
KV-SSD: What Is It Good For?

Manoj P. Saha
School of Computing and Information Sciences

Florida International University

Miami, USA

msaha002@fiu.edu

Adnan Maruf
School of Computing and Information Sciences

Florida International University

Miami, USA

amaru009@fiu.edu

Bryan S. Kim
Department of Electrical Engineering & Computer Science

Syracuse University

Syracuse, USA

bkim01@syr.edu

Janki Bhimani
School of Computing and Information Sciences

Florida International University

Miami, USA

jbhimani@fiu.edu

Abstract—An increasing concern that curbs the widespread adoption

of KV-SSD is whether or not offloading host-side operations to the storage

device changes device behavior, negatively affecting various applications’

overall performance. In this paper, we systematically measure, quantify,

and understand the performance of KV-SSD by studying the impact

of its distinct components such as indexing, data packing, and key

handling on I/O concurrency, garbage collection, and space utilization.

Our experiments and analysis uncover that KV-SSD’s behavior differs

from well-known idiosyncrasies of block-SSD. Proper understanding of its

characteristics will enable us to achieve better performance for random,

read-heavy, and highly concurrent workloads.

Index Terms—storage, key-value database, solid state drive, KV-SSD

I. INTRODUCTION

Embedded systems are elemental in powering connected automo-

tive systems, smart homes, and internet of things (IoT) infrastructure.

These systems often require flexible and straightforward data manage-

ment techniques. Embedded key-value (KV) stores, such as RocksDB

and LevelDB, cater to these needs by providing a straightforward

interface for storing, searching, and filtering data. However, deploying

KV stores in embedded systems on top of block storage leads to

redundant data management overheads. Multiple layers of mapping

have to be maintained to keep track of data conversions between

variable-length KV pairs (KVPs) to files, then from files to fixed-size

logical blocks, and finally from logical blocks to physical flash pages.

These mapping and data conversion overheads give rise to CPU

and memory contention in the resource-limited embedded system.

Emerging Key-Value Solid State Drive (KV-SSD) technology [1], [2]

promises to streamline these redundant data management overheads

with direct data access, in-situ key-value data management, and better

scaling.

However, KV-SSD is yet to meet mainstream adoption, despite

its API ratification by SNIA (Storage Networking Industry Associ-

ation) [3]. Unlike a block-SSD, whose performance behaviors and

characteristics are better understood, those of a KV-SSD are still

unfamiliar in the storage landscape, limiting its widespread use.

Furthermore, although available publications [1], [4] describe the KV-

SSD architecture and performance, the in-depth details of how the

KV-SSD manages the complex interplay among data indexing, space

allocation, and garbage collection is not explored. In the traditional

I/O stack, on the other hand, the details of KV stores such as

This work was partially supported by the National Science Foundation
(NSF) Awards CNS-2008324 and CNS-2122987, and by a KV-SSD equipment
grant from Samsung.

RocksDB and file systems such as ext4 are transparent at the source

level to the users, making it easy to fine-tune the performance of the

storage application. This is the first work to fill this knowledge gap

in the KV stack by investigating answers to the following research

questions (RQs) in detail:

RQ1: How does the performance of KV-SSD compare against that

of block-SSD under a wide variety of workloads?

RQ2: What can we learn about the internal components and organi-

zation of KV-SSD through experiments, to use it more effectively in

embedded systems?

In this work, we systematically measure, quantify, and character-

ize the performance of KV-SSD and block-SSD to understand the

benefits and drawbacks of the two I/O stacks. To answer RQ1 we

examine KV-SSD performance against two distinctly different KV

stores deployed on block-SSD. To answer RQ2, we identify the

major components of the new I/O stack and analyze their impact on

I/O performance. For this study, we conduct thousands of hours of

experiments on Samsung PM983 devices that can be configured either

as KV-SSD or block-SSD. We analyze large amounts of performance

data collected via various tools and share the most significant findings

and observations.

We compare KV-SSD’s performance with its block counterpart for

CPU utilization, device bandwidth, and I/O latency under a wide

array of workloads to answer RQ1. Our study yields that KV-SSD

reduces CPU utilization by a factor of 13, on average, compared

to RocksDB on block storage. However, KV-SSD shows as low as

0.44× and 0.22× bandwidth utilization than block-SSD direct I/O

for 4KB random reads and writes, respectively. The latency of direct

I/O operations on KV-SSD can be as high as 2.63× for writes and

8.1× for reads, compared to block-SSD. When compared to end-

to-end latency of operations on RocksDB (with ext4 file system and

10MB block cache) or Aerospike (with direct I/O), KV-SSD provides

up to 23.08× and 3.64× better performance for inserts and updates,

respectively.

Our experiments also uncover three internal components that

dominate the I/O performance of KV-SSD—the hash-based indexing

scheme, KV-specific key handling, and data packing policies, and

host-side KV command set. First, the hash order-based index oper-

ations have upended benefits of sequential access on block-SSD—

both in terms of I/O latency and index size—causing up to 16.4×

latency hikes as the index size increases. The key handling and

data packing policies of KV-SSD also play a major role behind this

latency increase, although it helps in reducing read and write latency

as much as 0.37× and 0.86×, respectively, for KVPs smaller than

978-1-6654-3274-0/21/$31.00 ©2021 IEEE 1105

2
0
2
1
 5

8
th

 A
C

M
/I

E
E

E
 D

es
ig

n
 A

u
to

m
at

io
n
 C

o
n
fe

re
n
ce

 (
D

A
C

)
| 9

7
8
-1

-6
6
5
4
-3

2
7
4
-0

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/D

A
C

1
8
0
7
4
.2

0
2
1
.9

5
8
6
1
1
1

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 31,2022 at 16:22:40 UTC from IEEE Xplore. Restrictions apply.

A
pp

lic
at
io
n

KV
 A

PI
 L

ib
ra

ry

Key
Hashing Local

Hash
Index

Bloom
Filter

De
vi

ce
 D

riv
er

Re
qu

es
t H

an
dl

er

KVP

NAND Flash

Flash Page

Metadata Key Value

Index Manager

KV-SSD

Gl
ob

al
 H

as
h

In
de

x

Host DRAM

SSD DRAM

Index Backup

PRP Engine

Fig. 1: KV-SSD I/O path.

24KB at a high request scale (queue depth 64). However, the internal

organization of data in KV-SSD limits the maximum number of KVPs

that can be stored (∼3.1 billion on a 3.84TB Samsung PM983 KV-

SSD) and can induce up to 20× space amplification. Finally, the

inefficiency in host-side KV-aware NVMe command processing can

also reduce bandwidth utilization of KV-SSD by a factor of 0.53× for

larger keys. We make relevant experimental data publicly available

at https://support.cis.fiu.edu/ftp/damrl/ for the research community to

understand and model the performance behavior of KV-SSD.

II. BACKGROUND

The Key-Value SSD from Samsung [1] is a NAND flash storage

device with a KV Flash Translation Layer (FTL), adapted from

block FTL. The NVMe KV-SSD supports the storage, retrieval, and

deletion of variable-length keys and values (with key-length limited

from 4B to 255B keys and value-length limited from 0B to 2MB,

currently). The SSD supports internal operations on variable-length

keys by hashing them into fixed-length key hashes. The variable-

length KV pairs, along with additional metadata, are stored as

variable-length blobs in a log-structured manner inside KV-SSD. The

physical locations of these blobs are stored in the KV-FTL that uses

a multi-level hash table structure as the main index [1], [2].

User applications can request KV operations using the SNIA

KVS API library, which communicates with the device driver that

ultimately talks to KV-SSD. The SNIA KVS API library supports

fundamental KV operations, including store, retrieve, delete and exist,

both in synchronous and asynchronous mode. The API can access

the storage device through either a kernel device driver (KDD) and

a SPDK-based user-space driver (UDD) [2].

Figure 1 shows the I/O path of data in KV-SSDs. First, a user

application requests an operation through the KV API. The KV

API then talks to the device driver, and the device driver submits

the request in the device I/O queue using an appropriate vendor-

specific NVMe command for the KV interface. A request handler

then initiates a data transfer operation using Physical Region Page

(PRP) between the host system and SSD DRAM, based on the

command. During store operations, the key is hashed by one of

the index managers1 and temporarily stored in a local index before

merging it with the global index of the KV-SSD. Once the indexing

information for a key is merged in the global/main index, the KVP is

programmed on NAND flash pages. Each KVP consists of metadata,

key, and value. The metadata stores information such as the key size,

value size, and namespace. In addition to the global index, the key is

also stored in an iterator bucket for iterator management, based on the

first 4 bytes of the key. On the other hand, read requests need to go

through membership checking to ensure that the right data is being

returned. Index manager-resident Bloom filters can be leveraged to

quickly resolve read or exist queries for non-existent keys.

In contrast, block-SSD supports the block-level interface of storage

access protocols such as SCSI, SATA, and NVMe. In the block-based

1Multiple index managers are used to reduce contention of the global
index structure.

storage systems, data is mapped to fixed-size logical blocks on the

host side. These logical blocks are mapped to fixed-size NAND flash

pages (or blocks) in the SSD. Typically, the file system maintains a

mapping of files to logical blocks, and the SSD maintains a logical

blocks-to-physical mapping, known as the Flash Translation Layer

(FTL). Hence, the logical granularity of block-SSD still remains to

be fixed-size logical blocks on the host side, whereas the physical

granularity of access inside the SSD for store/retrieval can be a

flash page, usually of sizes between 4KB-32KB. However, to use

page-level physical access granularity, the FTL needs to maintain a

logical block to physical page mapping. Each physical SSD block

contains around 4K pages, so maintaining a logical block to physical

page mapping in FTL will consume a large amount of SSD DRAM.

Thus, typically within a block-SSD, FTL maintains a logical block

to physical block mapping that restricts accessing the storage device

only using a fixed block size.

III. METHODOLOGY

Existing works related to KV-SSD focuses primarily on studying

performance from a system utilization and scalability perspective,

largely overlooking the individual impact of the newly introduced

components of KV-FTL. In this study, we systemically analyze the

impact of each major component of the newly proposed I/O stack

and measure the end-to-end performance of KV-SSD against block-

SSD-based KV stores. We identify three fundamental changes in

the new I/O stack compared to block I/O. First, a KV-SSD accepts

variable-length keys requiring it to implement a multi-level hash

index structure. Second, the variable-length values also present a

stark difference from the prevalent fixed-length logical blocks. In the

traditional I/O stack, the file system is responsible for mapping a file

(of variable-length name and variable-size) to a set of fixed-length

logical blocks. Lastly, existing host-side optimizations are no longer

effective, setting new rules for improving performance. We design

our study to understand the ramifications of these changes on device

I/O performance.

We established the means of our study in accordance with the

precedence set by [5] to answer the following questions.

• Which benchmarks should we use to analyze KV-SSD behavior?

• Which KV stores should we study?

• What kind of access patterns should we study?

• How do we identify the root cause of KV-SSD behavior?

Since the block I/O and KV I/O stacks are so different, it is

important to ensure a fair comparison between the two, as not to

introduce any bias in the study. For a fair evaluation of both KV-SSD

and block-SSD, we use OpenMPDK KVBench [2], an open-source

benchmark based on ForestDB’s benchmark [6] with a configurable

workload generator. KVBench is comparable to db bench, a built-

in microbenchmark for LevelDB and RocksDB. It can generate KV

workloads representative of real-world scenarios. KVBench generates

a series of KV operations with variable-length keys and values, and

the access patterns can be configured to be sequential, uniformly

random, or skewed following a Zipfian distribution. These I/O

requests are submitted through the KV interface using the Kernel

Device Driver (KDD) or the SPDK-based User Device Driver (UDD).

An alternative to KVBench would be YCSB. Although it is a popular

real-world benchmark for KV storage, it requires a database engine in

the middle that properly interfaces with the KV-SSD. Such modified

database engines are not available at our disposal at this moment and

would take considerable time and effort to develop. Thus it is out of

the scope of this study.

1106

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 31,2022 at 16:22:40 UTC from IEEE Xplore. Restrictions apply.

