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I. INTRODUCTION

In an article from 1990 Greiter and Wilczek (GW) argued! that by an adiabatic evolution
one can move from a number of filled Landau levels of electrons, to quantum Hall states
in the Jain hierarchy. The idea is to slowly concentrate part of the magnetic flux in thin
tubes located at the position of the particles. During this process the constant background
magnetic field is diminished (or increased if the flux tubes are directed opposite to the
background field), and the intermediate states are naturally interpreted as a system of
anyons in an effective B field. Clearly this can be thought of as a concrete way to construct
Jain’s composite fermions. In a later paper, GW gave a more formal argument for their
construction using special Hamiltonians with singular interactions for the Laughlin states,
and also generalized the idea to include the nonabelian Moore-Read Pfaffian state?. In a
very recent paper, they have also constructed an interpolating Hamiltonian for the v = 2/5
Jain state using a technique that might generalize to the other states in the positive Jain
series?.

We now give a field theoretic version of a distinct but strategically similar construction
based on an adiabatic evolution of states of composite particles. As in the GW case, one
limit is an exact rewriting of the Quantum Hall problem, while the other limit is a solvable
point. The difference is that the intermediate states in the GW formulation are states of
anyons in a constant magnetic field, while in our approach the intermediate states are for
bosons or fermions interacting with a mildly fluctuating dynamical gauge field.

Our composite particles are described by the following Ginzburg-Landau-Chern-Simons-

Maxwell (GLCSM) Lagrangian density?

Lerosm = Lmat + Ly (1)
Lot =" (i00 = a0 + A0 = 3 2|(F = eA+ DI’ = Vo
! o e . . 1,
Eg = 2—77_(]6“ aua,,ag —+ 2_926 e — 2_g2b ,

where V is a repulsive potential which is a functional of the density, p = ¥ (i.e. it may be
non-local in space), e; = —a; — d;ap and b = €70;a; are, respectively, dynamically fluctuating

electric and magnetic fields, and A, is the background electromagnetic gauge potential where



V x A = B and eAy(7) is a one-body potential that may reflect the presence of disorder,
controlled gate potentials, etc..® Except when explicitly mentioned we shall put h = ¢ = 1.
For ¢ = odd we take 1 to be a complex scalar (bosonic) field corresponding to the composite
bosons of MacDonald and Girvin® in the form introduced by Zhang and us’, while for ¢ =
even, we take 1) to be a Grassman field representing Jain’s composite fermions® in the form
introduced by Lopez and Fradkin®!°.

In the ¢ — oo limit, a¢ is a Lagrange multiplier that enforces the “flux attachment”
constraint 2rqp = b = €79;a; that attaches ¢ flux quanta to each composite particle. In
this limit, with m* set equal to the bare effective mass of the electron, Eq. 1 is nominally
an exact rewriting of the original problem in terms of new composite particles.

However, for finite € and ¢, the flux tubes attached to each particle have finite extent,
and so have dynamical consequences beyond encoding the particle statistics. This action no
longer corresponds precisely to the problem of physical interest. However, we shall see that
the approximate mean-field treatment of flux attachment, which has been so successfully
used to analyze various aspects of this problem, is exact in the limit ¢ — 0. Thus, this
construction allows for an explicit field theoretic rendering of an adiabatic evolution, in the

spirit of the GW thought experiment, from the soluble small g limit to the physical limit,

g — 0.

II. EXPRESSION IN TERMS OF EFFECTIVE INTERACTIONS

There are several ways to look at the problem defined by the Langrangian in Eq. (1). We
can integrate out the fluctuating statistical gauge field perturbatively resulting in a renor-
malization of the chemical potential (which we leave implicit) and an effective interaction

between particles represented by a contribution to the effective action of the form

1 . o AL, o
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where D is the bare photon propagator, and ... represents higher order terms. The photon
in question is massive (gapped) corresponding to the poles in D(lg, w), the Fourier transform

of ﬁ, with

w? = 02 + ek? (3)



where k = |k|, = /e is the energy gap, and 1 = ¢2/2mq is the familiar topological mass!!.
Note that in the ¢ — 0 limit, where the gauge field has no independent dynamics, the gap
tends to infinity.

Despite the fact that the photon is massive, it induces long-range statistical interactions

between the composite particles that come from the off-diagonal part that couples current

and charge,
0,7 i€k, -
D®(k,w) =27 12 L Gk,w), (4)
with
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and, needless to say, it is this very interaction that endows the quasipartiles, i.e. the vortices,
with fractional statistics as explained in the classic paper Ref. 12 by Arovas, Wilczek and
Schrieffer. (The full expression for D, is given in Appendix A.) In the limit ¢ — oo, where
G(E, w) — 1, this simply corresponds to attaching ¢ flux quanta to each composite particle,
turning them back into the original electrons.

For our discussion, the most important consequence of including the Maxwell terms in £,
is that they give a size to the flux tubes bound to the charges. The profile of the statistical
magnetic field associated with a static composite particle at the origin is

br) = 35 Ko(r/) (6)
where K is a modified Bessel function and the scale is given by A\ = v/e/u = 2mq\/e/g*. At
an intuitive level, in the limit that A is large compared to the mean spacing between electrons,
i.e. when mA\% p > 1 where p is the mean electron density, it should become increasingly
possible to replace the fluctuating statistical magnetic field by its mean, b(7) — b = 2mqp.
The actual relation between flux and charge is, of course, retarded, but for small ¢, so long
as the frequencies characterizing the electron dynamics satisfy the inequality, w < €, this
should be negligible as well. Typically, the energies of most interest are set by the scale of
the Coulomb interaction, V, ~ €?\/p ~ €*/{, where { = \/¢y/27 B is the magnetic length,
and the second estimate is valid when the filling factor, v = pgo/B ~ 1.



For completeness, a derivation of equations (3) to (6) are given in Appendix A. We have
not attempted to renormalize the full coupled GLCSM theory (1) but we do not envision

that would qualitatively change our results.

III. EFFECTIVE GAUGE THEORY

An alternative approach is to integrate out the matter fields, leaving us with a description
fully in terms of the fluctuating gauge fields. This can be done perturbatively in powers of
the amplitude of the fluctuations of the gauge fields about their saddle point values, with
the leading order approximation being a version of RPA theory. The first step is to integrate
the v-field to get an effective action for the gauge field a:

S a) = Sparla — eA] + Sylal (7)

and then identify the static saddle point configurations, @ for S¢//[a] by solving the classical
equations of motion. Correspondingly, the mean fields, B and E;, felt by the composite
particles, can be computed from A = eA — a. The resulting background gauge fields, are

related to the expectation values of charges and currents by (see Appendix A).

BR) = iy = 2 Gk 0) (o0 + = ik i) ®)
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For example, in the composite fermion representation of an ideal quantum Hall state, B is
such that the composite fermion filling factor, 7 = peg/ B is an integer, while in the composite
boson representation, B = 0. Conversely, for electron filling v = 1 /2, the composite fermions
with ¢ = 2 so B = 0, while the composite bosons with ¢ = 1 experience a field corresponding
to 7 = 1. In the g — oo limit, where G — 1 and A — 0, we regain the usual Chern-Simons
expressions, b(k) = (2mq) (p(k)) and & (k) = (27q)e™* (jie(k)); on the other hand, in the g — 0
limit, since G(k,0) ~ (kA)~2 for kA > 1, even in the presence of disorder where (p(k)) and
(j(k)) are non-zero for non-zero k, b(k) and é(k) — 0 for k # 0, while b(0) = 27q p and
&(0) = 2mqe™ (jx (0)).
The next step is to expand in the fluctuations da around the saddle point A, where for
later convenience we also introduce a probe field, eA — eA + edA, in order to identify

appropriate response functions. With this, and by a shift da — ed A + da, we get
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where we use the notation p = (4,0) but make no distinction between upper and lower
indices. We have used a real time formulation where S,,.s = E,,t with E,,,; the ground-
state energy of the matter fields in the presence of a static background gauge field, A. In
the Euclidean formulation Sy = Finat/T where F,,, is the free energy. ﬂ(ﬂ,ﬁ,ﬁ )
encodes the linear response of the matter fields to an external gauge field, and . .. represents
the non-linear response of the same matter fields.

In the translationally invariant case, the Fourier transform of ﬂ, H‘“’(E,w), can be

expressed!® in terms of more familiar response functions as

-
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0k, w) = —11%(k,w) = —ik;6:;(k,w) (10)

where 05 is the composite particle conductivity tensor and & is the density-density response
function that we refer to as the composite particle compressibility since it is equal to the
thermodynamic compressibility as k and w tend to zero.

Needless to say, the state of the matter fields depends not only on their statistics and
their interactions, but also on the values of the static mean-fields, B and F;. However, even
in this case, the spatial variations should be less and less pronounced the larger .

Finally, to the extent that the higher order terms in da can be ignored, it is possible
to integrate over the statistical gauge fluctuations exactly. Taking appropriate derivates of
the resulting expression with respect to the probe fields, d A, allows us to express the final
results for the electron response functions, in particular the resistivity tensor, p;;, in terms

of the composite particle response functions as

pm(E, W) = Pez(k,w) + iwe (%) Gkyw)+... (11)
w)+ ...
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where we restored h and expressed the results in units of the Klitzing constant h/e?. The
... 1s to remind us that we neglected the effects of higher order terms in da.
The self-consistency of this approach — .e. ignoring the higher order terms, ... — can be

justified only if the the gauge field fluctuations are small, i.e. so long as
([b(k) = b(k)]") < (¢0)* (12)

A more detailed discussion of this condition is given in Appendix B.

IV. APPLICATION TO GAPPED STATES

The basic idea in the GW approach is to adiabatically connect the difficult FQH problem
to a simple solvable one without closing the gap. For Abelian states there are two ways
of doing this. In the composite boson approach the large ¢ limit corresponds to hard core
composite bosons in zero effective magnetic field, i.e. B = 0. Here, so long as the disorder
is not too strong, the composite bosons can be expected to condense into a superconducting
state. Because of the charge flux connection inherited from the Chern-Simons term, the
Meifiner effect in the superconductor translates into incompressibility of the Hall liquid,
the zero resistance of the superconductor into the quantized Hall conductance, and flux
quantization into the existence of quasi-particles with fractional charge and statistics™!.
In the composite fermion picture, the solvable limit is when the effective magnetic field,
B = v 1pgy with 77! an integer, n, so that (provided the disorder and the interaction
strengths are not too large) the composite fermions fill n Landau levels. This state® is
incompressible with a gap that is adiabatically connected to the cyclotron gap, and the
other properties of the fractional quantum Hall state can be inferred by applying versions
of the arguments that have been applied in the integer case.

In order to connect to the analysis of fluctuations in the previous section, we shall here

use the composite boson approach, but also comment on the composite fermion picture.

A. Abelian states

The Laughlin states provide the simplest case where an adiabatic evolution from A > ¢

to A — 0 takes us from a system in which the mean-field approximation is justified to the
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Figure 1: Contour plots of the statistical b-field configurations for a typical snapshot of 200
electrons in a circular ¥ = 1 QH state for (a) A = ¢/2 and (b) A = ¢, where / is the
magnetic length. (c¢) and (d) show the b field along two perpendicular diameters of the
droplet. The blue, green and red curves correspond to A/¢ = 0.5, 1, and 2 respectively.

physical problem of interest. If this can done without closing the gap, all the “essential”
properties derived from the mean field theory should also hold for the exact theory. We have
no proof, but we believe that it is a very likely scenario. Moreover, because we are dealing
with incompressible states, we expect the mean-field treatment to be self consistent, and
highly accurate at least for the range of g where 7A?p > 1. In Fig. 1 we show the field, b(7),
corresponding to a typical configuration of particles (chosen using the square of a v = 1
Quantum Hall wave-function as a Boltzman weight) for a few values of \; one can see that
b(7) rapidly approaches a configuration independent constant with increasing A.

This argument for the Laughlin states also applies, mutatis mutandis, to the Halperin

15,16

(n,n,m) bilayer states if we properly take into account that in this case we need two

statistical gauge fields'”. This will affect details of our estimates of the fluctuations, but will



not alter them qualitatively.

The Laughlin states can be viewed as the subset of the Jain states with one filled Landau
level. “Hierarchy” states with more than one filled Landau level of composite fermions are
most easily understood in the Fradkin-Lopez? field theory of composite fermion: by attaching
+2p flux quanta to each particle and again decreasing g until the mean field approximation is
valid. In this case, one finds incompressible states corresponding to n filled Landau levels at
filling factors v = n/(2np=+1). The bosonic picture for these hierarchy states is more subtle.
Superficially they look very similar to multi-component states. For example, the Halperin
(3,3,2) has v = 2/5 just as the leading Jain state. The difference is that in the Jain states
there is only one type of composite fermion, so the state has to be fully anti-symmetric. In
the composite fermion approach this is possible because the electrons reside in two different
“effective Landau levels.” The physical meaning of this is that the electrons carry different
orbital spins'®, and this must be incorporated in the composite boson picture. How to do
this was shown in a recent paper!'®, which however also relied on a mean filed approximation.
Combining those methods with the adiabatic approach of this paper provides a field theoretic
understanding not only of the Jain states, but of a larger class of hierarchy states.

From (8) we can also obtain the resistivity tensor at finite k. Specifically, when composite
bosons are condensed in a superfluid state, the screening of the magnetic and electric fields
persists to finite E, so that in equilibrium, and with a A large enough to justify the mean-field
approximation, B (E) =0 and El(l;) = 0. At finite k, B = b = 0, which allows us to compute
E in terms of j from (8), and thus to extract (see Appendix A 3) the conductivity tensor
which we express as,

-,

on(k) . ( = =) (k)2 + O(k") (13)

ny(O)

This can be compared whith the expression derived by Hoyos and Son using Galilean

invarianace?
oy (K
”—Q =1+ 2(k0)? + O(1/w,) (14)
0y (0) 2
where s is the orbital spin of the composite particles. At a phenomenological level we can
match these expressions by adjusting € and A, but within our framework there is no reason

for doing so.
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In this context we note that the flux tubes associated with the electrons do carry angular

momentum. The field angular momentum is
1 — —
Lg:g—z/drb(r-é') (15)

and using & = (1/p)Vb that follows form (8) combined with the expression (6) for the b-field

associated to a point charge, the integration can be done analytically and gives,

L —

g

(16)

m | =
DO

independent of A. This means that the total angular momentum is not changed as we
interpolate between a thin and a thick flux tube. In the Lorentz invariant case, ¢ = 1, we
reproduce the expected value for the orbital spin (the thin vortex limit was given in Ref.
21). We note that in this case the k dependence of ¢ vanish, but this might be purely

accidental.

B. Nonabelian Pfaffian states

In their second paper?, GW also applied their adiabatic approach to a state with a filled

Landau level of bosons,

Uyp = Pf (Zi ) [Gi—=). (17)

% i<j
a state that requires a strong repulsion to be stabilized. By adiabatically concentrating half
of the flux to the particles they ended up with a state at v = 1/2, and a wave function only
differing from (17) by an extra Jastrow factor [[,_;(2; —z;) which is precisely the nonabelian
Moore-Read Pfaffian state??.

2324 with Wen, GW instead started from fermions in zero magnetic

In two later papers
field, and argued that adding a small CS-term would trigger a superconducting instability
giving rise to a p, + ip, paired state. The connection between the QH system and p-wave
paired (spinless) superconductors was later discussed in detail by Read and Green?.

We shall connect to this latter approach, i.e. we consider the adiabatic continuation
from an assumed superconducting state of spinless fermions in zero magnetic field, to the
MR Pfaffian states of composite fermions in a background field at v = 1/2. Clearly the

existence of such a superconducting state is contingent upon the details of the interaction.
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Also, superconductivity is not the only possible state in the small A limit, and in the next
section we shall discuss the other obvious candidate, namely the Fermi liquid.

Much of the interest in the Pfaffian state derives from its nonabelian quasiparticles. The
paired superconductor hosts vortices that binds Majorana states which are at the origin of
the nonabelian statistics®®. If one could verify that these vortices are present also in the full
GLCSM theory, our construction would give a strong argument for having a nonabelian QH
state at ¥ = 1/2 that is not based on an explicit wave function, but rather on a well justified

mean field theory.

V. COMPRESSIBLE STATES

There are at least two circumstances in which compressible states are thought to arise
in quantum Hall systems: 1) The first is a composite fermion metal that occurs when the
net statistical flux exactly cancels the total magnetic flux, i.e. when B for the composite
fermions vanishes. Such a state might exist either in the absence of disorder or in the presence
of weak disorder. 2) The other is the critical state that occurs at a continuous transition
between two quantum Hall plateaus or at the transition between a quantum Hall state and
an insulator. Since, in the absence of disorder?’, these transitions are generically first order,
this state presumably exists only in the presence of suitable disorder. Clearly, for either
of these states, the notion of adiabatic continuity is more subtle than for inccompressible
states. Specifically, even though the mean field treatment is exact in the limit A — oo, it

is a non-trivial issue to what extent the results continue smoothly to the case of large but

finite \.

A. The Composite Fermion Metal

The effect of dynamically fluctuating gauge fields on the composite fermion metal is

2829 Typically, the Fermi liquid state is found to be perturbatively

a complex problem
unstable, so various clever tricks - including an early and highly influential approach by
Nayak and Wilczek®® - have been adopted to address it. It is a potentially revarding challenge
to devise a systematic approach that exploits the twin small parameters, A~! and «.

However, in the presence of disorder, there is an interesting piece of physics that can be
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extracted for large but finite A\. To be explicit, consider the case of most direct experimental
relevance, that is v = 1/2, which for composite fermions implies ¢ = 2. Now, for A = oo,
B = 0, which is to say that the composite fermions see no trace of the external magnetic
field. Consequently, the composite fermion Hall response vanishes, ¢,, = 0. However, this
result cannot be generically correct since the electrons are coupled to the magnetic field,
and indeed it is possible to prove®'3? that, in the special case where the electronic problem
is particle-hole symmetric, the composite fermion o,, = —1/2. This apparent contradiction
can be resolved in an elegant fashion as was shown in Refs. 33 and 34. Clearly, in the
presence of disorder, the electron density is expected to be inhomogeneous, and for weak

disorder, U, and small &, this can be captured in linear response:
(p(k)) = k(k, 0)U(K). (18)

Correspondingly, there will be a spatially varying effective magnetic field, as in (8). It is
still the case that the average field vanishes, but because the average field is correlated with

the particle density, the average of the cross-correlation between field and density is finite,

2

(p*(k)B(k)) = —2mq G(k,0) |(k,0)* |U(K)

(19)

where O is the average over disorder configurations of O.

Indeed, in Refs. 33 and 34 , evidence was presented that this correlation results in an
emergent particle-hole symmetry, i.e. it implies 0,, = —1/2, a conclusion that was reached
earlier in Ref. 35 using a complementary approach. To this we add the control of mean-field

theory and the suppression of large k fluctuations of B that sharpens the analysis.

B. Critical States

A QH state near a plateau transition becomes compressible. In the composite boson
language, this corresponds to a superconductor to insulator transition (SIT), as originally
discussed by Lee, Zhang and one of us®®. In experiments this transition is always studied as a
function of magnetic field at fixed disorder, which in composite boson language corresponds
to studying the SIT as a function of increasing B. Here the critical value B. is related to
the critical magnetic field, B, as B. = q¢op + B..

The important point is that — to the extent that the RPA description is valid, i.e. that

higher order terms in da can be ignored — all the critical properties of the system are those
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of bosons undergoing a field-driven SIT, regardless of the value of g. The implication is that
the critical properties of the system are fundamentally the same for a system undergoing
a field driven SIT, a v = 1 to insulator transition (which corresponds to the case ¢ = 1),
i.e. an integer plateau transition, or a ¥ = 1/3 to insulator transition (which corresponds
to the case ¢ = 3), i.e. a fractional quantum Hall transition. The authors of Ref. 36
referred to this as a “law of corresponding states”, which has since®” been referred to as
“superuniversality”.

To be more explicit, consider what we know of the properties of bosons undergoing a field-
driven SIT. For B < B., the system is superconducting, which means that the composite
boson response functions at small w and T' = 0 are p,, (0, w) = (m* /A, )iw and fa, (0, w) = 0
where 71, is the superfluid density.?® This holds even in the state near the transition so long
as all field-induced vortices (quasi-particles) are localized. Because these vortices can always
diffuse at finite T" by variable-range-hopping, there can be no finite temperature transition.
However, we expect there to be a characteristic temperature scale, T, below which ,5$x(6, 0)
decreases in some exponential manner with decreasing 7. On the basis of general scaling

considerations®

, one expects that both T* and n, vanish upon approach to the critical field
in proportion to (Bc — B)”Z where v and z are, respectively, the correlation length and
dynamical exponent of the field driven SIT.

As can seen from Egs. 11, this behavior of the composite bosons can be directly translated

into statements concerning the electron response functions. At 7" — 0, (ignoring terms of

order w? and higher)

Pa(0,w) = iw (m*/e’n,) (20)

=1

ny( 7°~7) =q,

i.e. no matter how weakly superconducting the composite bosons, the corresponding Hall
resistance is quantized and p,, — 0 as w — 0. Interestingly, the scaling relations imply
that the reactive portion of p,., which is proportional to 1/n, = 1/n, + qee? /m*p, should
diverge in proportion to (B — B.)™* — a prediction that, as far as we know, has never been

tested.

There are general scaling arguments®®4° that suggest that at the critical point of the

SIT, the resistivity tensor takes on a universal value, ﬁgjc) Again from Eq. 11, this implies
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universal values for the resistivity tensor at the point of a quantum Hall transition,

p{)(0,0) = ) (21)
p{(0,0) = g + p.¢)

36,4042 (e _ 1

Arguments based on a speculated self-duality at the transition , suggest that pzr =
and ﬁ;(,fy) = 0. This is consistent with a distinct set of theoretical expectations in the context
of the v = 1 to insulator transition where by particle-hole symmetry one expects Jéﬁ) =1/2

(c) (c) _

1344 gugoest that 049 = 1/2 as well — i.e. that pi = plf) = 1.

and where various arguments

A similar analysis can be carried out on the insulating side of the SIT. The results are
analogous to the above.

More generally, much of this analysis parallels that of Ref. 36. What the present work
adds is to identify a limit, A > /¢, in which the neglect of the higher order terms in da is
justified. Of course, there is no a priori reason to think that no corrections to the critical
properties arise at order 1/A, and these could well depend on ¢ - thus spoiling the superuni-
versal aspects of the results. However, it may give some way to understand that - in several

414445 _ superuniversality seems to be approximately realized,

experimental circumstances
both with regards to measured critical exponents and the value of the resistivity tensor at
criticality. Indeed, inverting the logic of superuniversality, it is possible to translate known
results for the quantum Hall plateau transition into predictions for the properties of the SIT.
Interestingly, recent experiments*? on the SIT in superconducting films have found results —

including apparent particle-vortex self-duality — that are consistent with the corresponding

observations in quantum Hall systems.

VI. FUTURE DIRECTIONS

Until now, we have used the Maxwell terms as a tool to adiabatically connect QH states
to other known states such as superconductors or Fermi liquids. Alternatively we could
imagine using Lgrosnm as a phenomenological theory, where the parameters g and € could
be adjusted to fit e.g. the collective Girvin-Platzman and Kohn modes. At a much more
ambitious level, it is also possible to imagine that Lgrcosn could emerge as an effective field
theory once some high-energy degrees of freedom have been integrated out. It is certainly

plausible that an effective size for the flux attachment, A\ ~ ¢, would emerge when states in



15

higher Landau levels are integrated out.

It is plausible, but not inevitable, that the resulting low energy effective theory will still
have the same U(1) gauge structure. It is, after all, the natural theoretical framework for
topological effects like fractional charge and statistics (and possibly also Hall viscosity or
shift) which should not be affected by short distance cutoffs, and we would thus expect the
crucial current-charge propagator D,y in (4) to remain the same albeit with a renormalized
pole position. Just as in the case with massless photons, where a momentum cutoff typically
introduces a mass and thus a new (longitudinal) degree of freedom, this could happen also
in our case but such a mode is expected to be massive and thus not destroy the infrared
behavior. So, without being explicit, we may assume that we can integrate out high energy
modes in a way that preserves gauge invariance with respect to the statistical gauge fields.
In this sense, Lgrosy with finite g (or a generalized version of it) can be considered to be

a course grained version of the “microscopic” problem.

If we accept Lgrosa as physical - i.e. not just a useful prop in a thought expepriment - we
can use some of the above results to make statements of relevance to the real world. Since, in
the limit A > /¢, the line of analysis provides a justification for a law of corresponding states
relating the behavior of integer and fractional quantum Hall plateau transitions to each other
and to the magnetic field driven SIT, it is reasonable to conclude that it should apply in an
approximate sense so long as A\ 2 . Possibly this rationalizes the considerable emperical
support for the notion of corresponding states. One new result of the analysis in this paper
that warrants experimental consideration is the relation given in Eq. 21 that relates the
reactive portion of p,, at low frequencies to the superfluid density of the composite bosons.
Recall that for a Gallilean invariant system, Kohn’s theorem implies that ny = p in this
relation. Exploring whether, and in what way, n, vanishes upon approach to a quantum

Hall to insulator transition could reveal a central feature of the SIT of the composite bosons.

We have not touched upon the nature of the quasiparticles. In the bosonic description
they are vortex solutions, while in the composite fermionic description they are holes in the
various effective Landau levels. In the latter picture the quasiparticles are naturally endowed
with an orbital spin, but it remains to understand this in the bosonic version. As hinted at
earlier, we might speculate that for the extended fluxtubes there might be a more general

flux attachment procedure that allows for different orbital spins.
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VII. TRIBUTE

Since this paper is dedicated to Frank Wilczek on his 70-ies birthday, we end with two

personal notes.
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Appendix A: Details on the CSM theory
1. Dispersion relation and fluxtube profile

Using the Coloumb gauge V@ =0 to write a; = €9 0;X, and with a polar representation

of the bosonic field, ¢ = \/ﬁew, we can write the gauge Lagrangian to quadratic order as,

€ 1
47Tqua0k2a0 — mx [(kQ)2 - 6k2w2] X (A1)

1 (X, O> ek?w? — k' pk? X

 dmgp pk? ek? ag

where k? = —V?, w? = —0? and we recall that u = ¢*/2mq . Here and in the following we
use the simplified notation &(—k)f(k)E(k) = £f(K)E ete..

To extract correlation functions and response, we introduce a source term
ﬁsource = —aopp + a- j = —app + XJX (A2)

where j, = i€V k;j;. Integrating the gauge field gives the response action

Ry € —H Ix\ 2mq ., -
$(p0) = 5 (4 ) on ) ) ) (A3)

where,
2

G(k,w) = EnE _“MQ — (A4)

Using b = V?p the fluxtube profile is directly extracted from the (, p) component of the

response action,

2mqu? /e 2mq
b(k) = k*y = = A
B) = kX = o e "= G 17 (A5)

which after Fourier transformation gives (6) in the main text.
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2. Response functions

In the translationally invariant case the part of (9) relevant for calculating linear response
can be written as,

dkdw
Srespwa,(SA] :/W

and after integrating over the fluctuation da of the statistical field the electronic response

1 1
(5(5% +ed ALY (6a, +edA,) — 55%1_[%”5%) (A6)

function becomes,
dkdw )
ST A] = / Gyt A6, (A7)
where II,; is expressed in terms of 1I, and IL,,,. This relation is simpler when written in
terms of the inverse matrices D,; = H’l1 etc. (which differ from the standard Minkowski

€

propagator by a factor i ),

DY = D, — DI (A8)
which are related to the resistivities.
The most direct way to get the explicit expressions for D!”, is to write (Al) in the

(ay, ay, ag) basis,

ew? — k? 0 —ipuk, Gy
1 1
£~ (o ) e |||
9= 5\ @y, ao 2 0 ew® — k*  ipk, @y
s —ipk,  ek? ag

and then diagonalize this matrix to get,
DY = —2nq < G(l;, w) 0%
L

D = =D = —2mq G(K,w)e (A9)
ew? —k? | -
W G(k,bd)

The compressibility can directly be read from D% or equivalently from (A3). To extract

DY = —2nq

the resistivity tensor p" = p,,0 + p,,€9, we write the electric field as
€; — iwai — ikiCLO = ZW(DZ]]J + Dlop) — ikiDOljl (AlO)
and then substitute the expressions (A9) and use current conservation, p = V- J to get (11)

in the main text. Note that the term iwa; must be included to get the correct w = 0 result,

since there is a term wwp = —ik - j.
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3. Derivation of Eq. (13)

Putting the first line in (8) to zero yields,
(p) = ikl (AL1)
and substituting this in the second line of (8) we get,
SR P <E>2] e* (1) . (A12)
G
From this we can extract the conductivity,

! k) =14+ (1—¢) <5> +O(K"). (A13)

—0
2mq
Expressing p in A we get (13) in the text.

€E,L' = éi = 27'('(]

Appendix B: What does it mean for gauge field fluctuations to be small?

In order for the mean-field treatment to be accurate, the fluctuations of the statistical
gauge fields must be small. What this means is most readily addressed from the composite
boson perspective.

To begin with, let us examine what this means for the static fields produced as a response
to the (assumed weak) disorder in the system. If the flux of b through any area of a
superconductor exceeds a flux quantum, the energy can be lowered by nucleating a vortex,
which constitutes a strong and highly non-linear response. Conversely, if the magnetic fields
are sufficiently small that the flux through any area is small compared to ¢q, the response
of the composite bosons is correspondingly small and linear. In Fourier space, this leads to
a condition of the form of Eq. 12.

Given a particular realization of the disorder potential Uy, the variations in the composite

particle density and current density can be computed in linear response as

(p(k)) = R(k O)U(E) , (B1)

so, when averaged over impurity configurations, the mean-squared variation of b follows from

(8),

A(R) = | (b) ‘27quk:0)( ‘ |u:? (B2)
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where X is the configuration average of X and

K (k,w) = Rk, w) — Verkie;a(k, w)ky, (B3)

In the same way, we can compute the mean squared magnitude of the fluctuations of the

statistical magnetic field,

6(k,w) = (lbg,, — (br)I*) = 127Gk, w) K (k,w) (B4)

It is not clear that the mean field approximation imposes an equally strong condition on
§(k,w) as on A(k), but we believe that a conservative estimate for it being a good approxi-

mation to treat B as nearly uniform and weakly fluctuating is to require,
A(R) & 6(k) < (¢0)*. (B5)

Thus for large A (small g) all large k fluctuations are effectively quenched. The only remain-
ing issues concern small k fluctuations with kA < 1.

For an incompressible state, #(k,0) ~ k% so again the fluctuations are automatically
small. In other words, for large but finite A\, the mean field theory should be accurate for all

incompressible states, and only be questionable for compressible states at values of £ < 1/A.
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