
Fine-grained Control of Concurrency within KV-SSDs
Janki Bhimani*, Jingpei Yang†, Ningfang Mi§, Changho Choi†, Manoj Saha*, and

Adnan Maruf*
*Knight Foundation School of Computing and Information Sciences, Florida International University

† Memory Solution Research Lab, Samsung Semiconductor
§ Dept. of Electrical & Computer Engineering, Northeastern University

ABSTRACT

The development of KV-SSDs allows simplifying the I/O
stack compared to the traditional block-based SSDs. We
propose a novel Key-Value-based Storage infrastructure for
Parallel Computing(KV-SiPC)-a framework for multi-thread
OpenMP applications to use NVMe-based KV-SSDs. We de-
sign a new capability to execute workloads with multiple
parallel data threads along with traditional parallel compute
threads, that allow us to improve the overall throughput of
applications, utilizing the maximum possible storage band-
width. We implement our KV-SiPC infrastructure in a real
system by extending various processing layers (e.g., program,
OS, and device layers) and evaluate the performance of KV-
SiPC by using block-based NVMe SSDs in the traditional
I/O stack as a baseline for comparisons. The experimental
results show that KV-SiPC can better utilize the available
device bandwidth and significantly increases application I/O
throughput.
CCS CONCEPTS

• Computer systems organization → Multicore archi-

tectures; • Hardware → External storage.

KEYWORDS

Solid State Drive (SSD), Key-Value SSD, Multi-threading
ACM Reference Format: Janki Bhimani, Jingpei Yang,
Ningfang Mi, Changho Choi, Manoj Saha, Adnan Maruf.
2021. Fine-grained Control of Concurrency within KV-SSDs.
In The 14th ACM International Systems and Storage Con-
ference (SYSTOR ’21), June 14–16, 2021, Haifa, 12 pages.
https://doi.org/10.1145/3456727.3463777
1This work was initiated during Janki Bhimani’s internship at Samsung

Semiconductor Inc. [9]. This work was partially supported by National

Science Foundation Awards CNS-2008324, CNS-2008072, and Career Award

CNS-1452751.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8398-1/21/06. . . $15.00

https://doi.org/10.1145/3456727.3463777

Figure 1: I/O Stack layers for (a) Block SSD, and (b) KV-SSD.

1 INTRODUCTION

The intermediate layers of the operating system (OS) in-
crease the depth of the I/O stack. Data conversions (such as
from files to blocks) through these intermediate layers and
the corresponding spin-lock management further consume
a lot of processing time. It becomes even worse when using
multi-thread applications. The single software queue in block
I/O (BIO) serializes these data accesses of all threads. Even
for the kernels equipped with the multi-queue block layer
(blk-mq) [11] that maintains per-CPU software queues, the
parallel data accesses issued by multiple threads of each core
are serialized. Although the blk-mq can reduce the number
of I/O operations by merging multiple requests with adjacent
logical block addresses (LBAs) from different software queues
to a single hardware issue queue, it still consumes many CPU
cycles to search through the software queues for merging.
Our in-depth analysis reveals that the high-performance stor-
age bandwidth of NVMe SSDs is underutilized by more than
46% due to such possible I/O processing overhead.

Recently, a new storage technology, called Key-Value SSD
(KV-SSD) [19, 21, 39], has been developed to preserve the
nature of application data (e.g., variable value sizes) and not
restrict accessing SSDs with only a fixed block size. Figure 1
shows the comparison of software and hardware layers for
block-based SSDs (see Figure 1 (a)) and KV-SSDs (see Fig-
ure 1 (b)). The block mapping becomes unnecessary when
the underlying storage device is a KV-SSD [21]. This new
technology exposes the key-value oriented interface directly
to applications. The KV-SSD firmware at the hardware layer
can manage read/write/update of key-value pairs of data.
This reduces the I/O processing overhead by saving the CPU
cycles used for converting data. Thus, KV-SSD has shown
the ability to accelerate key-value stores and key-value based
applications by streamlining the I/O stack [10, 20, 25].

SYSTOR ’21, June 14–16, 2021, Haifa, Israel J. Bhimani et al.

In this work, we explore a new research question that "Can
KV-SSDs improve performance of multi-threaded �le-based
applications, too?" The state-of-the-art shows that current
KV-SSDs cannot support running parallel multi-threaded
file-based applications due to the following limitations. First,
the current KV-SSD only supports key-value based opera-
tions, e.g., store, retrieve, and delete [42]. These operations
can be easily used by applications whose data is natively in
key-value format, e.g., RocksDB [29], WiredTiger [13]. The
other general-purpose applications, such as most applica-
tions that are not key-value, cannot directly use KV-SSDs.
Second, for most multi-threaded file-based applications, crit-
ical operations such as shared memory buffer management
are traditionally taken care of by the filesystem. However,
the I/O stack of KV-SSD does not include the filesystem layer.
Thus, an alternative method is needed to manage the data
of these parallel applications. Third, the current KV-SSD
provides asynchronous operations in order to obtain bet-
ter performance with less system resource usage. Whereas,
multi-threaded file-based applications are not designed to
directly manage asynchronous I/Os because the interme-
diate filesystem and block layers are in charge of thread
safety with asynchronous I/Os on conventional block-based
NVMe SSDs. To address these limitations, we present a new
method - Key-Value based Storage infrastructure for Parallel
Computing (named KV-SiPC) - to use NVMe Key-Value SSDs
for accelerating multi-threaded OpenMP applications.
The major contributions of our work are as follows.

• We provide a new capability to execute workloads with
parallel data threads while using KV-SSDs along with tra-
ditional parallel compute threads.

• We develop a new technique to allow fine-grained con-
trol and configuration of the optimal number of parallel
data and compute threads, which results in better resource
utilization.

• We build a key-value concurrency manager to main-
tain memory mapping and thread-safety when running
OpenMP applications using KV-SSDs.

• We design and construct different processing modules
(such as sequential, parallel compute, and parallel data
access along with parallel compute) to investigate the im-
pacts of parallel compute and data threads.

• We implement our KV-SiPC infrastructure in a real system
and evaluate the performance by using Samsung PM983
KV-SSDs with different firmwares to support both tradi-
tional block and key-value interfaces for fair comparison.

Our evaluation results show that KV-SiPC can allow multi-
thread applications to experience a significant reduction in
end-to-end latency using KV-SSDs, compared to the tradi-
tional block-based SSDs.

(a) (b)

Figure 2: (a) Throughput of Get/Read, and Put/Write, async.

28KB size file and key-value handling by block and KV-SSD,

(b) Speed-up using a multiple parallel compute (PC) threads

and parallel data access (PDA) threads.

2 MOTIVATION

Even in the era of big data, most things in many file sys-
tems are small [2, 3]. Inevitably, scalable systems should ex-
pect the numbers of small files to exceed billions. Application-
level KV stores handle many small objects efficiently and
have resulted in better performance and scalability [4, 14, 15].
These KV stores benefit largely from KV-SSDs [10, 20, 25].
However, it is unclear that if the thin OS I/O stack of KV-
SSDs can also accelerate file-based workloads especially with
small objects.
[Throughput using Block SSD andKV-SSD.]Asmany

applications are file-based, exploring if KV-SSDs can be used
for them is important. One straightforward way of convert-
ing file read/write on a block device to key-value pair get/put
on a KV-SSD is to save the content of the file as "value"
and the unique path to the file as its "key." We use the same
SSD hardware with block firmware and key-value firmware
to compare throughput while reading and writing files/KV-
pairs of the same sizes. We program put/write and get/read
operations using FIO bypassing the page cache. Figure 2(a)
compares the I/O throughput while performing get/put of
KV-pairs on KV-SSD and read/write of files on block-SSD.
We perform ten thousand random asynchronous I/Os, each
of either KV-pair or file size 28KB. We observe that using
lightweight KV stack on KV-SSD, we obtain better through-
put than the traditional I/O stack on block SSD. With KV
stack, we can saturate 8% to 50% of the best obtainable device
read and write bandwidth for Samsung NVMe PM983 U.2
SSD [40]. While reading and writing files using traditional
I/O stack on the same model of SSD can only saturate 2% -
12% of the device bandwidth. This is because that KV-SSDs
have a thin software stack in the I/O path, which eliminates
the overhead of file open-close and conversion at multiple
software translation layers. We hypothesize that not only
key-value based applications but also file-based applications
can be accelerated using KV-SSDs.
[Impact of Parallelism.] Next, we try to understand the

impact of simultaneously using parallel data threads (PDA)
to utilize internal parallelism of SSD channels along with the
parallel compute threads (PC) that improves the utilization
of system CPUs. We use block SSD for this study as we are

Fine-grained Control of Concurrency within KV-SSDs

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

not aware of any existing system kernel and device drive
that allows us to control I/O parallelism on KV-SSDs. We
run a matrix multiplication application with a dataset of 1
million �oats over the XFS file system on block SSD. From
Figure 2(b), we observe that upon using multiple data access
threads launched by each compute thread, the runtime can
further be reduced. This also results in obtaining better de-
vice bandwidth saturation. However, with further in-depth
exploration, we observe that while using the traditional I/O
path with NVMe block SSD, each core use only one submis-
sion and one completion queue. Although, NVMe interface
supports 64K queues, the block device driver restricts using
more than one set of queues per core. Thus, the host writes
a fixed-sized circular buffer space of a submission queue,
either at the host or drive memory, and triggers the door-
bell register when commands are ready to execute by NVMe
SSD. The SSD controller then picks up the queue entries in
the order received. The completion queues post the status
for completed commands. Thus, although using alternative
approaches such as Storage Performance Development Kit
(SPDK), the software stack can be reduced. However, the re-
strictions imposed by the block device driver may still yield
sub-optimal performance. To take advantage of the thin soft-
ware stack in the I/O path of KV-SSDs and no block layer
queues, we design a new device driver that can use multiple
submission and completion queues per core. This will allow
us to use parallel threads in the same core to leverage parallel
data accesses. Suppose the number of queues is a function of
the complexity of the application workload and the number
of cores in a system. In that case, we may reduce the end-to-
end latency of multi-thread applications and better utilize the
massive available bandwidth of modern NVMe SSDs. This
motivates us to design I/O stack that allows applications to
control compute and data parallelism using KV-SSDs even
for non key-value based applications.

3 FRAMEWORK

3.1 KV-SiPC Architecture

The technical design of KV-SiPC includes the compute path
- a set of functional units that carry out parallel computing
operations, and the data path - a set of functional units that
carry out data processing operations. Specifically, KV-SiPC
is a prototype of key-value based parallel computing that
is deployed using Samsung’s KV-SSD [39] and multi-thread
OpenMP library [12]. KV-SiPC uses OpenMP’s manager-
worker paradigm. The main thread is the manager. Initially,
the manager launches different worker threads. All worker
threads run in parallel to execute the same code on different
parts of data. When all worker threads finish, the manager
further processes results from these worker threads. Depend-
ing on the implementation of the algorithm, the manager de-
cides to fork multiple workers again or terminate. All threads

(manager or workers) have their own thread context, thread
ID, stack, stack pointer, program counter, condition codes,
and general-purpose registers. The OpenMP specification
consists of APIs, a set of pragmas, and several settings for
OpenMP-specific environment variables. One canmark some
parts of the code to be executed in parallel by using special
#pragma directives. Then, multiple threads will be launched
to run the marked code. Each thread is the abstraction of
control �ow during the execution of a program.
OpenMP applications are originally file-based multi-

thread applications designed to run on a block device
that does not need to control data threads. The traditional
OpenMP launches parallel compute threads, while the in-
termediate block layer controls data access. KV-SSDs do
not have a block layer. Thus, we can directly expose the
control of parallel data threads to the user or the program
layer. This will allow us to have fine-grained control over
resource management of resources such as CPU, memory,
and SSD bandwidth and improve overall performance. We
need to have solutions to manage parallel compute and data
threads and perform thread-safe asynchronous key-value
I/O operations as well. Thus, in KV-SiPC, we design two
new components: (1) capabilities to execute workloads with
multiple parallel data threads along with traditional parallel
compute threads, that allows us to improve overall through-
put of applications, utilizing the maximum possible storage
bandwidth. (2) key-value concurrency manager to integrate
OpenMP pragmas with the key-value Linux kernel device dri-
ver (KDD) to maintain memory mapping and thread-safety
when running a multi-threaded application on KV-SSDs. The
proposed idea to have parallel data threads to exploit the
high internal concurrency of KV-SSDs is not specific to just
OpenMP applications instead generally applies to even other
parallel POSIX thread libraries. However, the real system
evaluation of this idea required considerable initial efforts to
integrate library functions with key-value KDD. Thus in this
paper, we mainly focus on OpenMP. In the remaining section,
we discuss the functions of each component in detail.

3.2 Parallel Compute (PC) and Parallel
Data Access (PDA) Threads

During the execution of a general multi-thread program,
data accesses issued by all parallel compute threads are
served by a single thread. This is because the current I/O
stack assumes that writing a large buffer with one thread is
as fast as writing many small buffers with multiple concur-
rent threads [24, 35]. However, this is only true for storage
devices with low bandwidth, but not for high bandwidth de-
vices such as KV-SSDs that are capable of performing parallel
I/Os (see Figure 2(b)). To take full advantage of the internal
parallelism of KV-SSDs, we develop an infrastructure that
support users to launch and control multiple parallel data

SYSTOR ’21, June 14–16, 2021, Haifa, Israel J. Bhimani et al.

threads for each parallel compute thread. First, we modify
some OpenMP library functions to control the launch of
parallel compute and data threads. Second, we design a new
controller that helps KV-SiPC decide the best number of
compute and data threads by monitoring the online usage
of compute and memory resources. Our modified OpenMP
library and key-value KDD represent metadata as key-value
pairs indexed into a hash table. Persisting metadata uses the
same submission and completion queues as data. Most meta-
data management operations are inspired from TableFS [37].
For example, creating a hard link modifies the value with an
attribute prefix indicating the value entry is a hard link to
the object. Whenever KV-SiPC creates the second hard link
to an object, it creates a separate hash table entry for the ob-
ject itself, with a null value and its new key as the rehashed
value of its parent’s key. Some other metadata operations
such as the object rename operations need to be handled
by the application library because the device driver only
maintains a unique key to locate the data at any particular
location. We modify the file to the key mapping table entry
while renaming a file.

[Modified OpenMP Library Functions.] In our infras-
tructure, #pragma (a language construct directive that speci-
fies how a compiler processes its input) is used to support
the launch of parallel tasks. To ensure end-to-end lock-free
execution of parallel threads, we integrate OpenMP pragma
to the functions of the Samsung key-value API [19] and the
key-value related functions of the KV-SSD’s device driver
such as get(), put(), and delete() to take care of launching
parallel data threads without any specific changes required
by the programmer to application code. Users need to just
specify the processing module (such as PDA_PC) in the exe-
cution command. We discuss processing modules in detail in
Section 3.3. The segments specified by pragma directives of
application code are exposed to both parallel compute and
parallel data access at runtime, depending upon the desired
processing module.
The launch of parallel compute and data threads from

the program layer is controlled in our compute path. We
modify the functionality of omp_set_num_threads in the
OpenMP library. Particularly, KV-SiPC decides the number
of compute and data threads by monitoring the online us-
age of compute and memory resources. Rather than fixing
<thread_no> to <omp_get_max_thread()> throughout the
execution, we initialize <thread_no> to 2. Then, during
the execution, omp_set_num_threads is set to the optimal
<thread_no>. The optimal value of the number of compute
and data threads is managed by our new controller that we
explain next.
[Number of PC and PDA Threads.] Apparently, in-

creasing the number of threads can improve performance.
However, saturation will eventually happen because more

threads consume more CPU and memory resources. There-
fore, the next question that KV-SiPC has to address is “how
to dynamically identify an optimal number of PC threads
and PDA threads?" We design two methods “KV-ins” and
“KV-mod” to get the answer. First, for a set of less compute-
intensive applications, the straightforward method KV-ins is
to instrument system resources and accordingly adjust the
number of threads at runtime. Specifically, KV-SiPC periodi-
cally instruments the runtime CPU and memory utilization
of each processor by using mpstat [16] and memstat [5],
respectively. KV-SiPC then launches new compute threads
for each application until either CPU utilization exceeds the
desired threshold (e.g., 85%) or the maximum number of par-
allel threads supported by a CPU is reached. To decide the
optimal number of parallel data access threads launched by
each parallel compute thread, it further monitors the run-
time I/O throughput and memory utilization. It uniformly
increases the number of parallel data threads launched by
each compute thread of all the user-specified applications
until overall I/O throughput does not decrease, and memory
utilization does not exceed the desired limit, such as 85%.

The second method KV-mod is for compute-intensive ap-
plications. We adopt the M/M/c queuing theory [43] to solve
the problem as follows. We assume that each PC thread
launches the same number of PDA threads. Let the cumula-
tive arrival rate from all the applications be λ. For example,
if two applications are running in parallel and every millisec-
ond they submit four independent compute operations, then
λ = 4k operations/second. Let �µ denote the average service
rate of the bottleneck resource. We use roo�ine model [33]
to predict the bottleneck. For example, if the application is
I/O bound, the average service rate is 332MB/s for an SSD
that reports 83K IOPS for 4KB random I/Os in its data-sheet.
Impact of the number of threads (i.e., c) is modeled by parallel
servers in the queuing model. c ∈ [1, cmax], c is the number
of PC*PDA threads, and cmax is the maximum number of
supported parallel threads by the system. The resultant of
the changes in overall service rate from queuing model, for a
range of c is captured in the vector �µc . The objective is to find
the best value of c . Once we have λ and �µc , KV-SiPC calls
the optimizeServNum function to decide the best value of

c , which computes arдmin
c ∈[1,cmax]

[
ErlanдC(λ, �μc)

c �μc−λ
+

1

�μc
]. Different

combinations of c values and corresponding estimated ser-
vice rates �µc are tested to explore the optimal c that would
minimize the total end-to-end latency. This procedure also
uses the ErlanдC function [7] to calculate the probability that
an arriving job will need to queue (as opposed to immediately
being served). Finally, the best value of c is periodically up-
dated while running applications. Note that one of the above
techniques can be selected to run the application. Currently,

Fine-grained Control of Concurrency within KV-SSDs

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

Figure 3: Illustration of bitmap.

our infrastructure does not support automatically changing
from one to other at runtime.
[Key-Value ConcurrencyManager.]While running on

a block device, a multi-thread application usually relies upon
the filesystem for memory mapping of application data and
upon the block layer for its thread-safe asynchronous I/Os
to the device. As there is no filesystem and block layer when
KV-SSD is used, we need to explicitly maintain memory
mapping and thread-safety for running a multi-threaded
application on KV-SSDs. Otherwise, parallel asynchronous
I/Os can lead to execution errors or incorrect data access. In
the data path of our infrastructure, we develop a new key-
value concurrency manager consisting of I/O completion
queues and I/O submission queues that are managed by users
on the host side for appropriate memory mapping of the data.
The two main functions, i.e., “kvs_store” and “kvs_retrieve,”
are responsible for managing data �ow from host memory
to SSD and vice verse. “kvs_store” appends the key-value
pair to the I/O submission queue of the corresponding thread
for write/update to KV-SSD. “kvs_retrieve” finds and returns
the key-value pair to the specified memory buffer. We use
opcode to differentiate various store and retrieve actions.
An opcode identifies which basic computer operation in the
instruction set is to be performed.

The memory buffer allocation, which is traditionally taken
care of by the filesystem layer while using block SSD, is
now explicitly handled by our modified infrastructure at
the user layer. For the allocation of single data value, we
use a thread management command to fetch data from KV-
SSD according to its corresponding key ID. The memory
buffer allocation for the stream of data is done by considering
queue depth and the number of parallel data threads for each
I/O queue. For example, for structure kv_data which con-
tains key_buf and val_buf, the following command reserves
the required memory cmd_data = valloc(sizeof(struct

kv_data) * qdepth * iothread). In this module, we also
construct and maintain appropriate counters to track the
number of I/Os issued, number of I/Os on the air, and num-
ber of I/Os completed by each data thread and I/O queue
to ensure thread-safety of the asynchronous I/O operations.
These counters and the corresponding I/O submission and
completion queues are updated if there are any completed
asynchronous I/Os.
During runtime, the number of completed I/Os by each

thread is instrumented by calling the function “KV Get IO-
event” within the same thread that issued I/O. Specifically,

a bitmap is maintained to log the mapping of the key to
OpenMP thread-id and corresponding I/O submission queues
for all data. A sample bitmap is shown in Figure 3, which
is a two-dimensional map maintaining seven-bit thread-id
for each I/O submission queue-id and key-id. This bitmap
is updated when a batch of I/O requests enter the I/O sub-
mission queues. The counters maintaining the vacancy of
those I/O submission queues are decreased. Upon polling the
I/O completion queues, the “kvs_retrieve” function uses the
bitmap to identify which I/O submission queue and thread-id
the completed I/O requests belong to and then increases the
vacancy of the corresponding I/O completion queue. New I/O
requests can enter respective I/O submission and completion
queues depending on their vacancies. The maximum number
of I/Os that can be submitted to an I/O submission queue at
the same time is equal to the queue depth times the number
of parallel threads. An important issue in managing multiple
parallel compute and data threads on the same KV-SSDs is
to maintain the coherence of the shared data. For example,
read-modify-write operations on the shared data by threads
using different cores may result in data inconsistency. We
maintain all the data into one of the five different states of
the MOESI protocol [6] and implement transactions using
the rules of its state transition diagram.
In our infrastructure, we directly expose NVMe driver

level commands (such as <NVME_IOCTL_GET_AIOEVENT>)
to our concurrency manager. We implement and integrate
KV-SiPC with SNIA API [42] to initialize, open, close, per-
form, and verify read and write operations on KV-SSDs.
These API functions substitute the functionalities of the reg-
ular POSIX API functions (such as readdir(), opendir(), and
closedir()) for KV-SSDs. Thus, the key-value concurrency
manager keeps track of the simultaneous input-output op-
erations performed on NVMe KV-SSD to guarantee thread
safety for executing parallel applications.

3.3 Implementation Discussion

[Processing Modules.] In order to effectively evaluate
our proposed infrastructure, we implement three different
processing modules in terms of compute and data access par-
allelism: (1) Seq - sequential compute with sequential data
access, (2) PC - parallel compute with sequential data access,
and (3) PDA_PC - parallel compute with parallel data access.
To achieve fair comparisons, we rewrite applications to sup-
port parallelism in compute and data for both block I/O and
KV access. The “Sequential (Seq)” implementation represents
a straightforward application that runs with one compute
thread and one data thread, while the “Parallel Compute
(PC)” implementation represents traditional multi-thread ap-
plications that use multiple compute threads to compute but
access data in a sequential channel. The third processing

SYSTOR ’21, June 14–16, 2021, Haifa, Israel J. Bhimani et al.

module (i.e., PDA_PC) aims to capture a more complex par-
allel scenario, where multiple parallel compute threads are
run, and each compute thread can launch multiple parallel
data access threads. In order to enable this PDA_PC module
for traditional block-based SSD, we provide handles to grant
root privilege to each application thread and use private
channels [46] to implement multiple I/O submission queues.
In this way, we support parallel data threads at the host layer
even for block-based SSD. No changes need to be made on
the device driver of block-based SSD.
A parallel operating thread is an abstraction of control

�ow during execution. Each thread has its context and meta
information for running. For the two parallel processing
modules (i.e., PC and PDA_PC), it is crucial to maintain
thread safety throughout the execution of an application
to avoid data race and protect shared variables from unde-
sirable mutations. However, the existing key-value storage
techniques [18, 23] were designed and used for traditional
key-value applications without parallel transactions. Thus,
the existing key-value interface (such as wrappers) and APIs
cannot handle parallel asynchronous I/Os, especially inmulti-
threaded environments. To address this issue, we resolve
thread-safety at the layers of application, host, and device
to guarantee the correctness of end-to-end operations. For
example, at the application layer, the commonly used con-
tainers of the “Std C++11” library are not thread-safe. Thus,
we only consider the thread-safe versions of containers (e.g.,
< queue >, < stack >, and < vectors >) and further develop
new thread-safe versions of string processing functions such
as “strtok().” At the host layer, we use conditional variables
such as < pthread_mutex_lock >, < pthread_cond_wait >,
and < pthread_mutex_unlock > to maintain memory alloca-
tion for each thread and avoid concurrent race condition as
well as memory fragmentation. Finally, at the device driver
layer, to avoid concurrent data race, we manage NVMe driver
layer commands (such as <NVME_IOCTL_GET_AIOEVENT>,
<NVME_IOCTL_SET_AIOCTX>) separately for each I/O sub-
mission and completion queues and each thread-id. Note
that in our current implementation, PC and PDA threads are
forked when the application starts. Changing the number of
threads dynamically during the execution of the application
raises many new challenges (e.g., data ownership assign-
ments), and we plan to work on this in the future.
[Functionalities of kvs_map.] The “kvs_map” function

maintains the “application data <-> keys” mapping table
implemented using the hash table data structure. During
application writes/updates, “kvs_create” first generates key-
value pairs. Then “kvs_map” updates the application data to
the key mapping table. While during application reads, this
mapping table is used to identify the keys dedicated to the
required application data. “kvs_map” also computes check-
sum to consider the application level cache effects for data

Figure 4: System Architecture.

using cyclic redundancy checks (CRCs) to protect against
readback errors. Thus, any multi-threaded OpenMP applica-
tion can be translated to a key-value based application by
mainly replacing file calls of <File Initialization> with
<kvs_create>, <File Open> with <kvs_map>, and <File

Scan> with <kvs_retrieve>.

4 EVALUATION

In this section, we present the implementation details
of KV-SiPC and our evaluation results. We mainly analyze
various performance parameters comparing block SSD and
KV-SSD and study resource utilization. We use a wide range
of dataset sizes from 20 KB to 1 TB to better understand
applications’ execution. Here, we present our understanding
on using our infrastructure to resolve critical system col-
lapse occurred by over-usage of memory resources such as
thrashing 1. Finally, we discuss the sensitivity analysis of our
infrastructure with respect to its configured parameters.

4.1 Interface Implementation

We construct a real system infrastructure to implement
three processing modules of KV-SiPC. We build the proto-
type using the Samsung SSD. In particular, Figure 4 shows
the components that we design or modify (i.e., thread safe
KV driver, system support for shared memory threading,
OpenMP runtime library, and file <-> key mapping tables) in
the compute path and data path to implement KV-SiPC. We
use the same hardware (i.e., Samsung’s PM983 SSD) with dif-
ferent firmware to support either traditional block interface
1In computer systems, thrashing occurs when a computer’s memory re-

sources are overused, leading to a constant state of paging and page faults,

inhibiting most application-level processing.

Fine-grained Control of Concurrency within KV-SSDs

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

or KV interface, for fair performance comparison. The rou-
tine operations of SSD, such as wear leveling 2 and Garbage
Collection (GC) 3, are same for block SSD and KV-SSD while
the Flash Translation Layer (FTL)4 of KV-SSD translates key-
value pairs to physical addresses of �ash storage.

At the program layer, we maintain file <-> key mapping
tables to translate a file-based multi-thread application to
key-value based operations. This comprises of the “kvs_map”
function and maintains a log of the application data to key
mapping. At the kernel and OS system layers of the host
system, we further modify the OpenMP runtime library that
integrates OpenMP pragma to the functions of the key-value
API at the program layer with the key-value related inter-
faces of the KV driver. We bind the modified OpenMP li-
brary functions to the GNU Compiler Collection (GCC) for
implementation during the compilation of the program by
using the OpenMP �ag directive. Additionally, the modified
library functions implement the dynamic threads manager,
which launches parallel compute and data threads by mon-
itoring different system resources such as CPU and mem-
ory. We also build system support for shared memory and
threading to implement some new memory management
data structures such as “Thread Safe Queues” for key-value
concurrency manager to safely handle concurrent shared
data. Using these data structures, we ensure lock-free exe-
cution of parallel threads through the kernel and OS layers.
Our KV-SiPC infrastructure supports both synchronous and
asynchronous I/Os.

4.2 Evaluation Setup

We use one node of the “Mission Peak” platform [38],
which is a 1U server with high-speed NF1 form factor NVMe
SSDs. The “Mission Peak” platform is developed with the
partnership of the primary storage industry leaders such as
Samsung, AIC, Mellanox, E8 Storage, and Memorysolution.
We limit the shared memory of our testbed to 100GB. Sam-
sung PM983 Block-based SSDs and KV-SSDs are used in our
evaluation. They both have the same �ash hardware, capac-
ity, and internal management algorithms, such as garbage
collection policy and wear-leveling policy. For our exper-
iments with block SSDs, we use the ext4 filesystem with
the block size of 4096 Bytes. Our kernel version is Linux
4.9.5-040905-generic with Ubuntu 16.04.4 LTS (xenial) OS.
2Wear leveling is a technique to arrange data, so that write/erase cycles are

distributed evenly among all of the blocks in SSD. Wear leveling helps to

prolong the service life of erasable computer storage media, such as SSD.
3Garbage Collection (GC) is a process to systematically identify which

memory cells contain unneeded data and clear the blocks of unneeded data

to reclaim the empty space.
4The Flash Translation Layer (FTL) maintains an abstraction of read and

write requests on logical blocks from the host to turn them into low-level

read, erase, and program commands on the underlying physical storage

chips.

We use different real multi-thread OpenMP applications
such as K-means clustering, Page-Rank, and matrix-matrix
multiplication for evaluating the overall benefit of KV-SiPC.
Later, for an in-depth study of the impact of our infrastruc-
ture on different performance parameters, we use the K-
means clustering application as a representative multi-thread
application. To thoroughly evaluate our infrastructure, we
generate workloads by using different numbers of data files
such that a small workload has around 1000+ data files and
30 MB in total while a large workload has around 10 million
data files and 0.2 TB in total. We compare performance un-
der three processing modules (i.e., sequential (Seq), parallel
compute (PC), and parallel data access along with parallel
compute (PDA_PC)) as introduced in Section 3.3.

K-means Clustering:Ourmulti-threaded OpenMPK-means
clustering implementation [8] takes color images as the in-
put. Specifically, we use images from NASA Image Galleries
[32] as our workloads. To avoid network and web delays, we
store databases consisting of ‘jpeg,’ ‘jpg,’ and ‘png’ images
on persistent storage. We then cluster pixels in an image
based on five features, including three RGB channels and
the position (x, y) of each pixel. The parameters of K-means
clustering include the number of desired clusters (K), the
number of iterations (I), and the size of the input dataset
(N). The resultant cluster centroids and a list of pixels be-
longing to each cluster are stored into persistent storage. In
our experiments, we consider the total end-to-end runtime,
including (1) pre-processing of changing the format of im-
ages from ‘jpeg,’ ‘jpg,’ and ‘png’ to vectors with five features
(or elements), (2) clustering of data (image pixels) using the
K-means clustering algorithm, and (3) storing the results in
persistent storage.

4.3 Performance Overview

We measure the parallel I/O performing capabilities of
KV-SiPC by comparing KV-SSD with block SSD using differ-
ent number of parallel OpenMP threads. The workload used
consists of ten thousand 225KB size different files for block
SSD and ten thousand 225KB key-value pairs for KV-SSD.
Figure 5 shows that KV-SSD can saturate the available device
bandwidth reported in the datasheet which is represented by
a green horizontal line [40] and scale better upon increasing
the number of parallel threads due to its lean I/O stack. On
average, we see that KV-SiPC can obtain a speed-up of 2x
while performing load and store compared to block SSD.

Next, we measure the overall performance of real OpenMP
applications by comparing throughput using traditional I/O
stack with block SSD and KV-SiPC with KV-SSD. In Figure 6
we compare the throughput using PDA_PCmodulewherewe
use maximum available threads for block SSD, and KV-SiPC

dynamically identifies an optimal number of threads for KV-
SSDs using our runtime instrumentation module (KV-ins),

SYSTOR ’21, June 14–16, 2021, Haifa, Israel J. Bhimani et al.

(a) (b)

Figure 5: Bandwidth while performing (a) Get/Read and (b)

Put/Write with di�erent number of OpenMP threads for ten

thousand operations of 225KB load/store

Figure 6: Average application throughput of file-based han-

dling using block SSD andKVbased handling usingKV-SiPC

with KV-SSD for di�erent input data.

and M/M/c modeling module (KV-mod), both as explained in
Sec. 3. The average throughput is measured as the number of
operations completed per second, where “operation” refers to
the end-to-end process of each data point. We obtain around
25x throughput improvement using KV-SiPC with KV-SSDs
when compared to traditional I/O stack with block SSD (see
Figure 6).
Interestingly, we observe that applications with higher

temporal big O complexity show a bit better improvement
than applications with low complexity. See matrix multipli-
cation with the complexity of O(n3)) (for nxn matrix data)
shows 27.8x improvement and page-rank with the complex-
ity of O(n)) (for a graph with n nodes) shows 22.4x improve-
ment. We anticipate that this is because the applications with
higher complexity usually have more nested loops. Thus, the
execution of each parallel compute thread may depend upon
multiple data pages as well as the completion of other com-
pute threads. Within such dependencies, the overhead and
bottlenecks are higher in a bulky software stack of block
SSD than the thin software stack of KV-SSD. Finally, we
see that KV-mod is better for the applications with higher
complexity, as the runtime instrumentation method (i.e., KV-
ins) to configure an optimal number of threads incurs addi-
tional contention on CPU resources. We also observe that
the throughput improvement, which we obtain by running
real applications with KV-SiPC (see Figure 6) is higher than
that obtained by simple read and write workload (see Fig-
ures 2(a)). We understand that this is because apart from
reducing the storage stack overhead, KV-SiPC also simpli-
fies the dependency and increases the concurrency between

Figure 7: Normalized time spent of locks in all queues with

respect to the total time.

Figure 8: Time towards di�erent KV-SiPC operations while

running K-means.

parallel compute threads and parallel data threads when com-
pared to block SSD. As real applications can take simultane-
ous advantage of reduced I/O stack, simplified dependency,
increased concurrency, thus they show better performance
improvement than just synthetic I/O workloads.

To further find the evidence of the observed performance
gain, we analyze time spent waiting for locks. Particularly,
we analyze the locks within the "Adapter Queue" [45] of the
Linux kernel. Adapter Queue gathers jobs from applications
translates the request to ScsiCommand() [1] and sends it to
the "Device Queue" in the driver. We implement the kernel
patch [45, 46] with Lockmeter to compare the time of the
locks initialized in the submission and completion queues in
the Adapter Queue. The statistic results in Figure 7 show that
temporal wastes on these locks with traditional I/O stack is
at least 35% higher than KVSiPC. As a result, the bottleneck
between the Adapter Queue and the Device Queue is reduced
with KVSiPC to be able to better utilize the available 64K
queues in the NVMe controller.

Figure 8 shows the breakdown of the time taken by various
operations while running K-means clustering for 7,244,954
data files with root mean square error tolerance of 0.01. From
Figure 8, we see that PC and PDA_PCmainly reduce the time
consumed towards identifying the closest centers in the it-
erations of K-means. This is the most compute-intensive
operation in K-means, so it gets the maximum benefit from
parallelism. We also observe that the time consumed to han-
dle KV_Create and KV_Map is very less.
Finally, we study the tail performance of our key-value

interface compared to the block device. Figure 9 shows the
cumulative distribution functions (CDFs) of the latency un-
der the sequential module with a workload of 40,000 files.
We observe that the 90 percentile of the latency (i.e., marked

Fine-grained Control of Concurrency within KV-SSDs

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

(a) (b)

Figure 9: Tail Latency of, (a) Block SSD, and (b) KV-SSD.

(a) (b)

Figure 10: Throughput and Memory Utilization w.r.t. run-

time using, (a) Block SSDs, and (b) KV-SSDs.

with dotted lines in Figure 9) is significantly reduced by us-
ing KV-SSD with our key-value interface, which is only 3 ms
while using block SSD is 600 ms. Similar latency trends are
observed under the other programming modules with differ-
ent workloads and applications. We anticipate that such a
reduction in end-to-end tail latency is because KV-SiPC does
not rely much on the complex host side resource manager
(e.g., task scheduler, memory management) which could re-
sult in higher performance deviation per thread per I/O, and
hence high tail latency.

4.4 Resource Utilization

We further investigate the case of memory over-utilization
that causes thrashing and then study the CPU utilization un-
der three different programming modules. When memory
resources are overused, the system enters a constant state
of paging and page faults, which is called thrashing. Thrash-
ing is undesirable because it can drastically slow down or
stop the processing of applications. Thus, KV-SiPC strives to
address this issue by performing fine-grained resource man-
agement to control the number of parallel compute and data
access threads. Figure 10 shows memory utilization (right
axis) as well as the throughput (left axis) over 100 hours (i.e.,
four days) under the PDA_PC programming module, where
the workload consists of 50 million data files with the size of
1TB in total. In this experiment, we limit the shared memory
of the testbed to 100 GB. From Figure 10 (a), we observe
that with the block interface, the throughput of processing
is initially about 200 ops/s, and memory is under-utilized.
However, as the time elapses, the memory utilization keeps
increasing until saturation (i.e., almost all 100GB memory
space is occupied). Thrashing then happens after 70 hours,

Table 1: CPU Utilization.

Seq. PC PDA_PC

Block SSD 1.11% 99.21% 64.54%

KV-SSD 14.50% 98.56% 21.02%

(a) (b) (c)

Figure 11: Sensitivity analysis w.r.t., (a) Queue Depth, (b) No.

of Compute Threads, and (c) No. of Data Threads.

which dramatically lowers the throughput and then causes
the system to crash. This is because block-based SSD, by
default, uses block caching that fetches the entire block (in-
cluding unnecessary pages of data) to memory. As a result, it
becomes highly likely that in parallel workloads where data
locality of pages accessed by each thread is not good, pre-
fetching such unnecessary pages can occupy a lot of memory
space. In contrast, this undesirable thrashing does not occur
when using our KV-SiPC (Figure 10 (b)). We observe that
our key-value interface always achieves the throughput as
high as 4,000 ops/s throughout the execution. Meanwhile,
the increasing rate of memory utilization is not as fast as that
under block SSD. Neither saturation nor thrashing appears
even after 100 hours when using our key-value infrastruc-
ture. KV-SiPC enables an application to store data as values
instead of fixed-size blocks in KV-SSD. Thus, only the re-
quired data is fetched into memory by each parallel thread,
which saves the memory space and conserves CPU cycles
for fetching and evicting unnecessary data. Thus, KV-SiPC
can well utilize the same amount of resources to further
accelerate an application with larger workloads.
The average CPU utilization under three programming

modules using the block or KV-SSD is further shown in
Table 1. We observe that the CPU is underutilized for the
sequential module, especially when the block interface is
used. On the other hand, CPU resources are almost satu-
rated, making CPU the bottleneck for the parallel compute
programming module. The best usage of CPU resources is
obtained under the PDA_PC programming module because
PDA_PC balances the number of parallel compute threads
along with the number of parallel data threads. Additionally,
we notice that for PDA_PC module with block SSD still over-
utilize the CPU, due to the inherent translation operations
of the intermediate layers in block I/O stack.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel J. Bhimani et al.

4.5 Sensitivity Analysis

Finally, we present the sensitivity analysis ofKV-SiPC with
respect to I/O queue depth of submission and completion
queues, the number of parallel compute threads, and the
number of parallel data access threads. Figure 11 shows the
results (i.e., the total runtime as the function of the number
of data files) under different parameter settings. Specifically,
we initialize the I/O queue depth as 10, the number of parallel
compute threads as the maximum (e.g., 96 in our evaluation),
and the number of parallel data threads as 2. Then, we vary
the values for one of the three parameters in each set of
experiments. First, we observe that different queue depths
(ranging from 10 to 100) do not affect the performance in
our experiments, see Figure 11 (a). This is because the I/O la-
tency is very low when using KV-SSDs so that the I/O queue
is never entirely filled with I/Os. Figure 11 (b) shows that
different numbers of parallel compute threads obtain almost
the same performance for all the workloads. A similar perfor-
mance trend is also found for other applications. Figure 11 (c)
shows the sensitivity analysis of the number of parallel data
access threads. The performance gap under different num-
bers of parallel data access threads becomes visible now. For
example, the minimum total runtime is achieved when our
testbed uses five concurrent parallel data access threads, i.e.,
PDA = 5. When the number of parallel data access threads in-
creases, the total runtime decreases initially until resources
are saturated and begin to increase later. This is because
extra latency is caused by maintaining thread safety for a
larger number of data threads, which might be more than
the performance benefits. Thus, we think that it is necessary
to tune the optimal number of parallel data access threads
by monitoring the I/O throughput and memory utilization
during the execution.

5 RELATED WORK

In the past decade, a fair amount of developments in the
direction of - designing key-value stores to run HPC appli-
cations on block storage [17, 22]; key value-based memory
management [18, 28]; and development of the storage device
firmware supporting key-value I/Os [23, 31], which shows
the emerging interest in this direction. The concept of design-
ing application frameworks to overlap the computing and
I/O carefully is becoming popular [30, 47]. On the other hand,
we begin to realize that storage devices are no longer the bot-
tleneck. Rather minimizing the operating system I/O stack
overhead is becoming the key research priorities [26, 27]. Re-
cently, KV-SSDs with the capabilities of running key-value
store inside the SSDs has shown to accelerate the processing
of key-value objects [10, 20, 23, 34, 36, 48]. Simultaneously,
taking advantage of the parallel compute and data accesses,
thin OS I/O stack, and content discovery capable smart SSDs
such as KV-SSDs may yield even better performance using

the same amount of computing and memory resources. How-
ever, we are not aware of any prior work that develops such
end-to-end infrastructure. In this section, we present state
of the art by discussing related existing works and place
our KV-SiPC in context with them. First, there are lots of
persistent key-value stores designed for local systems such
as ForestDB [4], and LevelDB [15], which use B+ or LSM
tree-based [44] designs to improve performance. Researchers
are adopting the key-value management techniques such as
LSM tree-based design to built HPC compatible key-value
stores [17, 22]. However, all these key-value database tech-
niques are designed for block SSDs, resulting in stacked logs
and low-level processing inefficiency.

Second, many existing works have reconsidered the cache
system design and directly opened the device-level details
of underlying �ash storage for key-value caching. Specifi-
cally, the DIDACAche [41] provides a key-value interface
using an open-channel SSD, mapping values directly to �ash
blocks. KAML [18] provides a generic caching layer and
separate namespaces for different key-value stores. These
existing key-value memory management interfaces were not
designed considering the requirements of multi-thread ap-
plications. Thus, they lack to provide proper concurrency
and consistency. Third, towards developing new storage de-
vices that support direct key-value I/Os. The first attempt on
this front was Seagate’s Kinetic direct-access-over-Ethernet
HDDs [31] that incorporate a LevelDB key-value store in-
side each drive and present a direct key-value interface over
ethernet. A recent attempt is being made by storage alliance
SNIA, with Samsung [42] being the forerunner among ma-
jor vendors, to introduce Key-Value Solid State Drive (KV-
SSD), along with a standardized Application Programming
Interface (API) for key-value storage. However, fundamental
research gaps continue to exists regarding software infras-
tructure to use KV-SSDs to run multi-thread applications.

6 CONCLUSION

We develop a novel storage infrastructure KV-SiPC that
utilizes the key-value interface to enable execution of multi-
threaded applications on KV-SSDs. KV-SiPC can simplify
application data management by removing intermediate lay-
ers (e.g., the filesystem and block layers from OS kernel) and
allow the fine-grained control over interactions of parallel
compute and parallel data threads to improve system con-
currency. Our evaluation demonstrates that KV-SiPC can
reduce application-to-storage I/O completion latency and
better utilize shared memory resources. In the future, we
plan to investigate the impact of KV-SiPC on the endurance
of SSD to address the wear-out issue due to limited PE cycles.

REFERENCES
[1] SCSI Command, 2017. https://en.wikipedia.org/wiki/SCSI_command.

Fine-grained Control of Concurrency within KV-SSDs

SYSTOR ’21, June 14–16, 2021, Haifa, Israel

[2] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson, Gre-

gory R Ganger, and George Amvrosiadis. File systems unfit as dis-

tributed storage backends: lessons from 10 years of ceph evolution. In

Proceedings of the 27th ACM Symposium on Operating Systems Princi-

ples, pages 353–369, 2019.

[3] Mohd Abdul Ahad and Ranjit Biswas. Comparing and analyzing the

characteristics of hadoop, cassandra and quantcast file systems for

handling big data. Indian J. Sci. Technol., 10(8):1–6, 2017.

[4] Jung-Sang Ahn, Chiyoung Seo, Ravi Mayuram, Rahim Yaseen, Jin-

Soo Kim, and Seungryoul Maeng. ForestDB: A fast key-value storage

system for variable-length string keys. IEEE Transactions on Computers,

(1):1–1, 2016.

[5] Brian Aker and Mark Atwood. MEMSTAT Linux instrumentation tool,

2019. https://linux.die.net/man/1/memstat.

[6] Hesham Altwaijry and Diyab S Alzahrani. Improved-moesi cache

coherence protocol. Arabian Journal for Science and Engineering,

39(4):2739–2748, 2014.

[7] Ian Angus. An introduction to erlang b and erlang c. Telemanagement,

187:6–8, 2001.

[8] Janki Bhimani, Miriam Leeser, and NingfangMi. Accelerating K-Means

clustering with parallel implementations and GPU computing. In High

Performance Extreme Computing Conference (HPEC), 2015 IEEE, pages

1–6. IEEE, 2015.

[9] Janki Bhimani, Jingpei Yang, and Changho Choi. Parallel key value

based multithread machine learning leveraging kv-ssds, July 16 2020.

US Patent App. 16/528,492.

[10] Tim Bisson, Ke Chen, Changho Choi, Vijay Balakrishnan, and Yang-

suk Kee. Crail-KV: A High-Performance Distributed Key-Value Store

Leveraging Native KV-SSDs over NVMe-oF. In Performance Computing

and Communications Conference (IPCCC), 2018 IEEE 37th International,

pages 1–8. IEEE, 2018.

[11] Matias Bjørling, Jens Axboe, David Nellans, and Philippe Bonnet. Linux

block io: introducing multi-queue ssd access on multi-core systems.

In Proceedings of the 6th international systems and storage conference,

pages 1–10, 2013.

[12] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard

API for shared-memory programming. IEEE computational science and

engineering, 5(1):46–55, 1998.

[13] Akon Dey, Alan Fekete, and Uwe Röhm. Scalable distributed transac-

tions across heterogeneous stores. In Data Engineering (ICDE), 2015

IEEE 31st International Conference on, pages 125–136. IEEE, 2015.

[14] Felix Gessert,WolframWingerath, Steffen Friedrich, andNorbert Ritter.

Nosql database systems: a survey and decision guidance. Computer

Science-Research and Development, 32(3-4):353–365, 2017.

[15] Sanjay Ghemawat and Jeff Dean. LevelDB, A fast and lightweight

key/value database library by Google, 2014.

[16] Sebastien Godard. MPSTAT Linux instrumentation tool, 2019. https:

//linux.die.net/man/1/mpstat.

[17] Hugh Greenberg, John Bent, and Gary Grider. {MDHIM}: A parallel

key/value framework for {HPC}. In 7th {USENIX} Workshop on Hot

Topics in Storage and File Systems (HotStorage 15), 2015.

[18] Yanqin Jin, Hung-Wei Tseng, Yannis Papakonstantinou, and Steven

Swanson. KAML: A �exible, high-performance key-value SSD. In High

Performance Computer Architecture (HPCA), 2017 IEEE International

Symposium on, pages 373–384. IEEE, 2017.

[19] Jingpei-Yang. OpenMPDK v0.7.0, 2018. https://github.com/

OpenMPDK/KVSSD/.

[20] Yangwook Kang, Rekha Pitchumani, Pratik Mishra, Yang-suk Kee,

Francisco Londono, Sangyoon Oh, Jongyeol Lee, and Daniel DG Lee.

Towards building a high-performance, scale-in key-value storage sys-

tem. In Proceedings of the 12th ACM International Conference on Systems

and Storage, pages 144–154, 2019.

[21] Yang Seok Ki. Key Value SSD, September 20 2018. US Patent App.

15/876,028.

[22] Jungwon Kim, Seyong Lee, and Jeffrey S Vetter. PapyrusKV: a high-

performance parallel key-value store for distributed NVM architec-

tures. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pages 1–14, 2017.

[23] Sang-Hoon Kim, Jinhong Kim, Kisik Jeong, and Jin-Soo Kim. Trans-

action support using compound commands in key-value ssds. In

11th {USENIX} Workshop on Hot Topics in Storage and File Systems

(HotStorage 19), 2019.

[24] Sangwook Kim, Hwanju Kim, Joonwon Lee, and Jinkyu Jeong. Enlight-

ening the i/o path: a holistic approach for application performance. In

15th {USENIX} Conference on File and Storage Technologies ({FAST}

17), pages 345–358, 2017.

[25] Los Alamos National Laboratory. Providing order to the world: Range

query for KV-SSD, 2020. https://www.lanl.gov/projects/ultrascale-

systems-research-center/student-symposiums.php.

[26] Gyusun Lee, Seokha Shin, Wonsuk Song, Tae Jun Ham, Jae W Lee,

and Jinkyu Jeong. Asynchronous i/o stack: A low-latency kernel i/o

stack for ultra-low latency ssds. In 2019 {USENIX} Annual Technical

Conference ({USENIX} {ATC} 19), pages 603–616, 2019.

[27] Xiaojian Liao, Youyou Lu, Erci Xu, and Jiwu Shu. Write dependency

disentanglement with {HORAE}. In 14th {USENIX} Symposium on

Operating Systems Design and Implementation ({OSDI} 20), pages 549–

565, 2020.

[28] Hyeontaek Lim, Bin Fan, David G Andersen, and Michael Kaminsky.

SILT: A memory-efficient, high-performance key-value store. In Pro-

ceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles, pages 1–13. ACM, 2011.

[29] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, Raju

Rangaswami, Sushma Devendrappa, Bharath Ramsundar, and Sriram

Ganesan. NVMKV: A Scalable and Lightweight Flash Aware Key-Value

Store. In HotStorage, pages 8–8, 2014.

[30] Kshitij Mehta and Edgar Gabriel. Multi-threaded parallel i/o for

openmp applications. International Journal of Parallel Programming,

43(2):286–309, 2015.

[31] Manas Minglani, Jim Diehl, Xiang Cao, Binghze Li, Dongchul Park,

David J Lilja, and David HCDu. Kinetic action: Performance analysis of

integrated key-value storage devices vs. leveldb servers. In Parallel and

Distributed Systems (ICPADS), 2017 IEEE 23rd International Conference

on, pages 501–510. IEEE, 2017.

[32] NASA. NASA Image Galleries, 2018. https://www.nasa.gov/

multimedia/imagegallery/index.html.

[33] Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G

Spampinato, and Markus Püschel. Applying the roo�ine model. In

2014 IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), pages 76–85. IEEE, 2014.

[34] Ivan Luiz Picoli, Niclas Hedam, Philippe Bonnet, and Pınar Tözün.

Open-channel ssd (what is it good for). CIDR, January, 2020.

[35] Gustavo Pinto, Anthony Canino, Fernando Castor, Guoqing Xu, and

Yu David Liu. Understanding and overcoming parallelism bottlenecks

in forkjoin applications. In 2017 32nd IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE), pages 765–775. IEEE,

2017.

[36] Rekha Pitchumani and Yang-suk Kee. Hybrid data reliability for emerg-

ing key-value storage devices. In 18th {USENIX} Conference on File

and Storage Technologies ({FAST} 20), pages 309–322, 2020.

[37] Kai Ren and Garth Gibson. TABLEFS: Enhancing metadata efficiency

in the local file system. In Presented as part of the 2013 USENIX Annual

Technical Conference (USENIX ATC 13), pages 145–156, San Jose, CA,

2013. USENIX. https://www.usenix.org/conference/atc13/technical-

sessions/presentation/ren.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel J. Bhimani et al.

[38] Samsung. Mission Peak: High-performance Storage Solution with NF1

SSD, 2018. https://www.samsung.com/semiconductor/insights/tech-

leadership.

[39] Samsung. Samsung Key Value SSD, 2019. https://www.samsung.

com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_

enables_High_Performance_Scaling-0.pdf.

[40] Samsung, 2020. https://samsungsemiconductor-us.com/labs/pdfs/

Samsung_PM983_Product_Brief.pdf.

[41] Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. DIDACache: A

Deep Integration of Device and Application for Flash Based Key-Value

Caching. In FAST, pages 391–405, 2017.

[42] SNIA. SNIA’s key value storage API spec, 2019. https:

//www.snia.org/sites/default/files/technical_work/PublicReview/

Key%20Value%20Storage%20API%200.25-DRAFT.pdf.

[43] Jianfu Wang, Opher Baron, and Alan Scheller-Wolf. M/m/c queue with

two priority classes. Operations Research, 63(3):733–749, 2015.

[44] PengWang, Guangyu Sun, Song Jiang, Jian Ouyang, Shiding Lin, Chen

Zhang, and Jason Cong. An efficient design and implementation of

LSM-tree based key-value store on open-channel SSD. In Proceedings

of the Ninth European Conference on Computer Systems, page 16. ACM,

2014.

[45] Peter Wai Yee Wong, Badari Pulavarty, Shailabh Nagar, Janet Mor-

gan, Jonathan Lahr, Bill Hartner, Hubertus Franke, and Suparna Bhat-

tacharya. Improving linux block i/o for enterprise workloads. In

Ottawa Linux Symposium, page 390, 2002.

[46] Zhengyu Yang, Morteza Hoseinzadeh, Ping Wong, John Artoux, Clay

Mayers, David Thomas Evans, Rory Thomas Bolt, Janki Bhimani, Ning-

fang Mi, and Steven Swanson. H-NVMe: a hybrid framework of NVMe-

based storage system in cloud computing environment. In Performance

Computing and Communications Conference (IPCCC), 2017 IEEE 36th

International, pages 1–8. IEEE, 2017.

[47] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E

Priebe, and Alexander S Szalay. Flashgraph: Processing billion-node

graphs on an array of commodity ssds. In 13th {USENIX} Conference

on File and Storage Technologies ({FAST} 15), pages 45–58, 2015.

[48] Itai Ben Zion. Key-value ftl over open channel ssd. In Proceedings of

the 12th ACM International Conference on Systems and Storage, pages

192–192, 2019.

