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Abstract

The repulsive Hubbard model has been immensely useful in understanding
strongly correlated electron systems and serves as the paradigmatic model of
the field. Despite its simplicity, it exhibits a strikingly rich phenomenology
reminiscent of that observed in quantum materials. Nevertheless, much of
its phase diagram remains controversial. Here, we review a subset of what
is known about the Hubbard model based on exact results or controlled ap-
proximate solutions in various limits, for which there is a suitable small pa-
rameter. Our primary focus is on the ground state properties of the system
on various lattices in two spatial dimensions, although both lower and higher
dimensions are discussed as well. Finally, we highlight some of the important
outstanding open questions.
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1. INTRODUCTION

The Hubbard model (1) has come to play a paradigmatic role in the theory of electronic correla-
tions in quantum materials where interactions play an essential role. Its centrality in the quantum
statistical mechanics of interacting fermions is comparable with that of the Ising model in classical
statistical mechanics, yet almost sixty years after it was first described, there remain unsettled basic
questions, even concerning the actual phases that arise for various lattice geometries. Conversely,
the more progress that is made in obtaining theoretical solutions, the clearer it becomes that
this simple model can exhibit a startling array of phases and regimes, many of which have clear
parallels with observed behaviors of a wide variety of complex materials. For instance, there is
compelling evidence that ferromagnetism, various forms of antiferromagnetism, unconventional
superconductivity, charge-density waves (CDWs), electronic liquid crystalline phases, and topo-
logically ordered phases (e.g., spin liquids), among other phases, occur in specific realizations of
the Hubbard model.

It is our purpose here to summarize, to the extent possible in a brief article, what is established
concerning the quantum phases of the Hubbard model. Although some discussion of the model
on small clusters and in one dimension (4 = 1) is included for pedagogic purposes, the focus is
primarily on the model on regular lattices (i.e., in the absence of disorder) in 4 = 2 and 4 = 3.
Likewise, though we include some discussion of finite temperature results, our focus is on ground
state properties, mostly to keep the scope of the article manageable. In the strong coupling limit
and in the special case of one electron per site, the Hubbard model reduces to an insulating quan-
tum Heisenberg antiferromagnet, which itself can exhibit many different and fascinating quantum
phases; these are covered to an extent but mostly we focus on phases that occur for generic electron
densities. Furthermore, we have mostly focused on equilibrium properties of the model, especially
those essential thermodynamic correlation functions that characterize distinct quantum phases of
matter.

Even within this limited scope, we have restricted ourselves to controlled solutions—by which
we mean either exact results (typically obtained using numerical methods of various sorts) or cases
in which there is an approximation scheme that becomes asymptotically exact as an explicitly
identified small parameter tends to zero. This has led us to omit discussion of a variety of new
and powerful mean-field methods, including dynamical mean-field theory and dynamical cluster
approximations, which have profitably been applied to this problem. Fortunately, a companion
paper to the present paper (2, also in this volume) has these approaches as its complementary
focus.

We also do not explore the relation between the Hubbard model and experiments in any par-
ticular quantum material. Nonetheless, much of the modern resurgence of interest in this model is
a consequence of the role it has played in the study of high-temperature superconductivity in the
cuprates. Originally, this connection was suggested on rather basic phenomenological grounds (3,
4)—the parent state in the cuprates is a quasi-2D (two-dimensional) antiferromagnetic (AF)
insulator, and the Hubbard model on the square lattice is the simplest possible model of a doped
antiferromagnet. It is thus striking that many of the properties of this model that have been
uncovered in subsequent theoretical studies resemble essential features of the electronic states of
the cuprates that have been revealed by experiments, viz.: (#) The Hubbard model (at least for
a range of U not too large) exhibits a dome of d-wave superconductivity throughout a range of
doping. () It exhibits AF long-range order when undoped. (¢) It evolves to an effectively weakly
coupled Fermi liquid state upon heavy doping. (4) It exhibits a tendency toward formation of
long-period unidirectional CDW and spin-density wave (SDW) orders (stripes) in the same
range of doping in which superconducting correlations (at least locally) appear strongest. Indeed,
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as in the materials themselves, the relation between density-wave and superconducting orders
appears more complicated than the collocation competing orders might suggest, leading to
their description as intertwined. As has been noted earlier (5), this congruence in behavior is
sufficiently striking that it encourages the view that the solution of the Hubbard model can, in
some sense, be considered to be the solution of the high 7, problem.

2. THEOREMS
The Hubbard model describes itinerant, interacting electrons of spin-3 hopping on a set A of
spatially localized orbitals. The Hamiltonian is written as

o t ot
H==3"2 tych ey +UD ey, L.

ijeEA o ieA

where the hopping #; is often restricted to nearest-neighbor sites, i.e., #;; =t} =14, _; |, but gen-
eralizations can include further neighbor hopping and/or Peierls phase factors to account for
nonzero magnetic flux. Unless explicitly noted, we confine our attention to the zero flux (time-
reversal invariant) case. Furthermore, we consider only regular, connected lattices; i.e., we do not
consider the effects of disorder. The electron filling is defined to be » = N/|A| where |A] is the
total number of sites and N is the number of electrons. The half-filled band, with one electron per

site, corresponds to z = 1.

2.1. Continuous Global Symmetries

The model’s most apparent symmetry is a global U(Q2), under which ¢, - U__ ¢,
with U € UQ2) being the same matrix on all sites i Separating U(2) = U(1) x SU(2),
the global U(1) invariance reflects global charge conservation, hence the total particle number
N =Y, cl ¢ isagood quantum number. This symmetry may be spontaneously broken in a

1,0 10 710 . 3
superconducting state. The global SU(Z) invariance reflects spin isotropy, hence $* and S are
good quantum numbers, with § = D cm 0, ¢;,- Global SU(2) invariance of the ground state
is spontaneously broken in any ferromagnetic or AF state.

2.2. Particle-Hole Symmetry
On a bipartite lattice, the transformation ¢;,, — ; ler |, where 1, = % on alternate sublattices, results
in the transformed Hamiltonian,

ZZtl][IUC]U+UZ[ch;ifil[iT+U(|A|_N)' 2.

ijeA o ieA

At half-filling, N = |A[, the model is particle—hole symmetric. In such cases, the system is
proven (6) to be of uniform density, with (¢}, Cjo) = 1 ; if i and j are on the same sublattice (with
no implicit sum on o).! However, this does not preclude either magnetic or CDW order in the
thermodynamic limit.

The SU(2) spin symmetry of the Hubbard model is generated by the operators,

A 1
Z Gy» =@M, and &= 5 > (chey — ), 3.

i

"The conditions for uniform density from Reference 6 are much more general and include the possibility of
site-dependent and even nonlocal interactions.
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all of which commute with H as well as with the number operator N = Zw ¢ ¢, - A second,

hidden SU(2) symmetry (7, 8) is present on bipartite lattices and is generated by the pseudospin
operators,

= Z 1; C;rTCL’ j7 = (JA+)T7 and jz = % (N - |A|)’ 4.

where 7; = £1 on the A and B sublattices, respectively. These operators also satisfy the SU(2)
algebra [J*,J’] = i€, J”. Although the J*’s do not commute with H and N as do the generators
S¥ for physical spin, they are eigenoperators in that

[R,J"] = (U — 21)J* 5.

and [IZ J Z] = 0, where K=H- ,LLN is the grand canonical Hamiltonian (u is the chemical poten-
tial). Thus, at half-filling, when p = %U, the Hubbard model has an additional SU(2) symmetry.
Hence, the global symmetry group at half-filling is SO(4) = SU(2) x SU(2)/Z,, where the Z, is
associated with the fact that J* + $* has to be an integer when |A] is even and half-integer when

|A| is odd (9).

2.3. Lieb’s Theorem

In 1989, Lieb (10) proved that for the attractive Hubbard model, with U < 0 (and allowing more
generally for site-dependent U, < 0V i), if the total number of electrons N is even, then the ground
state of H is unique and is a total spin singlet, i.e., with S = 0. A corollary is that if U > 0 (inde-
pendent of i), A is bipartite with |A| > |B|, and N = |A| is even, then the ground state of H has
total spin S = 1(JA| — |B|) and degeneracy 2S + 1 (i.e., spin degeneracy is the only degeneracy).
A convenient example is the so-called Lieb lattice, in which the A sublattice is a square lattice
and there is a B sublattice site at the center of every link (i.e., the CuO; lattice of the Emery
model; 4). Lieb’s proof extends the Perron—Frobenius argument deployed in one-dimensional
(1D) systems (11) by invoking a tool known as spin-space reflection positivity. The theorem then
entails a hierarchy of lowest energy levels in different total spin sectors, E,(S) < E,(S + 1), where
Se {%(|A| —|BJ),..., %|A| — 1}. For bipartite lattices, the conditions of Lieb’s theorem guarantee
a ferromagnetic ground state when there is a sublattice imbalance, i.e., |A| # |B|.

2.4. Thouless-Nagaoka—Tasaki Theorem

An extension by Tasaki (12, 13) of the celebrated Nagaoka theorem (14), which in fact was orig-
inally proven in a more restricted form by Thouless (15), states the following: For the Hubbard
model with U = oo and arbitrary nonnegative ¢, i and with N = |A| — 1, the ground state has total
spin S = 1N and degeneracy 25 + 1. This establishes that there is a ferromagnetic ground state
in the U — oo limit when the system is one electron shy of half-filling. No rigorous extension of
these results to finite doped hole density has yet been achieved.

2.5. The Lieb-Schultz-Mattis—Oshikawa—Hastings Theorem

The Lieb-Schultz—Mattis—Oshikawa—Hastings (LSMOH) theorem states, in essence, that “when
the filling 7 is not an even integer, a unique, gapped, featureless, insulating ground state is
impossible.” It is useful to first consider the sort of behavior that is ruled out by the theorem but
which may pertain if the conditions of the theorem are not met, examples of which are shown
in Table 1. The Hubbard model in 4 = 1 is a band insulator when » = 0 or » = 2, but has a
Mott phase for n = 1 that preserves all symmetries and with no adiabatic connection to a band
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Table 1  Possible phases consistent with the LSMOH theorem

n ¢ 27* UniqueP Gapped Featureless® Insulator Exampled
v v v v v Not possible
v v X v X Metallic
v v v X v Density wave
v v X v v Gapless spin liquid
v X v v v Gapped spin liquid
X v v v v Band insulator

*A checkmark in the first column indicates that the number of electrons per site is not an even integer.

YA checkmark in this column indicates whether a single, nondegenerate ground state on the torus is possible.

€A checkmark in this column indicates that there is no spontaneous symmetry breaking of any kind (this does not exclude
topological order).

4The last column names a phase that is consistent with the listed properties, if any.

Abbreviation: LSMOH, Lieb-Schultz-Mattis—Oshikawa-Hastings.

insulator. More generally, the theorem applies to models with any number of conserved flavors;
in such a case, it states that a featureless, gapped ground state is impossible if the filling of at least
one flavor per unit cell is a noninteger.

The original argument, due to Lieb, Schultz, and Mattis (LSM; 16), applied to an N-site, spin-S
XXZ spin chain with periodic boundary conditions and zero total magnetization. LSM showed
that if the ground state | W) is a state with crystal momentum K|, i.e., if 7| ¥,) = e%o| @),
where 7 is the lattice translation operator and we work in units where the lattice spacing is # = 1,
then the application of the spin twist operator,

X 2mi N 4
V=exp(%2j$;), 6.
=1

results in a state |W )= V| W,) with crystal momentum K, =K+ 27S, satisfying
(¥, |1‘:IXXZ | W, ) =E,+ O1/N). For exp (27iS) = —1, the states are of different crystal mo-
mentum and, thus, orthogonal. Thus, in the thermodynamic limit any ground state | W, ) must be
degenerate (or gapless). The theorem was extended to more general 1D systems in Reference 17.
Although the LSM argument does not apply in dimensions d > 1, it was extended by
Oshikawa (18) and subsequently rigorized by Hastings (19) to d-dimensional systems with pe-
riodic boundary conditions (i.e., on a d-torus) and a finite excitation gap. The line of reasoning,
inspired by Laughlin’s argument for quantization of the Hall conductivity in two dimensions (20),
focuses on the consequences of adiabatic ¢ = 27 U(1) flux threading through one of the toroidal
cycles, followed by a pullback to the original U(1) flux state. In the thermodynamic limit, starting
with an initial ground state | ¥,(¢ = 0)), this procedure results in a low-energy state | ¥, (¢ = 0))
(similar to the LSM construction), which becomes degenerate with the ground state in the ther-
modynamic limit. The analysis can be applied to bosonic systems as well (see, e.g., 21, 22).

3. THE HUBBARD SQUARE AND ITS EXTENSIONS

The Hubbard square—that is, the four-site square molecule of Hubbard sites—is simple enough
that its spectrum can be computed analytically (23), but already complicated enough that it
hosts a variety of nontrivial many-body effects that shed considerable light on the more general
problem (24). The symmetry (i.e., total spin S and transformation properties under the spatial
symmetries of the square) of the ground state for the model with nearest-neighbor hopping, #, in
different ranges of U/t and for different values of the electron number N between 0 and 4 is given

www.annualreviews.org o The Hubbard Model
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Table 2 Character of the ground state of the positive U Hubbard square

N N Symmetry | Range of U/t EyforU<xt Eyfor U >t
0 0 1 any U 0 0
1 172 1 any U —2t —2t
2 0 1 any U —4t + U4 — (5/128)U2 /¢ —2V2r — 4% U
3 172 %,y U < Unag —4t + UJ2 — (7/128) U2 /¢ ND

3/2 1 Unag < U ND —2t
4 0 @ =) any U —4t 4+ 3U/4t — (13/128) U2 /¢ —-122/U

Abbreviation: ND, no data.

in Table 2. In the absence of next-nearest-neighbor hopping, # = 0, the model is particle-hole
symmetric and the analogous results for 4 < N < 8 are easily obtained.

The most remarkable feature of this table is that the ground state for N =4 and U > 0 trans-
forms nontrivially under spatial symmetries—it transforms according to the Bi, representation of
the Dy spatial symmetries of the square (i.e., it transforms like > — ?). It is easy to prove (25)
that no noninteracting model on the square can have this property; i.e., this is an intrinsically new
effect of strong correlations. It is thus worthwhile to understand its origin.

It is possible to understand this property in the weak coupling limit. We start by considering
the single-particle states for U = 0. Treating the square as a four-site ring, all eigenstates may
be labeled by a Bloch wave vector k. Provided |#'| < |#|, the single-particle states are ordered in
energy such that the lowest (k = 0) state has energy —2¢ — ¢, the next are the two-fold degenerate
(k = £ /2) with energy +¢ that transform as x and y, and the highest (k = ) state has energy
2t — ¢ and transforms as xy. Thus, for U = 0, the ground state with N = 4 is any state with two
electrons (of opposite spin) in the £ = 0 state, and two electrons in either of the first excited
states; it is thus six-fold degenerate. However, they can be expressed uniquely as states of given
symmetry: There is a triplet of § = 1 states that transform trivially under spatial transforma-
tions (rotations and mirror reflections), and three S = 0 states, one (with one electron each in
k = £ /2) that transforms trivially under spatial transformations with two that are superpositions
of states with two electrons either in # = 7 /2 or k¥ = —n /2, which transform either as xy or as

x? — y%. Of these, the one that is adiabatically connected to the U > 0 ground state is the latter,

L[t too gt t ot
[Wep)= 75 [‘n/z,Tfn/z,¢ - f—n/2,¢f—n/z,¢] 160, | 0)- 7.

Given that there are no degeneracies once symmetry is imposed, it is clearly possible to incorpo-
rate the effects of small U by straightforward perturbation theory. Hund’s first rule, which in this
context would be expected to be derivable in first-order perturbation theory, would imply that the
triplet state would be the most likely candidate ground state. Indeed, for any Slater determinant
state, the first-order energy is 4UN;N,, where N, is the number of electrons with given spin
polarization, and this takes its minimal value of 3U/4 in a triplet state with three electrons of one
polarization and one electron of the opposite polarization. However, manifestly |W,._) is not
a Slater determinant, and indeed it is easy to show that, to first order in U, it is degenerate with
the triplet state. Computing the second-order correction requires a bit of algebra, but the result
(given for # = 0 in Table 2) is that the singlet state has the lower energy.

This is a rare example of a case in which Hund’s rule is violated. Note that the cause of this is
a subtle quantum effect—the ground state in the U — 0 limit is a highly entangled state that does
not reduce to a single Slater determinant.
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The other case that has interesting structure is the N = 3 square. For U = 0, the ground
state is four-fold degenerate, but this degeneracy is fixed by symmetry and, hence, survives to
nonzero U. Specifically, the ground state has S = 1/2 and # = +7/2; i.e., it transforms under
the spatial symmetries as (x, y). However, for large U, we know from Nagaoka’s theorem that the
ground state must have S = 3/2. Because parallel spins do not interact in the Hubbard model,
this state is the noninteracting (Slater determinant) state with one electron in each of ¥ = 0 and
47 /2; the resulting state is manifestly invariant under the spatial symmetries. It requires a lit-
tle algebra to derive the critical value of U = Uy, that separates the two regimes; for ¢ = 0,
Unig = 4Q2 + V7)1 ~ 18.6t.

It is also interesting to consider an ensemble of Hubbard squares. If they can exchange parti-
cles, we can ask the following question: If we have a total of N electrons (with 0 < N < 8) and
two molecular Hubbard squares on which to place them, what is the lowest energy state? Not
surprisingly, for N = 8 it is best to put four electrons on each molecule, whereas for N = 7 it is
best to place three on one molecule and four on the other. However, for N = 6, the result is more
interesting. We define the pair binding energy,

A, =2EQ) - E@) — EQ), 8.

where F() is the n-electron ground state energy of a molecule. A, is the energy difference between
placing three electrons (one doped hole) on each molecule, or two electrons (one pair of doped
holes) on one and four electrons (no holes) on the other. A,, is negative for U larger than a certain
value U, as one might have expected, but it is positive for U < U,; i.e., there is an effective induced
attraction between two doped holes. (For # = 0, U, ~ 4.584t.)

The existence of a range of U > 0 in which A, > 0 constitutes the simplest paradigmatic
example of a system in which an effective attraction—indeed induced pairing—arises from purely
repulsive microscopic interactions. Ultimately, it is related to the anomalous stability of the
state with four electrons on one molecule. In the weak coupling limit, the pair binding can be
computed perturbatively as A, = A U?/t + ..., where A4 is a function of #/¢ with 4 = 1/32 for
' = 0. One can also consider the separate contributions of the kinetic energy (hopping term) and
the interaction energy (Hubbard term) to A,. In the weak coupling limit, pair formation is associ-
ated with a cost in kinetic energy that is more than compensated by a reduced cost in repulsion, but
for U, > U> U* (where U* ~ 2.457 tfor ¢ = 0), A, gets a positive contribution from a lowering
of the kinetic energy and a negative contribution (disfavoring pair binding) from the interactions.
An intrinsically strong coupling mechanism of “kinetic-energy driven pairing” is thus in play for
Ur<U<U,.

One final lesson from this concerns the preferred symmetry of a pairing order parameter. Con-
sider the operator & = 3~ i ®:j ¢y ¢, that creates the two-electron ground state by acting on the
undoped (four electron) ground state. This operator can be viewed as creating a Cooper pair of
doped holes. As first observed by Scalapino & Trugman (24), the symmetry properties of & are
determined by the difference of the spatial symmetries of two and four electron ground states. For
the case tabulated above valid for |#| < [, this means that this operator has d,. 2 symmetry.
This illustrates the robust preference for d-wave superconductivity that is a generic feature of the
Hubbard model on the square lattice.

Although the Hubbard square is particularly illuminating as it is analytically solvable, it is worth
noting that other small clusters—solvable numerically—can exhibit similar behaviors, and in par-
ticular regime pair binding arises even when U > 0. Examples of this include the Hubbard model
on the tetrahedron (in which pair binding persists for all U), cube, and truncated tetrahedron (26).

Distinct phases of matter—and in particular spontaneously broken symmetries—do not arise in
finite Hubbard clusters. However, in certain circumstances, the properties of an extended system
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consisting of weakly coupled clusters can be inferred from the properties of an isolated cluster in a
controlled expansion in powers of the (assumed small) intercluster couplings. Such an analysis was
carried through for a 2D “checkerboard” array of Hubbard squares in References 27-33. Here,
the complexity of the various regimes found for the isolated square implies the existence of a still
richer phase diagram in the U — x plane. Not surprisingly, in the range of U for which there is pair
binding on the single square, there arises a substantial portion of this phase diagram in which the
ground state is a d-wave superconductor (SC)—although as a consequence of the reconstructed
band structure implied by the four-site unit cell, the line of nodes fails to intersect the Fermi sur-
face, and hence the quasiparticle spectrum is fully gapped. In addition, there is a variety of possibly
insulating CDW and SDW states and several distinct Fermi liquid phases, among which is one
with spin-3, charge e quasiparticles (which is thus not adiabatically connected to any free electrons
state) and one with quasiparticles with spin-1, charge ¢, and an additional orbital pseudospin 1.

4. ONE DIMENSION

In a tour de force of mathematical physics, the 1D Hubbard chain was exactly solved by the Bethe
ansatz method? (34). For this as well as for more general 1D problems, such as the Hubbard model
on various relatively narrow-width ladders and cylinders, much more is known than for higher-
dimensional cases. Particularly powerful numerical methods can be deployed, as discussed in
Section 6.1 below. In addition, a weak coupling renormalization group (RG)—known colloquially
as g-ology in reference to the various couplings g,—leads to a rich set of results involving multiple
intertwined orders in the sense that the interactions that promote CDW, SDW, and singlet and
triplet superconducting correlations evolve in a complex, interrelated fashion under RG.

Furthermore, at long distances and low energies, the properties of all such 1D systems are
describable by a limited set of free boson conformal field theories; i.e., the physics is that of a
small number of weakly interacting, linearly dispersing bosonic collective modes. Distinct quan-
tum phases of matter are generically classified by possible discrete broken symmetries, and by the
number of gapless modes (i.e., the central charge) and the quantum numbers (spin, charge, crystal-
momentum, etc.) associated with each such mode (35, 36). The relation between the microscopic
fermionic degrees of freedom and the bosonic modes, called bosonization, can be complicated in
specific cases, but is in principle understood in general.

Other than some of the numerical results, this intellectual block is relatively old and well
known—much of it dating from the 1970s—and so is not reviewed here. For a modern treatment,
see the monograph by Giamarchi (37).

5. ASYMPTOTICALLY EXACT RESULTS IN SPECIAL LIMITS
5.1. Weak Coupling Limit

In this section, we consider the instabilities of the Hubbard model in 4 > 1 in the weak coupling
limit U/t < 1. The goal is to express the properties of the system starting from the band structure
that results from diagonalizing the Hamiltonian with U = 0. Corrections to all quantities can be
expressed as an asymptotic series in U/t

5.1.1. Background. Clearly, at zero temperature, the radius of convergence of this series
is zero, because the behavior is qualitatively distinct for U/t — 0~ and U/t — 0*: When

2The Bethe ansatz solution allows one to calculate the spectrum and the many-body eigenstates of the 1D
Hubbard model. Calculating correlation functions is more difficult.
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U/t — 07, Bardeen—Cooper—Schrieffer (BCS) mean-field theory is asymptotically exact, and
there is a superconducting instability below a characteristic scale T, ~ exp [—1/(p|U])], where
p is the density of states at the Fermi energy. The superconductivity is described by an order
parameter A, which has only one sign on the entire Fermi surface, so that (A)-q >~ max(A)gg,
where (o). denotes an average over the Fermi surface. Such a superconducting state is termed
conventional as it arises in many elemental metals in which the pairing mechanism is the
electron—phonon coupling. When U/t — 07, as we now argue, there is also a superconducting
instability, but with two qualitatively different features. First, the superconductivity itself sets in
below a parametrically lower scale 7., ~ exp[—1/(ap?U?)] < T, where « is an order unity
constant that depends on the entire band structure of the system. Second, the superconducting
behavior is unconventional in the sense that (A)g < Max(A)gg.

These distinctions imply that the ground states on either side of U/¢ = 0 are not adiabatically
connected. The point U/t = 0 is a peculiar multicritical point corresponding to a free Fermi gas.
These sharply distinct asymptotic behaviors are also more directly manifest in perturbation theory
at finite frequency: A subclass of perturbative corrections represented diagrammatically by ladders
in the particle—particle (BCS) channel are logarithmically divergent so long as either time-reversal
symmetry or inversion symmetry are present in the normal state.

In a seminal paper, Kohn & Luttinger (KL; 38) explored how superconductivity arises from
repulsive interactions. They considered a three-dimensional electron gas with weak short-ranged
repulsive interactions, for which they identified an instability to an unconventional superconduct-
ing state with nonzero Cooper pair angular momentum. In particular, they emphasized the role
played by Friedel oscillations associated with the existence of a sharp Fermi surface. Below, we
provide a modern discussion of the problem in the language of the RG, and show that (in con-
tradistinction to the KL analysis) the structure of the particle-hole susceptibility at all energy
scales, not just close to the Fermi level, determines the superconducting instabilities (39, 40). For
recent reviews on superconductivity from repulsive interactions, consult References 5 and 41 and
references therein.

5.1.2. The Fermi liquid fixed point. We first summarize the basic results of the RG formula-
tion of Landau Fermi liquid theory, pioneered by Polchinski (42) and by Shankar (43), which are
invoked in the discussion that follows. To keep things simple, we present the key results for a ro-
tationally invariant Fermi surface. The generalization appropriate for anisotropic Fermi surfaces,
relevant to crystalline systems, is discussed below.

Instead of attempting to derive a Fermi liquid from microscopics, the strategy is to proclaim
a fixed point of the RG and then to analyze its stability. The fixed-point theory is similar to the
action Sy in imaginary time of a free Fermi gas in d-dimensions with chemical potential x and
energy dispersion E(k):

drkde - )
So = Z / grre Ve [1© = ER) + 1] Vo 9,

We retain frequency modes |w| less than a UV cutoff A « E; (having “integrated out” higher
energy modes) and, thus, can linearize the dispersion as E(k) = i 4 vk, + - - -. We express the
measure as d'k = k' dk  dS,, where dQ, is a solid angle element on the Fermi surface, &, is the
direction of momentum perpendicular to the Fermi surface, and vy, is the magnitude of Fermi
velocity. Redefining fermion fields as ¢, , — S V. » We arrive at the fixed-point action for a
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Fermi liquid:

A
dw ddeQ - .
o= ZN / b (ZT)dk Vi (10 = vk ) W 10.
=TV A

The stability of the Fermi liquid fixed point is determined by power counting, from which one
learns the following: () a constant shift to the kinetic energy is relevant but harmless, as it amounts
to a shift in the chemical potential, and (§) all higher derivative corrections to the kinetic en-
ergy are irrelevant, and hence the kinetic energy is governed by a single parameter, the Fermi
velocity vp.

Next, we similarly analyze the role of interactions. A key observation is that generic four-
fermion interactions (and all higher-order interactions) are irrelevant at the Fermi liquid fixed
point, due to the phase space restrictions imposed by the Pauli principle and the Fermi surface.
"This result explains in large part the ubiquity of Fermi liquids in nature (the prime example being
liquid helium-3) despite the presence of strong interactions in real systems. Only under two special
kinematic circumstances are interactions important. First, forward scattering interactions are ex-
actly marginal and are incorporated into the Landau parameters. Second, the dimensionless BCS
interaction V,, where € labels the irreducible representation (irrep) to which the pairing channel
belongs,’ is marginal only at tree level: One-loop corrections are logarithmically divergent. (This
is directly related to the properties of the particle—particle ladders that lead to the Cooper insta-
bility for negative U discussed above.) Attractive (repulsive) interactions are marginally relevant
(irrelevant). This is captured by the BCS 8 function, obtained by promoting A to a running scale
A = A exp(—t), and obtaining the flow of the coupling:

vy _ o

Thus, repulsive BCS interactions (V, > 0) weaken and attractive interactions grow, eventually
leading to the BCS instability.

At this point, it may seem that the KL instability is absent, as we have just concluded that the
metal is stable for repulsive interactions. However, a system with short-ranged repulsive inter-
actions can have effective attractive interactions in some pairing channel ¢, in which case the 8
function in that channel would indicate a superconducting instability. In the case of the Hubbard
model, the bare repulsive U enters only the s-wave BCS channel and is orthogonal to unconven-
tional pairing channels (d-wave, p-wave, etc.). But as we integrate out high-energy modes, we in-
duce attractive interactions in unconventional pairing channels (44), and the dominant one among
these leads to a superconducting state.

The proper description of such effects involves a two-step RG analysis (45). In the first step,
we integrate out modes in a weakly interacting metal to obtain a description along the lines of the
fixed-point theory above. Then, what were formally repulsive interactions at short distances may
manifest themselves as attractive interactions in certain pairing channels. In the second step, the
RG flow of such couplings determines the superconducting instabilities.

5.1.3. Two-step renormalization group for the Hubbard model. Lattice electrons governed
by the Hubbard model are far from any RG fixed point, and thus any perturbative RG in this

31n a rotationally invariant system, € corresponds to the angular momentum channel. More generally, ¢ labels
the irrep of a crystallographic point group.
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regime is meaningless. To overcome this apparent obstacle, we integrate out the high-energy de-
grees of freedom perturbatively, which is well controlled in the weak coupling limit. This is the
first step of the analysis. Upon doing so, we obtain a low-energy effective theory consisting of
modes within an energy cutoff A, < E. Generically, the effective field theory is of the Fermi
liquid form described earlier, appropriately generalized to account for crystalline anisotropy. All
salient microscopic details (lattice symmetry, filling, etc.) are encoded in the shape of the Fermi
surface, the magnitude of the Fermi velocity as a function of position on the Fermi surface, and the
marginal perturbations of the Fermi liquid, namely the Landau parameters and BCS couplings.
The choice of the cutoff A is largely arbitrary. It should be sufficiently small that the quasiparticle
dispersion can be linearized, but it cannot be exponentially small in the couplings, where pertur-
bation theory breaks down, as we noted above. Importantly, the final results should not depend
on the choice of Ag.

At the end of the first step, we thus obtain an effective Hamiltonian of Fermi liquid form
H. = Hy + Hpcs, where Hy is the kinetic energy keeping just the linearized dispersion about the
Fermi energy and

Hyes = _% Z Lo iy, k) 1#/Z,a ‘ﬂk,ﬁ I/I—k’,y Vs 12.

kK’

When the system of interest has spatial inversion symmetry (parity), the BCS kernel above decou-
ples into even and odd parity channels. Constraints from the Pauli principle require that without
spin-orbit coupling even (odd) parity solutions have spin of zero (one):

Lo piy sl k) =Tk, k') (8ay 855 — Suy 8p5) + (ke B') (8ay 8ps + Sas 8py), 13.

where the subscripts s and ¢ denote singlet and triplet, respectively. At weak coupling, these
quantities can be expressed as an asymptotic series in U/#:

Luk,k) = 3U + 3U* [x(k + &) + x(k — K)] + OU’ /%),

T (k, k)= 31U [x(k+ k) — x(k—F)]+ OU*/t*).

14.

The quantity yx (k) is the noninteracting static particle-hole susceptibility, where from dimensional
analysis it follows that x ~ 1/t It is important to observe that the strength of the interaction
involves both large and small momentum transfers on the Fermi surface and the full structure of
the susceptibilities x determine the effective interaction, not just the subtle nonanalyticities of x
associated with the sharpness of the Fermi surface.

5.1.3.1. Renormalization group flow. Having obtained the low-energy effective Hamiltonian,
we now analyze the RG flow of the BCS couplings. We define a dimensionless Hermitian matrix
g(kyg, k), which is the effective interaction I'(ky, k) defined above, evaluated on the Fermi surface
and weighted by the density of states in the neighborhood of the Fermi points ky, kj:

Ap I(kg, k)

g(kF7 ki“) =
@) foly) vplll)

, 15.

where Ay = [ dky is the (d — 1)-dimensional area of the Fermi surface. The RG flows are com-
puted by promoting the cutoff A to a running scale A — Ag exp(—1), and the RG equation obeyed
by g is the convolution,

dg(k, kr, 1) __ dpy

i A, kg, prs 1) g(Prs Ky 1) 16.
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Figure 1

Dominant pairing eigenvalues A (defined in Equation 17) as a function of # the density per site in the weak coupling limit of the
Hubbard model on (4,0) a square lattice with second-neighbor hopping # = 0 (#) and # = —0.3# (4), and (c) a triangular lattice, and (d) a
honeycomb lattice, both with only nearest-neighbor hopping. The eigenvalues have been scaled by a factor of 5 in panel d for clarity.
The dominant pairing on a square lattice near half-filling has d,»_ » symmetry (labeled a2 — %) for both # = 0 and # = —0.3z. On the

triangular and honeycomb lattices, a 2D irreducible representation with d-wave symmetry, labeled {x? — y2, 2y}, is favored when the
Fermi surface is electron-like and simply connected. By contrast, a solution with f-wave symmetry, labeled y(y> — 3?), sets in near the
van Hove filling and in the regime in which there are two hole-like Fermi pockets centered at the zone corners. The f~wave symmetry
corresponds to a nodeless gap function with relative phase of 7 between the two hole pockets. Solutions with p-wave symmetry, labeled
{x, y}, also occur in panels b—d in a narrow sliver of energy about the van Hove filling. This occurs when 7 2 0.73 in panel 4,z = 1.5 in
panel ¢, and 7z = 0.75 in panel d. The figures were obtained by discretizing the Fermi surfaces at each density with a grid of 120 points.
Care must be taken in the vicinity of the van Hove fillings.

Itis most convenient to analyze the RG flows in the representation in which g is diagonal. Distinct
eigenstates correspond to, but are not fully specified by, an irrep of the crystalline point group,
where
dky; , ,

/ A—r gllep, k) W, (k) = A, ¥, (k). 17.
Here, v, (k) is normalized such that [ dky |y, (kp)I* = Aj.. Distinct eigenvalues do not mix under
RG (within the one-loop approximation), and the BCS 8 function for each A, is identical in form
to Equation 11.

Thus, positive eigenvalues (corresponding to repulsive effective interactions) weaken and neg-
ative ones grow. The first eigenvalue to grow to be of order unity indicates an instability of the
Fermi liquid toward the corresponding superconducting state. That the bare Hubbard repulsion
can generate effective attractive interactions in unconventional pairing channels is the key result
of the two-stage RG analysis.

In practice, one discretizes the points on the Fermi surface and solves the resulting discrete
eigenvalue problem to find the dominant eigenvalues. This way, the most important features
of the band structures determine the marginal BCS couplings and the dominant instabilities.
Figure 1 shows the result for the square lattice Hubbard model with second-neighbor hopping
¢ = 0 (Figure 1a) and ¥ = —0.3¢ (Figure 15). One sees that the dominant instability of the
system in the weak coupling limit is to a d-wave SC near half-filling. In a similar fashion, one can
study lattice systems of other geometries (45-47). Among other things, Reference 47 describes
a plotting error in Reference 45. Figure 1c,d shows results for the triangular and honeycomb
lattices, respectively, with only nearest-neighbor hoppings. Again, near half-filling, the dominant
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instability is to d-wave pairing, but in this case this corresponds to a 2D irrep, i.e., a combination
of d._, and d,, pairing. Determining which combination of these two components is preferred
in the ordered state is beyond the scope of the RG treatment, but because the effective couplings
are weak, this can be addressed within the context of BCS mean-field theory. As a consequence,
one expects the corresponding superconducting state to be the time-reversal symmetry breaking
combination generally referred to as d + id, although a nematic d-wave SC (i.e., a real combination

of da . and d,,) is also possible.

5.1.3.2. Cutoff-independence. A crucial observation described in Reference 45 was that the re-
sulting scale associated with superconductivity is independent of the arbitrary choice of cutoff,
Ay. Indeed, the only characteristic scale, namely the bandwidth I, determines the superconduct-
ing instability: 7, ~ W exp(—1/ap?U?), as alluded to earlier. Although the details of the proof of
cutoff independence can be found in Reference 45, we provide here some intuition for why this
has to be the case. The main requirement for cutoff independence is that the Fermi liquid fixed
point be the only nearby fixed point. This is certainly true in the weak coupling limit.

Let us consider two different mode elimination schemes: (#) eliminating modes above the scale
Ay, and (b) eliminating all modes above A; < Ag. The only assumptions on the cutoffs are that
Wexp(—1/pU) < Ay < Ay < U?/t.In the scheme with initial cutoff A1, we have “less RG time” ¢
for attractive BCS couplings to grow than the scheme with initial cutoff A¢. But this discrepancy is
precisely compensated by the fact that the effective attractions start off being larger in the scheme
with Aj, which is obtained by integrating the f-function in Equation 11 between A and A;.

The presence of other nearby fixed points, or of additional modes (phonons, magnons,
etc.), introduces additional scales and the cutoff independence is then no longer guaranteed.
There is a corollary to this absence of any characteristic scales other than the bandwidth in the
weak coupling limit: Associating a pairing glue of a well-developed bosonic fluctuation spectrum,
while tempting, is strictly incorrect. Instead, the electronic fluctuation spectrum itself, at all mo-
mentum scales ranging from the lattice scale down to the longest length scales, is responsible for
pairing.

5.1.4. Extensions. In the weak coupling limit of the Hubbard model in d > 1, the Fermi liquid
state is generically unstable only to superconductivity. It is typically necessary to treat the model
at intermediate or strong coupling to access nonsuperconducting orders, for instance, using the
large-N or numerical approaches discussed below. To access such orders within the weak coupling
limit, one has to consider nongeneric band structures, such as those that produce a perfectly nested
Fermi surface or a case in which the Fermi surface crosses a 2D van Hove singularity (vHS).
Although these are fine-tuned cases, they bring the interplay between superconductivity and the
tendency toward other broken symmetry phases into the weak coupling regime (48).

Considerable effort has been devoted to such problems. For instance, in the case of Fermi
surfaces crossing a 2D vHS, the problem has been studied in straight perturbation theory, first by
Dzyaloshinskii (49) and Schulz (50), who concluded that the most singular tendency was toward
superconductivity. A more sophisticated scaling theory near 2D vHS has remained elusive, as one
must contend with the existence of log-squared divergences in the Cooper channel along with
log divergences of forward scattering interactions. The interplay between these effects leads to
RG equations that explicitly depend on the energy scale and, hence, are useless when it comes to
constructing asymptotic behavior of correlation functions (for a review, see 48).

As already mentioned, the weak coupling RG in 1D is quite different than for 4 > 1. However,
in special cases, such as for the case of quadratic band-touching in two dimensions, the RG
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equations have similar form as in one dimension* (53, 54). As in the usual Fermi liquid, in these
cases there are a number of interactions—represented by a set of running coupling constants,
2,(), that are marginal (dimensionless) by power counting. To lowest nontrivial order, this leads
to a perturbative expression for the RG flows (analogous to that in Equation 16) of the form
4,
dt
where summation convention is assumed, and the remaining terms are of third order and higher.

=Tkgg+..., 18.

The important point is that the tensor quantity I', which reflects physics of the specific system
being studied, generally intertwines the various different interactions in a nontrivial fashion.

Depending on the specific problem being studied, and the bare values of the interactions, there
are two different sorts of behavior solutions that this equation can exhibit. Under some circum-
stances, the interactions are all marginal or marginally irrelevant; i.e., some combinations of g’s
flow to zero and others do not change under RG (at least to this order). More usually, there are
some sets of interactions that are marginally relevant. In this case, the RG flows carry the sys-
tem to a ray along which the interactions continue to grow until, no matter how weak the bare
interactions, a point is reached at which the perturbative treatment breaks down. At this point,
other methods must be employed to solve the problem. The possible rays can be identified (55)
by looking for possible solutions of the form g,(f) = G,(#* — #)~!, where G, are solutions of the set
of quadratic equations

G,=-T"G,G. 19.

Those couplings for which G, # 0 grow strongly toward strong coupling under the RG flow,
whereas any coupling for which G, = 0 remains relatively weak. Such a runaway flow of some of
the coupling constants typically signals the opening of an interaction-driven gap, often associated
with spontaneous symmetry breaking.

Despite the fact that these results apply (in 4 > 1) only for fine-tuned band structures, they may
be useful over some range of intermediate energies and/or temperatures if the fine-tuned condi-
tions are approximately satisfied, especially if one extrapolates the results to intermediate coupling
strengths. We refer the reader to the literature for further discussion of these ideas (54, 56, 57).

5.2. Strong Coupling Limit

When the density of electrons per site is # = 1, the low-energy physics in the strong coupling limit
of the Hubbard model is, famously, that of the corresponding spin-1 Heisenberg antiferromagnet,
with exchange coupling 4 |#;|*/U. This applies whether the lattice is regular or irregular. At the
same time, the system is a Mott insulator in the simple sense that the insulating gap,

A.= LU +00@), 20.

is determined by the interaction strength and has no relation to any ordering phenomena that
occur below temperature scales of order J.

Needless to say, the physics of quantum antiferromagnets is a rich topic in its own right.
Depending on the lattice structure, the range of the exchange interactions, and the degree of
disorder, strong evidence points to the existence of various forms of AF ordered phases (colinear,
coplanar, noncoplanar, commensurate or incommensurate, chiral or nonchiral, etc.), spin-Peierls
phases, nematic and spin nematic phases, quantum spin liquid (QSL) phases of various flavors,
spin-glasses, random singlet phases, and surely others.

#This also applies for quadratic band-touching in three dimensions with appropriate long-range forces (51, 52).
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For n < 1, the low-energy physics (e.g., the equilibrium properties of the system at tempera-
tures 7' < U/2) is governed by a version of the famous -/ model,

ZtUB +Z (S8, = dan) = YK ALA, + 0@ U7, 21.

i)k

where f)’ = CZTCJT +[1¢ ]l, Ajj=2" /2(51T e ) and Kj = 2t;t3/U, and where it is under-
stood that H, _; operates in a restricted Hilbert space in which no site is doubly occupied. This
model is often studied in its own right (typically neglecting the term proportional to K) and, so
long as Jj; < |t;1, the results are often taken as representative of results for the Hubbard model in
some physically reasonable range of U ~ 4#* /J. However, strictly speaking, the mapping to the
t—J model is valid only in the asymptotic limit J;;/¢; — 0.

Thus, truly in the strong coupling limit, one should begin with the solution of the U — oo
problem, i.e., the -/ model with J; = Kj = 0, and only keep corrections due to nonzero J and
K as small perturbations. The Hubbard model was originally introduced to study itinerant fer-
romagnetism, based on the fact that this occurs in Hartree-Fock (HF) approximation so long
as the Stoner criterion is satisfied, U p(E;;) > 1. However, more accurate numerical studies have
found that ferromagnetism in the Hubbard model on a bipartite lattice with |A| = |B| seems to
require U p(Eg) >> 1. To elicit ferromagnetism for U/t = O(1), it appears necessary to introduce
frustration in the form of further-neighbor same-sublattice hoppings, or to consider the model on
nonbipartite lattices (58) or on line graphs (59, 60) at densities away from half-filling.

Provided the kinetic energy satisfies the Perron-Frobenius condition (¢; > 0 for all / and j),
the problem with a single hole in a finite-size lattice is governed by Nagaoka’s theorem (see Sec-
tion 2); i.e., the ground state is a fully polarized ferromagnetic state. Clearly, the limit U — oo and
N — oo do not commute. However, for large but finite U, the solution in the thermodynamic limit
is a Nagaoka polaron. Its nature can be understood from a simple variational argument: Consider
a state in which a region of radius R has spins aligned ferromagnetically, whereas the rest of the
system is in its 7 = 1 AF ground state. The variational energy of such a state is

Exag = —Eo +TR7? + JR?, 22.

where Ey = Y ;t;;, and 7 and J are averages of t; and J; that depend on the details of the lattice
structure and the assumed shape of the polaron; here, the second term is the kinetic energy cost
of confining the hole in a region of size R and the third term is the cost in exchange energy
of making a ferromagnetic bubble. Minimizing this expression with respect to R, we obtain the
following expression for the size and energy of the Nagaoka polaron:

E

ey . - 73\ 1/(d+2
wag = —Fo + 2R with Ry, = (22/d])" . 23.

It is a straightforward exercise to go from the single polaron to the problem with a small but
finite hole density. The polaron should strictly be viewed as a new sort of quasiparticle—one with
charge e and spin S ~ R"N Two such particles have a short-range effective attraction of order

2
tR\qu,
delocalize over twice as large a ferromagnetic region. Thus, there is a tendency for polarons to

if two are placed ad]acent to each other, the hole associated with each polaron can now

agglomerate, i.e., for the system to phase separate. Opposing this is the effective Fermi pressure
of the polaron gas—however, because the polaron is large, its effective mass is large,’ so the Fermi
pressure is negligible. Thus, at 7'= 0 and for low density of doped holes, 1 > 7 > n,, one expects

SRelative to the band mass, the Nagaoka polaron can readily be seen to have an effective mass enhancement
of order (£/J )R‘i 1 . This is true because moving the polaron involves flipping spins along its entire surface.
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macroscopic two-phase coexistence between an undoped AF phase with z = 1 and a fully polarized
ferromagnetic phase with » = n,, where », ~ R;Iig. Correspondingly, for a range of densities 7 >
n, but not too small, this line of reasoning leads one to expect a half-metallic ferromagnetic phase,
i.e., a state with all the spins parallel to one another.

The stability of the fully spin-polarized state (known as a half-metallic ferromagnet or HMF)
at finite doped hole density has not been rigorously established. Indeed, it has been shown that
even for U = oo, the fully polarized state is unstable beyond a (typically substantial) critical
doped hole density (61). However, exact diagonalization (62) and density-matrix-renormalization
group (DMRG) studies (63) of the model on a square lattice (2D) provide strong corroborating
evidence that the half-metallic ferromagnetic phase is stable for U = oo in the range of density
1 > n > 0.8 and that two-phase coexistence occurs at large but finite U in a range of density®
1 > n > n, ~ (t/U)Y2. However, there is also indication that ferromagnetic phases arise only
when U is extremely large, U/t 2 100. Nonetheless, the existence of ferromagnetic phases at very
large U implies that, strictly speaking, the nonferromagnetic states generally seen (and expected)
at intermediate values of U cannot be approached from a strong coupling perspective.

5.3. Dilute Limit

The dilute limit of the Hubbard model is defined by fixing U/t and letting # — 0. In this limit,
strong arguments have been put forward that in d = 2 and 3 and for positive U, the system forms
a Fermi liquid (which may have a superconducting instability at very low temperatures, to be
discussed below).

Consider d = 3 first. Using the filled Fermi sea as a trial state, the kinetic energy per particle

scales as Exp ~ t 1?3

(where we have used the effective mass approximation near the band bottom),
whereas the typical interaction energy satisfies Epg ~ Un. Thus, in the limit z — 0, Eg > Epg.
One may therefore expect the system’s properties to be calculable in an expansion in the small
parameter (U/t) - n'/3 (which plays a similar role to that of 7; in a uniform electron gas). As ex-

plained in References 64-66, the proper small parameter is actually k.4, where k;; oc n!/?

and 4 is
the scattering length. For small Uyt the scattering length satisfies a, ~ 2 (U/t) (where 4 is a lattice
constant).

In d = 2, the situation is more subtle, because the above argument gives that &g /Epr, is density
independent. However, a more careful treatment (outlined below) shows that in this case the two-
particle scattering amplitude near the Fermi energy, which is proportional to 1/In(1/z), serves
as an emergent small parameter (65). Thus, in both cases, a systematic expansion starting from
the Fermi gas is possible, resulting in a Fermi liquid whose Landau parameters are parametrically
small in the # — 0 limit.

To arrive at the expansion appropriate for the dilute limit, we examine the diagrammatic rep-
resentation of the two-particle vertex function. The dominant terms are the ones that form the
ladder series (Figure 24). Summing the ladder series gives the effective two-particle interaction
(also known as the T-matrix):

Uett(g, €) = #, 24.
14+Ty(q,e)U

STt is a peculiarity of the Hubbard model that there is no interaction between electrons with the same spin—
thus, for any value of #, all energy eigenstates with maximal total spin are simply Slater determinants. In
particular, the half-metallic ferromagnetic ground state is always an eigenstate of the Hubbard Hamiltonian—
the only question is under what circumstances it is the ground state.
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(@) Ladder series for the two-particle scattering amplitude in the dilute limit. The empty square represents
the bare interaction U, and the filled square is the effective interaction Ue (also known as the T matrix).
(b,c) Examples of diagrams that are not part of the ladder series. These diagrams are suppressed, in the z — 0
limit, compared to those shown in panel 4.

Figure 2

'k
@yt
at momenta and energies of the order of the Fermi momentum and Fermi energy, respectively. In

whereTy(q,€) = (¢ + €_k+q — 1€)7". In the dilute limit, we are interested in the interaction
d =3, we can safely take |g| — 0 and € — 0, obtaining I'; ~ 1/¢. Terms that are not part of the
ladder series, such as those shown in Figure 2(b,c), are suppressed by powers of pUe ~ kpa, and
are thus small. The effective interaction near the Fermi energy is thus finite in the dilute limit.
The Fermi liquid parameters, such as the Landau function and the effective mass correction, are
all of the order of &gz, (because they are proportional to vy o k). The smallness of the Fermi
liquid parameters ensures the self-consistency of the expansion.

In d = 2, T, diverges logarithmically in the limit |¢| — 0, € — 0. This divergence is cut off
by setting |g| ~ k. and € ~ u, where 1 is the chemical potential. In the dilute limit, such that
(U/HIn(1/m) > 1, this gives U ~ t/In (¢/1) ~ t/In(1/n). Hence, terms that are not part of the
ladder series are suppressed by a factor pUgs ~ 1/In(1/n) < 1 and can be neglected (65). The
Fermi liquid parameters are small in proportion to 1/In (1/z).

In both d = 2 and 4 = 3, the system is thus described as a weakly interacting Fermi liquid in
the dilute limit, independent of the original Hubbard interaction. The Fermi liquid state can then
be treated as discussed in Section 5.1. In d = 3, and in the presence of time-reversal or inver-
sion symmetries, one expects an instability toward a triplet superconducting state whose critical
temperature 7, scales as

E, VU g /3 exp {— 1+ 6)2 n’m}, 25.

where we have omitted dimensionless numbers of the order of unity in the exponents. The d = 2
case requires additional care, because the Lindhard susceptibility is nearly momentum indepen-
dent. Hence, no effective attraction is generated at second order in U,g. A calculation of the third-
order terms, performed in Reference 67, gives T, ~ E exp[~1/(pUe)*] ~ t nexp[—1/ ln3(1/n)].
Note that in both d =2 and 3, T, « E.

5.4. Large-N Generalization and the Hartree-Fock Approximation

Although quantum many-body models are generally insoluble except in very special cases, by ex-
tending the global symmetry of the model from SU(2) to a larger group such as SU(N) or Sp(NV),
a systematic expansion in powers of 1/N about the N — oo limit can often be derived (68-73).
Here, we discuss a large-N generalization of the Hubbard model (74) that allows controlled access
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to a variety of intermediate coupling spin and charge ordered phases. Consider the Hamiltonian

Z ZZQW ti —|—M81] am T N Z Vn - JS:'Z + %K\II;V\IJI.), 26.
(ij) a=+m=1
where 7 labels the lattice sites, « = =+ the spin polarization, and 7z € {1,..., N} is a flavor index.
The coupling constants V, J, and K are all nonnegative. The local density #,, spin S;, and super-
conducting order parameter ¥, are given by

— t
n; = CiamCiam> Z Ciam O ap zﬂm’ \IJ - Z Ciom € af tﬂm’ 27

a,m a By o,p,m
where €, = io,,. Consider a global transformation of the fermion fields,

¢ —C =R, U o Ciormw 28.

wom wom oo’ Vic'm'

Suppressing the site index 7, we write { = RU ¢, where R acts on flavor indices and U/ acts on spin
indices. Thus,

i=c,RR), ,UU)

C
oo’ “o'm'?

S":% »RR),UU),, 29.

= (R'R),, U'eU)

oo’ (777 Uﬂ

Thus, if # € SUQR2) and R € O(N), we have 71'- nand U = W, and furthermore S% = M, S,
where M, = 1 Tr(U' o“ U o”) € SO(3). Hence, H = H;i.e., the Hamiltonian H possesses aglobal
U@2) x O(N) symmetry [including the U(1) charge conservation]. In the case N = 1, the system
reduces to the usual Hubbard model with U =V + 3J + 2K.

To elicit the large-N theory, we employ three Hubbard-Stratonovich transformations to
decouple each of the three terms quartic in the fermion operators. The resulting dimensionless
action is then

B
N N
. 2 X2 2 I
a= [ 2 (o 3 5 AF) e 0.7t
0 ! o

Z ZI: :| l¢/ B + 2X1 af lAt Eotﬁ Ciﬁm .
Ciam Ciam ZA 6(1 l¢ s . — lx; . aaﬁ =

im ap i“ap 2 Czﬁm

30.

Here, 8 = 1/ky T, where T is the temperature, T is imaginary time, and {¢;, x;, Re A, Im A} are
the six time-dependent Hubbard-Stratonovich fields.
We may now formally integrate out the fermions, obtaining the following effective action:

B
N N
A= /dr )3 (W B+ Xt o 1A |2) — INTrlog G [{éh, (i 1AN]. 31,
0 i
HCI'C, g_] = g(;l - M[{¢1}7 {Xi}: {A,}], Where

g71= Gal 0 T 32
’ 0 —(G') | '

The inverse of the free Green’s function is given by G, T=_%, + tij + udij, and M is the matrix
that appears in the second line of Equation 30.
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Crucially, the effective action is proportional to N. Hence, in the large N limit, the partition
function is dominated by the lowest-action saddle point of A.¢. Fluctuations around the saddle
point are suppressed by powers of N~!. We seek a saddle point characterized by time-independent,
but possibly site-dependent, fields ¢; and x;. Because we have assumed K > 0, it is straightforward
to see that A; = 0 at any such saddle point. Substituting q?, = i¢, and differentiating the effective
action with respect to ¢, and ; yields

¢i =V Z <Eiam Cz'utm>$i,x[’

o, m

33.
Xi = %JZ <Eiotm Ous Ciﬁm>[5i,xl_'
@B

Here, the expectation value is taken with respect to the quadratic action (Equation 30) with {(15}
and {x;} set to their saddle point values. Equations 33 are the self-consistent HF equations de-
scribing possible spin and charge ordered states. They are identical to the HF equations of the
one-band Hubbard model with 2V = 1J = U and K = 0. Thus, the HF approximation becomes
asymptotically exact in the large-N generalization of the Hubbard model given by Equation 26.”

5.4.1. Some Hartree-Fock results. There have been numerous HF studies of the Hubbard
model. A priori—especially when dealing with forms of order that only arise when U exceeds a
finite critical value—there is no obvious small parameter that justifies these solutions. However,
with the large N limit as justification, it is worth summarizing at least some of the HF results that
have been obtained in this way.

In the case of a half-filled band, » = 1, with ¥ = 0, the Fermi surface is perfectly nested
and the HF ground state is a Néel AF insulator (AFI) for all U > 0. In particular, for d > 2
and small U, the sublattice magnetization, 7, and the quasiparticle gap, A,., depend on U as
m ~ A, ~ exp(—1/pU), whereas for d = 2 the expressions are slightly more complicated, with
m ~ A,p ~ exp(—+/8m%t/U), because of the logarithmically divergent density of states associated
with the van Hove points. For small but nonzero #, the system remains metallic for U < U, but
is AF for larger U, where U, ~ t/In|t/¢| for d > 2 and U, ~ t/In?|t/¢| in d = 2. The details of
the metal-insulator transition as a function of U has not been exhaustively studied and may vary,
depending on dimensionality, the value of # and other details. The simplest cases involve either a
direct first-order transition from a featureless metal for U < U, to an AF insulator for U > U, or
a sequence of two transitions, the first (typically continuous) from a featureless metal for U < U,
to an AF metal phase—i.e., with 7 small enough that a portion of the Fermi surface remains
ungapped—followed by a (typically first order) transition to the AF insulator at U > U, > U,,.

It is also interesting to consider the evolution of the HF ground state with the introduction
of a dilute concentration of doped holes, x = 1 — n < 1, starting from the AFI. One possible
solution of the HF equations is simply a doped version of the Néel state—here the energy cost
per doped hole is A, [1 4+ O@*4)]. This is typically never the lowest energy HF solution (76); a
better solution is one in which a portion of the sample is undoped antiferromagnet and another
is a nonmagnetic metal with a finite concentration x, of doped holes, where x. ~ p(E;) A ;.. For
small Uin d > 2, it was shown in Reference 76 that x. = +/2 p(E;.) A,;; and that the energy per

"Interestingly, setting N = 1, this choice of parameters corresponds to a Hubbard model with an interac-
tion strength I + %J + K =2U. This discrepancy between the HF equations for the Hubbard model and
the saddle point equations obtained by decoupling the interaction in an SU(2) symmetric way was noted in
Reference 75.
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doped hole is 2712A, . [1 + O@2/)]; i.e., it has lower energy than the doped Néel state. The
same analysis applies for small # in d = 2, and even for # = 0 with slight complications owing to
the divergent density of states. However, more interesting insulating states were found (77-79)
to have still lower energies—at least in 4 = 2 with # = 0. Here for small x, the system forms
a unidirectional SDW state in which the doped holes are localized on antiphase domain walls
a distance W apart, resulting in a new periodicity of the spin order A = 2. Furthermore, the
domain-wall spacing is such that there are an even-integer number of electrons per unit cell, i.e.,
A = 1/x, and the system remains insulating. From numerics in two dimensions with # = 0, the
energy per doped hole of the striped phase was estimated (80) to be approximately 0.66 A , ., which
is some 7% less than that of the phase separated state.

6. NUMERICAL RESULTS
6.1. Density-Matrix-Renormalization Group Results for Ladders and Cylinders

The DMRG approach (81, 82) has proven to be extremely useful in obtaining ground state corre-
lations of Hubbard cylinders and ladders. As the computational effort grows roughly linearly with
the length of the system, L, but exponentially with the number of legs, ¥, these results are largely
confined to rather small /. However, for these systems, it provides an incomparably versatile ap-
proach to the intermediate coupling problem without relying on any artificial limiting procedure.

6.1.1. The utility of density-matrix-renormalization group. DMRG is now understood to
be an extremely clever variational approach (82, 83) for studying the ground state properties of
arbitrary interacting electron models. It uses a class of variational states known as matrix-product
states—which, as the name suggests, are parameterized by the elements of a matrix associated with
each site. The larger the dimension of the matrices (known as the bond dimension), the better the
approximate ground state obtained. For any finite-size system, DMRG calculations in principle
converge to the exact result for large enough bond dimension, B,. However, as the calculations
are more demanding for larger By, not all published results can be taken at face value. This is
reflected in the unfortunate fact that there are examples in the literature of DMRG studies that
have reached contradictory conclusions concerning the character of the ground state phase of
certain model problems. Furthermore, different sorts of results require different levels of care (84),
as we elaborate below.

m Generally, the bond dimension required to achieve a given accuracy increases exponentially
with the degree of entanglement of the phases being explored. Thus, DMRG results con-
verge more easily in systems in which the central charge (the number of gapless modes) is
small and all correlation lengths are short. Conversely, systems with many gapless modes
and/or long correlation lengths may need a very large B, to converge.

m Even within a given phase, the reliability of the DMRG results for fixed B, depends, to some
extent, on what questions are asked. The nature of the short-range correlations—i.e., what
sort of local order arises—is less sensitive to subtle aspects of the entanglement and, so,
can be extracted reliably even in calculations with relatively modest values of B,, whereas
issues concerning long-distance correlations—especially power-law falloff of correlations
associated with gapless modes—are much more strongly dependent on By.

In quoting results of DMRG calculations, we have restricted ourselves to discussing results ei-
ther that pertain to short-range correlations (about which there typically is no disagreement) or in
which the B; dependence has been seriously investigated and the extrapolation to B; — oo appears
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convincing. There are also generalizations of DMRG, such as projected entangled pair states (85),
which uses tensorial generalizations of the matrix product states of DMRG. Because these meth-
ods have not been as thoroughly tested and benchmarked as has DMRG, we have largely omitted
results obtained from these approaches. DMRG methods have recently been extended and are
beginning to be applied to study dynamical properties of ladders and cylinders (86, 87). This is a
very promising new direction but one that is still in its infancy. Again, taking a conservative stance,
we have mostly not reviewed these results (see, however, Reference 2 in this volume).

The bulk of the DMRG studies have been carried out on ladder or cylinder versions of the
Hubbard model for intermediate values of U on the order of the bandwidth, 8z < U < 12, and
for ranges of electrons per site 2 in the range 1.3 > n > 0.7, corresponding to a concentration
of doped holes or doped electrons 0 < x < 0.3. Effects of differing band structure have been
studied largely by considering a range of first- and second-neighbor hopping, #/¢. Many studied
have treated the t—J instead of the Hubbard model, because the results for the former tend to have
better convergence properties. Results so obtained are generally interpreted as representative of
the solutions of a corresponding Hubbard model with U/t ~ (4¢/J) and a somewhat renormalized
value of 7/z.

We now summarize some of the salient results that have been obtained from these studies. We
distinguish the following three types of inferences that can be drawn:

1. Most directly, from an analysis of the short-distance behavior of various ground state corre-
lation functions, it is relatively straightforward to determine what sort of ordering tenden-
cies are strong for particular ranges of parameters. We illustrate such orders by describing
the form of broken symmetry (long-range order) that would result were these short-distance
correlations extended to long distances. Because the Hubbard model is not a realistic model
of any actual material, it may be that identifying ordering tendencies reveals the most model
independent—and, hence, physically significant—features of the interesting strong corre-
lations physics.

2. Extrapolating the result to the limit of infinitely long cylinders and ladders, we can iden-
tify distinct phases of matter based on the asymptotic long-distance correlations. As dis-
cussed in Section 4, this means identifying any discrete broken symmetries, and the number
and character of distinct gapless charge and spin modes; for instance, a Luther—-Emery lig-
uid has a single gapless charge mode (central charge ¢ = 1), and power-law quasi-long-range
order CDW and superconducting correlations.

3. Most speculatively, we can introduce conjectures concerning the extrapolation of the
DMRG results to the 2D (J// — oo) limit. This can only be done with confidence when
the results are weakly 1/ dependent even for relatively small 7.

6.1.2. The square lattice. Most commonly, DMRG investigations have focused on the square
lattice Hubbard and ¢ — J models. Band structure effects are sometimes modeled by the introduc-
tion of a second-neighbor hopping 7.

6.1.2.1. Undoped ladders. For the most part, studies of the undoped model (x = 0) have been
carried out in the regime in which U is (assumed) large enough that there is a substantial charge
gap, A, 2 t, so the Hubbard model is equivalent to a spin 1/2 Heisenberg model with first- and
second-neighbor exchange couplings, J'/J = (¢/t)>. For even W, this necessarily results in a fully
gapped state (88, 89), i.e., with a nonzero spin-gap, A,.

However, for J//J < X ~ 0.41, the resulting state exhibits the same local spin correlations as
the Néel state shown in Figure 34, and has a spin correlation length that grows exponentially with
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Figure 3

Forms of antiferromagnetic order in the undoped square lattice: () Néel, (b) stripe antiferromagnet,
(¢) schematic phase diagram of the 2D model at large U as a function of J'/J = (¢/ 2.

Wie. & ~exp (@) witha = O(1) (90). Indeed, as shown on theoretical grounds in Reference 89,
in a range of J'/J in which the 2D system has long-range AF order characterized by a renormalized
spin-stiffness p, and a spin-wave velocity ¢, «(J/J) = 27 p,/hc. Thus, the DMRG results provide
compelling evidence that the 2D system has Néel order in this regime, as shown in Figure 3c.

For J/J > X, ~ 0.62, the local order resembles the stripe magnetic state, shown in Figure 35.
Although we have not found data that show the systematic scaling of &, with ¥, A, is a sufficiently
rapidly decreasing function of W up to at least W = 10 that it is reasonable to conclude that stripe
long-range order arises in the /7 — oo limit. By contrast, for X, < J/J < X, there is a spin-gap
that does not decrease substantially with increasing . These results have led to the conjecture (90,
91) that, for this intermediate range, there is a quantum disordered phase or phases (i.e., phases
with no magnetic order) in the W — oo limit, as shown in Figure 3¢. However, there is still some
debate (92) about the nature of this region in the 2D limit, e.g., whether there is valence bond
crystalline order or a Z, QSL.

6.1.2.2. Lightly doped ladders. DMRG studies of the doped ladder have also primarily involved
Ularge enough that the undoped ladder is insulating and have focused on the range of parameters
(i-e., J/J < X.1) that correspond to a doped Néel antiferromagnet.

Naturally, the most reliable results have been obtained for the two-leg ladder, W= 2. So long as
x < x, ~ 0.3, for the typical range of intermediate U and ¢/, there is general consensus (93-96) that,
in the L — oo limit, such ladders generically form a Luther-Emery liquid (97). Specifically, there
is a nonzero spin-gap, A, ~ #/U, and a single gapless charge mode (c = 1) and power-law equal-
time CDW and SC correlations that falls as cos(Qepw? + éo)|r|Keow and || Rsc, respectively.
The CDW ordering vector is equal to the value of 2k, = W 7n mandated by the generalized LSM
theorem (see Section 2), Q- = Wmn = 27, and consistent with expectations from conformal
field theory, K = 1/Kepyw-

Although DMRG does not directly yield information concerning the susceptibility, once the
identification with the corresponding quantum field theory is established, it follows that these
same exponents can be identified with the low T behavior of the corresponding susceptibilities, i.e.,
Xepw@ = Qcpw) ™~ T~ Keow) when Kopw <2 and Xse(T) ~ T K0 if Ky < 2. However,
though both exponents are typically in the range 2 > Ky, > 1/2 in which both susceptibilities

Arovas et al.



a d-wave-like striped SC

b Cylindrical d-wave SC

1
o

I
O

©)

O_

O=

0=0=
0=0

O=0

O

Annu. Rev. Condens. Matter Phys. 2022.13:239-274. Downloaded from www.annualreviews.org
Access provided by 107.137.69.157 on 03/31/22. For personal use only.

w 1 I [

=) =()———( )= —— J=—=0)= O
III4>III - m I!I [T

L L }‘cdw

O=0O
O=0O

©)
®)

Y
i
¥ 5
¥

—‘o\—\o\—‘o\—\o\—
M—netng

Figure 4

Various patterns of intertwined short-range order for the square lattice Hubbard model at moderate x and intermediate U. Here, the
size of the circles represents the doped hole density, the arrows represent the site magnetization, and the thickness of the lines
represents the magnitude of the singlet pair field on each bond; the sign of the pair field is color coded with red being positive and blue
being negative. Here, panel # represents coexisting SDW, CDW, and d-wave-like SC; panel / (relevant in particular to the M = 4 leg
cylinder) represents SDW, CDW, and cylindrical SCs (sometimes called “true d-wave”; 106). The cylinder axis is taken to be horizontal.
Abbreviations: CDW, charge-density wave; PDW, pair-density wave; SC, superconductor; SDW, spin-density wave.

diverge, the precise values of these exponents, and thus whether SC or CDW correlations are
dominant, varies as a function of x and #/z. In fact, for the two-leg ladder, the same Luther—Emery
phase has been shown to exist down to U as small as U = 4¢. To get an idea of why smaller values
of U present such difficulties, note that for # = 0 and x = 1/12, the spin correlation length &, ~
30 lattice constants; it is thus found that ladders up to L = 200 must be treated to get reliable
results (96). (Interestingly, in this case, the CDW and SC susceptibilities are equally divergent,
Ko ~ Koy ~ 1)

The nature of the short-range correlations on the two-leg ladder are also interesting. Although
the SDW correlations decay exponentially with distance, the spin correlation length is sufficiently
long that one can identify a preferred ordering vector, Qg = 77 = 7 & mx. Importantly, this
is mutually commensurate with the CDW ordering vector, Q py = 2Qgpw- Also, the supercon-
ducting order is d-wave-like in the sense that the pair-field correlations on bonds parallel to and
perpendicular to the ladder direction have opposite signs. (Because the ladder does not have any
symmetry relating parallel and vertical bonds, this is not a precise symmetry classification, and
indeed the magnitude of the pair-field correlations are somewhat different on the two sets of
bonds.) The short-range order is thus a two-leg version of the correlations shown schematically
in Figure 44, where for graphical simplicity we have drawn this picture for the commensurate
case ¥ = 1/4 so that A, = 4. The relative phase of the CDW, SDW, and SC modulations are
representative of what is seen in the calculations, i.e., the spin order is strongest where the SC
order is weakest and where the local doped hole concentration is closest to 0. (The fact that the
CDW is bond-centered, i.e., that it preserves reflection symmetry about a bond-centered mirror
plane, was likewise chosen for purposes of illustration only.)

Even for the two-leg ladder, there are circumstances in which other phases arise. As already
mentioned in Section 5.2, for large enough U, for 0 < x < 0.2, there is a fully polarized (half-
metallic) phase; this result was also established using DMRG (63). Furthermore, for special ratio-
nal values of x (such as x = 1/8) and for a range of U/t, commensurate CDW long-range order is
possible (98, 99), i.e., a discrete breaking of the translational symmetry. The ordering vector in this
case is, as before, Ay, = 2/, but now there is a gap to charge excitations as well as a spin-gap.
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Moving to W = 4 leg ladders and cylinders, a still richer variety of behaviors has been ob-
served (100-102). In particular, the nature of the states for a given value of x is found to depend
significantly on the value of #. Under some circumstances, especially in four-leg cylinders with #
small and negative,® there appears to be (103-105) a Luther-Emery liquid phase with ¢ = 1, diver-
gent CDW and SC susceptibilities with the product Ky, K~ = 1 and with the Ksc in the range
0f 0.5 < K¢ S 2, and exponendally falling SDW correlations with &4,y ~ 10. Where this occurs,
it is typically also true that Qpy;, = 47x. The sketch in Figure 4b is a caricature of the short-
range order seen here. Recalling that periodic boundary conditions have been enforced around
the cylinder, it is apparent that the SC order—which oscillates in sign between neighboring bonds
around the cylinder—has a true d-wave form (105, 106) in the sense that it changes sign under a
C4 rotation about the central axis of the cylinder. Such a state is likely to be a peculiarity of the
four-leg cylinder.

For # =0, the W = 4 leg cylinder shows significantly different tendencies. The most extensive
studies (103, 105-107) have been carried out primarily for the (assumed representative) value
of x = 1/8. Here, the preferred CDW ordering vector is half what it was in the previous case,
Qcpw = 2k = 2mx. Furthermore, it seems that the SC correlations fall rapidly—most probably
exponentially—with distance. (However, in this case, the SC correlation length, & is remarkably
long—it is estimated in Reference 108 that & ~ 18). There is again significant short-range SC
and SDW order, with, as in Figure 44, the SC order being d-wave-like, and the SDW ordering
vector satisfying the mutual commensurability condition, 2Qgpy = Qcpy- This, if extrapolated
to the 2D limit, is suggestive (107) of a commensurate unidirectional CDW insulating state, either
with or without accompanying SDW order, with a significant but strictly short-range correlated
tendency toward a d-wave SC. Thinking of the peaks in the CDW as being a stripe of high doped
hole density, this state, which arises naturally in HF calculations in two dimensions, is sometimes

referred to as having full stripes—full in the sense that because A = 1/x, there is one doped

D
hole per site along the length of each stripe. By contrast, the state w(i:tlrv)LCDW =1/2x(i.e., Qepw =
47x) is then referred to as half-filled stripes.

Patterns of local order corresponding to partially filled stripes of different varieties have been
found in calculations on W = 6 leg ladders (109, 110). Very recently, there have been the first
DMRG studies (111-113) (actually, of the #—J model) to find direct evidence of (quasi-)long-range
d-wave-like SC order in cylinders with 1# > 4. Not surprisingly, the SC correlations tend to be
strongest for values of the parameters (e.g., #/t) for which the CDW correlations are relatively
weaker (112, 113). Generally, the phases with strong SC correlations occur only for x greater than
a (parameter dependent) critical value of x—the one exception to this (111) being the case of very
large #' ~ t/+/2, where the state at x = 0 is (as already discussed) a quantum para-magnet (prob-
ably a spin liquid), and where SC quasi-long-range-order appears down to the smallest values of
x (x = 1/18) explored so far. A periodic modulation of the hopping was found to significantly
enhance the d-wave-like pairing correlations as well (114). As these are very new results, it is still
necessary for further studies to be carried out to determine the full phase diagram.

6.1.3. The honeycomb lattice. DMRG studies have been performed for the Heisenberg model
on the honeycomb lattice for a range of J//J (115, 116). The behavior of the honeycomb model has
motifs similar to the more studied square and triangular lattices. In particular, there is evidence for
an intermediate spin-disordered phase for a range of J//J between the Néel and striped phases. All

8In DMRG studies, a value of # ~ —0.3¢ is often taken as a value representative of the band structure of the
hole-doped cuprates.
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or much of this intermediate phase seems to possess plaquette order (116). Some DMRG studies
have also been performed on the honeycomb Hubbard model away from half-filling (117-119).
We do not further summarize these results here.

6.1.4. The triangular lattice. DMRG studies of the Hubbard model on the triangular lattice
have recently produced evidence of a number of intriguing behaviors (120-125). Unfortunately,
there is still considerable disagreement in the inferences drawn from different studies, making it
difficult to give a definitive review.

6.1.4.1. Undoped cylinders. Undoped cylinders with 3 < W < 5 have been studied at x = 0.
There is strong evidence (and a general consensus) that there are at least three distinct phases as a
function of U/t. For U < U, ~ 8t there is a compressible phase that has been identified as metallic
in several DMRG studies. More specifically, the DMRG studies have concluded that it is metallic
in the sense of being adiabatically connected to the noninteracting limit, i.e., that there are gapless
spin and charge modes corresponding to each Fermi surface crossing of the noninteracting band
structure. This conclusion is difficult to reconcile with a weak coupling analysis (96) of the sort
described in Section 5.1. Rather, assuming there are no as yet undetected transitions with a critical
value of U < Uy, it is likely that most of these modes are gapped, but that the gaps are sufficiently
small (the correlation lengths sufficiently large) that they have been overlooked in DMRG studies
to date. Indeed, the weak coupling analysis suggests that the small U phase is a Luther—-Emery
liquid (¢ = 1) with time reversal symmetry breaking—i.e., an extension of the d + id SC phase that
arises in two dimensions at small U (see Section 5.1) to a cylindrical geometry.

The most intriguing phase atx = 0 occurs for U < U < U,; =~ 10t. Here there is evidence that
the system becomes a spin liquid in the 2D limit. For instance, for M = 4 and suitable boundary
conditions, there seems to be a fully gapped state with only very short-range spin correlations. It
was concluded in Reference 121 that this phase is chiral—indicating that in the 2D limit it would
correspond to a time reversal symmetry breaking chiral spin liquid (i.e., a Kalmeyer—Laughlin
phase; 126). This has a degree of naturalness as it is easy to conceive of a continuous transition
from a d + id SC to a chiral spin liquid. However, it should be mentioned that other studies (123,
124) have found evidence that this intermediate phase is a fully gapped but nonchiral state—which
is suggestive that there is a Z, spin liquid (i.e., a Moessner-Sondhi phase; 127) in the 2D limit—or
even a gapless spin liquid (125) with a nodal spinon spectrum. Finally, for U, < U there is a phase
with local correlations corresponding to the 120-deg AF state, known to be the ground state of
the 2D model in the large U limit.

6.1.4.2. Doped cylinders. 'The nature of the lightly doped system clearly depends on the char-
acter of the undoped parent state. The resulting phase diagram has not nearly been as thoroughly
investigated as the case of the square lattice. Particularly interesting is the fate of a lightly doped
spin liquid. A spin liquid can be thought of as a quantum disordered SC, such that upon light dop-
ing, there is a property inherited from the insulating state, whereas the superfluid stiffness (and
hence the ordering temperature) vanishes continuously as x — 0 (3, 128, 129). Specifically, light
doping of a gapped spin liquid could lead to a gapped SC—with the superconducting gap derived
from the spin-liquid gap—which is chiral [d + id; (130)] or nonchiral depending on the nature
of the spin liquid from which it arose—whereas a nodal spin liquid naturally connects to a nodal
SC (131). There is preliminary DMRG evidence that each of these may occur on the triangular
lattice under appropriate circumstances (120, 122,125, 132, 133).
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6.1.5. The kagome lattice. The Heisenberg model on the kagome lattice is a paradigmatic
example of a geometrically frustrated quantum magnet. It has long been suspected that this system
does not order magnetically, even with only nearest-neighbor J. Different ground states have been
proposed based on exact diagonalization of finite clusters (134-139), and various approximate
approaches (for a discussion, see 139, 140).

DMRG calculations on cylinders of width up to W = 17 have been performed (141-145). (In
some of these calculations, a small second-neighbor J' < 0.15/ has been applied.) These works
consistently find a quantum disordered ground state with no sign of magnetic or valence bond
crystalline order. This suggests a QSL ground state. Unfortunately, there is disagreement on the
nature of this spin liquid, e.g., whether it has a spin gap (143) or a gapless Dirac spinon spec-
trum (145). The disagreements suggest that the long-range correlations may not yet be fully con-
verged with respect to the bond dimension, and more extensive studies are needed to resolve the
nature of the ground state.

In the studies of the doped system carried out to date (146, 147), light doping of the kagome
spin liquid seemingly leads to a holon crystal phase—an insulating state with one doped hole but
zero spin per unit cell—rather than to an SC.

6.2. Quantum Monte Carlo Results

The determinant quantum Monte Carlo (DQMC) method (148-151) is a powerful technique to
find equilibrium properties of interacting fermions. It is controlled, in the sense that the results
are guaranteed to converge to the exact answers upon increasing the computational effort. Unfor-
tunately, in many cases of interest, the applicability of the DQMC method is limited due to the
fermion sign problem (152). In these cases, the computational cost for a given accuracy increases
exponentially with the system size and the inverse temperature. The repulsive Hubbard model
suffers from the fermion sign problem in DQMC at generic values of the filling. Below, we briefly
review some useful results that were nevertheless obtained using DQMC, either for special pa-
rameters in which the sign problem is absent or by employing very large computational resources
to overcome the sign problem.

The U > 0 Hubbard model is sign problem free if the system is particle-hole symmetric (150).
This is the case at half-filling (z = 1) on a bipartite lattice (e.g., square or honeycomb) when the
intrasublattice hopping is set to zero. Note that the sign of U can be changed by performing a
particle-hole transformation on one spin species, showing that the U < 0 Hubbard model is sign
problem free with zero total magnetization and an arbitrary filling. The Hubbard model has been
simulated using DQMC on a square lattice (150), showing a clear Mott gap and an AF (Néel)
ground state for all U > 0.

On the honeycomb lattice, the semimetal state with Dirac nodes is stable for sufficiently small
U, whereas the ground state for sufficiently large U is a collinear sublattice antiferromagnet with
opposite spin polarization on the two sublattices (153, 154). Initial simulations suggested a QSL
state atintermediate U between the semimetal and the antiferromagnet (155); however, the current
consensus is that there is a direct continuous transition between the semimetal and AF phases with
no intermediate phase (156, 157).

The bilayer Hubbard model has been studied at half-filling for the square (158-160) and hon-
eycomb (56, 161) lattices. In the latter case, motivated by Bernal-stacked bilayer graphene, an AB
stacking has been considered. In this case, the noninteracting band structure has quadratic band
touchings, and the system may be expected to be unstable even in the presence of arbitrarily weak
U, as discussed in Section 5.1. However, it was found that for weak interactions, the dispersion
gets renormalized, and each quadratic band touchings splits into four linearly dispersing Dirac

Arovas et al.



Annu. Rev. Condens. Matter Phys. 2022.13:239-274. Downloaded from www.annualreviews.org

Access provided by 107.137.69.157 on 03/31/22. For personal use only.

points (56). As a result, a finite U is needed to bring the system from the semimetal into the AF
phase, much as in the single-layer honeycomb model.

Finally, DQMC has been applied to the square (102, 162-164) and honeycomb (165) lattice
away from half-filling. These calculations require massive computing resources. The square lattice
calculations have currently been performed for systems of size L = 8 at temperatures down to
T/t~ 0.2 and interaction strength U/t = 8. At these temperatures, finite size effects are found to be
small, such that L = 8 is probably sufficient to make inferences about the thermodynamic limit. No
broken symmetry phase was found. However, there are significant short-range correlations (162)
indicative of incommensurate unidirectional SDW, d-wave superconductivity, as well as nematic
bond order (164), that grow as the temperature decreases.

7. ARE THERE EXOTIC PHASES IN THE HUBBARD MODEL?

Progress has been made in recent years in constructing reverse engineered model Hamiltonians—
such as the Kitaev model or the quantum dimer model—that exhibit exotic quantum phases of
various sorts. This is sufficient to settle certain long-standing issues of principle—such as whether
QSL phases exist. However, to address whether it is reasonable to expect such phases to arise
without extreme fine tuning, it is worthwhile to ask whether these arise in some version of the
Hubbard model—with some particular lattice geometry or some range of U/t or t/t.

7.1. Phases with Exotic Broken Symmetries

Two novel classes of broken symmetry phases have been proposed as candidate orders to account
for some observed anomalies in the cuprate high-temperature SCs: states with orbital loop cur-
rent order (166, 167) and pair-density wave (PDW) states (168-170) with spatially modulated
superconducting order.

7.1.1. Orbital loop current order. These are states that are close relatives of a CDW, but which
break time-reversal symmetry, i.e., in which

<iz (c;f’ack’g - cz’gc].ﬂ)> = J].k # 0. 34,

Two particularly important such proposals are a zero-momentum intraunit cell orbital antifer-
romagnet in which J; = J(R; — R;), which has ordering vector Q = 0, and a d-density wave, in
which—on a square lattice in particular—J;; = ¢¢®J(R; — R;) with Q = (7, 7). In both these
examples, J(R) transforms nontrivially under the operations of the point group. Another related
state—of which the triplet d-density wave is an example (171)—is a spin-current density wave—
which preserves time-reversal symmetry.

As far as we know, convincing evidence for the existence of such phases has not been found in
either numerical or controlled approximate studies of Hubbard models. DMRG calculations on
doped Hubbard ladders that have probed such order typically have found very weak, extremely
short-range current—current correlations (106, 172-174).

There is evidence (discussed in Section 7.2) that a chiral spin-liquid phase arises in a small
but finite range of U/t in the undoped Hubbard model on the triangular lattice. Furthermore,
for a band structure with a symmetry protected quadratic band-touching, there is a dominant

In Reference 173, indications of loop current order were found for relatively large x in a three-band model
with substantial nearest-neighbor V, but this was found to arise in an unphysical range of parameters, i.e., one
in which the undoped system is not an AFIL.
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tendency toward an anomalous quantum Hall state at weak coupling (53). Although these states
break time-reversal symmetry, they must have a zero-orbital current on any link lying in a mirror
plane. However, a CDW state in doped versions of either of these seems likely to support orbital
loop current order.

7.1.2. Pair-density wave. A PDW is a close relative of the famous Fulde-Ferrell-Larkin—
Ovchinniko states (175, 176) that arise (at least in theory) in conventional SCs in response to
a small degree of spin polarization. As the name suggests, this is a superconducting state with a
pair field that is spatially modulated:

(chien, +elae;, ) = PR, R) #0, 35.

where in contrast with any conventional superconducting state, the spatial average of ® vanishes:
> R @R, R+ 7) = 0 for fixed 7. (This is a spin-singlet PDW—one can also consider the possibil-
ity of a spin-triplet PDW.) Such states have been found as close competitors in certain variational
treatments of the Hubbard model, and short-range PDW correlations have been reported in sev-
eral different DMRG calculations on Hubbard ladders. Furthermore, to date, no clear evidence of
PDW long-range order (or even of sufficiently strong quasi-long-range order to lead to a diver-
gent PDW susceptibility) has been presented in studies of any version of the Hubbard model (177,
178), except in one dimension (179, 180). However, the observation of clear PDW short-range or-
der in some cases is a promising point of departure for future investigations (168, 181, 182).

7.2. Phases with Topological Character

There has been an extensive search for spin-liquid phases in Hubbard models with an odd
integer number of electrons per unit cell. Here, as discussed in Section 2, it follows from the
generalized LSMOH theorem that any insulating phase that preserves translation symmetry
must be a topologically ordered spin liquid phase that cannot be adiabatically connected to any
band-insulator. At present, though there is no absolutely convincing evidence of such a phase, as
discussed in Section 6.1, there are several systems for which DMRG results are highly suggestive
of the existence of QSL phases, albeit for relatively narrow ranges of parameters.

8. SPECULATIONS CONCERNING THE PHASE DIAGRAM IN d > 2

Until this point, we have presented results that are established with some degree of theoretical
certainty. Alas, this means we have not been able to present any results for what might a priori
be considered the most important regime—spin-1 fermions with density near but not equal to
1 per site and U comparable to the bandwidth. This is the range of parameters that is likely most
relevant to phenomena in a host of highly correlated materials, including the cuprate and various
organic SCs. In this final section, we make a speculative attempt to extrapolate from regimes in
which our theoretical understanding is solid to obtain a global picture of the phases and regimes
of the Hubbard model—particularly focused on the properties of the model in two dimensions.

8.1. The Square Lattice Hubbard Model

In Figure 54, we show a schematic 7 = 0 phase diagram in the U/# — p plane of the square lattice
Hubbard model with nonvanishing second-neighbor hopping matrix, #/¢ # 0. On the basis of the
weak coupling analysis, we know that for U/8¢ < 1, there is a uniform d-wave SC phase with no
other forms of coexisting order. (Here 8t is the noninteracting bandwidth.) In the large U limit
and for a range of doping 0 < x < 0.2, one can conclude on the basis of DMRG studies that there
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Figure 5

Speculative ground state phase diagrams of the Hubbard model as a function of U and chemical potential, 1
(upper panels), or doped hole density, x (lower panels). (a) Square lattice with 7 >> |¢'| > 0. AFI indicates an
insulating (incompressible) phase with Néel antiferromagnetic order and doped hole density x = 0. The
thick solid line indicates a first-order transition from the AFI to a compressible phase, and the black circles
denote points at which x = 0 in the compressible phase. “2-phase” denotes a region of two-phase
coexistence. HMF denotes a half-metallic ferromagnetic phase. At intermediate U/8t, there is clear
numerical evidence of multiple local ordering tendencies of comparable strengths including unidirectional
CDW, colinear unidirectional SDW, nematic, and d-wave SCs. Which of these phases actually orders is still
uncertain. (5) Triangular lattice. At weak coupling, the ground state isa d,»_» +id,, SC. DMRG studies
suggest that for x = 0 as a function of increasing U there is an insulating QSL phase when U is comparable
with the bandwidth, 9z, that lies between the small U SC and the large U three-sublattice 120-deg-ordered
AFT phase. The transition from the QSL to the AFI is likely first order. For U ~ 97 and finite x, there is
DMRG evidence of at least short-range tendencies to d + id and nematic superconducting order, as well as
CDW, SDW, and PDW phases. Abbreviations: AF], antiferromagnetic insulator; CDW, charge-density
wave; DMRG, density-matrix-renormalization group; NSC, nematic superconducting; PDW, pair-density
wave; QSL, quantum spin liquid; SC, superconductor; SDW, spin-density wave.

is a fully polarized ferromagnetic phase—an HMF. Furthermore, there are compelling theoretical
arguments (62, 183) (which we will not review here) that there is a direct first-order transition
from the AF insulating phase to the half-metallic ferromagnetic phase, giving rise to the region of
two-phase coexistence indicated, with the density of the compressible phase going as x. ~ /8t/U
as U — oo.

Independent of U, in the dilute electron limit (not shown), the system behaves as a Fermi liquid
down to an exponentially low energy scale, below which it presumably forms an unconventional
superconducting state by some version of the Kohn-Luttinger mechanism. Finally, for the half-
filled band (x = 0) and U/8t greater than a critical value, «., there is an insulating phase that, so
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long as #/t < 1/2 (so the magnetism is not terribly frustrated), exhibits long-range Néel order (as
discussed in Section 5.4.1, . ~ 1/In|t/t| — 0 as ¢/t — 0).

In Figure 5, we have indicated a presumed direct (and consequently first order) transition
from the d-wave SC at x = 0 to the insulating AF phase. Such a direct transition occurs in HF
approximation (or equivalently in a suitable large N limit) for small #/¢, although at larger ¢/t
there can arise an intermediate AF metal (i.e., only partially gapped) phase (S. Raghu, unpublished
manuscript). Assuming the transition at x = 0 is first order, the transition must remain first order
for a range of chemical potentials. Consequently, for small U/8¢ > «. there must exist a two-phase
coexistence region corresponding to the thick solid line in the figure.

Indeed, arguments suggesting that the AF insulating phase is generically bounded by a line of
first-order transitions (leading to phase separation) were summarized in Reference 76, and more
recently these arguments have been supported by extensive variational Monte Carlo studies of
the Hubbard model in Reference 184. Another candidate small x phase when U/8¢ 2 «. that is
suggested by HF studies (77-79) (especially in the limit # = 0) is an insulating incommensurate
unidirectional colinear SDW (stripe) phase. The stripe phase can be thought of as a form of mi-
crophase separation.

Unfortunately, the structure of the middle part of the phase diagram, where U/8¢ ~ 1 and
1/12 S x < 1/3, is presently unsettled. From DMRG and other studies, it is clear that there are
strong local tendencies toward d-wave SCs, as well as unidirectional (stripe) CDW and SDW
orders. Implicit in the observation of striped states is a strong tendency toward lattice rotational
symmetry breaking, i.e., nematic order.!

That all DMRG studies (as well as other less controlled methods) find strong local tendencies
toward a d-wave SC is compatible with the supposition that the Hubbard model at intermediate
coupling captures an essential feature of cuprate physics that leads to high-temperature d-wave
SCs. However, whether the Hubbard model has more than a d-wave tendency—i.e., whether it
actually supports a robust d-wave SC phase at intermediate U or not—is still unsettled. Under
most circumstances, especially in broader ladders, the DMRG studies suggest that the competing
tendency toward CDW order may be stronger.

8.2. The Triangular Lattice Hubbard Model

Figure 5b shows a conjectured phase diagram for the triangular lattice Hubbard model. Again,
from a weak coupling analysis, we know that the small U portion of the phase diagram is super-
conducting, likely a d + id SC (185, 186). At # = 1 and large enough U, the model is equivalent to
a spin-1 Heisenberg model, for which strong evidence exists that the ground state has long-range,
coplanar three sublattice insulating AF order—the 120-deg state. DMRG studies consistently in-
dicate the existence of an intermediate insulating phase without any long or quasi-long-range AF
order—corresponding to some sort of QSL. Thus, at x = 0 there are two transitions as a function
of U/8t. The exact nature of the QSL, however, is still controversial.

There is some evidence that the QSL in question is a chiral spin liquid, which would be com-
patible with a continuous transition to a chiral (d + id) SC upon light doping, as shown in the
figure. Then at larger doping and intermediate values of U/8t, there is evidence from DMRG
studies of a local tendency toward a variety of possible broken symmetry phases including SDW,
CDW, PDW, and NSC. However, again, which of these orders exist as ground state phases in

10T his interpretation requires some care because of the effects of the boundaries, which are present in most
DMRG calculations.
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two dimensions is still an open question. Preliminary evidence (120) that the SC tendencies are
particularly strong at small x and for U in the spin-liquid regime offers some encouragement for
the long cherished ideal that a spin liquid may be a high-temperature SC waiting to happen.

9. IMPORTANT OPEN QUESTIONS

We end by highlighting some of the major outstanding challenges in the physics of the Hub-
bard model. We discuss whether the Hubbard model exhibits high-temperature superconductivity
and/or other exotic phases.

9.1. Is the Hubbard Model a High-Temperature Superconductor?

It has been established that the repulsive U Hubbard model has a superconducting ground state at
small U, but it still remains uncertain whether—and if so under what circumstances—it supports
high-temperature superconductivity. In other words, are there circumstances (i.e., some range of
band structure parameters) in which the Hubbard model is superconducting when all the energy
scales are comparable, i.e., when U is on the order of the bandwidth, so that 7,—if a SC state
arises—is a sizable fraction of E.? To get a quantitative feeling, recall that the bandwidth in the
cuprates is of the order of W~ 2 eV. Taking W >~ 8t, we obtain thata T, of 0.05¢ would correspond
to T. ~ 150 K, which is of the order of the maximal transition temperature found in the cuprates.
Although affirmative answers to this question have been suggested on the basis of various approx-
imate calculations, the presence of multiple intertwined orders—with the consequent existence
of subtle energies that are difficult to capture reliably—renders the validity of these approximate
results uncertain.

9.2. What Exotic Phases Arise?

At the same time, though there are various reasons to feel that exotic forms of quantum order
can arise in the Hubbard model—at least if the underlying band structure cooperates—currently
the evidence for these states ranges from suggestive to absent. Ideally, one would like to identify
versions of the model that unambiguously exhibit various forms of insulating QSLs, PDW SCs
(in more than one dimension), and/or possible forms of orbital loop current order.

9.3. What Sort of Non-Fermi-Liquid Behaviors Occur at Elevated 77

We have hardly touched on the nature of the model at finite 7 (although much is known) and
have totally neglected any issues associated with near equilibrium dynamical properties, much
less the far from equilibrium behaviors that are of so much recent interest. For instance, for U on
the order of the bandwidth, there most probably will not be a broad range of T above all ordering
temperatures in which the system can be well described by the weakly interacting quasi particles of
Fermi liquid theory. What the behavior is in this regime of 7—especially including what processes
govern the dissipative linear response of the system—is one of the most important open areas in

the field.

9.4. Have We Learned Anything Useful?

Finally, we have discussed controlled solutions of the Hubbard model—and have emphasized the
limited progress that has been made even on this simplest of all model strongly correlated sys-
tems. Obviously, from a broader perspective, much simpler and more versatile methods of solution
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[2 (in this volume), 187, 188] are needed that, once benchmarked by comparison with the con-
trolled results discussed here, can be applied more widely and perhaps even in ways that interface
with microscopic electronic structure approaches (189-191).
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