oogenesis-flight syndrome in migratory species.—
cont’d

Species

Oogenesis-
flight
syndrome

Flight-fecundity
association Citations

Macdunnoughia

crassisigna

No ? Fu et al. (2015)

Mamestra

brassicae

No ? Wu et al. (2015)

Choristoneura

fumiferana

No ? Rhainds and Kettela

(2013)

Mythimna

separata

Yes/No Negative/

Positive: age

dependent.

Negative: if

crowded

Hill and Hirai

(1986), Luo et al.

(1999), and Zhao

et al. (2009)

Athetis lepigone Yes/No ? Fu et al. (2014b)

Apolygus

lucorum

Yes ? Fu et al. (2014a)

Cydia pomonella No Negative:

genetic

correlation

Schumacher et al.

(1997) and Gu et al.

(2006)

Pseudoplusia

includens

Yes Negative: if

flown

Mason et al. (1989a,

1989b)

Danaus

plexippus

Yes/No ? Herman and Barker

(1977) and Vargas

et al. (2018)

Heliothis

armigera

Yes ? Colvin and

Gatehouse (1993)

Orthoptera Melanoplus

sanguinipes

No NA: if flown McAnelly and

Rankin (1986)

Gryllus

bimaculatus

Yes ? Lorenz (2007)

Yes¼migratory flight and oogenesis do not overlap; No¼migratory flight and oogenesis occur concur-
rently; Yes/No¼migratory flight either overlap or not, depending on the generation (e.g. Summer vs.
Winter generation). Direct evidence of a flight fecundity association is described as Negative, Positive, or
none (NA). “Flight-fecundity association” column reports results from studies that directly tested for a
flight-fecundity association in migratory species (via genetic correlations, resource manipulation, etc.).
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we found that these were equally likely to exhibit either a positive (four spe-

cies) or a negative (four species) association between flight and fecundity

(Table 4). Importantly, occurrence of an oogenesis-flight syndrome did

not necessarily reflect a negative association between flight and fecundity.

For example, even though the migratory behaviour of O. fasciatus and

S. exempta both conformed to Johnson’s oogenesis-flight syndrome

(Dingle, 1965; Gunn et al., 1989), the genetic correlation between flight-

related traits and fecundity was negative in S. exempta (Gunn and

Gatehouse, 1993) and positive in O. fasciatus (Palmer and Dingle, 1986).

Thus, termination of migration and the onset of oogenesis may represent

independent ontogenetic events that, for some insect species, have been

selected to coincide (Baker, 1978).

8. The colonizer-syndrome

Insect flight can also be directed to explore new areas outside of their

home range. This type of movement often results in dispersal and coloniza-

tion of suitable habitats (Dingle, 1996, 2014) and thus, includes a wide-range

of consequences for population dynamics in the context of global change

(e.g. van Dyck and Baguette, 2005).

Some of the most significant contributions to understand potential costs

associated with dispersal flights come from studies that examine dispersal as a

population trait. In insects and other taxa, females from edge populations and

fragmented habitats show superior flight performance when compared with

those from the core of the population and continuous habitats. Like other

types of flight, dispersal is energetically costly and is thought to tradeoff with

female reproductive performance (e.g. Karlsson and Johansson, 2008).

Indeed, in the speckled wood butterflies, P. aegeria, females from populations

where high dispersal is favoured, such as range-expanding populations and

populations from fragmented habitats, had lower fecundity than females

from well-established and contiguous populations (Gibbs et al., 2010;

Hughes et al., 2003).

Alternatively, the “colonizer syndrome” proposes that there should be a

selective advantage for a positive association between flight and reproduc-

tion when colonizing new habitats (Bonte and Saastamoinen, 2012;

Lewontin, 1965). In M. cinxia, female flight and fecundity were positively

correlated in new populations (Hanski et al., 2006; Saastamoinen, 2007)

but were not correlated in old ones. Hanski et al. (2006) showed that females

from new populations were indeed more dispersive (fly more) and emerged
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with fewer eggs (potential fecundity); although their lifetime fecundity was

not affected (Hanski et al., 2004). The colonizer syndrome may also explain

the positive effect of flight on female reproduction often observed in migra-

tory insect species (Table 4). Given that migratory flight may function as a

means to escape unfavourable environments as well as a colonizing mech-

anism, migratory insect species can be expected to have evolved adaptations

enabling them to optimize long flights and also reproduction (Lewontin,

1965; McAnelly and Rankin, 1986; Rankin and Burchsted, 1992).

9. Shared resources between flight and fecundity

The potential occurrence of a tradeoff between flight and fecundity

rests on the assumption that both are costly in terms of energy and resources.

However, a tradeoff between two traits will exist only if those resources are

utilized by both traits, and both traits compete for these resources (Zera and

Harshman, 2001). In the hawkmoth Manduca sexta, warm-up and flight are

initiated with carbohydrates as fuel ( Joos, 1987; Ziegler and Schulz, 1986b)

with an almost immediate switch to lipids as fuel for sustained flight (Ziegler

and Schulz, 1986a). Aside from water, the largest component of M. sexta

eggs are lipids (39%, see below) (Kawooya and Law, 1988). Thus, in

M. sexta, egg production and sustained flight should compete for the same

larval-derived lipid resources. In contrast to larval-derived fatty acids,

nectar-derived fatty acids imbibed by adults are used exclusively to maintain

resting metabolism and are not allocated to either flight or reproduction

(Levin et al., 2017). The adult diet in nectarivorous insects, like M. sexta,

contains not only carbohydrates but also amino acids found in the nectar

(Mevi-Sch€utz and Erhardt, 2005). Using 13C labelled amino acids added

to nectar and fed to fertilized M. sexta females, Levin et al. (2017a) showed

that both essential (leucine and phenylalanine) and nonessential amino acids

(glycine) were allocated to the flight muscle of the female as well as to her

eggs. This indicates that adult-derived nectar amino acids are shared and can

be involved in a resource allocation tradeoff between flight and fecundity.

9.1 Resource allocation to flight
Insect flight muscle is the most energetically costly mode of locomotion

known: hovering hawkmoths have 170 times higher metabolic rates than

they do at rest (Bartholomew and Casey, 1978). The high metabolic costs

of flight also incur high levels of oxidative damage to flight muscle mem-

branes (Levin et al., 2017). The hawkmothM. sexta mitigates this oxidative
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damage by shunting nectar carbohydrates through the pentose phosphate

pathway, which increases antioxidant potential through the production of

NADPH and glutathione, two major antioxidants conserved across many

taxa (Levin et al., 2017).

In addition to the metabolic cost of flight itself, the cost of maintaining

flight muscle and biosynthesis of flight fuel can increase metabolic capacity

4–10-fold (Mole and Zera, 1994). Most flying insects use two sources of

flight fuel: carbohydrates and lipids, although the amino acid proline is

known to fuel flight in a small number of insects such as blood sucking flies

(Bursell, 1975), some Hymenoptera (Teulier et al., 2016) and some Cole-

optera (Weeda et al., 1979). Carbohydrates are typically used for short

flights, and can be replenished from nectar meals. In species with short-

duration flight such as bees, beetles, flies, butterflies, and moths (with the

proline exceptions mentioned above), carbohydrates are the only source

of flight fuel (Rothe and Nachtigall, 1989; Suarez, 2005; Suarez et al.,

1996). In contrast, in species with long-distance flight such as hawkmoths

(O’Brien, 1999; Ziegler and Schulz, 1986a, 1986b) monarch butterflies

(Brown and Chippendale, 1974), dragonflies (Kallapur and George, 1973)

and locusts (Pener et al., 1997; van der Horst et al., 1980), carbohydrates

are used for the initial phase of flight (�20–30min), after which lipids are

used exclusively (Chino et al., 1992).

The advantage of lipid over carbohydrate flight fuels is a function of

relative energy yield and storage efficiency. Over 95% of the lipids stored

in the fat body are triacylglycerides (TAG) (Arrese and Soulages, 2010;

Beenakkers et al., 1985; Canavoso et al., 2001), which are highly concen-

trated stores of metabolic energy. Complete oxidation of fatty acids yields

about 9Kcal/g. In contrast, carbohydrates and proteins yield only about

4 kCal/g. In addition, TAG is nonpolar and stored in a nearly anhydrous

form, as opposed to carbohydrates, which are stored hydrated: a single gram

of glycogen binds about 2g of water. Thus, a gram of anhydrous fat stores

more than six times as much energy as a gram of hydrated glycogen.

Furthermore, the net yield of the oxidation of glucose is 36 ATP and the

thermodynamic efficiency of the generation of ATP from glucose is 38%.

In contrast, the net yield of fatty acid (palmitate) oxidation is 129 ATP with

a thermodynamic efficiency of 40%. Thus, with similar thermodynamic effi-

ciencies, fatty acid oxidation yields 3.6 times more ATP than does glucose

(Stryer, 1988).

Even though lipids are a much more efficient source of flight fuel,

nectar-derived carbohydrates are immediately available for use, and can

provide significant energy input for short-duration flight. For example,
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Raguso et al. (2003) calculated that nectar from one Datura wrightii flower

provides M. sexta weighing 1.2g with 10–15min of hovering capability,

or all that this moth needs to fly 1km in search of a mate or oviposition

site. M. sexta can imbibe between 20% and –60% of their body weight in

nectar: the lower the concentration the more nectar imbibed (Raguso

et al., 2003).

The allocation of lipid vs. carbohydrates to flight depends in part on the

nutritional status of the individual and its sex. Starved or water-fed

hawkmoths use lipids as flight fuels (O’Brien, 1999; Ziegler and Schulz,

1986a, 1986b), whereas moths with a steady nectar source primarily utilize

carbohydrates (O’Brien, 1999). Newly eclosed females conserve carbohy-

drate use during flight (O’Brien, 1999) probably due to the incorporation

of nectar-derived carbohydrates into eggs (O’Brien et al., 2004) whereas

males use primarily carbohydrate-based fuels (O’Brien, 1999). Male

M. sexta allocate more nectar-derived amino acids (both essential and

non-essential) to flight muscle than do females (Levin et al., 2017b).

9.2 Resource allocation to fecundity
Oogenesis in insects is a nutrient-limited process: adult insects that feed

produce more eggs than adults that are not able to feed (Papaj, 2000;

Wheeler, 1996). For example, sugar-fed femaleM. sexta produced 2–3 times

more eggs per day than did water-fed females (Sasaki and Riddiford, 1984).

Of the total macronutrient composition in insect eggs, proteins constitute

40–50%, lipids 30–40%, and carbohydrates (sugars and glycogen) around

10–30% (Geister et al., 2008; Giron and Casas, 2003; Němec, 2002;

Sloggett and Lorenz, 2008). Thus, on the surface, egg production shares

common macronutrients with flight and should be involved in flight fecun-

dity tradeoffs. While M. sexta eggs are 70% water, the other 30% is protein

(31%), lipids (39%), and carbohydrates (2%); the remaining 28% is insoluble

unidentified material (Kawooya and Law, 1988). Eggs weigh on average

1.6mg (n¼60, Davidowitz, unpublished data). Over 95% of the lipids

stored in the fat body are TAGs (Beenakkers et al., 1985; Canavoso et al.,

2001) and the fat body contains about 55mg TAG at peak larval size

(Davidowitz and Kiley, unpublished data). From this, we have calculated

that a M. sexta female should have enough lipids to produce 267 eggs.

Yet, the average moth in a laboratory colony produces only 136 eggs

(�45, n¼292, Davidowitz, unpublished data). Thus, it seems that 51% of

the resources are held in reserve for either future reproduction or for other

processes such as flight ( Jervis and Boggs, 2005; Jervis et al., 2005).

27Flight-fecundity tradeoff



The examples given above refer to the total amount of resources or

energy allocated to either flight or fecundity. The geometric framework

(Behmer, 2009; Simpson and Raubenheimer, 2012) shows that the amount

of nutrients per se, is not always sufficient to understand allocation of

resources to traits, rather the relative amounts of specific nutrients often

determines trait performance (Clark et al., 2013, 2015; Lee et al., 2008;

Wilson et al., 2019; Zera et al., 2016). The geometric framework has not

yet been applied specifically to the flight-fecundity tradeoff and is an area

ripe for future studies.

9.3 Capital vs. income breeders
Life history strategies of resource accumulation are extremely diverse across

insect taxa. Some insects are capital breeders: all the resources used by adults

for reproduction, survival and maintenance, are acquired during the juvenile

stage, and adults do not feed (e.g. Lepidoptera: Saturniidae and

Ephemeroptera). Most insects are, however, income breeders. Income

breeders feed and grow as juveniles, but resources allocated to reproduction

are accumulated during the adult stage, and reproductive success is largely

determined by the amount of resources acquired as adults (Papaj, 2000;

Wheeler, 1996). Still, others accumulate most of their resources during

the larval stage but can partially augment them as adults (e.g., Lepidoptera).

We would predict a stronger tradeoff between flight and fecundity among

capital breeders that have a finite amount of resources, whereas a tradeoff

may or may not exist in income breeders that can acquire more resources

throughout their adult life. This review found only three studies, among

three species of capital breeders (Table 2: Trichoptera), looking at the effect

of resource limitation on flight-fecundity tradeoffs, which showed both neg-

ative and no associations between the traits. The dearth of studies on flight-

fecundity tradeoffs among capital vs. income breeders, begs the question of

how this tradeoff is influenced by the different resource accumulation

strategies.

10. Conclusions

Although, the majority of studies examined in this review showed a

negative association between flight and fecundity in wing monomorphic

insects, we found little support for the widespread occurrence of a resource

allocation tradeoff between flight and fecundity. In all contexts, there were

species or studies that found no association, or a positive association,

between both traits.
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As noted by several researchers (Baker, 1978; Guerra, 2011; Rankin

et al., 1986), a negative association between flight and fecundity does not

necessarily reflect a resource competition between both functions.

A number of selective forces may act to separate flight and fecundity in

wing-monomorphic insect species. Indeed, we conclude based on the

reviewed literature, that flight and fecundity in wing-monomorphic insects

are related in a number of ways, including (1) physiological constraints:

resource-based tradeoff, (2) biomechanical constraints: when egg load affects

take-off performance, (3) adaptive negative correlations: switching from

flight to egg production when an appropriate place (e.g., with food, mates,

and oviposition sites) to reproduce has been found or (4) adaptive positive

correlations: the colonizer syndrome. It is clear that a great deal of more

research is needed to understand the life history, ecological, and phyloge-

netic contexts where resources are allocated differentially to flight vs. fecun-

dity in wing-monomorphic insects.
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Appendix

List of studies examining the association between flight and fecundity in wing-
monomorphic species using different methods: "A"¼Manipulation of resources,
"B"¼ Manipulation of flight or fecundity, "C" ¼ Phenotypic correlation between flight
and fecundity, and "D" ¼ Genotypic correlation. Flight-fecundity association is
described as: negative¼�; positive¼+; none ¼ 0.

Species Method
Flight-fecundity
association Citation

Acheta domestica B 0 Srihari et al. (1975)

Agrotis ipsilon C 0 Sappington and Showers.

(1992)

Agrypnia deflate A � Jannot et al. (2007)

Amyelois transitella C 0 Rovnyak et al. (2018)

Aphis glycines C � Cheng et al. (2016)

Aphis phabae C + Johnson 1958)

Asynarchus

nigriculus

A 0 Wissinger et al. (2004)

Bactra verutana A 0 Frick and Wilson (1982)
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Bactrocera oleae C � Wang et al. (2009)

Bemisia tabaci E 0 Byrne (1999)

C � Isaacs and Byrne (1998)

Bicyclus anynana A �/0 Saastamoinen et al. (2010)

Chrysoperla sinica B � Khuhro et al. (2014)

Cnaphalocrocis

medinalis

C �/+ Zhang et al. (2015)

B � Sun et al. (2013)

Coenagrion

scitulum

A 0 Therry et al. (2015)

Cydia pomonella D � Gu et al. (2006)

Drosophila

melanogaster

D � Narise (1974)

B � Roff (1977)

Drosophila

subobscura

B � Inglesfield and Begon (1983)

Dysdercus fasciatus A � Dingle and Arora (1973)

Dysdercus

nigrofasciatus

A �

Dysdercus

superstitiosus

A �

Epiphyas

postvittana

D � Gu and Danthanarayana (1992)

Gryllus

bimaculatus

C � Lorenz (2007)

Heliothis virescens A � Willers et al. (1987)

Laodelphax

striatellus

C � Wang et al. (2008)

Leptinotarsa

decemlineata

A �/+ Weber and Ferro (1996)

Locusta migratoria

migratorioides

B + Highnam and Haskell (1964)

Loxostege sticticalis C 0 Cheng et al. (2012)

Melanoplus

sanguinipes

B + McAnelly and Rankin (1986)
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Melitaea cinxia C � Hanski et al. (2004)

C + Hanski et al. (2006)

C + Saastamoinen (2007)

D 0 Saastamoinen and Hanski

(2008)

Mythimna pallens A 0 Hill and Hirai (1986)

Mythimna separata B + Luo et al. (1999)

A � Hill and Hirai (1986)

Neacoryphus

bicrucis

A � Solbreck and Pehrson (1979)

Neobellieria bullata C � Berrigan (1991)

Oncopeltus

fasciatus (Iowa)

A � Slansky (1980)

B + Caldwell and Rankin (1972)

D + Palmer and Dingle (1986)

Oncopeltus

fasciatus

(PuertoRico)

D � Dingle et al. (1988)

Oscinella frite C � Rygg (1966)

Odontocerum

albicorne

A � Stevens et al. (1999)

Pararge aegeria D � Berwaerts et al. (2008)

C � Gibbs and van Dyck (2010)

C � Hughes et al. (2003)

C � van Dyck and Wiklund (2002)

Phthorimaea

operculella

A 0 Coll and Yuval (2004)

Pieris brassicae D 0 Legrand et al. (2016)

Pieris napi D � Almbro and Kullberg (2012)

C � Karlsson and Johansson (2008)

Pieris rapae A � Tigreros et al. (2013)

Plutella xylostella A � Begum et al. (1996)

A � Muhamad et al. (1994)

B � Shirai (1995)
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Pseudoplusia

includens

A � Mason et al. (1989b)

Rhodnius prolixus B � Oliveira et al. (2006)

Riptortus clavatus A � Natuhara (1983)

Schistocerca gregaria B + Highnam and Haskell (1964)

Speyeria mormonia A � Boggs and Freeman (2005)

Spodoptera

exempta

A � Gunn et al. (1989)

D � Gunn and Gatehouse (1993)

Spodoptera exigua C 0 Han et al. (2008)

C 0 Jiang et al. (2010)

Tribolium

castaneum

A � Perez-Mendoza et al. (2011)

D 0 Zirkle et al. (1988)

Trichogramma

brassicae

A 0 Kishani Farahani et al. (2016)
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