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We present a field theoretic variant of the Wilczek – Greiter adiabatic approach

to Quantum Hall liquids. Specifically, we define a Chern-Simons-Maxwell theory

such that the flux-attachment mean field theory is exact in a certain limit. This

permits a systematic way to justify a variety of useful approximate approaches to

these problems as constituting the first term in a (still to be developed) systematic

expansion about a solvable limit.
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I. INTRODUCTION

In an article from 1990 Greiter and Wilczek (GW) argued1 that by an adiabatic evolution

one can move from a number of filled Landau levels of electrons, to quantum Hall states

in the Jain hierarchy. The idea is to slowly concentrate part of the magnetic flux in thin

tubes located at the position of the particles. During this process the constant background

magnetic field is diminished (or increased if the flux tubes are directed opposite to the

background field), and the intermediate states are naturally interpreted as a system of

anyons in an effective B field. Clearly this can be thought of as a concrete way to construct

Jain’s composite fermions. In a later paper, GW gave a more formal argument for their

construction using special Hamiltonians with singular interactions for the Laughlin states,

and also generalized the idea to include the nonabelian Moore-Read Pfaffian state2. In a

very recent paper, they have also constructed an interpolating Hamiltonian for the ν = 2/5

Jain state using a technique that might generalize to the other states in the positive Jain

series3.

We now give a field theoretic version of a distinct but strategically similar construction

based on an adiabatic evolution of states of composite particles. As in the GW case, one

limit is an exact rewriting of the Quantum Hall problem, while the other limit is a solvable

point. The difference is that the intermediate states in the GW formulation are states of

anyons in a constant magnetic field, while in our approach the intermediate states are for

bosons or fermions interacting with a mildly fluctuating dynamical gauge field.

Our composite particles are described by the following Ginzburg-Landau-Chern-Simons-

Maxwell (GLCSM) Lagrangian density4

LGLCSM = Lmat + Lg (1)

Lmat = ψ?(i∂0 − a0 + eA0)ψ −
1

2m?
|(~p− e ~A+ ~a)ψ|2 − V [ρ]

Lg =
1

2πq
εµνσaµ∂νaσ +

ε

2g2
~e · ~e− 1

2g2
b2,

where V is a repulsive potential which is a functional of the density, ρ = ψ†ψ (i.e. it may be

non-local in space), ei = −ȧi−∂ia0 and b = εij∂iaj are, respectively, dynamically fluctuating

electric and magnetic fields, and Aµ is the background electromagnetic gauge potential where
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~∇ × ~A = B and eA0(~r) is a one-body potential that may reflect the presence of disorder,

controlled gate potentials, etc..5 Except when explicitly mentioned we shall put ~ = c = 1.

For q = odd we take ψ to be a complex scalar (bosonic) field corresponding to the composite

bosons of MacDonald and Girvin6 in the form introduced by Zhang and us7, while for q =

even, we take ψ to be a Grassman field representing Jain’s composite fermions8 in the form

introduced by Lopez and Fradkin9,10.

In the g → ∞ limit, a0 is a Lagrange multiplier that enforces the “flux attachment”

constraint 2π q ρ = b = εij∂iaj that attaches q flux quanta to each composite particle. In

this limit, with m? set equal to the bare effective mass of the electron, Eq. 1 is nominally

an exact rewriting of the original problem in terms of new composite particles.

However, for finite ε and g, the flux tubes attached to each particle have finite extent,

and so have dynamical consequences beyond encoding the particle statistics. This action no

longer corresponds precisely to the problem of physical interest. However, we shall see that

the approximate mean-field treatment of flux attachment, which has been so successfully

used to analyze various aspects of this problem, is exact in the limit g → 0. Thus, this

construction allows for an explicit field theoretic rendering of an adiabatic evolution, in the

spirit of the GW thought experiment, from the soluble small g limit to the physical limit,

g →∞.

II. EXPRESSION IN TERMS OF EFFECTIVE INTERACTIONS

There are several ways to look at the problem defined by the Langrangian in Eq. (1). We

can integrate out the fluctuating statistical gauge field perturbatively resulting in a renor-

malization of the chemical potential (which we leave implicit) and an effective interaction

between particles represented by a contribution to the effective action of the form

δS = −1

2

ˆ
d~r1d~r2dτ1dτ2jµ(~r1, τ1)D̂µ,ν(~r1 − ~r2, τ1 − τ2)jν(~r2, τ2) + . . . (2)

where D̂ is the bare photon propagator, and . . . represents higher order terms. The photon

in question is massive (gapped) corresponding to the poles in D(~k, ω), the Fourier transform

of D̂, with

ω2 = Ω2 + εk2 (3)
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where k ≡ |~k|, Ω = µ/ε is the energy gap, and µ = g2/2πq is the familiar topological mass11.

Note that in the ε → 0 limit, where the gauge field has no independent dynamics, the gap

tends to infinity.

Despite the fact that the photon is massive, it induces long-range statistical interactions

between the composite particles that come from the off-diagonal part that couples current

and charge,

Di0(~k, ω) = 2πq
iεijkj
k2

G(~k, ω) , (4)

with

G(~k, ω) =
µ2

µ2 + εk2 − (εω)2
, (5)

and, needless to say, it is this very interaction that endows the quasipartiles, i.e. the vortices,

with fractional statistics as explained in the classic paper Ref. 12 by Arovas, Wilczek and

Schrieffer. (The full expression for Dµν is given in Appendix A.) In the limit g →∞, where

G(~k, ω)→ 1, this simply corresponds to attaching q flux quanta to each composite particle,

turning them back into the original electrons.

For our discussion, the most important consequence of including the Maxwell terms in Lg
is that they give a size to the flux tubes bound to the charges. The profile of the statistical

magnetic field associated with a static composite particle at the origin is

b(r) =
q

λ2
K0(r/λ) (6)

where K0 is a modified Bessel function and the scale is given by λ =
√
ε/µ = 2πq

√
ε/g2. At

an intuitive level, in the limit that λ is large compared to the mean spacing between electrons,

i.e. when πλ2 ρ̄ � 1 where ρ̄ is the mean electron density, it should become increasingly

possible to replace the fluctuating statistical magnetic field by its mean, b(~r) → b̄ = 2πqρ̄.

The actual relation between flux and charge is, of course, retarded, but for small ε, so long

as the frequencies characterizing the electron dynamics satisfy the inequality, ω � Ω, this

should be negligible as well. Typically, the energies of most interest are set by the scale of

the Coulomb interaction, Vc ∼ e2
√
ρ̄ ∼ e2/`, where ` ≡

√
φ0/2πB is the magnetic length,

and the second estimate is valid when the filling factor, ν ≡ ρ̄φ0/B ∼ 1.
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For completeness, a derivation of equations (3) to (6) are given in Appendix A. We have

not attempted to renormalize the full coupled GLCSM theory (1) but we do not envision

that would qualitatively change our results.

III. EFFECTIVE GAUGE THEORY

An alternative approach is to integrate out the matter fields, leaving us with a description

fully in terms of the fluctuating gauge fields. This can be done perturbatively in powers of

the amplitude of the fluctuations of the gauge fields about their saddle point values, with

the leading order approximation being a version of RPA theory. The first step is to integrate

the ψ-field to get an effective action for the gauge field a:

Seff [a] = Smat[a− eA] + Sg[a] (7)

and then identify the static saddle point configurations, ā for Seff [a] by solving the classical

equations of motion. Correspondingly, the mean fields, B̃ and Ẽi, felt by the composite

particles, can be computed from Ã ≡ eA − ā. The resulting background gauge fields, are

related to the expectation values of charges and currents by (see Appendix A).

b̄(~k) = εijikiāj = 2πq G(k, 0)

(
〈ρ(~k)〉+

ε

µ
εikiki〈jk(~k)〉

)
(8)

ēi(~k) = ikiā0 − iωāi = 2πq G(k, 0)

(
εik〈jk〉+

iki
µ
〈ρ(~k)〉

)
.

For example, in the composite fermion representation of an ideal quantum Hall state, B̃ is

such that the composite fermion filling factor, ν̃ ≡ ρ̄φ0/B̃ is an integer, while in the composite

boson representation, B̃ = 0. Conversely, for electron filling ν = 1/2, the composite fermions

with q = 2 so B̃ = 0, while the composite bosons with q = 1 experience a field corresponding

to ν̃ = 1. In the g →∞ limit, where G→ 1 and λ→ 0, we regain the usual Chern-Simons

expressions, b̄(~k) = (2πq) 〈ρ(~k)〉 and ēi(~k) = (2πq)εik 〈jk(~k)〉; on the other hand, in the g → 0

limit, since G(k, 0) ∼ (kλ)−2 for kλ� 1, even in the presence of disorder where 〈ρ(~k)〉 and

〈~j(~k)〉 are non-zero for non-zero k, b̄(~k) and ~e(~k) → 0 for k 6= 0, while b̄(~0) = 2πq ρ̄ and

ēi(~0) = 2πqεik〈jk(~0)〉.

The next step is to expand in the fluctuations δa around the saddle point Ã, where for

later convenience we also introduce a probe field, eA → eA + eδA, in order to identify

appropriate response functions. With this, and by a shift δa→ eδA+ δa, we get
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Seff [a] =

ˆ
d~rdτ Lg(ā) + Smat[Ã] +

ˆ
d~rdτ Lg(δa+ eδA) (9)

− 1

2

ˆ
d~r1d~r2dτ1dτ2 δaµ(~r1, τ1) Π̂µν(~r1, ~r2; τ1 − τ2) δaν(~r2, τ2) + . . .

where we use the notation µ = (i, 0) but make no distinction between upper and lower

indices. We have used a real time formulation where Smat = Ematt with Emat the ground-

state energy of the matter fields in the presence of a static background gauge field, Ã. In

the Euclidean formulation Smat = Fmat/T where Fmat is the free energy. Π̂(~r1, ~r2, τ1 − τ2)

encodes the linear response of the matter fields to an external gauge field, and . . . represents

the non-linear response of the same matter fields.

In the translationally invariant case, the Fourier transform of Π̂, Πµν(~k, ω), can be

expressed13 in terms of more familiar response functions as

Πij(~k, ω) = iωσ̃ij(~k, ω)

Πi0(~k, ω) = −Π0,i(~k, ω) = −ikjσ̃ij(~k, ω) (10)

Π00(~k, ω) = κ̃(~k, ω) ,

where σ̃ij is the composite particle conductivity tensor and κ̃ is the density-density response

function that we refer to as the composite particle compressibility since it is equal to the

thermodynamic compressibility as ~k and ω tend to zero.

Needless to say, the state of the matter fields depends not only on their statistics and

their interactions, but also on the values of the static mean-fields, B̃ and Ẽi. However, even

in this case, the spatial variations should be less and less pronounced the larger λ.

Finally, to the extent that the higher order terms in δa can be ignored, it is possible

to integrate over the statistical gauge fluctuations exactly. Taking appropriate derivates of

the resulting expression with respect to the probe fields, δA, allows us to express the final

results for the electron response functions, in particular the resistivity tensor, ρij, in terms

of the composite particle response functions as

ρxx(~k, ω) = ρ̃xx(~k, ω) + iωε

(
q

µ

)
G(k, ω) + . . . (11)

ρxy(~k, ω) = ρ̃xy(~k, ω) + qG(k, ω) + . . .

κ(~k, 0) = κ̃(~k, 0)

[
1 + κ̃(~k)

(
q

µ

)
G(k, 0)

]−1
+ . . .
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where we restored ~ and expressed the results in units of the Klitzing constant h/e2. The

. . . is to remind us that we neglected the effects of higher order terms in δa.

The self-consistency of this approach – i.e. ignoring the higher order terms, . . . – can be

justified only if the the gauge field fluctuations are small, i.e. so long as

〈[b(~k)− b̄(~k)]2〉 � (φ0)
2 . (12)

A more detailed discussion of this condition is given in Appendix B.

IV. APPLICATION TO GAPPED STATES

The basic idea in the GW approach is to adiabatically connect the difficult FQH problem

to a simple solvable one without closing the gap. For Abelian states there are two ways

of doing this. In the composite boson approach the large g limit corresponds to hard core

composite bosons in zero effective magnetic field, i.e. B̃ = 0. Here, so long as the disorder

is not too strong, the composite bosons can be expected to condense into a superconducting

state. Because of the charge flux connection inherited from the Chern-Simons term, the

Meißner effect in the superconductor translates into incompressibility of the Hall liquid,

the zero resistance of the superconductor into the quantized Hall conductance, and flux

quantization into the existence of quasi-particles with fractional charge and statistics7,14.

In the composite fermion picture, the solvable limit is when the effective magnetic field,

B̃ = ν̃−1ρ̄ φ0 with ν̃−1 an integer, n, so that (provided the disorder and the interaction

strengths are not too large) the composite fermions fill n Landau levels. This state8 is

incompressible with a gap that is adiabatically connected to the cyclotron gap, and the

other properties of the fractional quantum Hall state can be inferred by applying versions

of the arguments that have been applied in the integer case.

In order to connect to the analysis of fluctuations in the previous section, we shall here

use the composite boson approach, but also comment on the composite fermion picture.

A. Abelian states

The Laughlin states provide the simplest case where an adiabatic evolution from λ � `

to λ → 0 takes us from a system in which the mean-field approximation is justified to the
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(a) λ = `/2 (b) λ = `

-30 -20 -10 0 10 20 30

1

2

3

4

(c) Cut along x-axis

-30 -20 -10 0 10 20 30

1

2

3

4

5

(d) Cut along y-axis

Figure 1: Contour plots of the statistical b-field configurations for a typical snapshot of 200

electrons in a circular ν = 1 QH state for (a) λ = `/2 and (b) λ = `, where ` is the

magnetic length. (c) and (d) show the b field along two perpendicular diameters of the

droplet. The blue, green and red curves correspond to λ/` = 0.5, 1, and 2 respectively.

physical problem of interest. If this can done without closing the gap, all the “essential”

properties derived from the mean field theory should also hold for the exact theory. We have

no proof, but we believe that it is a very likely scenario. Moreover, because we are dealing

with incompressible states, we expect the mean-field treatment to be self consistent, and

highly accurate at least for the range of g where πλ2ρ̄ > 1. In Fig. 1 we show the field, b(~r),

corresponding to a typical configuration of particles (chosen using the square of a ν = 1

Quantum Hall wave-function as a Boltzman weight) for a few values of λ; one can see that

b(~r) rapidly approaches a configuration independent constant with increasing λ.

This argument for the Laughlin states also applies, mutatis mutandis, to the Halperin

(n, n,m) bilayer states15,16 if we properly take into account that in this case we need two

statistical gauge fields17. This will affect details of our estimates of the fluctuations, but will



9

not alter them qualitatively.

The Laughlin states can be viewed as the subset of the Jain states with one filled Landau

level. “Hierarchy” states with more than one filled Landau level of composite fermions are

most easily understood in the Fradkin-Lopez9 field theory of composite fermion: by attaching

±2p flux quanta to each particle and again decreasing g until the mean field approximation is

valid. In this case, one finds incompressible states corresponding to n filled Landau levels at

filling factors ν = n/(2np±1). The bosonic picture for these hierarchy states is more subtle.

Superficially they look very similar to multi-component states. For example, the Halperin

(3,3,2) has ν = 2/5 just as the leading Jain state. The difference is that in the Jain states

there is only one type of composite fermion, so the state has to be fully anti-symmetric. In

the composite fermion approach this is possible because the electrons reside in two different

“effective Landau levels.” The physical meaning of this is that the electrons carry different

orbital spins18, and this must be incorporated in the composite boson picture. How to do

this was shown in a recent paper19, which however also relied on a mean filed approximation.

Combining those methods with the adiabatic approach of this paper provides a field theoretic

understanding not only of the Jain states, but of a larger class of hierarchy states.

From (8) we can also obtain the resistivity tensor at finite ~k. Specifically, when composite

bosons are condensed in a superfluid state, the screening of the magnetic and electric fields

persists to finite ~k, so that in equilibrium, and with a λ large enough to justify the mean-field

approximation, B̃(~k) = 0 and Ẽi(~k) = ~0. At finite ~k, B̃ = b̄ = 0, which allows us to compute

~E in terms of ~j from (8), and thus to extract (see Appendix A 3) the conductivity tensor

which we express as,

σxy(~k)

σxy(~0)
= 1 +

(1− ε)
ε

(kλ)2 +O(k4) (13)

This can be compared whith the expression derived by Hoyos and Son using Galilean

invarianace20

σxy(~k)

σxy(~0)
= 1 +

s

2
(k`)2 +O(1/ωc) (14)

where s is the orbital spin of the composite particles. At a phenomenological level we can

match these expressions by adjusting ε and λ, but within our framework there is no reason

for doing so.



10

In this context we note that the flux tubes associated with the electrons do carry angular

momentum. The field angular momentum is

Lg =
1

g2

ˆ
d~r b (~r · ~e) (15)

and using ~e = (1/µ)~∇b that follows form (8) combined with the expression (6) for the b-field

associated to a point charge, the integration can be done analytically and gives,

Lg =
1

ε

q

2
. (16)

independent of λ. This means that the total angular momentum is not changed as we

interpolate between a thin and a thick flux tube. In the Lorentz invariant case, ε = 1, we

reproduce the expected value for the orbital spin (the thin vortex limit was given in Ref.

21). We note that in this case the ~k dependence of σxx vanish, but this might be purely

accidental.

B. Nonabelian Pfaffian states

In their second paper2, GW also applied their adiabatic approach to a state with a filled

Landau level of bosons,

ΨMR = Pf

(
1

zi − zj

)∏
i<j

(zi − zj) , (17)

a state that requires a strong repulsion to be stabilized. By adiabatically concentrating half

of the flux to the particles they ended up with a state at ν = 1/2, and a wave function only

differing from (17) by an extra Jastrow factor
∏

i<j(zi−zj) which is precisely the nonabelian

Moore-Read Pfaffian state22.

In two later papers23,24 with Wen, GW instead started from fermions in zero magnetic

field, and argued that adding a small CS-term would trigger a superconducting instability

giving rise to a px + ipy paired state. The connection between the QH system and p-wave

paired (spinless) superconductors was later discussed in detail by Read and Green25.

We shall connect to this latter approach, i.e. we consider the adiabatic continuation

from an assumed superconducting state of spinless fermions in zero magnetic field, to the

MR Pfaffian states of composite fermions in a background field at ν = 1/2. Clearly the

existence of such a superconducting state is contingent upon the details of the interaction.
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Also, superconductivity is not the only possible state in the small λ limit, and in the next

section we shall discuss the other obvious candidate, namely the Fermi liquid.

Much of the interest in the Pfaffian state derives from its nonabelian quasiparticles. The

paired superconductor hosts vortices that binds Majorana states which are at the origin of

the nonabelian statistics26. If one could verify that these vortices are present also in the full

GLCSM theory, our construction would give a strong argument for having a nonabelian QH

state at ν = 1/2 that is not based on an explicit wave function, but rather on a well justified

mean field theory.

V. COMPRESSIBLE STATES

There are at least two circumstances in which compressible states are thought to arise

in quantum Hall systems: 1) The first is a composite fermion metal that occurs when the

net statistical flux exactly cancels the total magnetic flux, i.e. when B̃ for the composite

fermions vanishes. Such a state might exist either in the absence of disorder or in the presence

of weak disorder. 2) The other is the critical state that occurs at a continuous transition

between two quantum Hall plateaus or at the transition between a quantum Hall state and

an insulator. Since, in the absence of disorder27, these transitions are generically first order,

this state presumably exists only in the presence of suitable disorder. Clearly, for either

of these states, the notion of adiabatic continuity is more subtle than for inccompressible

states. Specifically, even though the mean field treatment is exact in the limit λ → ∞, it

is a non-trivial issue to what extent the results continue smoothly to the case of large but

finite λ.

A. The Composite Fermion Metal

The effect of dynamically fluctuating gauge fields on the composite fermion metal is

a complex problem28,29. Typically, the Fermi liquid state is found to be perturbatively

unstable, so various clever tricks - including an early and highly influential approach by

Nayak and Wilczek30 - have been adopted to address it. It is a potentially revarding challenge

to devise a systematic approach that exploits the twin small parameters, λ−1 and ε.

However, in the presence of disorder, there is an interesting piece of physics that can be
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extracted for large but finite λ. To be explicit, consider the case of most direct experimental

relevance, that is ν = 1/2, which for composite fermions implies q = 2. Now, for λ = ∞,

B̃ = 0, which is to say that the composite fermions see no trace of the external magnetic

field. Consequently, the composite fermion Hall response vanishes, σ̃xy = 0. However, this

result cannot be generically correct since the electrons are coupled to the magnetic field,

and indeed it is possible to prove31,32 that, in the special case where the electronic problem

is particle-hole symmetric, the composite fermion σxy = −1/2. This apparent contradiction

can be resolved in an elegant fashion as was shown in Refs. 33 and 34. Clearly, in the

presence of disorder, the electron density is expected to be inhomogeneous, and for weak

disorder, U , and small k, this can be captured in linear response:

〈ρ(~k)〉 = κ(k, 0)U(~k). (18)

Correspondingly, there will be a spatially varying effective magnetic field, as in (8). It is

still the case that the average field vanishes, but because the average field is correlated with

the particle density, the average of the cross-correlation between field and density is finite,

〈ρ?(~k)B̃(~k)〉 = −2πq G(k, 0) |κ(k, 0)|2
∣∣∣U(~k)

∣∣∣2 (19)

where O is the average over disorder configurations of O.

Indeed, in Refs. 33 and 34 , evidence was presented that this correlation results in an

emergent particle-hole symmetry, i.e. it implies σxy = −1/2, a conclusion that was reached

earlier in Ref. 35 using a complementary approach. To this we add the control of mean-field

theory and the suppression of large k fluctuations of B̃ that sharpens the analysis.

B. Critical States

A QH state near a plateau transition becomes compressible. In the composite boson

language, this corresponds to a superconductor to insulator transition (SIT), as originally

discussed by Lee, Zhang and one of us36. In experiments this transition is always studied as a

function of magnetic field at fixed disorder, which in composite boson language corresponds

to studying the SIT as a function of increasing B̃. Here the critical value B̃c is related to

the critical magnetic field, Bc as Bc = qφ0ρ̄+ B̃c.

The important point is that – to the extent that the RPA description is valid, i.e. that

higher order terms in δa can be ignored – all the critical properties of the system are those
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of bosons undergoing a field-driven SIT, regardless of the value of q. The implication is that

the critical properties of the system are fundamentally the same for a system undergoing

a field driven SIT, a ν = 1 to insulator transition (which corresponds to the case q = 1),

i.e. an integer plateau transition, or a ν = 1/3 to insulator transition (which corresponds

to the case q = 3), i.e. a fractional quantum Hall transition. The authors of Ref. 36

referred to this as a “law of corresponding states”, which has since37 been referred to as

“superuniversality”.

To be more explicit, consider what we know of the properties of bosons undergoing a field-

driven SIT. For B̃ < B̃c, the system is superconducting, which means that the composite

boson response functions at small ω and T = 0 are ρ̃xx(~0, ω) = (m?/e2ñs)iω and ρ̃xy(~0, ω) = 0

where ñs is the superfluid density.38 This holds even in the state near the transition so long

as all field-induced vortices (quasi-particles) are localized. Because these vortices can always

diffuse at finite T by variable-range-hopping, there can be no finite temperature transition.

However, we expect there to be a characteristic temperature scale, T ?, below which ρ̃xx(~0, 0)

decreases in some exponential manner with decreasing T . On the basis of general scaling

considerations39, one expects that both T ? and ñs vanish upon approach to the critical field

in proportion to (B̃c − B̃)νz where ν and z are, respectively, the correlation length and

dynamical exponent of the field driven SIT.

As can seen from Eqs. 11, this behavior of the composite bosons can be directly translated

into statements concerning the electron response functions. At T → 0, (ignoring terms of

order ω2 and higher)

ρxx(~0, ω) = iω
(
m?/e2ns

)
(20)

ρxy(~0, ω) = q,

i.e. no matter how weakly superconducting the composite bosons, the corresponding Hall

resistance is quantized and ρxx → 0 as ω → 0. Interestingly, the scaling relations imply

that the reactive portion of ρxx, which is proportional to 1/ns ≡ 1/ñs + qεe2/m?µ, should

diverge in proportion to (B̃ − B̃c)
−νz – a prediction that, as far as we know, has never been

tested.

There are general scaling arguments36,40 that suggest that at the critical point of the

SIT, the resistivity tensor takes on a universal value, ρ̃
(c)
ij . Again from Eq. 11, this implies
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universal values for the resistivity tensor at the point of a quantum Hall transition,

ρ(c)xx(~0, 0) = ρ̃(c)xx (21)

ρ(c)xy (~0, 0) = q + ρ̃(c)xy

Arguments based on a speculated self-duality at the transition36,40–42, suggest that ρ̃
(c)
xx = 1

and ρ̃
(c)
xy = 0. This is consistent with a distinct set of theoretical expectations in the context

of the ν = 1 to insulator transition where by particle-hole symmetry one expects σ
(c)
xy = 1/2

and where various arguments43,44 suggest that σ
(c)
xx = 1/2 as well – i.e. that ρ

(c)
xx = ρ

(c)
xy = 1.

A similar analysis can be carried out on the insulating side of the SIT. The results are

analogous to the above.

More generally, much of this analysis parallels that of Ref. 36. What the present work

adds is to identify a limit, λ � `, in which the neglect of the higher order terms in δa is

justified. Of course, there is no a priori reason to think that no corrections to the critical

properties arise at order 1/λ, and these could well depend on q - thus spoiling the superuni-

versal aspects of the results. However, it may give some way to understand that - in several

experimental circumstances41,44,45 - superuniversality seems to be approximately realized,

both with regards to measured critical exponents and the value of the resistivity tensor at

criticality. Indeed, inverting the logic of superuniversality, it is possible to translate known

results for the quantum Hall plateau transition into predictions for the properties of the SIT.

Interestingly, recent experiments42 on the SIT in superconducting films have found results –

including apparent particle-vortex self-duality – that are consistent with the corresponding

observations in quantum Hall systems.

VI. FUTURE DIRECTIONS

Until now, we have used the Maxwell terms as a tool to adiabatically connect QH states

to other known states such as superconductors or Fermi liquids. Alternatively we could

imagine using LGLCSM as a phenomenological theory, where the parameters g and ε could

be adjusted to fit e.g. the collective Girvin-Platzman and Kohn modes. At a much more

ambitious level, it is also possible to imagine that LGLCSM could emerge as an effective field

theory once some high-energy degrees of freedom have been integrated out. It is certainly

plausible that an effective size for the flux attachment, λ ∼ `, would emerge when states in
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higher Landau levels are integrated out.

It is plausible, but not inevitable, that the resulting low energy effective theory will still

have the same U(1) gauge structure. It is, after all, the natural theoretical framework for

topological effects like fractional charge and statistics (and possibly also Hall viscosity or

shift) which should not be affected by short distance cutoffs, and we would thus expect the

crucial current-charge propagator Di0 in (4) to remain the same albeit with a renormalized

pole position. Just as in the case with massless photons, where a momentum cutoff typically

introduces a mass and thus a new (longitudinal) degree of freedom, this could happen also

in our case but such a mode is expected to be massive and thus not destroy the infrared

behavior. So, without being explicit, we may assume that we can integrate out high energy

modes in a way that preserves gauge invariance with respect to the statistical gauge fields.

In this sense, LGLCSM with finite g (or a generalized version of it) can be considered to be

a course grained version of the “microscopic” problem.

If we accept LGLCSM as physical - i.e. not just a useful prop in a thought expepriment - we

can use some of the above results to make statements of relevance to the real world. Since, in

the limit λ� `, the line of analysis provides a justification for a law of corresponding states

relating the behavior of integer and fractional quantum Hall plateau transitions to each other

and to the magnetic field driven SIT, it is reasonable to conclude that it should apply in an

approximate sense so long as λ & `. Possibly this rationalizes the considerable emperical

support for the notion of corresponding states. One new result of the analysis in this paper

that warrants experimental consideration is the relation given in Eq. 21 that relates the

reactive portion of ρxx at low frequencies to the superfluid density of the composite bosons.

Recall that for a Gallilean invariant system, Kohn’s theorem implies that ns = ρ̄ in this

relation. Exploring whether, and in what way, ns vanishes upon approach to a quantum

Hall to insulator transition could reveal a central feature of the SIT of the composite bosons.

We have not touched upon the nature of the quasiparticles. In the bosonic description

they are vortex solutions, while in the composite fermionic description they are holes in the

various effective Landau levels. In the latter picture the quasiparticles are naturally endowed

with an orbital spin, but it remains to understand this in the bosonic version. As hinted at

earlier, we might speculate that for the extended fluxtubes there might be a more general

flux attachment procedure that allows for different orbital spins.
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Appendix A: Details on the CSM theory

1. Dispersion relation and fluxtube profile

Using the Coloumb gauge ~∇ ·~a = 0 to write ai = εij∂iχ, and with a polar representation

of the bosonic field, ψ =
√
ρeiθ, we can write the gauge Lagrangian to quadratic order as,

Lg =
1

2πq
a0k

2χ+
ε

4πqµ
a0k

2a0 −
1

4πµ
χ
[
(k2)2 − εk2ω2

]
χ (A1)

=
1

4πqµ

(
χ, a0

) εk2ω2 − k4 µk2

µk2 εk2

 χ

a0

 ,

where k2 = −∇2, ω2 = −∂2t and we recall that µ = g2/2πq . Here and in the following we

use the simplified notation ξ(−~k)f(~k)ξ(~k) = ξf(~k)ξ etc..

To extract correlation functions and response, we introduce a source term

Lsource = −a0ρ+ ~a ·~j = −a0ρ+ χjχ (A2)

where jχ = iεijkijj. Integrating the gauge field gives the response action

S(ρ, χ) =
1

2

(
jχ, ρ

) ε −µ

−µ εω2 − k2

jχ
ρ

 2πq

µk2
G(~k, ω) (A3)

where,

G(~k, ω) =
µ2

(εω)2 − µ2 − εk2
. (A4)

Using b = ∇2ρ the fluxtube profile is directly extracted from the (χ, ρ) component of the

response action,

b(k) = k2χ =
2πqµ2/ε

k2 + µ2/ε
ρ =

2πq

(kλ)2 + 1
ρ (A5)

which after Fourier transformation gives (6) in the main text.
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2. Response functions

In the translationally invariant case the part of (9) relevant for calculating linear response

can be written as,

Sresp[δa, δA] =

ˆ
d~kdω

(2π)4

(
1

2
(δaµ + eδAµ)Πµν

g (δaν + eδAν)−
1

2
δaµΠµν

matδaν

)
(A6)

and after integrating over the fluctuation δa of the statistical field the electronic response

function becomes,

Srespel [δA] =

ˆ
d~kdω

(2π)4
δAµΠµν

matδAν . (A7)

where Πel is expressed in terms of Πg and Πmat. This relation is simpler when written in

terms of the inverse matrices Del = Π−1el etc. (which differ from the standard Minkowski

propagator by a factor i ),

Dµν
el = Dµν

mat −Dµν
g (A8)

which are related to the resistivities.

The most direct way to get the explicit expressions for Dµν
g , is to write (A1) in the

(ax, ay, a0) basis,

Lg =
1

2

(
ax, ay, a0

) 1

2πqµ


εω2 − k2 0 −iµky

0 εω2 − k2 iµkx

iµky −iµkx εk2



ax

ay

a0

 ,

and then diagonalize this matrix to get,

Dij = −2πq
ε

µ
G(~k, ω) δij

Di0 = −Di0 = −2πq G(~k, ω)εij
ikj
k2

(A9)

D00 = −2πq
εω2 − k2

µk2
G(~k, ω)

The compressibility can directly be read from D00 or equivalently from (A3). To extract

the resistivity tensor ρij = ρxxδ
ij + ρxyε

ij, we write the electric field as

ei = iωai − ikia0 = iω(Dijjj +Di0ρ)− ikiD0ljl (A10)

and then substitute the expressions (A9) and use current conservation, ρ̇ = ~∇ ·~j to get (11)

in the main text. Note that the term iωai must be included to get the correct ω = 0 result,

since there is a term iωρ = −i~k ·~j.
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3. Derivation of Eq. (13)

Putting the first line in (8) to zero yields,

〈ρ〉 =
ε

µ
εikiki〈jk〉 (A11)

and substituting this in the second line of (8) we get,

eEi = ēi = 2πq
1

1 +
(
k
µ

2
) [1 + ε

(
k

µ

)2
]
εik〈jk〉 . (A12)

From this we can extract the conductivity,

1

2πq
σxy(~k) = 1 + (1− ε)

(
k

µ

)2

+O(k4) . (A13)

Expressing µ in λ we get (13) in the text.

Appendix B: What does it mean for gauge field fluctuations to be small?

In order for the mean-field treatment to be accurate, the fluctuations of the statistical

gauge fields must be small. What this means is most readily addressed from the composite

boson perspective.

To begin with, let us examine what this means for the static fields produced as a response

to the (assumed weak) disorder in the system. If the flux of b̄ through any area of a

superconductor exceeds a flux quantum, the energy can be lowered by nucleating a vortex,

which constitutes a strong and highly non-linear response. Conversely, if the magnetic fields

are sufficiently small that the flux through any area is small compared to φ0, the response

of the composite bosons is correspondingly small and linear. In Fourier space, this leads to

a condition of the form of Eq. 12.

Given a particular realization of the disorder potential U~k, the variations in the composite

particle density and current density can be computed in linear response as

〈ρ(~k)〉 = κ̃(~k, 0)U(~k) + . . . , (B1)

〈ji(~k)〉 = −iσ̃ij(~k, 0)kjU(~k) + . . . .

so, when averaged over impurity configurations, the mean-squared variation of b̄ follows from

(8),

∆(~k) ≡
∣∣〈b~k〉∣∣2 =

∣∣∣2πqG(k, 0)K̃(k, 0)
∣∣∣2 ∣∣U~k∣∣2 (B2)
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where X is the configuration average of X and

K̃(k, ω) = κ̃(k, ω)−
√
ελkiεijσ̃jk(~k, ω)kk . (B3)

In the same way, we can compute the mean squared magnitude of the fluctuations of the

statistical magnetic field,

δ(~k, ω) ≡ 〈 |b~k,ω − 〈b~k,ω〉|
2〉 = |2πqG(k, ω)|2K̃(k, ω) (B4)

It is not clear that the mean field approximation imposes an equally strong condition on

δ(~k, ω) as on ∆(~k), but we believe that a conservative estimate for it being a good approxi-

mation to treat B̃ as nearly uniform and weakly fluctuating is to require,

∆(~k) & δ(~k) � (φ0)
2 . (B5)

Thus for large λ (small g) all large k fluctuations are effectively quenched. The only remain-

ing issues concern small k fluctuations with kλ . 1.

For an incompressible state, κ̃(k, 0) ∼ k2, so again the fluctuations are automatically

small. In other words, for large but finite λ, the mean field theory should be accurate for all

incompressible states, and only be questionable for compressible states at values of k . 1/λ.
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