
Strain-induced time reversal breaking and half quantum vortices near a

putative superconducting tetra-critical point in Sr2RuO4

Andrew C. Yuan,1 Erez Berg,2 and Steven A. Kivelson1

1Department of Physics, Stanford University, Stanford, CA 93405, USA
2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel

It has been shown [1] that many seemingly contradictory experimental findings concerning the
superconducting state in Sr2RuO4 can be accounted for as resulting from the existence of an assumed
tetra-critical point at near ambient pressure at which dx2�y2 and gxy(x2�y2) superconducting states
are degenerate. We perform both a Landau-Ginzburg and a microscopic mean-field analysis of
the e↵ect of spatially varying strain on such a state. In the presence of finite xy shear strain,
the superconducting state consists of two possible symmetry-related time-reversal symmetry (TRS)
preserving states: d± g. However, at domain walls between two such regions, TRS can be broken,
resulting in a d+ ig state. More generally, we find that various natural patterns of spatially varying
strain induce a rich variety of superconducting textures, including half-quantum fluxoids. These
results may resolve some of the apparent inconsistencies between the theoretical proposal and various
experimental observations, including the suggestive evidence of half-quantum vortices [2].

I. INTRODUCTION

If it happens that superconducting (SC) orders
with two distinct symmetries are comparably fa-
vorable for some microscopic reason, it is possible
to have a two-parameter phase diagram (e.g. T
and isotropic strain, ✏0) that exhibits a multicriti-
cal point (e.g. at ✏ = ✏? and T = T ?) at which the
transition temperatures, Tc, of the two di↵erent or-
ders coincide, as shown in Fig. (1a). For instance, a
change from s± to d-wave pairing is thought to occur
as a function of doping in certain Fe-based supercon-
ductors [3], and it was recently conjectured that the
layered perovskite Sr2RuO4 (SRO) [4] under ambi-
ent conditions is “accidentally” close to such a multi-
critical point involving either dx2�y2 and g-wave [1]
or dxy and s-wave [5] pairing. Even though both or-
ders by themselves transform as one dimensional ir-
reducible representations (irreps) of the point-group
symmetries, near such a multi-critical point the sys-
tem can exhibit a variety of features usually asso-
ciated with multi-component SC order that trans-
form according to a higher dimensional irrep (e.g.
a p-wave). Conversely, for a SC order parameter
that transforms according to a 2d irrep, the point
of zero shear-strain, ✏shear = 0, can be viewed as a
special case of such a multi-critical point in the T -
✏shear plane, as shown in Fig. (1b). In both cases,
the response of the di↵erent components of the SC
order parameter to specific components of the strain
tensor can produce a variety of novel e↵ects.

Specifically, the proximity of a multicritical point
implies that even small amplitude spatial variations
of the strain field can locally stabilize di↵erent dis-
tinct forms of superconducting order in di↵erent do-
mains. In this paper, we treat the case of a tetracriti-
cal point involving dx2�y2 (B1g) and gxy(x2�y2)-wave

(a) (b)

FIG. 1. (a). Schematic phase diagram as a function of
two parameters - taken here to be isotropic strain (✏0)
and T , in the neighborhood of a tetra-critical point at
which the transition temperatures to SC states with d-
wave (i.e. B1g) and g-wave (i.e. A2g) coincide. (b). A
similar schematic phase diagram – now where the x-axis
signifies symmetry breaking shear strain, ✏shear – for a
system which at zero strain favors a SC order parameter
the transforms according to a two dimensional irrep., px
and py (i.e. Eu symmetry).

(A2g) pairing channels, where, as in Fig. (1a), for
the uniform case the coexistence regime is a d+ig SC
with spontaneously broken time-reversal-symmetry
(TRS). We study this problem in the mean-field
approximation, both from an e↵ective field theory
(Landau-Ginzburg/non-linear sigma model) and a
microscopic perspective. Following a similar line of
reasoning as in Ref. [6] (where TRS breaking near
dislocations was investigated), we show that inhomo-
geneous strain can lead to a highly inhomogeneous
SC state in which TRS breaking is strongly manifest
only along a network of domain-walls separating re-
gions in which the local strain favors one or another
TRS preserving combination of the d and g order
parameters. However, this only occurs when the un-
strained system is close enough to the tetra-critical
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point - in a sense that we make precise. We also
show that appropriate strain patterns can induce an
order parameter texture with a spontaneous frac-
tional magnetic flux that equals a half superconduct-
ing flux quantum in under a range of circumstances.
The results we obtain are quite general as they fol-

low largely from symmetry considerations. As an ap-
plication of these ideas, we explore their implications
for the still vexed problem of settling the symmetry
of the superconducting state in SRO [4]. Here, there
are a number of proposals, each of which can plau-
sibly account for a subset of the experimental ob-
servations. Triplet pairing of any sort has seemingly
been ruled out by recent NMR experiments [7–9].
Moreover, recent ultra-sound measurements [10, 11],
taken at face value, require a two-component order
parameter arising from the system in the absence
of strain being accidentally tuned to a multi-critical
point involving dxy & s or dx2�y2 & g wave pairing.
However, there are at least two sets of phenomena
that seemingly challenge these theoretical proposals:

• Below a critical temperature, Ttrsb, the SC
phase appears to break time-reversal symme-
try [12–14] where at zero shear strain Ttrsb ⇡
Tc, while in the presence of substantial B1g

shear strain these two transitions are split,
such that Ttrsb < Tc. However, specific heat
measurements under the same circumstances
show no signature of the TRS breaking tran-
sition [15, 16]. An additional constraint on
theory is the recent observation [17] that Tc

can be depressed with the application of hy-
drostatic pressure (i.e. compressive uniform
strain ✏0 < 0) without producing a detectable
splitting between Tc and Ttrsb - an observa-
tion that was declared to rule out any the-
ory based on an accidental degeneracy be-
tween two symmetry-distinct superconducting
orders.

• A somewhat complicated experiment on
mesoscale crystals adduced evidence of the ex-
istence of a topological excitation capable of
admitting a half-quantum of magnetic flux [2].
This has been argued [18] to constitute direct
evidence that the SC state is a chiral p + ip
state, despite the contrary evidence from the
NMR studies [7–9]. Although additional ev-
idence of half quantum vortices has been re-
cently reported [19], it is still possible that
there is an alternative explanation for the ob-
servation that does not involve fractional vor-
tices. However, taking the result at face value
presents us with the need to identify a route
to fractional vortices in a singlet SC.

In this context, our present results provide, as a

matter of principle, possible routes to reconcile both
these observations with the conjectured theoretical
scenario.

• Despite the fact that the crystals involved in
these experiments are paragons of crystalline
perfection, the only plausible interpretation of
the specific heat data is that the TRS break-
ing involves a small fraction of the electronic
degrees of freedom. This can be naturally
accounted for by the theoretically expected
extreme sensitivity of the SC order to local
strain, and the fact that the TRS breaking
d+ig order arises only in a network of domain-
wall-like regions at which |✏0 � ✏?| and |✏shear|
are vanishingly small. Moreover, so long as the
typical magnitude of the inhomogeneous strain
is larger than an applied strain, no significant
splitting between Tc and Ttrsb is expected.

• The fact that a half-quantum vortex can be
the ground-state in the presence of a suitable
strain texture similarly opens the possibility
that the experimental evidence of fractional
vortices in SRO is likewise consistent with the
propsed scenario.

II. GINZBURG-LANDAU THEORY

A. Setup

We consider a Ginzburg-Landau free energy den-
sity [1] with order parameter (OP) fields �T =
(D,G) in the presence of an external magnetic field
~B = ~r⇥ ~A, given by

F = V2 + V4 +K +
B2

2
(1)

V2 = ↵0�
†�+�† (↵ · ⌧ )�

V4 =
1

2
[�†�]2 +

�1

2
[�†⌧1�]2 +

�3

2
[�†⌧3�]2

+
�0
3

2
[�†⌧3�][�†�]

K =


2
|(�i~r� ~A)�|2

+
0

2

�⇥
(i@x �Ax)�

†⇤ ⌧1 [(�i@y �Ay)�] + c.c.
 

Where ⌧ is the vector of Pauli matrices.
The complex scalar fields D,G are normalized so

that the sti↵ness constants are equal, i.e., d = g ⌘
, and that quartic isotropic coupling constant �0 =
1. We have used units such that the Cooper pair
charge 2e = 1. The quantity ↵ = (↵1, 0,↵3) repre-
sents the e↵ect of local strain as a two-component
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vector, where ↵3 = ↵3(x, y) is proportional to the
deviation of the isotropic (A1g) strain from its criti-
cal value ✏?0 and ↵1 = ↵1(x, y) is proportional to the
shear (B2g, i.e., xy) strain. The free energy at ~A = ~0
respects TRS, has a U(1) symmetry associated with
the overall superconducting phase and, for ↵1 = 0, a
D4h point group symmetry that involves both space
and the order parameters. For example, under a ro-
tation by ⇡/2, x ! y and y ! �x, D ! �D and
G ! G. The quartic terms determine the favored
form of the ordered state: �3 > 0 favors coexistence
of non-zero d and g pairing and �1 > 0 favors the
TRS breaking combinations d± ig. The microscopic
BdG calculations reported in Sec. (III A) yield �1 &
�3 > 0.

B. Non-linear sigma model

In the special case, ↵j = �j = 0 for all j > 0 and
�0
3 = 0,0 = 0, the free energy has a global SU(2)

symmetry that relates the two components of the
order parameter. Not too close to Tc, and to the ex-
tent that this symmetry is not too strongly broken,
the variations of the magnitude of the order param-
eter are unimportant. This allows us to associate
the relevant order parameter values with a point on
a Bloch sphere n̂ 2 S2 via the isomorphism between
CP1 and S3/U(1), i.e.,

� = |�|ei�Z (2)

Z =

2

664
cos

✓
✓

2

◆
e�i�/2

sin

✓
✓

2

◆
e+i�/2

3

775

ni = Z†⌧iZ

Here, defining �d and �g to be the phases of D and
G respectively, � = 1

2 [�d + �g] and � = [�g � �d]
are the overall and relative SC phases and ✓ =
2arctan[|G|/|D|]. Note that OPs� which di↵er only
by their global phases � are mapped onto the same
point on the Bloch sphere.

More generally, to the extent that it is possible to
ignore variations in the magnitude of�, the problem
reduces to a non-linear sigma model with a weakly
broken U(1)⇥SO(3) symmetry, derived in Appendix

(VA):

F = K +K0 +Kn̂ (3)

+ V0(|�|) + ↵̃ · n̂+
�̃1

2
[n1]

2 +
�̃3

2
[n3]

2 + . . .

K =
̃

2

���~r�+ ~a� ~A
���
2

K0 = ̃0n1

Y

µ=x,y


@µ�+ aµ � [n̂⇥ @µn̂]1

2n1
�Aµ

�

Kn̂ =
̃

2

�����
~rn̂

2

�����

2

+ ̃0n1

⇢
[n̂⇥ @xn̂]1

2n1

[n̂⇥ @yn̂]1
2n1

� @xn̂

2
· @yn̂

2

�
,

where [n̂⇥@µn̂]1 = n2@µn3�n3@µn2 is the 1st com-
ponent of the vector n̂ ⇥ @µn̂, while ̃ ⌘ |�|2,
↵̃ ⌘ |�|2h↵1, 0,↵3 + �0

3|�|2i, �̃j ⌘ |�|4�j , and . . .
signifies terms that would come from higher order
terms in the Ginzburg-Landau theory. Importantly,
~a is the Berry connection associated with the motion
of n̂ on the Bloch sphere:

~a ⌘ Z†
✓
1

i
~rZ

◆
(4)

The corresponding Berry curvature is related to the
Pontryagin density

~r⇥ ~a =
1

2
✏µ⌫ [n̂ · (@µn̂⇥ @⌫n̂)] (5)

C. Ground State

Let us first determine the ground state of a system
in the presence of a uniform strain vector ↵ using
the Ginzburg-Landau free energy (1). For calcula-
tional convenience, we will consider the case �0

3 = 0
and �1 = �3 = � > 0 (in which case the free en-
ergy is invariant under a U(1) symmetry associated
with rotations of n̂ around n2). The general case is
analyzed in Appendix (VB).
The potential term V of the Ginzburg-Landau free

energy can be rewritten as a sum of two terms,

V2 = �|�|2(↵0 +↵ ·m)

V4 =
1

2
|�|4

�
1 + �m2

�
(6)

where m is the projection of the normalized vector
n̂ onto the ê1-ê3 plane and m ⌘ |m| =

p
n2
1 + n2

3,
where nj ⌘ n̂ · êj . The potential is minimized when
m points in the same direction as ↵ so that the
potential term is given by

V = �|�|2(↵0 + ↵m) +
1

2
|�|4

�
1 + �m2

�
, (7)
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where ↵ ⌘ |↵|. Since 0  m  1, the values of |�|
and m that minimize V are uniquely determined:
for ↵0 � ↵/� � 0,

|�|2 = ↵0, m =
↵

�↵0
, (8)

which corresponds to two distinct values n̂ (related
by time-reversal symmetry) with n2 = ±

p
1�m2.

For ↵/� > ↵0 � �↵, we have

|�|2 =
↵0 + ↵

1 + �
, m = 1, (9)

so that n2 = 0. Finally, |�| = 0 for ↵ < �↵0.
Henceforth, we restrict our attention to the case
↵0 > 0 so |�| > 0 and that the nature of the ground
state is determined by the value of ↵/�↵0.
In the limit of small strain ↵ ⌧ �↵0 so thatm ⇠ 0,

n̂ points in the ±ê2 direction, which corresponds to
a TRSB d ± ig state. Conversely, if ↵ � �↵0 so
that m = 1, the Bloch vector n̂ points in the same
direction as ↵ as denoted by the solid black dot in
Fig. (2). This corresponds to a TRS preserving
state determined by the the local strain. From now
on, when we discuss a situation in which the strain
is nonzero, we shall implicitly assume that ↵ � �↵0

and thus the uniform ground state is as in (9).

D. Domain walls

We now consider the behavior of the order param-
eter � in the presence of spatially varying strain. As
it simplifies the analysis, we will do this in the con-
text of the non-linear sigma model (3). To begin
with, we consider a domain wall separating a region
at y < 0 in which the shear strain favors d� g pair-
ing (↵1 < 0) from a region at y > 0 that favors d+g
(↵1 > 0). We consider the system to be translation-
ally invariant in the directions parallel to the domain
wall.
Far from the domain wall, the relative phase �(y)

and amplitudes are determined by the strain. Thus,
at long distances, the only property of the order pa-
rameter texture that can depend on the nature of
the domain wall is the change in the global phase,
��. If we choose the global phase such that the or-
der parameter is real at y ! �1, across the domain
wall the order parameter must change from d� g to
ei��(d+ g).

If TRS is preserved everywhere (i.e. if the order
parameter can be chosen to be real), then the only
possible values of �� are 0 and ⇡. Any other value
of �� requires TRSB on the domain wall, which con-
sequently means that there must be two symmetry
related optimal values, ±��.

FIG. 2. Domain Walls. The figure is the Bloch sphere
representation of possible transitions across the domain
wall where ↵1(y) ! ±

¯
↵1 as y ! ±1, and ↵3(y) ⌘

¯
↵3 > 0 is constant. The blue arrow represents a TRS
preserving transition through a pure d state. The green
arrow represents a general TRSB transition restricted to
a 2D plane intersecting the Bloch sphere, the angle of
which relative to the ê1-ê3-plane is denoted by !. In
particular, if ! = ⇡/2, then only the relative phase �
changes from � = ⇡ ! 0.

Below we discuss the derivation of �� in several
cases. This is done by minimizing the free energy
in Eq. (3) in the presence of a given strain texture.
To be concrete, we will consider the case in which
↵3(y) =

¯
↵3 is a constant and ↵1(y) changes sign

across the domain wall such that ↵1(y) ! ±
¯
↵1 as

y ! ±1 with
¯
↵ > �↵0 [20]. The result can be

expressed as a trajectory on the Bloch sphere, as
shown in Fig. (2), where the arrow indicates the
direction of evolution as y varies from �1 to +1.

To begin with, consider some general results that
follow without explicit calculation:

• Away from the multicritical point: Con-
sider the case in which

¯
↵3 > �↵0. In this case,

|D| is everywhere larger than |G| and even at
the “center” of the domain wall, defined as the
point y = 0 where ↵1(0) = 0, there is no local
tendency to TRSB. The optimal order parame-
ter texture lies in the ê1-ê3 plane - as indicated
by the blue trajectory in Fig. (2). Here the G
component of the order parameter vanishes at
y = 0 and is negative on one side and positive
on the other. Obviously, the analogous consid-
erations apply for

¯
↵3 < ��↵0, with the role of

D and G interchanged. In this case, TRS is
preserved everywhere, and �� = ⇡.

• Broad domain wall near the multi-
critical point: If |

¯
↵3| < �↵0, then near the

center of the domain wall, the local terms in
the free energy favor a TRSB solution, d± ig.
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FIG. 3. Global phase. The change �� in the global phase
across a narrow domain wall where the xy component
of the strain, ↵1, is discontinuous. The domain wall is
characterized by ↵1(y) =

¯
↵1 sign(y), while ↵3(y) =

¯
↵3

is constant. �� is shown as a function of
¯
↵1/�↵0. The

di↵erent curves correspond to di↵erent fixed values of
the uniform component of the strain,

¯
↵3/�↵0.

Moreover, if the strain fields vary slowly on the
scale of the superconducting coherence length,
then the order parameter will be well approx-
imated by the uniform state corresponding to
the local value of the strain. Thus, the order
parameter texture is not confined to the ê1-ê3
plane, as shown by the green trajectory. This
implies that both components of the order pa-
rameter remain non-zero everywhere, and thus
that �� = ��g � ��d = ±⇡. However, how
much of this phase change is accommodated by
changing the phase of D or G depends on ener-
getics; if the D wave order is everywhere domi-
nant, then ��d ⇡ 0 and hence �� ⇡ ⇡/2, while
if the D and G are of nearly equal strength,
then |��g| ⇡ |��g| and hence �� ⇡ 0. Clearly,
for intermediate cases, 0 < |��| < ⇡/2.

• Narrow domain wall near the multicrit-
ical point: Here, the nature of the solution
depends on a host of microscopic details. Since
“narrow” and “broad” refer to the width of the
domain wall relative to the superconducting
coherence length, and given that the supercon-
ducting coherence length diverges as T ! Tc,
at least near Tc this is likely the most physi-
cally relevant situation. We will thus treat this
case more explicitly below.

As an explicit model of a narrow domain wall, let
↵1(~r ) = ¯

↵1 sign(y) where ¯
↵1 > 0 and ↵3(~r ) ⌘ ¯

↵3 �
0 be a constant. We consider paths in which as y
goes from �1 to 1, n̂(y) follows a trajectory that
lies in a plane ! intersecting the Bloch sphere - of
the sorts illustrated by the di↵erent colored paths in

Fig. (2). When this plane is perpendicular to ê2,
TRS is preserved (blue line) while all other trajec-
tories break TRS. A more complete solution of the
problem does not result in qualitative changes in the
conclusions. With these simplifications, the domain
wall energies �F can be computed analytically (see
Appendix (VC)).
We can then find the plane ! with minimum

domain wall energy for each set of values
¯
↵1, ¯

↵3

and compute the corresponding change in global
phase ��, as shown in Fig. (3). For

¯
↵3 � �↵0

(i.e., way from the multi-critical point), TRS is pre-
served everywhere, such that �� = 0. Conversely,
if

¯
↵3 < �↵0, (near the multi-critical point), TRS

breaking near the domain wall is possible, yielding
0 < |��| < ⇡/2.

E. Topological Point Defects

The domain walls we have discussed are natural
strain patterns that are plausibly generic in real ma-
terials. In addition, because there are two compo-
nents of the strain-dependent vector, ↵, one can also
conceive of vortex-like defects with point-like cores
in 2d or line-like cores in 3d. Here, we consider a
pattern of strain such that along any path encircling
the origin, ↵(~r ) rotates by 2⇡. Given such a strain
pattern, we can use the non-linear sigma model to
explore the properties of the resulting SC order pa-
rameter texture that results.

1. Vorticity and associated flux

Far from the defect core, the form of the SC order
parameter (up to its overall phase) is essentially de-
termined by the local pattern of strain. Regardless
the SC order parameter texture, the current density,
~J = ��F/� ~A, can be computed exactly from the
nonlinear sigma model (3) since variations in mag-
nitude |�| do not couple to the vector potential ~A.
From this it follows that

Jx = ̃[@x�+ ax �Ax] (10)

+ ̃0n1


@y�+ ay �

[n̂⇥ @yn̂]1
2n1

�Ay

�

and similarly for Jy. Far from the core under most

circumstances, ~J ! ~0; indeed, beyond a London
penetration depth it vanishes exponentially. Thus,
we can invert Eq. (10) to obtain an expression for
~A in terms of the SC order parameter texture valid
wherever ~J is negligible. Then, by integrating the
vector potential ~A along a contour C that encloses
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the origin at a distance, we obtain an expression
(modulo an additive integer) for the enclosed flux �
in units of the superconducting flux quantum �0 =
h/2e:

�

�0
=

⌦

4⇡
� 0

4⇡

I

C

[n̂⇥ @µn̂]1Tµ⌫ dr⌫ (11)

T =


0n1 
 0n1

��1

where ⌦ is the solid angle enclosed by the contour
of n̂ on the Bloch sphere.
Note that when [n̂⇥@µn̂]1 = 0 along C, the second

term vanishes and thus the flux quantum captured is
expressed entirely in terms of the Berry phase ⌦/4⇡.
In particular, since strain stabilizes a TRS preserv-
ing state, we will typically be interested in situations
in which n̂ · ê2 = 0 far from the defect core, insuring
that this condition is satisfied. In this case, when-
ever n̂ follows a trajectory that encircles the origin
(as in Fig. (4b)), there must be an associated half-
flux quantum of flux bound to the defect.

2. Example of a strain-induced half-quantum fluxoid

We now consider an explicit version of such a
strain texture (Fig. (4a)), consisting of four do-
mains separated by domain walls that intersect at
the origin. Thus, we take ↵3(x, y) =

¯
↵3F3(x) and

↵1(x, y) =
¯
↵1F1(y), where Fj(r) = �Fj(�r), and

Fj(r) ! 1 as r ! 1. We further assume that

¯
↵j > �↵0 – i.e. far away from the origin we are
in the large strain regime where the preferred order
parameter is set by the strain and TRS is preserved.
As indicated by the labels, the D component is en-
hanced compared the G component for x > 0. For
x < 0, the G component is favored. The combina-
tion d+ g is favored for y > 0, while d� g is favored
for y < 0.

Let us now consider a closed path C encircling
the origin (Fig. (4a)), where the preferred SC state
(up to the global phase) is denoted in each quad-
rant, e.g., D+ g denotes a TRS preserving SC state
with dominant D component. Since the contour C is
far away from the origin, the domain walls between
quadrants are narrow, and the strain is always su�-
ciently large such that TRS breaking is never favored
locally. Fig. (4b) shows the trajectory of the order
parameter on the Bloch sphere, in which each seg-
ment of the contour is color coded to correspond to
that in the top diagram. We then see that the OP
� wraps around by 2⇡ while being confined to the
ê1-ê3 plane and thus [n̂⇥ @µn̂]1 = 0 along the con-
tour. Eq. (11) thus implies that this strain texture
captures a half quantum of flux.

(a)

(b)

FIG. 4. A strain induced half quantum fluxoid. (a) Real
space contour around a topological point defect, along
which the strain vector ↵ winds by 2⇡. The dashed
cross shows the location of a ⇡ mismatch in the phase
of the order parameter. D + g in the x > 0, y > 0
quadrant represents order parameter with a dominant
D component and a smaller G component, and similarly
in the other quadrants. (b) Corresponding trajectory
of the order superconducting order parameter along the
Bloch sphere. TRS is preserved along the path. Each
segment of the contour is color coded so that the same
colors in the bottom and top figure correspond to each
other.

At an intuitive level, the same conclusion can be
reached by considering the nature of the order pa-
rameter texture along the various line segments in
Fig. (4a). Since it is energetically favorable to keep
the dominant piece of the SC order parameter uni-
form, the overall phase (��) is constant along any
of the segments other than the red one, along which
the dominant portion of the order parameter changes
sign, favoring �� = ⇡. Of course, this change in
phase will in actuality be spread out along the en-
tire path, but this argument captures the ⇡ phase
mismatch along the close path that results in a half
quantum vortex.
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III. MICROSCOPIC ANALYSIS

(a)

(b)

FIG. 5. (a) Phase diagram of the microscopic Hamil-
tonian, Eq. (12,13), as a function of the interaction
strengths �d,�g, calculated within self-consistent mean-
field theory, in the absence of strain. Near degeneracy
�d ⇠ �g, the yellow portion denotes the TRSB d + ig
state, while the cyan and purple regions represents a
pure d or pure g state, respectively. 3 representative
point (I, II, III), one in each phase, are used in further
calculations. (b) The top two panels depict the evolu-
tion of the uniform state at point (I) with shear gd0 and
isotropic gs strain. The dashed line represents the rela-
tive phase � given by the left y-axis, while the solid (red,
green) lines represent the amplitudes |D|, |G|, given by
the right y-axis. Similarly, the bottom two panels repre-
sent the evolution of the uniform state for sample points
(II) and (III) under shear gd0 strain.

We now address these same issues from a more
microscopic perspective in the context of Bardeen-
Cooper-Schrie↵er (BCS) mean-field theory. Specifi-
cally, we solve the self-consistency equations for a
generic 2D Hamiltonian with attractive d and g-
wave interactions, and with spatially varying band-
structure parameters that encode the same patterns
of spatially varying strain discussed above.

Let the full Hamiltonian Hfull = H0 +H1 be de-
fined on a 2D square lattice. The free Hamilto-
nian H0 is characterized by the (single-band) TRS-
preserving hopping matrix t so that

H0 = �
X

~r 0,~r ,s

[t(~r 0,~r ) + µ] c†
~r 0sc~r s (12)

and the attractive (pairing) interaction term H1, as-
sumed to be spatially uniform, is

H1 = �
X

⌧=d,g

�⌧

X

~r

P †
⌧
(~r )P

⌧
(~r ) (13)

P †
⌧
(~r ) =

X

~r 0,s,s0

f⌧ (~r
0 � ~r )c†

~r 0s0 [i�2]s0sc
†
~r s

where �⌧ > 0 with ⌧ = d or g encodes the strength of
the interaction in the designated symmetry channels.
Here f⌧ are TRS preserving form factors that trans-
form according to the requisite distinct irreducible
representations of the point-group symmetry:

fd(~r ) =
1

4
�(r = 1)

⇥
x2 � y2

⇤
(14)

fg(~r ) =
3
p
3

32
�(r =

p
5)[xy(x2 � y2)]

where the factor of the Kronicker-� in each expres-
sion is 1 when ~r connects, respectively, first and
fourth nearest-neighbor sites. The hopping matrix
elements can likewise be expressed in terms of these
and the local strain as

t(~r + ~r 0,~r ) = �(r0 = 1) + t�(r0 =
p
2) (15)

+ gs(~r )� fs(~r
0) + gd0(~r )� fd0(~r 0)

where gs(~r ) and gd0(~r ) parameterize, respectively,
the spatial profile of the isotropic and shear strain,
and � is the symmetrization of the product term,
e.g., gs(~r ) � fs(~r 0) ⌘ 1

2 [gs(~r ) + gs(~r + ~r 0)]fs(~r 0).
Here, fs(~r ) and fd0(~r ) are form factors with isotropic
and shear [xy] symmetry of the underlying lattice,
which we take to be

fs(~r ) = �(r = 2), fd0(~r ) = �(r =
p
2) [xy] (16)

We construct a mean-field BCS trial Hamiltonian
H, given by

H =
X

~r 0,~r ,s

T (~r ,~r )c†
~r s
c
~r s

(17)

+
X

~r 0,~r

h
�(~r 0,~r )c†

~r 0"c
†
~r# + h.c.

i

The full self-consistency field equations (SCFs) can
then be derived by extremizing the resulting varia-
tional free energy in the standard fasion – details are



8

given in Appendix (VD). It should be noted that in
order to guarantee that the results satisfy the equa-
tion of continuity, i.e., ~r · ~J = 0, it is generally insuf-
ficient to only solve the SCFs for the gap function -
both T and � must be determined self-consistently
(see Appendix (VE) for a proof).

A. Uniform states

To begin with, we study the uniform case tuned
close to the multi-critical point. In Fig. (5a) we
show the mean-field ground-state phase diagram of
the microscopic model defined above as a function of
the pairing interactions, �d and �d, in the absence
of “strain” (i.e. for gs = gd0 = 0), for t = 0.4 and
for the chemical µ chosen so that the mean electron
density per site is n ⇡ 0.3. There are three dis-
tinct phases in this case: a pure d wave phase for �d

su�ciently larger than �g, a pure g wave phase for
su�ciently large �d, and a relatively narrow coexis-
tence phase centered at the the line �d = �g. The
latter phase has a relative phase � = ±⇡/2, i.e., it
is a d± ig phase, for all parameters studied here.

To illustrate the e↵ect of shear strain, we chose
representative points in the phase diagram indicated
by the three points in Fig. (5a), and explore the evo-
lution of the ground-state order upon application of
uniform strain, i.e. non-zero gd0 or gs. Shown in Fig.
(5b) are the magnitude of the d and g components
of the order parameter, |D| and |G|, as well as the
relative phase, �, for these three cases:

• The top two panels of Fig. (5b) show the
evolution with strain of the case in which we
are most interested - the strain-free ground
state has d ± ig pairing. As the shear strain,
gd0 , is varied, |D| and |G| remain compara-
ble, although both increase slightly, roughly
in proportion to |gd0 |2 - which is a density of
states e↵ect. More dramatically, the relative
phase evolves smoothly, up to a critical value
at which TRS is restored, i.e. where � reaches
either 0 or ⇡, which marks the point of a tran-
sition to d+ g or d� g pairing respectively. In
contrast, as a function of the isotropic strain
gs, the evolution from the d+ig state to a pure
g or pure d state involves a change of the rela-
tive amplitudes |D| and |G|, while the relative
phase � = ±⇡/2 remains constant.

• The lower two of Fig. (5b) represent the shear
strain evolution under conditions in which at
zero strain either the d or g component is ab-
sent. In both cases, the component that is
dominant at zero strain remains dominant; in-
deed, its overall magnitude increases in much

the same way as in the top panel. As required
by symmetry, the component that vanished in
the absence of strain exhibits an initial linear
increase in magnitude with increasing strain.
However, in this case, the relative phase is a
discontinuous function of strain; the ground-
state always preserves TRS and jumps from
being d + g to d � g as the sign of the strain
changes.

We relate these results to the Ginzburg-Landau
theory as follows: In the absence of strain, the
system is tuned to the tri-critical condition ↵1 ⇡
↵3 ⇡ 0 when �d ⇡ �g. Moreover, since the sys-
tem exhibits d + ig order in this case, the requi-
site inequalities �1 > 0, �3 > 0 are automatically
satisfied. The shear strain can be identified with
↵1 / gd0 . Conversely, even relatively small values of
|�d��g|/|�d+�g| > 0.1 are enough to produce a suf-
ficiently large value of ↵3 such that even at T = 0,
|↵| > �/|↵0|. Also notice that we have taken rel-
atively strong interactions; this condition becomes
exponentially more restrictive the weaker the overall
coupling, |�d + �g|. The extent to which the system
needs to be “fine-tuned” near to the tetra-critical
point is quantified as the narrowness of this coexis-
tence phase in the zero-temperature phase diagram.

B. Domain Walls

We next address the domain wall behavior for
a system near and away from the multi-critical
point. To circumvent the di�culty of large coher-
ence lengths at small interaction strength, we use
large interaction strengths �d = 3.2 and �g = 4.9,
chosen such that in the absence of strain, the uni-
form system is near the multi-critical point, i.e.., in
a d + ig state. We then introduce an x-dependent
shear strain with a domain wall along the y-axis,
along which the system is translationally invariant.
As a specific example, we take gd0 = 0.4 tanh(x/l)
where l = 5 and |x|  L = 50. We take gs(x) to be
constant.
Fig. (6) (top) shows the profiles of the order pa-

rameters and relative phase � as a function of x in
the case gs = 0, i.e., near the multi-critical point.
� twists through ⇡/2 passing through the domain
wall, indicating the TRS is broken there. Fig. (6)
(bottom) shows a TRS preserving domain wall for
gs = 0.3, i.e., away from the multi-critical point.

C. Half quantum vortex

Finally, to construct a tractable situation in which
the previously discussed phenomenological analysis
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FIG. 6. Domain Walls. The top panel shows the behav-
ior of the SC order parameter across a domain wall at
which the shear strain gd0(x) changes sign when the sys-
tem is detuned from the multi-critical point such that
gs(x) = 0.3.The bottom panel shows the same sort of
domain wall for a system near the multi-critical point
so that gs(x) = 0. The spatial variation of gd0 , shown
in the mini-plot, is of the form gd0(x) = 0.4 tanh(x/l)
where l = 5 and |x|  L = 50. The dashed lines rep-
resent the relative phase � with values given by the left
y-axis, while the solid lines are the amplitudes of the D
and G components with values given by the right y-axis.

leads to a half-quantum vortex, we consider the pre-
vious system on an infinite cylinder with periodic
boundary conditions in the x-direction and transla-
tional invariance along the y-direction. The circum-
ference of the cylinder (in the x-direction) is 400
sites. We then vary the microscopic terms [gs(x)
and gd0(x)] corresponding the evolution of ↵1 and
↵3 shown in Fig. (4). Solving the full SCF equa-
tions, we obtain D(x) and G(x) as shown in Fig.
(7).

The results corroborate the expected behavior
from the Ginzburg-Landau theory. Notice that the
x-labels on top of Fig. (7a) indicate the expected
state at each position along the contour. Most im-
portantly, the relative phase � winds by 2⇡ around
the cylinder, from which it follows that �� = ⇡. This
result is translated into a trajectory on the Bloch
sphere in Fig. (7b). Note that the trajectory of the
order parameter is close to the ê1-ê3 plane, but devi-
ates from it somewhat in parts of the trajectory, in-
dicating that TRS is broken in certain regions along
the path. Correspondingly, in this calculation, we
expect the flux induced by the strain pattern to de-
viate slightly from �0/2 [see Eq. (11) and the dis-
cussion that follows].

(a)

(b)

FIG. 7. Half quantum vortex pinned by strain texture.
(a) The behavior of the OP � = (D,G) as a function
of x. The two components of the strain, gs(x) / ↵3

and gd0(x) / ↵1, are shown on the right. The domain
walls are of the form ± tanh(x/l) with l = 5, and the
cylinder’s circumference is 400 sites. The dashed line
represents the relative phase � given by the left vertical
axis, while the solid lines represent that amplitudes |D|
and |G| (right vertical axis). The bottom horitzontal axis
represents the x position, while the top horizontal axis
is labeled with the uniform state corresponding to the
given strain texture at that position. (b). Trajectory
of the OP � = (D,G) projected onto the unit Bloch
sphere (blue line). The arrow represent the direction of
the contour. The gray circle line emphasizes the ê1-ê3

plane.

IV. CONCLUSIONS

In this paper we have primarily explored the e↵ect
of inhomogeneous strain on the superconducting OP
textures of a system tuned close to a tetra-critical
point at which two di↵erent superconducting com-
ponents have equal Tc’s. Such a tetracritical point
can arise due to symmetry - when in the absence of
strain the two components form a two dimensional
irreducible representation of the point group sym-
metries. However, we have primarily focused on the
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case in which the tetracritical point arises from tun-
ing a symmetry preserving parameter near to a crit-
ical value - a situation that might arise accidentally
in a small subset of superconducting materials.

In this situation, even relatively small local strain
can readily detune the system from the tetracritical
condition su�ciently that a single component OP
is locally favored. However, if on average the sys-
tem is near enough to this critical value, it is also
natural to find domain walls between regions of dif-
ferent dominant strain in which the system is ap-
proximately tetra-critical. This, in turn, can lead to
TRS breaking on such domain walls, and thus to a
state which globally breaks TRS but in which the
symmetry breaking is locally significant only on a
network of such domain walls. We have also shown
that appropriate patterns of inhomogeneous strain
can bind a half-quantum vortex.

These results may have interesting implications
for a number of materials that show evidence for ei-
ther an exact or a near-degeneracy of two SC orders,
including UPt3 [21–23], URu2Si2 [24, 25], UTe2 [26],
doped Bi2Se3 [27, 28], certain Fe based superconduc-
tors [29–31], and of course SRO. Most importantly,
such a near degeneracy necessarily implies an en-
hanced sensitivity to variations in local strain, which
can lead to a variety of otherwise unexpected behav-
iors. Note, however, that half quantum vortices and
other topological defects can also arise as dynamical
excitations in multi-component superconductors in
the absence of any strain e↵ects [32–36].

It is worth noting that while our results are quite
general, they are obtained within mean-field theory,
and neglect thermal fluctuations of the supercon-
ducting order parameter. These can lead to inter-
esting e↵ects close to the Tc in multi-component su-
perconductors [37–40].

This study was undertaken with the SC state of
SRO in mind. It is well established that the SC state
is highly strain-sensitive. There are also a variety of
experimental observations - ultra-sound anomalies
key among them - that are most naturally consis-
tent with an assumed near degeneracy between a
d and g wave SC component. However, a variety
of other experimental results appear, at first, dif-
ficult to reconcile with this scenario [2, 14, 17, 41].
The present results suggest a route to understanding
some of these additional observations. This includes
a suppressed thermodynamic signature of the TRS

breaking transition and the possibility of half quan-
tum vortices, even though some aspects of the actual
experiment [2] - for instance the dependence on an
in-plane field - still need be addressed.
As mentioned in the introduction, a key issue con-

cerns the strain-induced splitting between the SC
and the TRS breaking transitions. It has been found
that x2� y2 (B1g) shear strain can produce a signif-
icant increase in Tc, with a small decrease in Ttrsb

[15] - i.e. a split transition - while hydrostatic pres-
sure (which produces A1g strain) can produce a pro-
nounced depression of Tc but no detectable split-
ting of the transition [17]. These observations are
trivially accounted for if one assumes that ↵3 has a
strong (albeit quadratic) dependence on shear strain
but only weakly dependent on isotropic strain while
↵0 depends on both components of the strain.
How stringent a condition this places on the

isotropic strain dependence of ↵3 depends on the
magnitude and character of the strain inhomo-
geneities - i.e. the width of the SC transition. To
the extent that we can ignore the e↵ect of xy (B2g)
shear strain (i.e. for ↵1 ⇡ 0), it follows that so long
as there are regions of d and regions of g wave SC,
there must be domain walls between them at which
TRS breaking can arise. Thus, a spilt transition
will be apparent only when the mean value of ↵3 is
greater than its variance.
The present considerations are encouraging in the

sense that they illustrate a plausible explanation of a
set of previously puzzling experiments in SRO. How-
ever, it is important to reiterate that this analysis
sheds no insight of what is probably the most vex-
ing aspect of the proposed scenario: why are these
two symmetry distinct forms of SC order nearly de-
generate with one another without need of any fine
tuning?
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V. APPENDIX

A. Derivation of nonlinear sigma model

Here, we review an e�cient method of deriving
the nonlinear sigma model in Eq. (3). Suppose that
the OP� = �(q) depends smoothly on parameter q.
Then it’s change �(q) ! �(q+�q) can be expressed
as an infinitesimal rotation along with a change in
the Berry phase �, i.e.,

�(q + �q) = ei��U(q)�q�(q) (18)

Where U(q)�q ⌘ exp(�iH(q)�q) 2 SU(2) is the in-
finitesimal rotation with

H(q)�q =
1

2
(n̂⇥ �n̂) · ⌧ (19)

Therefore, we can write

(�i@µ �Aµ)� = (@µ�+ aµ �Aµ �Hµ)� (20)

Hµ =
1

2
(n̂⇥ @µn̂) · ⌧ (21)

Using the (anti-)commutation relations of the Pauli
matrices, we can then e�ciently derive the nonlinear
sigma model, e.g.,

�†H2
µ
� =

|�|2

2
tr
⇥
H2

µ
(⌧0 + n̂ · ⌧ )

⇤
(22)

= |�|2
����
@µn̂

2

����
2

(23)
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Similarly, we have

�†Hµ� = 0 (24)

<
⇥
�†Hx⌧1Hy�

⇤
= �n1

✓
@xn̂

2
· @yn̂

2

◆
(25)

<
⇥
�†Hµ⌧1�

⇤
=

1

2
[n̂⇥ @xn̂]1 (26)

B. General ground state

Here, we present the exact solution of the ground
state of the general Ginzburg-Landau free energy in
the presence of a uniform strain vector ↵. To provide
a more intuitive picture of the general ground state,
this section first treats the less restrictive case where
�1 6= �3 but �0

3 = 0. We then present the ground
state in full generality.
It should be noted, however, that the uniform

ground state does not depend on the kinetic terms
K and thus we can always renormalize D,G so that
�0
3 = 0.

1. �1 6= �3 and �0
3 = 0

In the case where �1 6= �3 are positive and �0
3 =

0, the potential term of the Ginzburg-Landau free
energy can be rewritten as

V2 = �|�|2(↵0 + ↵1n1 + ↵3n3) (27)

V4 =
1

2
|�|4(1 + �1[n1]

2 + �3[n3]
2) (28)

Where n̂ is the Bloch vector corresponding to the
OP �. It’s then clear that the potential V is a
strongly joint-convex function of |�|2, |�|2n3 and
|�|2n1. Therefore, convex optimization guarantees
that the ground state of the uniform system is unique
and given by

|�|2 = ↵0, ni =
↵i

�i↵0
(29)

Provided that [n1]2 + [n3]2  1. Conversely, in the
case where the above solution is not feasible, i.e.,
[n1]2 + [n3]2 > 1, the unique ground state is given
by

|�|2 =
↵0

1� �
(30)

|�|2ni =
↵i

�i + �
(31)

Where � 2 [0, 1) is chosen so that [n1]2 + [n3]2 =
1. In particular, the ground state corresponds to a
Bloch vector n̂ which is in the ê1-ê3 plane and thus
does not break TRS.

2. Full generality: V is stable and superconducting

In full generality, we still require that the
Ginzburg-Landau energy is stable, i.e., the poten-
tial term V ! 1 in the limit where |�| ! 1. This
corresponds to the condition

4�3 � �02
3 > 0 (32)

Similarly, we are only concerned with nontrivial su-
perconducting ground states, which corresponds to
the condition

2↵0�3 � ↵3�
0
3 > 0 (33)

Therefore, our general ground state solution is sub-
ject to the 2 conditions above. The potential term
of the Ginzburg-Landau free energy can be rewritten
as

V2 = �|�|2(↵0 + ↵1n1 + ↵3n3) (34)

V4 =
1

2
|�|4(1 + �1[n1]

2 + �3[n3]
2 + �0

3n3) (35)

By our stability condition (32), the potential term
V is a strongly joint-convex function in terms of
|�|2, |�|2n1 and |�|2n3. Therefore, convex opti-
mization guarantees that the ground state of the
uniform system is unique and given by

|�|2 = 2⇥ 2↵0�3 � ↵3�0
3

4�3 � �02
3

> 0 (36)

|�|2n3 = 2⇥ 2↵3 � �0
3↵0

4�3 � �02
3

(37)

|�|2n1 =
↵1

�1
(38)

Provided that [n1]2 + [n3]2  1. Conversely, in the
case where the above solution is not feasible, i.e.,
[n1]2 + [n3]2 > 1, the unique ground state is given
by

|�|2 =
2

4(�3 + �)� �02
3

(39)

⇥

2(�3 + �)↵0 � ↵3�

02
3 + 4↵3

(�3 + �)�

�0
3

�

|�|2n3 = 2⇥ 2(1� �)↵3 � �0
3↵0

4(�3 + �)� �02
3

(40)

|�|2n1 =
↵1

�1 + �
(41)

Where � � 0 is chosen so that [n1]2 + [n3]2 = 1. In
particular, the ground state corresponds to a Bloch
vector n̂ which is in the ê1-ê3 plane and thus does
not break TRS.
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C. Narrow Domain Wall Calculations

In this section, we present detailed calculations
of a narrow domain wall between the transition of
the TRS states d � g ! d + g. To be more con-
crete, let us consider the case where ↵3(y) =

¯
↵3

is constant, while ↵1(y) =
¯
↵1 sign(y) changes sign

as y = �1 ! +1. The quartic terms are set
to �1 = �3 = � > 0,�0

3 = 0 as before and the
strain vector magnitude satisfies

¯
↵ � �↵0 so that

the uniform ground state at y ! ±1 is denoted by a
Bloch vector n̂ pointing in the same direction as the
strain vector

¯
↵ and that the magnitude |�|2 = ↵0.

Without loss of generality, we shall also assume that

¯
↵1, ¯

↵3 > 0 so that the angle  of the strain vector

¯
↵ ⌘

¯
↵(sin , 0, cos ) satisfies 0 <  < ⇡/2 as shown

in Fig. (2).
We then calculate the domain wall energy �F of

possible transition paths as illustrated by the blue
and green arrows in Fig. (2) where the magnitude
|�|2 of the OP � is assumed to be constant and
= ↵0. In particular, the blue arrow represents a TRS
preserving transition, while the green arrow denotes
a TRSB transition restricted to a 2D plane at angle
! with respect to the ê3-axis.

1. TRS preserving transition

We shall first consider a TRS preserving transition
as described by the blue path in Fig. (2). Notice
that we implicitly assumed that  < ⇡/2. If on
the other hand,  > ⇡/2, then we would consider
the complement path wrapping from underneath the
Bloch sphere. Since the transition preserves TRS so
that the Bloch vector is in the ê1-ê3 plane, we can
restrict the azimuthal angle � ⌘ 0 for y � 0 and
� ⌘ ⇡ for y < 0. Therefore, we can rewrite the
Ginzburg-Landau free energy in terms of polar angle
✓ and average phase �, i.e., if y � 0 so that ✓ � 0,
then

F = V2 + V4 +K (42)

V2 = �|�|2(↵0 + ¯
↵ cos (✓ �  )) (43)

V4 = +
1

2
|�|4(1 + �) (44)

K =


2
|�|2

2

4�̇2 +

 
✓̇

2

!2
3

5 (45)

It’s then clear that � = const and that



2

✓̈

2
=

¯
↵ sin(✓ �  ) (46)

✓̇2 +
8
¯
↵


cos(✓ �  ) = const (47)

Using the boundary conditions ✓ !  and ✓̇ ! 0 as
y ! 1 and that ✓ = 0 at y = 0, we see that

✓̇2 =
8
¯
↵


(1� cos(✓ �  )) (48)

✓̇

2
= �

r
4
¯
↵


sin

✓
✓ �  

2

◆
(49)

✓ =  � 4 arctan

✓
tan

✓
 

4

◆
e�y/⇠

◆
(50)

Where ⇠ =
p

/4
¯
↵ is the characteristic length of the

domain wall. We can similar solve for the transition
in the case where y  0 so that in general,

✓ =


 � 4 arctan

✓
tan

✓
 

4

◆
e�|y|/⇠

◆�
(51)

� =
⇡

2
(1� sign y) (52)

We can then calculate the domain wall energy
�F = F � F0 for y � 0 where F0 = F [ ] is the
Ginzburg-Landau free energy of the uniform ground
state, i.e.,

�Ftrs =

Z +1

0
[F [�, ✓,�]� F0]dy (53)

= ↵0

Z +1

0

 
✓̇

2

!2

dy (54)

=
↵0

⇠

Z
 

0
� sin

✓
✓ �  

2

◆
d✓

2
(55)

=
2↵0

⇠
sin2

✓
 

4

◆
(56)

2. TRSB transition

Let us now consider the special TRSB transition
as described by the path with ! = ⇡/2 in Fig. (2), so
that the polar angle ✓ of the Bloch vector n̂ remains
constants and =  < ⇡/2, while the azimuthal an-
gle � twists ⇡ ! 0. Therefore, we can rewrite the
Ginzburg-Landau free energy in terms of azimuthal
angle � and average phase �, i.e., if y � 0 so that
0  �  ⇡/2, then

F = V2 + V4 +K (57)

V2 = �|�|2(↵0 + ↵1 sin cos�+ ↵3 cos ) (58)

V4 = +
1

2
|�|4(1 + �(1� sin2  sin2 �)) (59)

K =


2
|�|2

2

4�̇2 +

 
�̇

2

!2

� �̇�̇ cos 

3

5 (60)
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By the Euler-Lagrange equations, it’s then clear that
if the average phase � satisfies the initial condition
�(y ! �1) = 0, then

� =
�� ⇡

2
cos (61)

In particular, the average phase � changes by �� =
�(⇡/2) cos as � twists ⇡ ! 0. We can similarly
solve for � using the boundary condition �̇,� ! 0
as y ! +1 so that



2

�̈

2
= sin�(

¯
↵� �↵0 cos�) (62)

�̇

2
= �1

⇠
sin

✓
�

2

◆s

1� ✏ cos2
✓
�

2

◆
(63)

Where ✏ = �↵0/¯
↵ and ⇠ =

p
/4

¯
↵ is the character-

istic length of the domain wall. Notice that by our
ground state discussion (9), the finite strain

¯
↵ sat-

isfies ✏  1 and thus the square root is well-defined.
We can then solve the first order di↵erential equa-
tion so that

� = 2arccos

 
1� ⌘p

(1 + ⌘)2 � 4⌘✏

!
(64)

Where

⌘ = C exp

✓
�y

p
1� ✏

2⇠

◆
(65)

⇡

2
= �(⌘ = C) (66)

We can then calculate the domain wall energy
�F = F � F0 for y � 0 where F0 = F [ ] is the
Ginzburg-Landau free energy of the uniform ground
state, i.e.,

�Ftrsb =

Z +1

0
[F [�, ✓,�]� F0]dy (67)

= ↵0 sin
2  

Z +1

0

 
�̇

2

!2

dy (68)

=
↵0

⇠
sin2  (69)

⇥
Z

⇡/2

0
sin

✓
�

2

◆s

1� ✏ cos2
✓
�

2

◆
d�

2
(70)

This can be solved analytically if necessary with the
substitution x = cos (�/2). In particular, in the ex-
treme large strain limit

¯
↵ � �↵0, the domain wall

energy is approximated by

�F ⇡ 2↵0

⇠
sin2  sin2

⇣⇡
8

⌘
(71)

FIG. 8. General TRSB Domain Wall. The top figure
is the Bloch sphere representation of a general TRSB
transition through the domain wall ↵1(y) =

¯
↵1 sign(y).

The green arrow which representing the transition path
is assumed to be in a plane at angle ! with respect to the
ê1-ê3 plane. The bottom figure is the transition rotated
of angle ! about the +x-axis in the clockwise direction.

3. General TRSB transition

Let us finally consider a general TRSB transi-
tion as described by the green path in Fig. (2).
To simplify the problem, we will only consider gen-
eral TRSB transitions which occur in a 2D plane as
shown in Fig. (8), where the transition plane is at an
arbitrary angle ! with respect to the vertical plane.
If ! = 0, then the transition corresponds to the TRS
preserving transition (blue arrow), and if ! = ⇡/2,
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then it corresponds to the special TRSB transition.
Since the Ginzburg-Landau free energy has a global
SU(2)-symmetry, we can rotate the system about
the +x-axis of angle ! in the clockwise direction
so that the transition occurs in a plane parallel to
xy-plane and thus can be parametrized in terms of
azimuthal angle �, while the polar angle ✓ is held
fixed, as shown in Fig. (8). This corresponds to
using the rotated order parameter �̃ = U� where
U 2 SU(2) corresponds to the described rotation R.
We then rewrite the Ginzburg-Landau free energy
so that if

˜
↵ = R

¯
↵ is the rotated strain vector and

' ⌘ ⇡/2 � � is the azimuthal angle relative to the
+y-axis, then

F = V2 + V4 +K (72)

V2 = �|�|2(↵0 + ¯
↵ cos2 ✓) (73)

� |�|2
¯
↵ sin2 ✓ cos ('�$)

V4 = +
1

2
|�|4(1 + �) (74)

� 1

2
|�|4�

✓
sin ✓ cos ✓

cos 

◆2

(cos'� cos$)2

K =


2
|�|2

"
�̇2 +

✓
'̇

2

◆2

+ �̇'̇ cos ✓

#
(75)

Here ✓ is held fixed and � transitions in a manner
such that

' ⌘ ⇡

2
� � = �$ ! 0 ! $ (76)

As y goes from �1 ! 0 ! +1, where ✓,$ are
determined by the boundary condition

˜
↵ / n̂(y !

+1), i.e.,

sin = sin ✓ sin$ (77)

cos cos! = sin ✓ cos$ (78)

cos sin! = cos ✓ (79)

In particular, ✓ = ⇡/2,$ =  for the TRS preserv-
ing transition, and ✓ =  ,$ = ⇡/2 for the special
TRSB transition.
By the Euler-Lagrange equations, it’s then clear

that if the global phase � satisfies the initial condi-
tion �(y ! �1) = 0, then

� =
�

2
cos ✓ � 1

2

⇣⇡
2
+$

⌘
cos ✓ (80)

Hence, the average phase � changes by �� =
�$ cos ✓ as y = �1 ! 1. We can similarly solve
for ' so that

'̇

2
= �1

⇠
sin

✓
'�$

2

◆
(81)

⇥

s

1� (✏ sin2 !) sin2
✓
'�$

2
+$

◆

Where ✏ = �↵0/¯
↵  1 and ⇠ =

p
/4

¯
↵ is the charac-

teristic length of the domain wall. It should be noted
that the equation can be solved analytically for ar-
bitrary ✏  1, albeit in implicit form, i.e., f(') = y
for some function f . It should be noted that the
explicit form ' = '(y) is not necessary to compute
the domain wall energy �F . Indeed, we have

�F =

Z +1

0
[F [�, ✓,�]� F0]dy (82)

= ↵0 sin
2 ✓

Z +1

0

 
�̇

2

!2

dy (83)

=
↵0

⇠
sin2 ✓ (84)

⇥
Z

$/2

0
sinx

q
1� (✏ sin2 !) sin2 ($ � x)dx

In the extreme large strain limit
¯
↵ � �↵0, the do-

main wall energy is approximated by

�F ⇡ 2↵0

⇠
sin2 ✓ sin2

⇣$
4

⌘
(85)

D. Full self-consistent equations

In this section, we derive the full self-consistency
field equations (SCFs) for the full Hamiltonian
Hfull = H0 + H1 defined in Eq. (12), (13). Let
us first write the corresponding BCS Hamiltonian
H as

H =
X

~r 0,~r ,s

T (~r 0,~r )c†
~r 0sc~r s (86)

+
X

~r 0,~r

(�~r 0,~r c
†
~r 0"c

†
~r# + h.c.) (87)

=
h
c†" c#

i
Ĥ


c"
c†#

�
, Ĥ =


T �
�† �T̄

�
(88)

To simplify notation, let us introduce the notation
1~r = |~r ih~r | for the projection operator and the 1-
particle density matrices (1-pdms) [42] of the BCS
Hamiltonian H, i.e.,

�(~r 0,~r ) = hc†
~r"c~r 0"i = hc†

~r#c~r 0#i (89)

↵(~r 0,~r ) = hc~r#c~r 0"i = �hc~r"c~r 0#i (90)

The Hartree-Fock energy hHfulli = hH0i+ hH1i can
then be computed via Wick’s theorem so that

hH0i = 2 tr(T �) (91)

hH1i = �2
X

⌧=d,g

�⌧

X

~r

tr
�
2f⌧↵

†1~r↵f
†
⌧
1~r (92)

+ f†
⌧
�1~r �f⌧1~r + �1~r f

†
⌧
�f⌧1~r

�
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The self-consistency field equations (SCFs) can then
be derived from extremizing the variational free en-
ergy �F ⌘ �hHfulli � T �SH = 0 and written in op-
erator form

T = t�
X

⌧=d,g

�⌧

X

~r2⇤

�
(f⌧1~r f

†
⌧
�1~r + h.c.) (93)

+1~r f
†
⌧
�f⌧1~r + f⌧1~r �1~r f

†
⌧

�

� = �2
X

⌧=d,g

�⌧

X

~r

(f⌧1~r↵f
†
⌧
1~r + tr) (94)

Where tr implies the transpose term = 1~r f†
⌧
↵1~r f⌧ =

1~r↵f†
⌧
1~r f⌧ , and we used the fact that ↵, f⌧ are sym-

metric, i.e., ↵T = ↵, fT

⌧
= f⌧ . The proposed format

of writing the SCFs in operator form has the advan-
tage of working in any basis set, and in particular,
we can work in real space |~r i or momentum space

|~ki. This will simplify our algebra later on. The cor-
responding BdG equations can similarly be written
as

� = unEu
† + v̄(1� nE)v

T (95)

↵ = �1

2

✓
u tanh

✓
�E

2

◆
v† + transpose

◆
(96)

where nE is the diagonal matrix with entries of the
Fermi distribution nE = (e�E + 1)�1 and u, v are
chosen so that the following unitary matrix W diag-
onalizes the first quantized Hamiltonian Ĥ, i.e.,

Ĥ = W


E 0
0 �E

�
W †, W =


u �v̄
v ū

�
(97)

Notice that the BdG equations (95) can also be writ-
ten in the more compact form [42]

� = W


nE 0
0 1� nE

�
W † (98)

Where

� =


� ↵
↵† 1� �̄

�
=

1

e�Ĥ + 1
(99)

1. Uniform system in momentum space

The full SCFs can be further simplified in a uni-
form system, so that the 1-pdms �,↵ (89), hopping

matrix t and form factors f⌧ are diagonalized in ~k-
space. In particular,

�(~k) = hc†
~k"
c
~k"
i = hc†

~k#
c
~k#
i (100)

↵(~k) = hc�~k#c~k"i = �hc~k"c�~k#i (101)

In this case, the SCFs (93) are reduced to

T (~k) = t(~k)�
X

⌧=d,g

�⌧

✓
f⌧ (~k)Jf⌧�K + h.c) (102)

+ J�|f⌧ |2K + |f⌧ (~k)|2J�K
◆

�(~k) = �4
X

⌧=d,g

�⌧f⌧ (~k)J↵f†
⌧
K (103)

Where we use the notation J· · ·K as the average value
summed over ~k-space, i.e.,

JhK =
Z

(�⇡,⇡]2

d2~k

(2⇡)2
h(~k) (104)

Notice that the specific form of our�-function (102),

i.e., �(~k) = Dfd(~k) +Gfg(~k) for complex constants
D,G implies that the SCFs indeed yield a two-
component OP theory. Similarly, the BdG equations
are reduced to

�(~k) =
1

2

 
1 +

T (~k)

E(~k)

!
n(~k) (105)

+
1

2

 
1� T (~k)

E(~k)

!⇣
1� n(~k)

⌘

↵(~k) = � �(~k)

2E(~k)
tanh

 
�E(~k)

2

!
(106)

Where n(~k) = (e�E(~k) + 1)�1 is the Fermi distribu-
tion of the Bogoliubov quasi-particles with disper-
sion relation

E(~k) =
q
T (~k)2 + |�(~k)|2 (107)

E. r · J = 0 in BCS theory

Let H[ ] denote the BCS Hamiltonian with pa-
rameters  = (⇠,�). Let the particular choice of
parameter ' be such that H['] satisifes the full self-
consistency equations with respect to the full Hamil-
tonian Hfull, i.e.,

@

@ 

����
 ='

hHfulli =
1

�

@

@ 

����
 ='

S[ ]) (108)

Where S[ ] is the von-Neumann entropy of H[ ] de-
fined by S = � tr (⇢ log ⇢) where ⇢ is the Gibbs dis-
tribution of the BCS Hamiltonian H[ ], and h· · ·i 
is the thermal average at temperature T with respect
to the BCS Hamiltonian H[ ].
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We shall subsequently show that at any tempera-
ture and every lattice site ~r , the charge density ⇢(~r )
is constant in BCS theory, i.e.,

@⇢(~r )

@t

����
t=0

= 0 (109)

As a corollary, we can apply the continuity equation
@t⇢(~r ) = r · J(~r ) ⌘

P
~r 0 J(~r 0,~r ) to obtain

hr · J(~r )i' ⌘
X

~r 02⇤

hJ(~r 0,~r )i' = 0 (110)

Indeed, let us introduce the notation for gauge
transformation at lattice site ~r , i.e., if M is an op-
erator, e.g., the full Hamiltonian Hfull or the BCS
Hamiltonian H[ ], then define

M(s) = eis⇢(~r )Ae�is⇢(~r ), s 2 R (111)

In this case, notice that

H['](s) = H['(s)] (112)

where '(s) denote the parameters

T (~r 00,~r 0)(s) = T (~r 00,~r 0)eis(�(~r
00
,~r )��(~r 0

,~r )) (113)

�(~r 00,~r 0)(s) = �(~r 00,~r 0)eis(�(~r
00
,~r )+�(~r 0

,~r )) (114)

Also notice that the BCS partition function
Z['(s)] is independent of s since the trace is invari-
ant under unitary gauge transforms and thus

⌧
@Hfull(s)

@s

�

's

=
1

Z'

tr

✓
e��H['s] @Hfull(s)

@s

◆
(115)

= +
1

Z'

@

@s
tr
⇣
e��H['s]Hfull(s)

⌘
(116)

� 1

Z'

tr

✓
Hfull(s)

@

@s
e��H['s]

◆
(117)

The first term is = 0 since the trace is invariant
under unitary transforms. Setting s = 0, we see
that

�
⌧
@Hfull(s)

@s

����
s=0

�

'

=
1

Z'

tr

✓
Hfull

@

@s

����
s=0

e��H['s]

◆
(118)

=
@

@s

����
s=0

1

Z'

tr
⇣
Hfulle

��H['s]
⌘

(119)

=
@

@s

����
s=0

hHfulli's (120)

=
@'s

@s

����
s=0

@

@ 

����
 ='

hHfulli (121)

=
1

�

@'s

@s

����
s=0

@

@ 

����
 ='

S[ ] (122)

=
1

�

@

@s

����
s=0

S['s] (123)

Notice that S['s] is independent of s since the trace
is invariant under unitary gauge transforms. Hence,
the right-hand-side is = 0 and thus we arrive at the
statement

⌧
@⇢(~r )

@t

����
t=0

�

'

= �
⌧
@Hfull(s)

@s

����
s=0

�

'

= 0 (124)


