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Abstract—An increasing concern that curbs the widespread adoption
of KV-SSD is whether or not offloading host-side operations to the storage
device changes device behavior, negatively affecting various applications’
overall performance. In this paper, we systematically measure, quantify,
and understand the performance of KV-SSD by studying the impact
of its distinct components such as indexing, data packing, and key
handling on I/O concurrency, garbage collection, and space utilization.
Our experiments and analysis uncover that KV-SSD’s behavior differs
from well-known idiosyncrasies of block-SSD. Proper understanding of its
characteristics will enable us to achieve better performance for random,
read-heavy, and highly concurrent workloads.

Index Terms—storage, key-value database, solid state drive, KV-SSD

I. INTRODUCTION

Embedded systems are elemental in powering connected automo-
tive systems, smart homes, and internet of things (IoT) infrastructure.
These systems often require flexible and straightforward data manage-
ment techniques. Embedded key-value (KV) stores, such as RocksDB
and LevelDB, cater to these needs by providing a straightforward
interface for storing, searching, and filtering data. However, deploying
KV stores in embedded systems on top of block storage leads to
redundant data management overheads. Multiple layers of mapping
have to be maintained to keep track of data conversions between
variable-length KV pairs (KVPs) to files, then from files to fixed-size
logical blocks, and finally from logical blocks to physical flash pages.
These mapping and data conversion overheads give rise to CPU
and memory contention in the resource-limited embedded system.
Emerging Key-Value Solid State Drive (KV-SSD) technology [1], [2]
promises to streamline these redundant data management overheads
with direct data access, in-situ key-value data management, and better
scaling.

However, KV-SSD is yet to meet mainstream adoption, despite
its API ratification by SNIA (Storage Networking Industry Associ-
ation) [3]. Unlike a block-SSD, whose performance behaviors and
characteristics are better understood, those of a KV-SSD are still
unfamiliar in the storage landscape, limiting its widespread use.
Furthermore, although available publications [1], [4] describe the KV-
SSD architecture and performance, the in-depth details of how the
KV-SSD manages the complex interplay among data indexing, space
allocation, and garbage collection is not explored. In the traditional
I/O stack, on the other hand, the details of KV stores such as
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RocksDB and file systems such as ext4 are transparent at the source
level to the users, making it easy to fine-tune the performance of the
storage application. This is the first work to fill this knowledge gap
in the KV stack by investigating answers to the following research
questions (RQs) in detail:

RQ1: How does the performance of KV-SSD compare against that
of block-SSD under a wide variety of workloads?

RQ2: What can we learn about the internal components and organi-
zation of KV-SSD through experiments, to use it more effectively in
embedded systems?

In this work, we systematically measure, quantify, and character-
ize the performance of KV-SSD and block-SSD to understand the
benefits and drawbacks of the two I/O stacks. To answer RQ1 we
examine KV-SSD performance against two distinctly different KV
stores deployed on block-SSD. To answer RQ2, we identify the
major components of the new I/O stack and analyze their impact on
1/0 performance. For this study, we conduct thousands of hours of
experiments on Samsung PM983 devices that can be configured either
as KV-SSD or block-SSD. We analyze large amounts of performance
data collected via various tools and share the most significant findings
and observations.

We compare KV-SSD’s performance with its block counterpart for
CPU utilization, device bandwidth, and I/O latency under a wide
array of workloads to answer RQI1. Our study yields that KV-SSD
reduces CPU utilization by a factor of 13, on average, compared
to RocksDB on block storage. However, KV-SSD shows as low as
0.44x and 0.22x bandwidth utilization than block-SSD direct I/O
for 4KB random reads and writes, respectively. The latency of direct
1/0 operations on KV-SSD can be as high as 2.63x for writes and
8.1x for reads, compared to block-SSD. When compared to end-
to-end latency of operations on RocksDB (with ext4 file system and
10MB block cache) or Aerospike (with direct I/0), KV-SSD provides
up to 23.08x and 3.64 x better performance for inserts and updates,
respectively.

Our experiments also uncover three internal components that
dominate the I/O performance of KV-SSD—the hash-based indexing
scheme, KV-specific key handling, and data packing policies, and
host-side KV command set. First, the hash order-based index oper-
ations have upended benefits of sequential access on block-SSD—
both in terms of I/O latency and index size—causing up to 16.4x
latency hikes as the index size increases. The key handling and
data packing policies of KV-SSD also play a major role behind this
latency increase, although it helps in reducing read and write latency
as much as 0.37x and 0.86%, respectively, for KVPs smaller than
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Fig. 1: KV-SSD I/O path.

24KB at a high request scale (queue depth 64). However, the internal
organization of data in KV-SSD limits the maximum number of KVPs
that can be stored (~3.1 billion on a 3.84TB Samsung PM983 KV-
SSD) and can induce up to 20x space amplification. Finally, the
inefficiency in host-side KV-aware NVMe command processing can
also reduce bandwidth utilization of KV-SSD by a factor of 0.53 x for
larger keys. We make relevant experimental data publicly available
at https://support.cis.fiu.edu/ftp/damrl/ for the research community to
understand and model the performance behavior of KV-SSD.

II. BACKGROUND

The Key-Value SSD from Samsung [1] is a NAND flash storage
device with a KV Flash Translation Layer (FTL), adapted from
block FTL. The NVMe KV-SSD supports the storage, retrieval, and
deletion of variable-length keys and values (with key-length limited
from 4B to 255B keys and value-length limited from 0B to 2MB,
currently). The SSD supports internal operations on variable-length
keys by hashing them into fixed-length key hashes. The variable-
length KV pairs, along with additional metadata, are stored as
variable-length blobs in a log-structured manner inside KV-SSD. The
physical locations of these blobs are stored in the KV-FTL that uses
a multi-level hash table structure as the main index [1], [2].

User applications can request KV operations using the SNIA
KVS API library, which communicates with the device driver that
ultimately talks to KV-SSD. The SNIA KVS API library supports
fundamental KV operations, including store, retrieve, delete and exist,
both in synchronous and asynchronous mode. The API can access
the storage device through either a kernel device driver (KDD) and
a SPDK-based user-space driver (UDD) [2].

Figure 1 shows the I/O path of data in KV-SSDs. First, a user
application requests an operation through the KV API. The KV
API then talks to the device driver, and the device driver submits
the request in the device I/O queue using an appropriate vendor-
specific NVMe command for the KV interface. A request handler
then initiates a data transfer operation using Physical Region Page
(PRP) between the host system and SSD DRAM, based on the
command. During store operations, the key is hashed by one of
the index managers and temporarily stored in a local index before
merging it with the global index of the KV-SSD. Once the indexing
information for a key is merged in the global/main index, the KVP is
programmed on NAND flash pages. Each KVP consists of metadata,
key, and value. The metadata stores information such as the key size,
value size, and namespace. In addition to the global index, the key is
also stored in an iterator bucket for iterator management, based on the
first 4 bytes of the key. On the other hand, read requests need to go
through membership checking to ensure that the right data is being
returned. Index manager-resident Bloom filters can be leveraged to
quickly resolve read or exist queries for non-existent keys.

In contrast, block-SSD supports the block-level interface of storage
access protocols such as SCSI, SATA, and NVMe. In the block-based

'Multiple index managers are used to reduce contention of the global
index structure.

storage systems, data is mapped to fixed-size logical blocks on the
host side. These logical blocks are mapped to fixed-size NAND flash
pages (or blocks) in the SSD. Typically, the file system maintains a
mapping of files to logical blocks, and the SSD maintains a logical
blocks-to-physical mapping, known as the Flash Translation Layer
(FTL). Hence, the logical granularity of block-SSD still remains to
be fixed-size logical blocks on the host side, whereas the physical
granularity of access inside the SSD for store/retrieval can be a
flash page, usually of sizes between 4KB-32KB. However, to use
page-level physical access granularity, the FTL needs to maintain a
logical block to physical page mapping. Each physical SSD block
contains around 4K pages, so maintaining a logical block to physical
page mapping in FTL will consume a large amount of SSD DRAM.
Thus, typically within a block-SSD, FTL maintains a logical block
to physical block mapping that restricts accessing the storage device
only using a fixed block size.

III. METHODOLOGY

Existing works related to KV-SSD focuses primarily on studying
performance from a system utilization and scalability perspective,
largely overlooking the individual impact of the newly introduced
components of KV-FTL. In this study, we systemically analyze the
impact of each major component of the newly proposed 1/O stack
and measure the end-to-end performance of KV-SSD against block-
SSD-based KV stores. We identify three fundamental changes in
the new I/O stack compared to block I/O. First, a KV-SSD accepts
variable-length keys requiring it to implement a multi-level hash
index structure. Second, the variable-length values also present a
stark difference from the prevalent fixed-length logical blocks. In the
traditional I/O stack, the file system is responsible for mapping a file
(of variable-length name and variable-size) to a set of fixed-length
logical blocks. Lastly, existing host-side optimizations are no longer
effective, setting new rules for improving performance. We design
our study to understand the ramifications of these changes on device
1/0 performance.

We established the means of our study in accordance with the
precedence set by [5] to answer the following questions.

o Which benchmarks should we use to analyze KV-SSD behavior?
o Which KV stores should we study?

« What kind of access patterns should we study?

« How do we identify the root cause of KV-SSD behavior?

Since the block I/O and KV I/O stacks are so different, it is
important to ensure a fair comparison between the two, as not to
introduce any bias in the study. For a fair evaluation of both KV-SSD
and block-SSD, we use OpenMPDK KVBench [2], an open-source
benchmark based on ForestDB’s benchmark [6] with a configurable
workload generator. KVBench is comparable to db_bench, a built-
in microbenchmark for LevelDB and RocksDB. It can generate KV
workloads representative of real-world scenarios. KVBench generates
a series of KV operations with variable-length keys and values, and
the access patterns can be configured to be sequential, uniformly
random, or skewed following a Zipfian distribution. These 1/O
requests are submitted through the KV interface using the Kernel
Device Driver (KDD) or the SPDK-based User Device Driver (UDD).
An alternative to KVBench would be YCSB. Although it is a popular
real-world benchmark for KV storage, it requires a database engine in
the middle that properly interfaces with the KV-SSD. Such modified
database engines are not available at our disposal at this moment and
would take considerable time and effort to develop. Thus it is out of
the scope of this study.
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distributions provide similar latency for update operations. KV-SSD also performs better than RocksDB for inserts and updates, whereas

it only provides better performance for updates in Aerospike.

We approach RQ1 by comparing the performance of the KV-SSD
accessed through KDD against that of (1) RocksDB on an ext4 file
system and a block-SSD, and (2) Aerospike with direct access to
the block-SSD. The LSM-tree-based data management approach of
RocksDB is representative of the majority of popular KV stores
at this moment. Whereas the hash-index-based Aecrospike closely
matches KV-SSD’s own internal metadata management technique. We
examined these distinct systems using a wide variety of workloads
using KVBench, varying the following workload parameters: (1)
access pattern (sequential, uniform, Zipf), (2) request type (insert-
only, update-only, read-only, or mixed), and (3) request size (key size,
value size, or block size). The KVPs are accessed asynchronously
without data caching unless otherwise noted. Furthermore, we use
the same SSD hardware (Samsung PM983) that can be configured as
either a KV-SSD or a block-SSD, depending on the firmware; this
eliminates any possibility of performance difference due to the SSD’s
hardware architecture.

To answer RQ2, we examine the intricacies specific to KV-SSD by
analyzing data from multiple sources: KVBench logs, dstat, iostate,
S.M.AR.T, and NVMe-CLI. These data, in conjunction with our
understanding of the KV API and the KV-SSD literature, are used
to identify potential performance bottlenecks and their root causes.
Although the KV-SSD is effectively a black-box with its internal
implementation details unknown, we present our understanding of
some of the internal behavior of the KV-SSD through careful analysis.
We run our experiments using KVBench and custom scripts that use
either the KV API or IOCTL for direct access.

We run our experiments on two systems with the same config-
urations: 2x Intel Xeon Silver 4208 CPU @ 2.10GHz processors,
192GB DDR4 DRAM (which was reconfigured to 6GB for certain
macro-level experiments), and two Samsung PM983 NVMe KV-
SSDs (firmware version ETAS1KCA for KV-SSD and EDAS3W0Q
for block-SSD). Both systems run the Ubuntu operating systems, and
we use KDD for all our experiments.

IV. RESULTS AND ANALYSIS

In this section, we present our results and analysis to measure,
quantify, and understand the performance of KV-SSD. We begin by
comparing the end-to-end performance of KV-SSD and block-SSD.
Then to better understand the performance of KV-SSDs, we study
the impacts of offloading the index structure and data packing to the
storage device. Finally, we discuss the influence of the host-side KV
software stack on performance.

Performance impact of moving key-value management op-
erations from host to NVMe storage: The primary motivation
behind the design of KV-SSD is to simplify the I/O stack and reduce
I/O handling related host resource utilization, by offloading page
translation, index management, and iterator management tasks of
key-value applications, to the storage device [1], [4]. Surprisingly,

KV-SSD needs only standard SSD hardware, which is augmented
by a new Flash Translation Layer (FTL) firmware that provides
its processing capabilities to support direct key-value accesses [1].
Intuitively, the additional key-value processing on existing hardware
increases the I/O latency of KV-SSD. The average retrieve and
insert latency of KV-SSD for random workloads is 1.7x and 2.5x
higher than block-SSD direct I/O [7]. However, we cannot decide
the merits and demerits of the new storage stack using KV-SSD
without comparing its end-to-end performance with traditional KV
stores using block-SSD. Therefore, in Fig. 2, we compare end-to-end
I/O performance of KV operations on KV-SSDs, and software KV
stores such as RocksDB and Aerospike deployed on top of block-
SSD. We issue 10 million I/O requests (insert, update or retrieve) of
16B keys and 4KB values, with different I/O access patterns such
as sequential, uniform random, and Zipfian distributions. We found
that the host CPU utilization reduced up to 0.92x while using KV-
SSD compared to RocksDB deployed on top of block-SSD. CPU
utilization reduction compared to Aerospike was much less, since it
does not require complex compaction and lookup operations of LSM-
tree-based RocksDB. [Interestingly, further analysis revealed that
while host-side CPU utilization was reduced by using KV-SSD, end-
to-end average I/O latency is significantly impacted depending upon
the workloads. The 1/O latency distribution of Fig. 2 shows, KV-
SSD performs better than RocksDB (with only 10MB block cache)
for inserts (Fig. 2a) and updates (Fig. 2b), but suffers significantly
during retrieves (Fig. 2c¢). While compared to Aerospike, KV-SSD
performs better only for updates (Fig. 2b). We anticipate that the
increase in the KV retrieve latency in KV-SSD, compared to block-
SSD, might be due to the indexing, data packing, and key-handling
operations moved from the host to the storage device. However,
the lack of proprietary knowledge of KV-FTL and flash controller
workings limit our ability to measure exact resource utilization of
the CPU and memory within KV-SSD. Thus, we further analyze the
impact of indexing, data packing, and key-handling operations by
performing direct access to KV-SSD from the host.

Impact of key-value indexing: As explained earlier in Sec. II,
in KV-SSD, the block-SSD FTL is extended to support variable-
size key-value pairs using a multi-level hash table for fast point
query as a global index structure. In KV-SSD, to enable easy and
efficient management of the index structure, variable-length keys are
transformed into fixed-length key hashes. Then these key hashes are
used for physical page translations. This hashing mechanism makes
key handling and index management easy. However, the sequential
access pattern of workloads may no longer imply sequential access
to the storage device due to hashing. While we popularly know that
sequential reads or writes to flash results in much better performance
compared to random I/O [5]. For example, the datasheet of Samsung
PM983 NVMe block-SSD, as well as our experiments, reveals that
sequential reads and writes incur up to 0.8x and 0.6x lower latency
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Fig. 3: KV-SSD’s multi-level hash index can become too large to
manage efficiently as the number of KVPs stored in the device
increases, impacting device performance drastically. Read and write
latency of KV-SSD can increase up to 2x and 16.4x as the number
of keys reaches close to the maximum limit (from 1.5 million to 3
billion KVPs), compared to block-SSD’s near-constant performance.
The horizontal line in the figures represents no change in I/0 latency.

than their random counterparts while performing 4KB 1/Os using
block-based firmware [7]. It cannot be guaranteed whether the same
benefit of sequential I/Os still holds for the PM983 with key-value
firmware. We study the latency of insert, update and read operations
on KV-SSDs. We observe that hash-based design in KV-SSD takes
away the advantage of better performing sequential accesses. Fig. 2
shows that the performance for random and sequential workloads
on KV-SSD is almost the same. Sequential workloads in block-SSD
FTL minimize metadata management and lookup by storing smaller
amounts of metadata and optimize data storage by intelligently
exploiting the parallelism of the flash device [8]. Since key hashes
change the order of the keys, the multi-level hash table index in KV-
SSD does not store keys in sequential order. This increases metadata
storage and lookup overheads. In addition, hash-order-based indexing
also nullifies the use of the same sequential data storage optimizations
of block-SSD in its KV counterpart. Hence, sequential workloads
in KV-SSD no longer provide the same performance benefits as in
block-SSD.

Impact of index occupancy: The global hash-based index in KV-
SSD needs to maintain a separate record for each key. This increases
the size of the index almost linearly with the number of KVPs inserted
in the storage device. Quick metadata insertion and lookup in the
index can be ensured by keeping it entirely in SSD DRAM. However,
an increase in the size of the index, upon insertion of more keys, may
make the index structure too large to fit in SSD DRAM, directing
index operations to flash. We observe that upon overflow of the index
structure from the SSD DRAM to flash pages, the latency of the read
and write operations is tremendously impacted. If an entry is not
found in the index cache, then it would invoke a series of flash
page reads to access the desired index entry from a large multi-level
index structure. Fig. 3 shows the average latency of read and write
operations for KV-SSD at low and high index occupancy compared
to the performance of the block-SSD with the same amount of the
prior occupied storage capacity. Particularly, to test performance at
low occupancy, we write 1.53 million KVPs with 16B keys and 512B
values on KV-SSD, and for high space usage, we fill up the SSDs
with 3 billion KVPs of the same size. Surprisingly, we see that the
average latency of the KV-SSD increases up to 2X for reads and
even more 16.4x for writes with the increased index occupancy.
While conducting similar experiments on the block-SSD, by filling
the same amount of 512B blocks as that of KV-SSD (i.e., 1.53
million 512B blocks for low occupancy and 3 billion 512B blocks for
high occupancy), we see the performance almost remains same. This
reinforces that the degradation in the KV-SSDs performance is surely
not due to the NAND flash cells. We anticipate that the performance
of the block-SSD does not change drastically, since hybrid-FTLs

Fig. 4: KV-SSD I/O performance suffers due to its log-like data
packing policy and key handling overheads. However, its byte-aligned
log-like data packing policy can provide better performance for KVPs
smaller than a flash page at high concurrency, compared to block
devices. (a) and (b) shows average latency ratios of KV-SSD vs.
block-SSD for read and write operations, respectively (<1 is better
for KV-SSD).

in block-SSD operate on a fixed number of logical blocks and can
optimize the size of the index by minimizing the number of entries
per logical block [9]. In contrast, the total number of KVPs that
need to be stored on KV-SSD depends on the workload, and offset
information for each pair needs to be maintained separately.

Impact of additional data packing and key handling operations
within KV-SSD: In block-based I/O stack, variable-length data to
fixed-length block conversion is handled by the host, which then
flushes the fixed-length blocks to the SSD to be programmed on
fixed-length physical pages or blocks. In KV stack, the job of packing
variable-length data into fixed-length physical pages is offloaded to
the storage device that performs it in a log-like manner [1]. So, KV-
SSD has to employ additional data packing operations other than key
indexing to enable direct I/O operations for variable-length KVPs.
To better understand such internal data packing operations, we study
the performance with respect to various value sizes and concurrency.
Further, we analyze the effect of data packing on garbage collection
and space utilization.

Previous research [10] attributes the higher bare metal access
latency of KV-SSD to the key handling overheads of the device.
Since additional tasks such as key hashing, membership checking, and
merging of the local and global index have to be executed for each key
inside the storage device [1]. Hence, key handling overheads increase
the time required to complete each I/O request in KV-SSD. However,
to our surprise, we notice that the key handling overheads are not the
only reason behind the higher I/O latency of KV-SSD. The internal
data packing activities significantly impact the KV-SSD performance.
In Fig. 4, we analyze the direct access latency ratio of KV-SSD and
block-SSD for read and write operations while increasing the value
size and concurrency (i.e., queue depth). We perform in total the
same 1.53 million KV or block I/Os for each value size in Fig. 4.
Thus, hypothetically if the increase in latency was only due to the key
handling overhead, then for the same number of KVPs, the additional
performance overhead should remain the same for different value
sizes. But Fig. 4 contradicts the above hypothesis, implying that in
addition to key handling overhead also some other factor(s) accounts
for KV-SSD’s performance.

Impact of concurrency: Our experiments reveal that KV-SSD can
pack (during store) and unpack (during retrieve) variable length-data
more efficiently, compared to a block-SSD, when there are a large
number of concurrent I/O requests, especially with relatively small
I/0 sizes. In Fig. 4, we observe that the latency of KV-SSD can
be up to 5.4x higher than block-SSD, but with higher concurrency
(i.e., queue depth = 64) the KV-SSD performs better. Retrieve/read
operations consumes lower or equal time to complete than block-
SSD, while for store/write operations, KV-SSD shows 0.86x latency
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reduction than block-SSD for smaller value sizes (see Fig. 4a). We
believe this is because the FTL within KV-SSD better allows it
to take advantage of the internal SSD parallelism among multiple
channels, dies, and planes for concurrent I/O requests, as the data
packing for small KVPs within KV-SSD is simple compared to block-
SSD. We elaborate on the above in detail soon. These performance
statistics clearly suggest that the data packing policy of KV-SSD
works as a boon for performance for values smaller than 32KB at
high concurrency and as a bane for performance for values equal or

larger than 32KB.
Impact of value size: As we see from Fig. 4, the data packing

policies of KV-SSD favor relatively smaller value sizes, especially for
store operations. KV-SSD stores metadata, key, and value of each
KVP as variable-length blobs within flash pages (usually between
4KB and 32KB in size), in a log-like manner [1] without performing
any rearrangements to KVPs in the buffer before programming them
to flash pages. In contrast, even if block-SSD FTLs write data in a
log-like manner, they have an incentive to maintain the sequentiality
of blocks in the physical space [8]. Storing logical blocks sequentially
in physical space reduces index size. Hence, we assume, block-SSD
FTL tries to reorganize data and/or hold data in buffer much longer
before flash programming (writes) happens. But, KV-SSD does not
have any incentive in maintaining the sequentiality of keys during
data packing due to its hash-based index structure. Thus, for small
KVPs (e.g., 512B, 2KB, and 8KB) that fit within a single page
along with its metadata, the write latency of KV-SSD is up to 0.86x
smaller than the block-SSD, as data packing within KV-SSD has no
additional rearrangement operations. We believe similar benefits are
not observed at queue depth of one since it takes much longer to fill
a flash page buffer at a low request scale, and key handling overheads
dominate the I/O latency. However, if a KVP can’t be packed within a
single flash page, then data packing within KV-SSD needs to perform
the additional work of splitting and packing the data into multiple
flash pages [11], along with additional offset pointer management that
drastically increases KV-SSDs write latency up to 5.4x compared to
block-SSD.

We further validate our above-mentioned hypothesis about
variable-length blob-based data packing in a log-like manner within
KV-SSD by observing the write bandwidth of KV-SSD upon increas-
ing the value size. Fig. 5 shows, unlike block-SSD, the bandwidth of
KV-SSD drops significantly for some value sizes such 25KB, 49KB,
etc. We anticipate this is because the physical page size of our KV-
SSD is probably 32KB, which can fit up to 24KB of value size in
addition to metadata and key. Moreover, each physical page may
also have some space reserved for data recovery operations, such as
erasure coding. Thus, if our hypothesis is valid, upon the increase
in KVP size, when it no longer fits within a single page, then due
to the additional splitting, packing, and offset pointer management

g0 guo g0
208 .08 .08
2 2 206
Qos Qo6 Qo
s £ £oa
3 N o
3 .
502 02 2

@ @ @ 0.0

1 2 3 1 2 3 0.0 0.2 0.4
Data Written (in TB) Data Written (in TB) Data Written (in TB)

(a) RocksDB random  (b) KV-SSD random (¢) KV-SSD
update update pseudo-random update
Fig. 6: Byte-aligned log-like data packing in KV-SSD makes it
susceptible to foreground GC operations. (b) and (c) show bandwidth
drop due to foreground GC during random updates, while (a) shows
no GC triggered during random updates in RocksDB on block-SSD.
(c) stopped before all update completion due to time restrictions.

EZA KV-SSD
EEl Aerospike

Space Amplification
w ©

-

"o N
Value Size (Key Size = 16B)

Fig. 7: KV-SSD can suffer from high space amplification (i.e., actual
SSD space utilization/data written by application) due to internal
padding added to small KVPs. Hash index-based Aerospike on raw
block-SSD shows space amplification of less than 2. LSM tree-based
RocksDB’s space amplification is 1.111... in the worst case, without
considering files system metadata overheads [12]. KV-SSD’s high
space amplification limits the maximum number of KVPs that can
be stored in the device.

operations, KV-SSD bandwidth should drop (see Fig. 5b). Similar
zig-zag bandwidth changes are not seen in block-SSD (see Fig. 5a),
because its FTL programs logical blocks to the flash pages without
modification.

Problem of foreground garbage collection (GC) within KV-
SSD: Interestingly, we observe that the data packing strategy that
enables better performance for smaller KVPs at high concurrency
also makes KV-SSD more susceptible to foreground GC opera-
tions, compared to block-SSD. Foreground GC occurs when many
write/update requests arrive, and there is no more physical space
left in the SSD. The bandwidth drops due to foreground GC, as
write/update requests need to wait until GC can free up some space.
To observe the impact of foreground GC on the device bandwidth, we
first fill 80% of SSD device capacity with 16B keys and 4KB values,
then run uniform-random or pseudo-randofupdate workloads for all
stored keys, rewriting the same amount of data. We observe that just
a small amount of randomness in updates can trigger foreground GC
in KV-SSD. However, triggering foreground GC for 4KB values in
block-SSD is extremely tough both for direct I/O and file systems. In
Fig. 6a, no drastic performance drop is observed. The level-based data
arrangements in RocksDB lead to sequential access patterns of files
on block-SSD that erase entire blocks for invalid SST files, reducing
chances of triggering GC. Hence, in KV-SSD, bursty workloads may
intensively suffer from low performance if the drive capacity is almost
filled.

Problem of space amplification within KV-SSD: Although KV-
SSD provides better latency for small KVPs, it adds up to 1KB
padding to small KVPs, incurring space amplification of up to 20X.
Figure 7 shows that KVPs with 50B values incur space amplification
of 17x in KV-SSD, whereas it is only 1.8x for Aerospike on raw

2We move a small sliding window across the whole distribution of keys
from the insert phase, and randomly choose keys from within the sliding
window.

1109

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 31,2022 at 16:22:40 UTC from IEEE Xplore. Restrictions apply.



4B 8B 16B 32B 64B 128B 255B
Key Size (Value Size = 4KB)

Fig. 8: Samsung’s KV command set design for NVMe interface
penalizes I/0 performance for large keys. Keys larger than 16B needs
two NVMe commands to pass the key to the KV-SSD, increasing
processing overheads.

block-SSD. In addition, this also limits the number of KVPs that can
be stored in KV-SSD. For example, we observed that the maximum
number of KVPs that can be stored in a 3.84TB Samsung KV-SSD is
approximately 3.1 billion. While the exact reason behind such a limit
is hard to know due to many proprietary and unknown details about
KV-SSD, we explain our anticipations below. Our first assumption
is that the internal access granularity of KV-SSD is 1KB, twice the
size of two 512B sectors of the block-SSD. In that case, KVPs which
are larger than 1KB but smaller than 2KB should be padded up to
2KB. However, from Figure 7, we see that KV-SSD packs data very
tightly beyond 1KB, achieving close to 1 space amplification for KVP
sizes ranging from 1KB to 4KB. Our second assumption is the Error
Correction Code (ECC) requirements have influenced 1KB padding
of small KVPs. ECC modules are integrated with flash controllers
and cannot be modified in software. The size of ECC sectors, the
minimum data unit for ECC computation, are also predefined in
hardware. Hence, KV-SSD has inherited the ECC requirements of
the block-SSD hardware, given the former is implemented only in
firmware. However, since KV-SSD stores metadata and keys along
with data values, it has a higher reliability requirement than block-
SSD. If the ECC sector of the device is 1KB, then packing multiple
KVPs within this space will increase the risks of data corruption for
multiple KVPs. Since data is packed as variable-length blobs in flash
pages, this may have cascading effects. Hence, it is a possibility
that to reduce data reliability issues, KVPs are internally limited
to a 1KB minimum size. Lastly, we assume that this may be due
to constraints of managing an index with good performance and
hash collision resolution. Since the range of keys available to KV
applications is practically unlimited, KV-SSD runs the risk of ending
up with an unfathomably large index structure with lots of small
KVPs stored in the device. Given the limited resources of a flash
controller, maintaining reasonable latency of operations and low hash
collisions in the hash-based global index structure is extremely hard.

Impact of new host-side software stack: Finally, we study
how host-side design decisions impact I/O performance to identify
three major inefficiencies in the current vendor-specific commands
to enable KV operations over NVMe. First, as keys are passed to
KV-SSD (from the host) inside NVMe commands, one KV operation
might require more than one NVMe command to be issued [13]. Each
KV API request is passed to the SSD as a 64B NVMe command,
and each command has 16B reserved space for a key. If the key
size is larger than 16B, it requires an additional NVMe command to
pass the key to the storage device. Fig. 8 shows how operations with
key length larger than 16B lowers device bandwidth utilization, both
for synchronous and asynchronous 1/O. Second, for extremely small
KVPs, unnecessary overhead is incurred due to the fixed size of each
NVMe command (64B). For example, as observed in [14], the average
KVP size in Facebook’s real KV store deployments is between 57B
and 154B. Issuing one or more 64B NVMe commands to store or
retrieve KVPs, which are only a hundred bytes or less, is a waste

of critical system resources. Hence, [10] proposed consolidation
of multiple NVMe commands into one compound command for
smaller KVPs to increase device performance. Third, unlike its block
counterpart, the NVMe write commands for KV-SSD do not send
critical metadata information such as expected access frequency or
acceptable access latency to the device. Such information may help
in designing efficient data-placement strategies for KV-SSDs based
on the hotness or coldness of data.

V. CONCLUSIONS

This paper poses two research questions for investigation — How
does KV-SSD perform in comparison to block-SSD? How does KV-
SSD work under the hood in the context of embedded systems? KV-
SSD is a good fit for embedded systems, as they enable various
operations like KV insert and update at lower I/O latency and also
provide better performance at high concurrency. In addition, using
KV-SSD can reduce the burden on the small CPUs of the IoT devices.
However, it is better to avoid KV-SSD for write-heavy workloads,
especially with extremely low data size, due to its susceptibility to
foreground GC and high space amplification for small values. In
future, we plan to explore KV-SSD performance behavior under real-
world workloads and benchmarks, such as YCSB. We also plan to
develop an analytical model of KV-SSD performance that can help
researchers generate more representative workloads compatible with
KVBench.
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